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Abstract

In genetic screens aimed at understanding drug resistance mechanisms in chronic myeloid 

leukemia cells, inactivation of the cullin 3 adapter protein-encoding leucine zipper like 

transcription regulator 1 (LZTR1) gene led to enhanced mitogen-activated protein kinase (MAPK) 

pathway activity and reduced sensitivity to tyrosine kinase inhibitors. Knockdown of the 

Drosophila LZTR1 orthologue CG3711 resulted in a RAS-dependent gain-of-function phenotype. 

Endogenous human LZTR1 associates with the main RAS isoforms. Inactivation of LZTR1 led to 

decreased ubiquitination and enhanced plasma membrane localization of endogenous KRAS (V-

Ki-ras2 Kirsten rat sarcoma viral oncogene homolog). We propose that LZTR1 acts as a conserved 

regulator of RAS ubiquitination and MAPK pathway activation. Because LZTR1 disease 

mutations failed to revert loss-of-function phenotypes, our findings provide a molecular rationale 

for LZTR1 involvement in a variety of inherited and acquired human disorders.
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Chronic myeloid leukemia (CML) is characterized by the expression of the constitutively 

active oncogenic tyrosine kinase fusion BCR-ABL (1). The proliferation and survival of 

BCR-ABL+ CML cells depends on the activation state of key cellular signaling networks 

including the mitogen-activated protein kinase (MAPK) pathway (1). The development of 

the tyrosine kinase inhibitor (TKI) imatinib has provided a successful targeted therapeutic 

however limited by the development of resistance (2).

Genetic screens in the near-haploid human CML cell line KBM-7 allow unbiased 

identification of candidate genes affecting inhibitor resistance (3). We performed 

comprehensive haploid genetic screening with six TKIs in clinical use or under evaluation 

(Fig. S1A). Retroviral gene-trap mutagenized cells were exposed to the TKIs at 

concentrations corresponding to half maximal inhibitory concentration (IC50) to IC70 dosage 

(Fig. S1B), resistant cell populations were collected after selection and genomic gene-trap 

insertions identified by deep sequencing. Each screen resulted in enrichment of disruptive 

insertions in 5 to 18 different genes (Fig. 1A, Fig. S1C-G, S2A, and Table S1). We identified 

a recurrent set (≥ 4 screens) of six genes (NF1, WT1, PTPN1, PTPN12, LZTR1, BAP1; 
“TOP6” set) (Fig. 1B) with overrepresentation of disruptive genomic gene-trap integrations 

strongly indicating a selective advantage upon drug treatment (Fig. S2B).

We used a lentiviral CRISPR/Cas9 multi-color competition assay (MCA)-based coculture 

system to evaluate gene-mediated drug resistance effects. SpCas9 expressing KBM-7 

(KBM-7Cas9) cells were infected with lentiviral single guide RNA (sgRNA) vectors co-

expressing reporter fluorophores enabling tracing of knockout and control cell populations 

by flow cytometry in the same well (Fig. S3A). Mixed sgRen (targeting Renilla luciferase) 

control cell populations expressing fluorescent proteins (GFP+ or mCherry+) did not show 

any preferential outgrowth of resistant cells upon 14 days of TKI treatment (Fig. 1C and Fig. 

S3H). In contrast, KBM-7Cas9 GFP+ cells harboring sgRNAs that target the TOP6 genes 

showed decreased amount of cognate protein (Fig. S3B-G) and demonstrated enhanced cell 

survival and outgrowth in the presence of imatinib (Fig. 1C) and rebastinib (Fig. S3H). Thus, 

we functionally validated the TOP 6 genes as important for drug action in BCR-ABL+ CML 

cells.

Although NF1, PTPN1 and PTPN12 share the ability to modulate MAPK pathway activation 

and WT1 as well as BAP1 function through transcriptional regulation (Fig. S2C), we could 

not deduce any mechanistic explanation for the role of leucine zipper like transcription 

regulator 1 (LZTR1) in enhanced CML cell survival from the existing literature (4, 5). To 

exclude cell line-specific effects, we confirmed that loss of LZTR1 expression induced 

resistance to imatinib and rebastinib in other CML cell lines (Fig. S4A-C). Although we 

identified significant LZTR1 enrichment only in four of the genetic screens, KBM-7Cas9 

sgLZTR1 cells exhibited various degrees of resistance against all tested BCR-ABL TKIs 

(Fig. S3I). We used a CRISPR/Cas9-based domain scanning strategy to test whether both N-

terminal Kelch domains and C-terminal Broad-Complex, Tramtrack, and Bric a brac (BTB) 

and partial BACK domains are essential for the drug resistance phenotype (6–8). All protein 

domain-targeting sgRNAs showed efficient indel formation (Fig. S3J) and induced resistant 

outgrowth of targeted cell populations exposed to rebastinib, indicating that the entire 

protein is functionally required (Fig. S3K). To determine whether LZTR1 exerts its function 
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only in a CML specific context, we infected FLT3-ITD+ acute myeloid leukemia (AML) 

MV4-11Cas9 cells with LZTR1-targeting sgRNAs (Fig. S4D). FLT3 inhibitor treatment led 

to outgrowth of resistant cells underlining a more general role for LZTR1 in the drug 

response of hematopoietic cancers driven by different tyrosine kinases (Fig. S4E-G).

KBM-7Cas9 CML cells infected with distinct sgRNAs targeting LZTR1 displayed enhanced 

phosphorylation of MAPK kinase 1 (MEK1) and -2 and extracellular signal-regulated kinase 

1 (ERK1) and -2, indicative of augmented MAPK pathway activation (Fig. 2A). By contrast, 

global tyrosine phosphorylation, as well as phosphorylation of AKT (at S473 and T308), the 

protein kinase S6K1, ribosomal protein S6 and the direct BCR-ABL substrate signal 

transducer and activator of transcription 5 (STAT5) remained unchanged (Fig. S4 J and K). 

Additional CML (K-562 and LAMA-84) and AML (MV4-11) cell lines had similarly 

enhanced MAPK pathway activation under normal growth conditions as well as, in the case 

of CML cells, upon increasing concentration of imatinib treatment (Fig. 2A, Fig. S4 H and I, 

and Fig. S5A-C). LZTR1 full-length cDNA complementation in K-562Cas9 sgLZTR1 cells 

reverted both enhanced MEK and ERK phosphorylation as well as TKI resistance (Fig. 2B 

and C). Treatment of K-562Cas9 sgLZTR1 cells with the clinically approved inhibitor of 

MEK1 and -2 trametinib reverted enhanced activation of ERK1 and -2 and 

pharmacologically counteracted the drug resistance phenotype (Fig. 2D and E). 

Furthermore, cDNA expression of constitutively active Mek1D218, D222 (Mek1 DD) in 

K-562rtTA3 cells led to enhanced phosphorylation of ERK1 and -2 and reduced imatinib 

sensitivity (Fig. S6A and B). Activation of the MAPK pathway could also be inferred by the 

gene expression and transcription factor enrichment signature obtained with RNA 

sequencing experiments in KBM-7Cas9 sgLZTR1 compared to sgRen cells (Fig. S5D and E 

and Table S2). Altogether, the data established a causal role for enhanced MAPK pathway 

activation in the resistance of CML cells towards TKI therapy as elicited by loss of LZTR1 

function.

As BTB domain-containing proteins serve as adaptor proteins for the cullin 3 (CUL3) E3 

ubiquitin ligase complex enabling specific substrate recognition and ubiquitination (9), we 

tested whether loss of CUL3 expression could mimic the observed LZTR1 loss-of-function 

phenotype. Indeed, K-562Cas9 sgCUL3 cells demonstrated enhanced MAPK pathway 

activation and, in contrast to sgLZTR1 cells, increased phosphorylation of AKT (Fig. S4K). 

However, sgRNAs targeting CUL3 had a pronounced antiproliferative effect both in KBM-7 
Cas9 and K-562Cas9 cells (Fig. S6C and D) therefore providing a potential explanation why 

CUL3 was not detected in our genetic screens (Fig. S2A).

In contrast to the CML cell lines, depletion of LZTR1 with CRISPR sgRNAs in HeLa, 

human embryonic kidney (HEK)-293T or HAP1 cells did not increase MAPK pathway 

activation under comparable culture conditions (Fig. S7A and C). However, after serum 

stimulation of cells cultured without serum, HEK293TCas9 sgLZTR1 cells showed a more 

pronounced activation of MEK and ERK than in control cells (Fig. S7B). Similarly, in HAP1 

cells, a non-hematopoietic derivative of the KBM-7 cell line (10), phorbol-12-myristat-13-

acetat (PMA) treatment led to enhanced MAPK pathway activation in the absence of LZTR1 
compared with that in wild-type (WT) cells (Fig. S7C). Whereas HAP1Cas9 sgCUL3 cells 

exhibited increased phosphorylation of ERK1, ERK2 and AKT (Fig. S7F), loss of LZTR1 
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expression in HAP1Cas9 altered only the MAPK pathway as identified by means of pathway 

array-based assessment of kinase activation (Fig. S7D-E and Table S3).

Genetic studies have identified LZTR1 mutations in glioblastoma (GBM) (11), 

schwannomatosis (SWNMT) (8) and Noonan syndrome (NS) (5), a developmental 

syndrome which is part of the larger group of RASopathies characterized by mutations in 

components of the RAS-MAPK pathway (12). Identification of NF1 and LZTR1 loss-of-

function-induced MAPK pathway activation in our haploid resistance screens combined 

with human LZTR1 mutations in NS indicated that LZTR1 might directly regulate 

guanosine triphosphatases (GTPases) of the RAS family.

Drosophila wing vein formation and eye development serve as excellent in vivo readouts for 

RAS signaling (13–15). CG3711 encodes the Drosophila orthologue of mammalian LZTR1, 

which contains a unique N-terminal domain (amino acids 1-184) that is only found in 

Drosophila. This is followed by the highly conserved remaining part of the protein (54% 

sequence identity) (Fig. S8A-C). Systemic depletion of CG3711 with RNA interference 

using act5C-Gal4 yielded viable flies; however, the majority of wings of these flies 

displayed wing vein defects characterized by extra veins and vein tissue (Fig. 3A and B and 

Fig. S8D). This phenotype closely resembles a gain-of-function increase of RAS-MAPK 

signaling (15) and could be rescued by a decrease in abundance of RAS via dRas 
(Drosophila Ras) heterozygosity (Fig. 3C). Drosophila R7 photoreceptor induction requires 

RAS function (13, 14). We used a mild dominant negative version, RasV12 C40, which 

although locked in the active 5′-triphosphate (GTP)-bound state does not activate MAPK 

signaling (16). RasV12 C40 expression in the developing eyes (via the sevenless/sev-Gal4 
expression system) led to a frequent loss of the R7 photoreceptor (∼30% of ommatidia 

display R7 loss, and some also lost other R-cells) (Fig. S8E and H). Because RasV12 C40 is 

constitutively active, it also causes defects in ommatidial rotation (16, 17), serving as 

internal control. When both sev-Gal4 driven CG3711 RNAi and RasV12 C40 were expressed, 

the loss of R7 phenotype was almost completely suppressed (Fig. S8F and H). The 

ommatidial rotation defects were enhanced rather than suppressed because these involve 

MAPK-independent RAS signaling (16) (Fig. S8F). Expression of CG3711 RNAi in the eye 

alone did not induce phenotypic changes (Fig. S8G and H). Thus, RAS is crucial for the 

phenotypes induced by depletion of CG3711.

To explore possible interactions of LZTR1 with RAS, we used a BirA* fusion protein-based 

proximity biotinylation-dependent (BioID) proteomic approach, which allows identification 

of weak interaction partners. We expressed KRAS4A, KRAS4B, NRAS and HRAS as N-

terminal FLAG-BirA* fusion proteins in K-562rtTA3 CML cells. This led to enhanced MEK 

and ERK activation demonstrating that the BirA* tag does not generally interfere with RAS 

signaling (Fig. S9A). We identified between 153 and 258 proteins in proximity of or 

interacting with human RAS proteins, among them several known interactors and pathway 

components (Fig. S9B-F and Table S4). A common set of 123 proteins repeatedly purified 

with all four RAS proteins, with gene ontology analysis showing a significant enrichment in 

components associated with plasma membrane and Golgi apparatus as well as the MAPK 

pathway (Fig. S9G-H). We identified LZTR1 among the most significant interactors of all 

four RAS proteins (Fig. S9B-F). Intersection of the 123 common interactors identified by 
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BioID with a fluorescence-activated cell sorting (FACS)-based haploid genetic pathway 

screen for the identification of gene knockout alleles influencing phosphorylation of ERK1 

and -2 (18) revealed LZTR1 as the only common RAS interactor in our proteomic data with 

a negative regulatory function within the RAS-MAPK pathway (Fig. S10A).

BioID proximity biotinylation-based and FLAG tag-based co-immunoprecipitation 

experiments confirmed the interaction of all four RAS proteins with endogenous LZTR1 

(Fig. S10B and C). Only the four main RAS isoforms interacted specifically with LZTR1, 

whereas six related RAS family GTPases showed no interaction (Fig. S11A). Nine other 

canonical positive RAS-MAPK pathway regulators also failed to interact with endogenous 

LZTR1 (Fig. S11B). Immunoprecipitations with extracts derived from LZTR1 knockout 

cells confirmed the specificity of the interaction (Fig. S11C). The C-terminal post-

translational acylations of KRAS proteins appeared to be required for the interaction with 

LZTR1 (Fig. 3D and Fig. S11D). Thus, proper membrane associated localization mediated 

by this region may be required for specific interaction with LZTR1.

Stably expressed full-length hemagglutinin (HA)-tagged LZTR1 protein showed a speckled 

and vesicular staining pattern in HeLa, HEK293T and HAP1 cells whereas all domain 

mutants had a homogenous cytoplasmic distribution (Fig. S12A-D). Full-length LZTR1 

displayed an overlapping localization within speckled and vesicular compartments with 

transiently transfected V5-tagged CUL3 in HeLa cells (Fig. S13A). The LZTR1-stained 

speckles further overlapped with the autophagosome marker LC3B fused to mCherry (Fig. 

S13B), but we failed to detect LZTR1 localization with marker proteins of the Golgi, 

lysosome, peroxisome or early and late endosome compartments (Fig. S13C). Isoform-

specific antibodies that recognize endogenous human RAS isoforms are not available (19). 

We therefore endogenously tagged KRAS (Fig. S14A), and confirmed specificity of 

detection in immunofluorescence and immunoblotting by genetic inactivation of the tagged 

genomic allele (Fig. S14 B to D). KRAS localized to a large number of small-punctate 

structures, likely membrane-containing small vesicles (Fig. 3E and Fig. S14D). Inactivation 

of endogenous LZTR1 led to an increased RAS signal, particularly at the periphery of cells, 

at regions of cell-to-cell contacts (Fig. 3E and Fig. S14D). This phenotype appeared to be 

dependent on the CUL3 E3 ligase complex, because genetic inactivation of CUL3 led to 

similar phenotypic changes (Fig. 3E and Fig. S14E).

We also assessed interaction of endogenously tagged KRAS with exogenous LZTR1 in 

HAP1 cells (Fig. S15A). Exogenous LZTR1 localized to fewer, larger, and more oblong 

structures than endogenous KRAS (Fig. S15B). A fraction of the LZTR1-stained structures 

also contained KRAS. Treatment with the cullin neddylation inhibitor MLN4924 caused 

clustering of LZTR1-containing structures that appeared to surround particles strongly 

stained with KRAS (Fig. S15B, MLN4924 panel). Caution is required for the interpretation 

of these patterns because LZTR1 was overexpressed, and KRAS was at endogenous 

concentration. However, the images could represent a trapped proteostatic process involving 

the two proteins.

We tested whether LZTR1 affected ubiquitination of RAS proteins by acting as a substrate 

adaptor for the CUL3 E3 ligase complex (11, 20). Ubiquitination of RAS proteins is known, 
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but little is known of its consequences (21–25). Co-expression of HA-ubiquitin with either 

one of the four RAS isoforms alone only resulted in a basal state of ubiquitination, but 

addition of MYC-tagged CUL3 and V5-tagged LZTR1 led to increased ubiquitination of 

RAS proteins (Fig. S16A-D). LZTR1-deletion mutants that lack either one or both C-

terminal BTB domains or the N-terminal Kelch domain failed to induce an equivalent degree 

of ubiquitination of KRAS4A (Fig. S16A). KRAS4A required the presence of its C-terminal 

hypervariable (HVR) and the farnesylated cysteine 186 for LZTR1-mediated ubiquitination 

(Fig. S16E). LZTR1-induced ubiquitination was unchanged in cells treated with a 

proteasome inhibitor but could be blocked by cullin neddylation inhibition, which is 

consistent with the observed subcellular localization changes (Fig. S16F). Specificity for 

LZTR1 in the process was further underscored by the failure of two prominent CUL3 

adaptors, Kelch-like ECH-associated protein 1 (KEAP1) and Speckle-type POZ protein 

(SPOP), to cause a comparable ubiquitination (Fig. S16G). We used HAP1 cells bearing 

endogenously tagged KRAS and tandem ubiquitin binding domain (TUBE) reagents, to 

capture endogenously ubiquitinated proteins and evaluate the contribution of endogenous 

LZTR1 (26). In the absence of any stimulation, immunoprecipitation with TUBE purified 

several proteins that reacted with pan-ubiquitin antibodies (Fig. 3F, third panel from the top, 

and Fig. S16H). The same precipitates contained proteins reacting with pan-RAS antibodies 

(Fig. 3F, second panel from the top). Last, FLAG antibodies detected a protein not visible in 

the whole cell extract (Fig. 3F, first panel from the top, and Fig. S16H). TUBE-mediated 

immunoprecipitation from corresponding cells in which LZTR1 had been genetically 

inactivated did not contain amounts of RAS detectable with these antibodies (Fig. 3F, first 

and second panel from the top, and Fig. S16H). The signal obtained with pan-ubiquitin 

antibodies was unchanged (Fig. 3F, third panel from the top, and Fig. S16H). Thus, human 

LZTR1 appears to mediate ubiquitination of endogenous human KRAS and possibly other 

RAS proteins.

If a main function of LZTR1 is to regulate RAS, then loss of RAS function should 

compensate for loss of LZTR1 activity as suggested in the fruit fly epistatic analysis, thereby 

representing an ideal experimental setup to assess the disease-associated LZTR1 mutations 

by their dependency on RAS activity. We confirmed that loss of LZTR1 function enhanced 

RAS activity in K-562 cells (Fig. S17A). We then performed CRISPR/Cas9-based double 

knockout MCA experiments (Fig. S17B-D). Single sgLZTR1 and sgLZTR1-sgRen double-

infected cells were resistant to imatinib compared to control sgRen cells (Fig. S17E-F). 

sgRNAs targeting KRAS abolished cellular outgrowth, whereas sgRNAs targeting NRAS, 

HRAS and RIT1 failed to do so (Fig. S17E-F). sgLZTR1-sgKRAS cells had reduced MEK 

phosphorylation comparable to that of sgRen cells, whereas sgNRAS and sgHRAS cells 

maintained enhanced MAPK pathway activation (Fig. S17G). KRAS inactivation led to a 

strong antiproliferative phenotype in KBM-7Cas9 cells and, to a lesser extent, K-562Cas9 

cells (Fig. S18 A and B), indicating that the selective requirement of KRAS in mediating 

LZTR1-induced enhanced MAPK pathway activation might represent a prerequisite of 

KRAS for BCR-ABL signaling in CML cells. We additionally used a fibronectin-fold-based 

monobody, NS1, which bears low nanomolar affinity for the dimerization interface of both 

KRAS and HRAS, and is able to interfere with their signaling activities (27). Cells stably 
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expressing the NS1 monobody did not show increased activation of the MAPK pathway or 

drug resistance associated with loss of LZTR1 function (Fig. S18 C and D).

More than 50 different mutations have been mapped to the human LZTR1 gene in various 

diseases (5, 28) (8, 11, 29, 30) (Fig. S19A-B and Table S5). To establish a mechanistic link 

between mutations that affect human diseases and the biochemical processes described here, 

we focused on LZTR1 missense mutations identified in GBM (11), NS (5) and SWNMT (8) 

(Fig. S20B). Mutation-bearing LZTR1 cDNAs were tested for their ability to complement 

K-562 CML cells deficient in endogenous LZTR1 (Fig. S20A). In contrast to WT LZTR1, 

the disease-associated mutations failed to reduce MAPK pathway activation, despite being 

expressed at comparable or higher amount (Fig. 4A-C). Similarly, all missense mutations 

apart from the GBM-associated T288I and R810W failed to restore sensitivity to imatinib 

treatment (Fig. S20C-E). LZTR1 mutations within the Kelch domain partially retained their 

localization pattern in comparison to the WT protein, whereas mutations in the BTB/BACK 

domains mislocalized to the cytoplasm (Fig. S21 A and B). In agreement, expression of 

LZTR1 Kelch domain mutations identified in GBM, NS and SWNMT in K-562 WT cells 

had a resistance-mediating effect in MCA assays in cells treated with imatinib, whereas 

BTB/BACK domain mutations did not (Fig. S22A-C). Furthermore, in contrast to the 

LZTR1 WT protein, the two mutants R198G and G248R identified in GBM and NS failed to 

induce a similar increase in ubiquitination on KRAS4A (Fig. S22D). These findings provide 

functional evidence that human LZTR1 missense mutations identified in GBM, NS and 

SWNMT represent loss-of-function towards ubiquitination and inhibition of RAS activity.

Together with the accompanying manuscript on the role of LZTR1 in diseases driven by the 

dysregulation of RAS ubiquitination and signaling (Steklov, Pandolfi, Baietti et al. 

SCIENCE 2018) our work illustrates the importance of an additional, underappreciated layer 

of RAS regulation (Fig. 4D).
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One Sentence Summary

Genetic screens for BCR-ABL TKI resistance identify LZTR1 as mediator of RAS 

ubiquitination and regulator of MAPK pathway activation.
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Figure 1. Haploid genetic screens identify gene knockouts promoting BCR-ABL inhibitor 
resistance.
(A) Circos plot of the haploid genetic screen in the CML cell line KBM-7 upon treatment 

with ponatinib. Each dot represents a mutagenized gene identified in the resistant cell 

population, the dot size corresponds to the number of independent insertions identified per 

gene and the distance from the circos plot center indicates the significance of enrichment 

compared to an unselected control data set. Hits with a false discovery rate (FDR) adjusted 

P-value lower than 10-4 are labeled by gene name. (B) Bubble plot depicting the “TOP6” set 

of genes identified in four or more of the six haploid screens upon treatment with 1st, 2nd 

and 3rd generation BCR-ABL inhibitors. The size of each bubble corresponds to the number 

Bigenzahn et al. Page 12

Science. Author manuscript; available in PMC 2019 October 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



of independent insertions per gene and the color gradient depicts the FDR adjusted P-value 

of enrichment significance. (C) Multi-color competition assay (MCA)-derived fold change 

of cell populations after imatinib treatment of KBM-7Cas9 CML cells transduced with 

sgRNAs targeting the “TOP6” genes or sgRen.208 (targeting Renilla luciferase) as negative 

control. sgRNA-infected cell populations were mixed in a 1:1 ratio, treated with increasing 

drug concentrations and analyzed by flow cytometry after 14 days. Data are shown as mean 

value ± s.d. of at least two independent experiments (n ≥ 2) performed in duplicates. 

sgRNAs are labeled by gene name followed by the genomic targeting sequence position 

numbered according to the sequence position on the corresponding mRNA.
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Figure 2. Loss of LZTR1 enhances MAPK pathway activation.
(A) Phosphorylation of MEK and ERK in KBM-7Cas9 and K-562Cas9 CML cells transduced 

with the indicated sgRNAs. (B) Immunoblot analysis of MEK and ERK phosphorylation as 

well as LZTR1 expression in sgRen.208-expressing K-562Cas9 CML cells transduced with 

empty vector, and sgLZTR1.466-expressing cells transduced with empty vector or LZTR1-

cDNA-containing MSCV retrovirus. Quantification of MEK and ERK phosphorylation is 

shown next to the corresponding immunoblots. (C) Competitive proliferation assay (MCA) 

of K-562Cas9 sgRen.208 cells transduced with empty vector and sgLZTR1.466 cells 
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transduced with empty vector or LZTR1 cDNA after treatment with increasing 

concentrations of imatinib for 14 days. (D) Phosphorylation of MEK and ERK in K-562Cas9 

cells expressing sgLZTR1.466 and treated with increasing concentrations of trametinib for 3 

hours. (E) Changes in cell populations measured by MCA of K-562Cas9 CML cells 

expressing sgRen.208 or sgLZTR1.466 after 14 days of treatment with increasing 

concentrations of imatinib alone or in combination with trametinib. Immunoblot results in 

(A, B and D) are representative of at least two independent biological experiments (n ≥ 2). 

MCA data in (C, E) are shown as mean value ± s.d. of at least two independent experiments 

(n ≥ 2). DMSO treatment served as negative control.

Bigenzahn et al. Page 15

Science. Author manuscript; available in PMC 2019 October 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 3. LZTR1 modulates MAPK pathway activation through RAS regulation.
(A) Morphology of adult wings from act5C-Gal4, UAS-wIR (act>wIR for short) and 

act>CG3711IR #1 RNAi fly lines. (B) Quantification of act>wIR and act>CG3711IR RNAi 

lines as percentage of wings with ectopic wing vein formation. P-value for RNAi #1 and #3 

in the wing is <0.0001 (****) and for #2 is 0.0255. (C) Quantification of act>wIR and 

act>CG3711IR RNAi lines alone or in a Rase2F/+ background as percentage of wings with 

ectopic wing vein formation. For statistical assessment, partial extra vein and extra vein 

formation have been combined. P-value for both RNAi line comparisons in the wing is 
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<0.0001 (****). (D) FLAG immunoprecipitates (IP) and whole cell extracts (WCE) from 

K-562rtTA3 cells expressing FLAG-BirA* tagged GFP or KRAS4A WT, ΔHVR, C180S or 

C186S after 48 hours of doxycycline treatment were immunoblotted for the indicated 

proteins. (E) Confocal microscopy of HAP1 WT cells and HAP1 cells with endogenously 

FLAG-tagged KRAS transduced with sgRen.208, sgLZTR1.620, sgLZTR1.466, 

sgCUL3.852 or sgCUL3.1396 and stained with anti-FLAG. Scale bar in all panels is 10μm. 

(G) Tandem ubiquitin binding domain (TUBE)-based purifications of ubiquitinated proteins 

and whole cell extracts (WCE) from HAP1 WT and endogenously FLAG-tagged KRAS 

cells transduced with sgRen.208 or sgLZTR1.466 were analyzed by immunoblotting with 

the indicated antibodies. WT, wild type.
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Figure 4. LZTR1 disease missense mutations fail to rescue the loss-of-function phenotype.
(A-C) Immunoblotting for MEK and ERK phosphorylation as well as LZTR1 expression of 

K-562Cas9 sgRen.208-expressing cells retrovirally transduced with empty vector, and 

sgLZTR1.466-expressing cells transduced with either empty vector, LZTR1 WT, or LZTR1 

mutations identified in GBM (blue) (A), NS (brown) (B), or SWNMT (orange) (C). The 

LZTR1 G248R mutation has been identified in both GBM and NS. Immunoblot results are 

representative of at least two independent biological experiments (n ≥ 2) and quantification 

of MEK phosphorylation in the displayed blots is shown. (D) Mechanistic model of CUL3-
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LZTR1-mediated RAS ubiquitination and enhanced MAPK pathway activation and BCR-

ABL inhibitor drug resistance induced by loss of LZTR1 function.
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