METRIC DISTRIBUTION RESULTS FOR SEQUENCES $(\{q_n\vec{\alpha}\})$

Hansjörg Albrecher¹

Abstract

In this paper a recent result of Philipp and Tichy (2000) on the well-distribution measure of certain binary pseudorandom sequences in the unit interval is generalised. Furthermore the average value of the L²-discrepancy of sequences $(\{q_n\vec{\alpha}\})_{n\geq 1}$ is calculated, where $(q_n)_{n\geq 1}$ is a given sequence of positive integers and $\vec{\alpha} \in [0,1]^{\overline{d}}$.

2000 AMS Subject Classification: 11K55, 11K31

Keywords: Sequences, Distribution, Discrepancy, Well-distribution

1 Introduction

Let $\{x\} := x - [x]$ denote the fractional part of a real number x and for any set M let c_M be the characteristic function of M. In this paper we study sequences of the type $\omega = (\{q_n\vec{\alpha}\})_{n\geq 1}$, where $\vec{\alpha} = (\alpha_1, \ldots, \alpha_d)$ is a vector in the d-dimensional unit cube $U^d = [0,1]^d$ and $(q_n)_{n\geq 1}$ is a sequence of positive integers. Here $\{q_n\vec{\alpha}\}$ stands for the vector $(\{q_n\alpha_1\}, \{q_n\alpha_2\}, \ldots, \{q_n\alpha_d\})$. In the special case $q_n = n$ we have the so-called Kronecker sequence $(n\vec{\alpha})$, which is uniformly distributed mod 1 if and only if $1, \alpha_1, \ldots, \alpha_d$ are linearly independent over \mathbb{Z} (cf. [1]).

For such a sequence $\omega = (\{q_n \vec{\alpha}\})_{n \geq 1}$, the standard discrepancy with arbitrary weights $k_i \geq 0$, (i = 1, ..., N), where $\sum_{i=1}^{N} k_i = 1$, is defined by

$$D_N(\omega) = \sup_{[\vec{x}, \vec{y}) \in J^d} \left| \sum_{n=1}^N k_n \, c_{[\vec{x}, \vec{y})}(\{q_n \vec{\alpha}\}) - \lambda_d([\vec{x}, \vec{y})) \right|,\tag{1.1}$$

where J^d is the set of all intervals of the form $[\vec{x}, \vec{y}] := [x_1, y_1) \times [x_2, y_2) \times \ldots \times [x_d, y_d)$ with $0 \le x_i \le y_i \le 1, i = 1, \ldots, d$ and λ_d denotes the d-dimensional Lebesgue measure. Furthermore the L^p -discrepancy of ω is defined by

$$D_N^{(p)}(\omega) := \left(\int_{Id} \left| \sum_{n=1}^N k_n \, c_{[\vec{x}, \vec{y})}(\{q_n \vec{\alpha}\}) - \lambda_d([\vec{x}, \vec{y})) \right|^p \, d\vec{x} d\vec{y} \right)^{\frac{1}{p}}. \tag{1.2}$$

The L^p -discrepancy $D_N^{(p)}(\omega)$ for p=2 and d=1 is known as a diaphony which has been introduced by ZINTERHOF [12], see also STRAUCH [11].

¹Supported by the Austrian Science Foundation Project S8308-MAT

For a survey on discrepancies and other important concepts in the theory of uniform distribution, we refer to the textbooks of DRMOTA AND TICHY [1] and KUIPERS AND NIEDERREITER [5].

Let now $E_N = E_N(\omega) = \{e_1, \dots, e_N\}$ with

$$e_n := \begin{cases} +1 & \text{for } \{q_n \vec{\alpha}\} \in \left[0, \frac{1}{2^{1/d}}\right)^d \\ -1 & \text{for } \{q_n \vec{\alpha}\} \notin \left[0, \frac{1}{2^{1/d}}\right)^d \end{cases}, \ 1 \le n \le N.$$
 (1.3)

An important measure of the pseudorandomness of such a binary sequence E_N is its well-distribution measure defined as

$$W(E_N) := \max_{\substack{a \in \mathbb{Z}, \, b, t \in \mathbb{N} \ 1 \leq a + bt \leq N}} \left| \sum_{j \leq t} e_{a + bj} \right|, \quad N \geq 1.$$

Clearly, $W(E_N)$ can be bounded by the discrepancy of the defining sequence $(\{q_n\vec{\alpha}\})_{n\geq 1}$ in the form

$$W(E_N) = \max_{\substack{a \in \mathbb{Z}, b, t \in \mathbb{N} \\ 1 \le a + bt \le N}} \left| 2 \sum_{n=1}^{t} c_{[0, \frac{1}{2^{1/d}})^d}(\{q_n \vec{\alpha}\}) - t \right| \le 2 \max_{\substack{a \in \mathbb{Z}, b, t \in \mathbb{N} \\ 1 \le a + bt \le N}} t D_t \Big(\{q_{a+bj} \vec{\alpha}\}, j \le t \Big), \quad (1.4)$$

where D_t is the discrepancy defined in (1.1) with equal weights $k_n = 1/N$, n = 1, ..., N.

For $q_n = n^k$ $(n = 1, ..., N, k \in \mathbb{N})$ and d = 1, sequences of type (1.3) were considered by Mauduit and Sárkőzy [6], who, among other things, proved metric results on asymptotic upper bounds for the right hand side of (1.4). Recently these bounds were improved by Philipp and Tichy [8] and at the same time generalised to arbitrary increasing sequences of positive integers $(q_n)_{n\geq 1}$.

In this paper we will derive a metric result on the asymptotic upper bound of (1.4) for arbitrary sequences of distinct positive integers $(q_n)_{n\geq 1}$ and arbitrary dimension $d\geq 1$. Finally, in Section 3 we calculate the L^2 -norm of $D_N^{(2)}(\{q_n\vec{\alpha}\})$ and $D_N^{*(2)}(\{q_n\vec{\alpha}\})$ for arbitrary weights $k_n\geq 0, n=1,\ldots,N, \sum_{n=1}^N k_n=1$ and arbitrary dimension $d\geq 1$.

2 A metric theorem for bounding $W(E_N)$

Theorem 2.1 Let $(q_n, n \ge 1)$ be a sequence of distinct positive integers and let $\vec{\alpha} = (\alpha_1, \ldots, \alpha_d) \in [0, 1]^d$ for arbitrary $d \ge 1$. Then for almost all $\vec{\alpha}$ and arbitrary $\epsilon > 0$ we have

$$\max \left(t D_t(\{q_{a+bj}\vec{\alpha}\}, j \le t) : a \in \mathbb{Z}, b, t \in \mathbb{N}, 1 \le a + bt \le N \right) \ll N^{2/3} (\log N)^{1+2d/3+\epsilon}.$$
(2.1)

Remark: This result is an extension of Theorem 1 of Philipp and Tichy [8], where (2.1) has been established for increasing sequences (q_n) for the one-dimensional case d=1 with the sharper estimate $N^{2/3}(\log N)^{1+\epsilon}$ on the right hand side.

Proof: The proof is based on a technique developed in [8]. Since the discrepancy $D_t \leq 1$, we only have to consider

$$N^{2/3}(\log N)^{1+2d/3+\epsilon} \le t \le N \tag{2.2}$$

and for the number b in the maximum we thus have without loss of generality

$$b \le N/(t-1) \le N^{1/3} (\log N)^{-1-2d/3-\epsilon}. \tag{2.3}$$

Furthermore, by application of the triangle equality, it is easy to see that we can assume

$$|a| \le b \tag{2.4}$$

without loss of generality.

Now, for $\vec{h} = (h_1, \dots, h_d) \in \mathbb{Z}^d$ set

$$r(ec{h}) = \prod_{j \leq d} \max(1, |h_j|) \quad ext{and} \quad \| \, ec{h} \, \|_{\infty} = \max_{j = 1, \ldots, d} |h_j|.$$

Then for fixed a, b, t and $\vec{\alpha}$ the ERDŐS-TURÁN inequality yields

$$tD_{t}(\{q_{a+bj}\vec{\alpha}\}, j \leq t) \leq \left(\frac{3}{2}\right)^{d} \left(\frac{2t}{H+1} + \sum_{0 \leq ||\vec{h}||_{\infty} \leq H} \frac{1}{r(\vec{h})} \left| \sum_{j \leq t} e(\langle \vec{h}, \{q_{a+bj}\vec{\alpha}\} \rangle) \right| \right), \quad (2.5)$$

where $e(x) = \exp(2\pi i x)$, $\langle \cdot, \cdot \rangle$ denotes the dot product for d-dimensional vectors and H is an arbitrary positive integer (see for example DRMOTA AND TICHY [1]). From (2.5) we obtain

$$t^{2}D_{t}^{2}(\{q_{a+bj}\vec{\alpha}\}, j \leq t) \leq \left(\frac{3}{2}\right)^{2d} \left(8(t/H)^{2} + 2\left(\sum_{\|\vec{h}\|_{\infty} \leq H} \frac{1}{r(\vec{h})} \left|\sum_{j \leq t} e(\langle \vec{h}, \{q_{a+bj}\vec{\alpha}\}\rangle)\right|\right)^{2}\right). \tag{2.6}$$

For each \vec{h} with $||\vec{h}||_{\infty} \leq H$ we have for all $1 \leq j_1 \leq j_2 \leq N$

$$\mathbb{E}\left|\sum_{j_1\leq j\leq j_2}e(\langle\vec{h},\{q_{a+bj}\vec{\alpha}\}\rangle)\right|^2 = \mathbb{E}\left|\sum_{j_1\leq j\leq j_2}e^{2\pi i(h_1\alpha_1+\ldots+h_d\alpha_d)q_{a+bj}}\right|^2 =$$

$$= \mathbb{E}\left(\sum_{j_1 \leq l_1, l_2 \leq j_2} e^{2\pi i (h_1 \alpha_1 + \dots + h_d \alpha_d)(q_{a+bl_1} - q_{a+bl_2})}\right) = j_2 - j_1 + 1,$$

since $(q_n, n \ge 1)$ is a sequence of distinct positive integers.

But now we can apply Lemma A.1 (see appendix) with $\gamma=2$ and the superadditive function g(i,j):=j-i+1 (that g(i,j) is indeed superadditive, can be checked easily). Thereby we obtain

$$\mathbb{E}\max_{t\leq N/b} \left| \sum_{j\leq t} e(\langle \vec{h}, \{q_{a+bj}\vec{\alpha}\}\rangle) \right|^2 \leq C_1 \frac{N}{b} (\log N)^2$$
 (2.7)

for some constant $C_1 \geq 1$. By choosing $H = \lfloor (N/b)^{\frac{1}{2}} \rfloor + 1$ we obtain for fixed a and b from (2.6), (2.7) and MINKOWSKI's inequality

$$\mathbb{E}\max_{t\leq N/b} t^2 D_t^2(\{q_{a+bj}\vec{\alpha}\}, j\leq t) \leq \left(\frac{3}{2}\right)^{2d} \left(C_2 N/b + C_3 N/b \cdot (\log N)^2 (\log N)^{2d}\right) \tag{2.8}$$

for constants $C_2, C_3 \geq 1$ and thus

$$\mathbb{E} \max_{t \le N/b} t^2 D_t^2(\{q_{a+bj}\vec{\alpha}\}, j \le t) \ll N/b \cdot (\log N)^{2d+2}$$
(2.9)

Now we can apply Markov's inequality and together with (2.3) and (2.4) we obtain

$$\begin{split} \mathbb{P}\left(\max_{\substack{t \leq N/b \\ |a| \leq b \leq N^{1/3}(\log N)^{-1-2d/3-\epsilon}}} tD_t(\{q_{a+bj}\vec{\alpha}\}, j \leq t) \geq N^{2/3}(\log N)^{1+2d/3+\epsilon}\right) \ll \\ \ll N^{-\frac{4}{3}}(\log N)^{-4d/3-2-2\epsilon} \max_{b \leq N^{1/3}(\log N)^{-1-2d/3-\epsilon}} N/b \cdot (\log N)^{2d+2} \cdot b^2 \ll (\log N)^{-1-3\epsilon}. \end{split}$$

Hence we have for fixed $r \geq 1$

$$\mathbb{P}\left(\max_{\substack{t \le 2^r/b \\ |a| \le b \le 2^{r/3}r^{-1-2d/3-\epsilon}}} tD_t(\{q_{a+bj}\vec{\alpha}\}, j \le t) \ge 2^{2r/3}r^{1+2d/3+\epsilon}\right) \ll r^{-1-3\epsilon}$$

from which it finally follows by the Borel-Cantelli lemma that with probability 1

$$\max_{\substack{t \le 2^r/b \\ |a| \le b \le 2^{r/3}r^{-1-2d/3-\epsilon}}} (tD_t(\{q_{a+bj}\vec{\alpha}\}, j \le t)) \ll 2^{2r/3}r^{1+2d/3+\epsilon}$$

which completes the proof of (2.1).

3 The mean of the L²-discrepancy of $(\{q_n\vec{\alpha}\})$

We now allow for arbitrary sequences of positive integers $(q_n)_{n\geq 1}$ and define for $[\vec{x}, \vec{y}) \in J^d$ the remainder function

$$R_N(\vec{x}, \vec{y}, \vec{\alpha}) = \sum_{n=1}^N k_n c_{[\vec{x}, \vec{y})}(\{q_n \vec{\alpha}\}) - \prod_{i=1}^d (y_i - x_i),$$
(3.1)

where $k_n \ge 0$, n = 1, ..., N and $\sum_{n=1}^{N} k_n = 1$. This can be considered as a weighted local discrepancy function of the sequence $(\{q_n\vec{\alpha}\})$.

Koksma [4] was the first to investigate the integral $\int_{[0,1]^d} R_N^2(\vec{x},\vec{y},\vec{\alpha}) d\vec{\alpha}$ for d=1 and equal weights $k_n = \frac{1}{N}$, $(n=1,\ldots,N)$, and Strauch [10] obtained an explicit expression for this case. The following Proposition generalises Theorem 1 of [10] in that it allows for arbitrary weights k_n and arbitrary dimension $d \geq 1$.

Proposition 3.1 Let (q_m, q_n) denote the greatest common divisor of q_m and q_n . Then

$$\int_{U^d} R_N^2(\vec{x}, \vec{y}, \vec{\alpha}) d\vec{\alpha} =$$

$$= \sum_{m,n=1}^N k_n k_m \prod_{i=1}^d \left[(y_i - x_i)^2 + \frac{(q_m, q_n)^2}{q_m \cdot q_n} T\left(x_i, y_i, \frac{q_m}{(q_m, q_n)}, \frac{q_n}{(q_m, q_n)}\right) \right] - \prod_{i=1}^d (y_i - x_i)^2,$$
(3.2)

where

$$T(x_{i}, y_{i}, a, b) = (\{y_{i}a\} - \{x_{i}a\})(\{x_{i}b\} - \{y_{i}b\}) - \{y_{i}a\} + \{x_{i}a\} + \max(\{y_{i}a\}, \{x_{i}b\}) - \max(\{x_{i}a\}, \{x_{i}b\}) + \min(\{y_{i}a\}, \{y_{i}b\}) - \min(\{x_{i}a\}, \{y_{i}b\}).$$

Proof: Since for every pair of real numbers x and y with $0 \le x \le y \le 1$ and $a \in \mathbb{N}$ we have

$$\int_0^1 c_{[x,y)}(\{a\alpha\})\,d\alpha = y-x$$

it follows from definition (3.1) that

$$\int_{U^d} R_N^2(\vec{x}, \vec{y}, \vec{\alpha}) \, d\vec{\alpha} = \int_{U^d} \left(\sum_{n=1}^N k_n c_{[\vec{x}, \vec{y})}(\{q_n \vec{\alpha}\}) \right)^2 \, d\vec{\alpha} - \\
- 2 \prod_{i=1}^d (y_i - x_i) \sum_{n=1}^N \int_{U^d} k_n \prod_{i=1}^d c_{[x_i, y_i)}(\{q_n \alpha_i\}) \, d\vec{\alpha} + \prod_{i=1}^d (y_i - x_i)^2 = \\
= \int_{U^d} \left(\sum_{n=1}^N k_n \prod_{i=1}^d c_{[x_i, y_i)}(\{q_n \alpha_i\}) \right)^2 \, d\vec{\alpha} - 2 \prod_{i=1}^d (y_i - x_i) \sum_{n=1}^N k_n \prod_{i=1}^d (y_i - x_i) + \prod_{i=1}^d (y_i - x_i)^2 = \\
= \int_{\alpha_1 = 0}^1 \cdots \int_{\alpha_d = 0}^1 \left(\sum_{n=1}^N k_n \prod_{i=1}^d c_{[x_i, y_i)}(\{q_n \alpha_i\}) \right)^2 \, d\alpha_1 \cdots d\alpha_d - \prod_{i=1}^d (y_i - x_i)^2. \quad (3.3)$$

It has been shown in [10] that for every pair of real numbers x and y with $0 \le x \le y \le 1$ and positive integers q_m, q_n

$$\int_{\alpha=0}^{1} c_{[x,y)}(\{q_{m}\alpha\}) c_{[x,y)}(\{q_{n}\alpha\}) d\alpha = (y-x)^{2} + \frac{(q_{m},q_{n})^{2}}{q_{m} \cdot q_{n}} T\left(x,y,\frac{q_{m}}{(q_{m},q_{n})},\frac{q_{n}}{(q_{m},q_{n})}\right),$$

which can now be used to calculate the integrals in (3.3) by using

$$\begin{split} \int_{\alpha_1=0}^1 \cdots \int_{\alpha_d=0}^1 \prod_{i=1}^d c_{[x_i,y_i)}(\{q_m\alpha_i\}) \prod_{i=1}^d c_{[x_i,y_i)}(\{q_n\alpha_i\}) \, d\alpha_1 \cdots d\alpha_d = \\ &= \prod_{i=1}^d \int_{\alpha_i=0}^1 c_{[x_i,y_i)}(\{q_m\alpha_i\}) c_{[x_i,y_i)}(\{q_n\alpha_i\}) d\alpha_i, \end{split}$$

which completes the proof of (3.2).

Proposition 3.1 can now be used to calculate the L²-norm of the L²-discrepancy $D_N^{(2)}(\{q_n\vec{\alpha}\})$ with arbitrary weights k_i :

Theorem 3.1

$$\left\| D_N^{(2)}(\{q_n\vec{\alpha}\}) \right\|_2 = \sqrt{\left(\frac{1}{6^d} - \frac{1}{12^d}\right) \sum_{\substack{m,n=1\\q_n = q_m\\q_n = 0}}^{N} k_n k_m}.$$
 (3.4)

Proof: By changing the order of integration we get

$$\int_{U^d} \left(D_N^{(2)}(\{q_n\vec{\alpha}\}) \right)^2 d\vec{\alpha} = \iint_{I^d} \int_{U^d} R_N^2(\vec{x}, \vec{y}, \vec{\alpha}) \, d\vec{\alpha} \, d\vec{x} d\vec{y},$$

which by (3.2) yields

$$\begin{split} \int_{U^d} \left(D_N^{(2)}(\{q_n\vec{\alpha}\}) \right)^2 d\vec{\alpha} &= \sum_{m,n=1}^N k_n k_m \iint_{J^d} \prod_{i=1}^d \left[(y_i - x_i)^2 + \right. \\ &\left. + \frac{(q_m,q_n)^2}{q_m \cdot q_n} T\left(x_i,y_i,\frac{q_m}{(q_m,q_n)},\frac{q_n}{(q_m,q_n)}\right) \right] d\vec{x} d\vec{y} - \iint_{J^d} \prod_{i=1}^d (y_i - x_i)^2 d\vec{x} d\vec{y} = \\ &= \sum_{m,n=1}^N k_n k_m \prod_{i=1}^d \iint_{0 \le x_i \le y_i \le 1} \left[(y_i - x_i)^2 + \frac{(q_m,q_n)^2}{q_m \cdot q_n} T\left(x_i,y_i,\frac{q_m}{(q_m,q_n)},\frac{q_n}{(q_m,q_n)}\right) \right] dx_i \, dy_i - \\ &- \prod_{i=1}^d \iint_{0 \le x_i \le y_i \le 1} (y_i - x_i)^2 dx_i \, dy_i. \end{split}$$

But from Corollary 2 in [10] it follows that for all $a, b \in \mathbb{N}$

$$\iint_{0 \le x_i \le y_i \le 1} T(x_i, y_i, a, b) dx_i dy_i = \begin{cases} 0, & \text{for } a \ne b, \\ \frac{1}{12}, & \text{for } a = b, \end{cases}$$

so that

$$\begin{split} \int_{U^d} \left(D_N^{(2)}(\{q_n\vec{\alpha}\}) \right)^2 d\vec{\alpha} &= \sum_{\substack{m,n=1\\q_n=q_m}}^N k_n k_m \prod_{i=1}^d \left(\frac{1}{12} + \frac{1}{12} \frac{(q_m,q_n)^2}{q_m q_n} \right) + \sum_{\substack{m,n=1\\q_n\neq q_m}}^N k_n k_m \prod_{i=1}^d \frac{1}{12} - \frac{1}{12^d} \\ &= \sum_{m,n=1}^N k_n k_m \frac{1}{12^d} - \sum_{\substack{m,n=1\\q_n=q_m}}^N k_n k_m \frac{1}{12^d} + \sum_{\substack{m,n=1\\q_n=q_m}}^N k_n k_m \frac{1}{6^d} - \frac{1}{12^d} \\ &= \left(\frac{1}{6^d} - \frac{1}{12^d} \right) \sum_{\substack{m,n=1\\q_n=q_m}}^N k_n k_m. \end{split}$$

Example 1: For equal weights $k_n = \frac{1}{N}$, (n = 1, ..., N) and d = 1 in (3.4), we obtain

$$\int_0^1 \left(D_N^{(2)}(\{q_n \alpha\}) \right)^2 d\alpha = \frac{1}{12N^2} \sum_{\substack{m,n=1\\q_n = q_m}}^N 1,$$

which is given in Theorem 2 in [10].

Example 2: If $(q_n)_{n\geq 1}$ is a sequence of distinct positive integers, equation (3.4) gives

$$\int_{U^d} \left(D_N^{(2)}(\{q_n \vec{\alpha}\}) \right)^2 d\vec{\alpha} = \left(\frac{1}{6^d} - \frac{1}{12^d} \right) \sum_{n=1}^N k_n^2.$$
 (3.5)

Remark: In [9] Schoissengeier pointed out that for $q_n = n, (n = 1, ..., N)$, equal weights $k_n = \frac{1}{N}$ and d = 1 the asymptotic order of the L^2 -norm of D_N is $1/\sqrt{N}$. Equation (3.5) shows that in this case $1/\sqrt{N}$ is also the right order of magnitude of the L^2 -norm of $D_N^{(2)}$ and, more generally, that this asymptotic result also holds for arbitrary, but fixed dimension d and arbitrary sequences of distinct positive integers $(q_n)_{n\geq 1}$.

In the theory of uniform distribution it is of particular interest to consider the discrepancy of sequences with the underlying set system J_0^d consisting of intervals of the form $[0, \vec{y}) = [0, y_1) \times [0, y_2) \times \ldots \times [0, y_d)$ with $0 \leq y_i \leq 1$, $i = 1, \ldots, d$, which is called the star discrepancy D_N^* of $\omega = (\{q_n\vec{\alpha}\})_{n\geq 1}$, so

$$D_N^*(\omega) = \sup_{[0,ec{y}] \in J_0^d} igg| \sum_{n=1}^N k_n \, c_{[0,ec{y}]}(\{q_nec{lpha}\}) - \lambda_d([0,ec{y}]) igg|,$$

and correspondingly

$$D_N^{*\,(p)}(\omega) := \left(\int\limits_{J_0^d} \left| \sum_{n=1}^N k_n \, c_{[0,ec{y})}(\{q_nec{lpha}\}) - \lambda_d([0,ec{y}))
ight|^p \, dec{y}
ight)^{rac{1}{p}}.$$

By Roth's theorem (see e.g. [1]), for any dimension d there exists an absolute constant $c_d > 0$ such that $(D_N^{*(2)})^2 \ge c_d \frac{(\log N)^{d-1}}{N^2}$ for any N points $\vec{x}_1, \ldots, \vec{x}_N \in [0, 1]^d$.

Proposition 3.1 allows us to investigate the average value of $D_N^{*\,(2)}(\omega)$ (with respect to the L²-norm):

Theorem 3.2

$$\int_{U^d} \left(D_N^{*(2)}(\{q_n \vec{\alpha}\}) \right)^2 d\vec{\alpha} = \sum_{m,n=1}^N k_m k_n \left(\frac{1}{3} + \frac{1}{12} \frac{(q_m, q_n)^2}{q_m \cdot q_n} \right)^d + \\
+ \sum_{m,n=1 \atop q_n = q_m}^N k_m k_n \left(\frac{1}{2^d} - \left(\frac{5}{12} \right)^d \right) - \frac{1}{3^d}.$$
(3.6)

Proof: We proceed similarly to the proof of Theorem 3.1. As we now have $x_i = 0$, (i = 1, ..., d) we see from (3.2) that

$$\int_{U^d} \left(D_N^{*(2)}(\{q_n \vec{\alpha}\}) \right)^2 d\vec{\alpha} = \int_{y_1=0}^1 \cdots \int_{y_d=0}^1 \int_{U^d} R_N^2(0, \vec{y}, \vec{\alpha}) \, d\vec{\alpha} \, dy_1 \cdots dy_d = \\
= \int_{y_1=0}^1 \cdots \int_{y_d=0}^1 \sum_{m,n=1}^N k_n k_m \prod_{i=1}^d \left[y_i^2 + \frac{(q_m, q_n)^2}{q_m q_n} \left(\min \left(\left\{ \frac{q_m y_i}{(q_m, q_n)} \right\}, \left\{ \frac{q_n y_i}{(q_m, q_n)} \right\} \right) - \\
- \left\{ \frac{q_m y_i}{(q_m, q_n)} \right\} \left\{ \frac{q_n y_i}{(q_m, q_n)} \right\} \right) \right] dy_1 \cdots dy_d - \int_{y_1=0}^1 \cdots \int_{y_d=0}^1 \prod_{i=1}^d y_i^2 dy_1 \cdots dy_d = \\
= \sum_{m,n=1}^N k_n k_m \prod_{i=1}^d \int_{y_i=0}^1 \left[y_i^2 + \frac{(q_m, q_n)^2}{q_m q_n} \left(\min \left(\left\{ \frac{q_m y_i}{(q_m, q_n)} \right\}, \left\{ \frac{q_n y_i}{(q_m, q_n)} \right\} \right) - \\
- \left\{ \frac{q_m y_i}{(q_m, q_n)} \right\} \left\{ \frac{q_n y_i}{(q_m, q_n)} \right\} \right) \right] dy_i - \frac{1}{3^d}.$$

Since

$$\int_{0}^{1} \left(\min(\left\{ay_{i}\right\}, \left\{by_{i}\right\}) - \left\{ay_{i}\right\} \left\{by_{i}\right\} \right) dy_{i} = \left\{ \begin{array}{ll} \frac{1}{12}, & \text{for } a \neq b, \\ \frac{1}{6}, & \text{for } a = b, \end{array} \right.$$

for arbitrary $a, b \in \mathbb{N}$ (see [10]), we conclude that

$$\int_{U^d} \left(D_N^{* (2)}(\{q_n \vec{\alpha}\}) \right)^2 d\vec{\alpha} = \sum_{\substack{m,n=1\\q_m \neq q_n}}^N k_n k_m \left(\frac{1}{3} + \frac{1}{12} \frac{(q_m, q_n)^2}{q_m q_n} \right)^d + \sum_{\substack{m,n=1\\q_m = q_n}}^N k_n k_m \frac{1}{2^d} - \frac{1}{3^d} =$$

$$= \sum_{m,n=1}^N k_m k_n \left(\frac{1}{3} + \frac{1}{12} \frac{(q_m, q_n)^2}{q_m \cdot q_n} \right)^d + \sum_{\substack{m,n=1\\q_n = q_m}}^N k_m k_n \left(\frac{1}{2^d} - \left(\frac{5}{12} \right)^d \right) - \frac{1}{3^d}.$$

Example 3: For d = 1 equation (3.6) gives

$$\int_{y=0}^{1} \int_{\alpha=0}^{1} R_N^2(0, y, \alpha) \, dy \, d\alpha = \frac{1}{12} \sum_{m,n=1}^{N} k_m k_n \frac{(q_m, q_n)^2}{q_m q_n} + \frac{1}{12} \sum_{\substack{m,n=1\\q_m = q_n}}^{N} k_m k_n,$$

which for $k_n = \frac{1}{N}$, (n = 1, ..., N) was already derived in [10].

Example 4: If $(q_n)_{n\geq 1}$ is a sequence of distinct positive integers, then it follows from (3.6) that

$$\int_{U^d} \left(D_N^{*(2)}(\{q_n\vec{\alpha}\}) \right)^2 d\vec{\alpha} = \sum_{m,n=1}^N k_m k_n \left(\frac{1}{3} + \frac{1}{12} \frac{(q_m, q_n)^2}{q_m q_n} \right)^d + \left(\frac{1}{2^d} - \left(\frac{5}{12} \right)^d \right) \sum_{n=1}^N k_n^2 - \frac{1}{3^d}.$$
(3.7)

Remark: GÁL [3] showed that

$$\sum_{m,n=1}^{N} \frac{(q_m, q_n)^2}{q_m q_n} \ll N(\log \log N)^2$$

for every finite sequence $(q_n)_{n\geq 1}$ of distinct positive integers¹. This bound is also tight. Thus for equal weights $k_n = \frac{1}{N}$, (n = 1, ..., N) and arbitrary, but fixed $d \geq 1$ we can determine the asymptotic behavior of (3.7):

$$\begin{split} & \int_{U^d} \left(D_N^{*\,(2)}(\{q_n\vec{\alpha}\}) \right)^2 d\vec{\alpha} = \frac{1}{3^d} + \frac{d}{12N^2 \cdot 3^{d-1}} \sum_{m,n=1}^N \frac{(q_m,q_n)^2}{q_m q_n} + \\ & + \frac{1}{N^2} \sum_{j=0}^{d-2} \binom{d}{j} \frac{1}{3^j} \sum_{m,n=1}^N \left(\frac{(q_m,q_n)^2}{q_m q_n} \right)^{d-j} + \left(\frac{1}{2^d} - \left(\frac{5}{12} \right)^d \right) \frac{1}{N} - \frac{1}{3^d} \ll \frac{(\log \log N)^2}{N}, \end{split}$$

so that the L^2 -norm of $D_N^{*(2)}(\{q_n\vec{\alpha}\})$ is of asymptotic order $\frac{\log\log N}{\sqrt{N}}$.

APPENDIX

Let g(i,j) be a superadditive function, i.e. a function satisfying

$$g(i,j) \ge 0 \quad \text{for all} \quad 1 \le i \le j \le n$$

$$g(i,j) \le g(i,j+1) \quad \text{for all} \quad 1 \le i \le j \le n$$

$$g(i,j) + g(j+1,k) \le g(i,k) \quad \text{for all} \quad 1 \le i \le j \le n.$$

The following lemma is a special case of [7, Corollary 3.1]:

Lemma A.1. Let X_1, \ldots, X_n be arbitrary random variables and put $S(i, j) = X_i + \ldots + X_j$ and $M(i, j) = \max\{|S(i, i)|, |S(i, i + 1)|, \ldots, |S(i, j)|\}$ for $1 \leq i \leq j \leq n$. Suppose that there exists a superadditive function g(i, j) such that

$$\mathbb{E} \left| \left. S(i,j) \right|^{\gamma} \leq g(i,j) \quad \textit{for all} \quad 1 \leq i \leq j \leq n \right.$$

for a given real $\gamma \geq 1$. Then

$$\mathbb{E} M^{\gamma}(1,n) \leq g(1,n) \left(\lfloor \log n \rfloor + 1 \right)^{\gamma}.$$

¹This result was extended for weighted sums in Dyer and Harman [2].

References

- [1] M. Drmota and R. Tichy. Sequences, Discrepancies and Applications, volume 1651 of Lecture Notes in Mathematics. Springer, New York, Berlin, Heidelberg, Tokyo, 1997.
- [2] T. Dyer and G. Harman. Sums involving common divisors. J. London Math. Soc., (2) 34:1-11, 1986.
- [3] I. Gál. A theorem concerning diophantine approximation. Nieuw Arch. Wisk., 23:12–38, 1949.
- [4] J. Koksma. On a certain integral in the theory of uniform distribution. *Indag. Math.*, 13:285–287, 1951.
- [5] L. Kuipers and H. Niederreiter. *Uniform Distribution of Sequences*. John Wiley & Sons, 1974.
- [6] C. Mauduit and A. Sárkőzy. On finite pseudorandom binary sequences VI (On $(n^k \alpha)$ sequences). *Monatsh. Math.*, 130:261–280, 2000.
- [7] F. Móricz, R. Serfling, and W. Stout. Moment and probability bounds with quasi-superadditive structure for the maximum partial sum. *The Annals of Probability*, 10(4):1032–1040, 1982.
- [8] W. Philipp and R. Tichy. Metric theorems for distribution measures of pseudorandom sequences. *Monatsh. Math.*, 2001. to appear.
- [9] J. Schoissengeier. The integral mean of the discrepancy of the sequence $(n\alpha)$. $Monatsh.\ Math.$, 131(3):227-234, 2000.
- [10] O. Strauch. An improvement of an inequality of Koksma. *Indag. Math.* (N.S.), 3(1):113–118, 1992.
- [11] O. Strauch. L² discrepancy. Math. Slovaca, 44:601–632, 1994.
- [12] P. Zinterhof. Über einige Abschätzungen bei der Approximation von Funktionen mit Gleichverteilungsmethoden. Sitzungsber. Österreich. Akad. Wiss. Math.-Natur. Kl. II, 185:121–132, 1976.

H. Albrecher

Department of Mathematics Graz University of Technology Steyrergasse 30, 8010 Graz, Austria e-mail: albrecher@tugraz.at