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METRIC DISTRIBUTION RESULTS FOR SEQUENCES ({¢,d})

HANSJORG ALBRECHER!

Abstract

In this paper a recent result of PHILIPP and TICHY (2000) on the well-distribution
measure of certain binary pseudorandom sequences in the unit interval is generalised.
Furthermore the average value of the L?-discrepancy of sequences ({¢n@})n>1 is cal-
culated, where (g,),>1 is a given sequence of positive integers and & € [0, 1]%.

2000 AMS Subject Classification: 11K55, 11K31
Keywords: Sequences, Distribution, Discrepancy, Well-distribution

1 Introduction

Let {z} := z — [z] denote the fractional part of a real number z and for any set M
let cpr be the characteristic function of M. In this paper we study sequences of the
type w = ({gn@})n>1, where & = (a1,... ,04) is a vector in the d-dimensional unit cube
4 = [0,1]¢ and (gn)n>1 is a sequence of positive integers. Here {g,d} stands for the
vector ({gnai},{gnaz},... ,{gnaq}). In the special case ¢, = n we have the so-called
Kronecker sequence (nd), which is uniformly distributed mod 1 if and only if 1, a1,... , aq
are linearly independent over Z (cf. [1]).
For such a sequence w = ({Qna})n>la the standard discrepancy with arbitrary weights
ki >0, (i=1,..,N), where "~  k; = 1, is defined by

Dy(w) = sup Ek ¢,y ({and}) — Aa([Z, 7)), (1.1)

[Z,9)eTd n=1
where J? is the set of all intervals of the form [Z,%) := [z1,1) X [T2,12) X ... X [Td,Vq)
with 0 < z; <y; < 1,2 =1,... ,d and Ay denotes the d-dimensional Lebesgue measure.

Furthermore the LP-discrepancy of w is defined by

D) (w) /

d

Zk e ({and@}) — Ma(Z.9))| dTdij) (1.2)

The LP-discrepancy D%’;) (w) for p =2 and d = 1 is known as a diaphony which has been
introduced by ZINTERHOF [12], see also STRAUCH [11].
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For a survey on discrepancies and other important concepts in the theory of uniform
distribution, we refer to the textbooks of DRMOTA AND TiICHY [1] and KUIPERS AND
NIEDERREITER [5].

Let now Ey = Enx(w) = {e1,... ,en} with

d
+1  for {g,d} € [0, 21%)
en = ,1<n<N. (1.3)

-1 for {g @} ¢ [O, ﬁ)d -

An important measure of the pseudorandomness of such a binary sequence Fy is its well-
distribution measure defined as

W(EyN) := max
a€Z,b,teN
1<at+bt<N

., N>1.

Z €a+bj

j<t

Clearly, W(En) can be bounded by the discrepancy of the defining sequence ({g,a})n>1
in the form

t
W (Ey) = max 2Zc[0,ﬁ)d({qn&}) —t

a€Z,b,teN
1<a+bt<N n=1

<2 aeIZ;TEg‘,}t(eN tDy ({Q(H-bjd'}aj < t), (1'4)
1<atbt<N

where D; is the discrepancy defined in (1.1) with equal weights k, = 1/N, n =1,... ,N.

For ¢, =n*(n=1,... ,N, k € N) and d = 1, sequences of type (1.3) were considered by
MAUDUIT and SARKOZY [6], who, among other things, proved metric results on asymp-
totic upper bounds for the right hand side of (1.4). Recently these bounds were improved
by PHILIPP and TICHY [8] and at the same time generalised to arbitrary increasing se-
quences of positive integers (g5 )n>1-

In this paper we will derive a metric result on the asymptotic upper bound of (1.4) for
arbitrary sequences of distinct positive integers (gn),>1 and arbitrary dimension d > 1.

Finally, in Section 3 we calculate the L2-norm of Dg\?)({qnd'}) and D;v(z)({qn&'}) for arbi-
trary weights k, > 0,n =1,... ,N, 27]:7:1 kn =1 and arbitrary dimension d > 1.

2 A metric theorem for bounding W (Ey)

Theorem 2.1 Let (g,, n > 1) be a sequence of distinct positive integers and let & =
(ai,...,aq) € [0,1)¢ for arbitrary d > 1. Then for almost all & and arbitrary € > 0 we
have

max (tDt({qa+bj&},j <t):a€Z,bteN1<a+bt< N) < N?3(log N)1H24/3+¢
(2.1)
Remark: This result is an extension of Theorem 1 of PHILIPP AND TICHY [8], where

(2.1) has been established for increasing sequences (gy,) for the one-dimensional case d = 1
with the sharper estimate N2/3(log N)'*¢ on the right hand side.



Proof: The proof is based on a technique developed in [8]. Since the discrepancy D; < 1,
we only have to consider

N2/3(10gN)1+2d/3+6 <t<N (2.2)

and for the number b in the maximum we thus have without loss of generality
b< N/(t—1) < NY3(log N)~1-2d/3~¢ (2.3)
Furthermore, by application of the triangle equality, it is easy to see that we can assume
o] <b (2.4)

without loss of generality.
Now, for h = (hy,... ,hg) € 7% set
r(f) = JLmax(LipsD) wnd oo = mas Il
i<

Then for fixed a,b,t and @ the ERDOS-TURAN inequality yields

d
D = 3 2t
tDi({ga+pj0},5 <t) < <§> T Z

0<||F |loo<H

1
r(h)

> ellh {gar@)| |, (25)

J<t

where e(z) = exp(2miz), (-,-) denotes the dot product for d-dimensional vectors and H is
an arbitrary positive integer (see for example DRMOTA AND TICHY [1]). From (2.5) we
obtain

2
o 3\ 1 , .
D ({ai@hi <O < (3 ) (8@ 42| 30— > ellh {arni )
2 - r(h) |4
l|hlloo <H J<t

(2.6)

For each k with ||A|lsc < H we have for all 1 < j; < jo < N
2 2
E Z 6(<f_l', {qa+bj62})) =F Z e2mi(hian+..+hata)atb; | —

J1<5 <52 J1<5 <52

& Z e27ri(h1a1+---+hd04d)(’1a+bl1 —Gatbly) | — Jjo—g1+1,
jlsll’l25j2

since (gn, n > 1) is a sequence of distinct positive integers.

But now we can apply Lemma A.1 (see appendix) with v = 2 and the superadditive
function g(i,7) := j — ¢ + 1 (that g(i,7) is indeed superadditive, can be checked easily).
Thereby we obtain

2

N

E h & < Oy —(log N)? 2.
max ;e(<h,{qa+bga}>) < G 7 (log N) (2.7)



for some constant C; > 1. By choosing H = [(N, /b)%J + 1 we obtain for fixed a and b
from (2.6), (2.7) and MINKOWSKI’S inequality

2d
Rgﬁﬁw«%wmdsws(a (CoN/b+ CsN/b- (log N)*(0g N))  (28)

for constants Co,C's > 1 and thus

B max (2D} ({44270}, < 1) < N/b - (log N)*+* (2.9)
t<

Now we can apply MARKOV’S inequality and together with (2.3) and (2.4) we obtain

P max tD({da0j@},J < 1) > N*(log N) 257 | <«
\a|§b5Nl/3(1_og N)y—1-2d/3—¢
< N5 (log N) /322 max N/b- (log N)*™? - b* < (log N) 2.

b§N1/3(log N)*l*?d/life

Hence we have for fixed » > 1

g 25 tDy({qasp;@},j < t) > 22r/3p1H2/3%e |  pm1-3e
la|<b<2r/3,—1-2d/3—¢

from which it finally follows by the Borel-Cantelli lemma that with probability 1

e (tDy({qasoj@},j < 1)) < 22r/3plt2d/3+e
lal<b<ar/3,—1-2d/3~c

which completes the proof of (2.1). a

3 The mean of the L2-discrepancy of ({g,d})

We now allow for arbitrary sequences of positive integers (gn)n>1 and define for [7, ) € J¢
the remainder function

N d
Ry (#,7,@) =Y knczg ({nd}) — [ [ (vi — 22), (3.1)
n=1 =1
where k, > 0,n=1,... ,N and Zf:]:l ky, = 1. This can be considered as a weighted local

discrepancy function of the sequence ({g,@}).

KOKSMA [4] was the first to investigate the integral f[o 1 R%(%,%,d)da for d = 1 and
equal weights k, = %, (n=1,...,N), and STRAUCH [10] obtained an explicit expression
for this case. The following Proposition generalises Theorem 1 of [10] in that it allows for
arbitrary weights k,, and arbitrary dimension d > 1.



Proposition 3.1 Let (g, qn) denote the greatest common divisor of gm, and qn. Then

RN (Z,7,&)da
_ ﬁ[ QmaQn) T(xzyz Gm___n )]_ﬁ(yi_mg’
e 1 - Im * Gn (gm+an) " (Gm> an) Pale
(3.2)
where
T(oiyiab) = ({wia}— {wia} ) ({zib} = {yb} ) — {wsa} +{mia} +

+ max ( {yia},{z;b} ) — max ( {zia},{z;b} ) +
+min ( {yia} , {yib} ) — min ( {wia}, {y:b} )

Proof: Since for every pair of real numbers  and y with 0 <z <y <1 and a € N we
have

|| confaad) da =y~

it follows from definition (3.1) that

N 2
| manaa= [ (Z knc[f,m({qn&})> i -

d

—2H i — T Z/ ky, chzyz ({gnai}) da+H i — 1) =
d N d d
/ <Zk H [25,9:) {Qnaz})> d&_2H(yi_$i)anH(yi_-Ti)+H(yi_$i)2—

n=1 =1 i=1

1 1 N d ? d
[ 0<anHc[$i,yi)<{qnai}>) doy -+ dag - [[ws — ). (33
1= Qqg= n=1 =1

=1

It has been shown in [10] that for every pair of real numbers z and y with0 <z <y <1
and positive integers ¢, qn

J (00D elag (e} = (y — a)? + Uty _m )
a=0 [y 115 ) 115 dm " qn " (@ms@n) (Gmsran)/’
which can now be used to calculate the integrals in (3.3) by using



1 d d
/ / Hc%yz ({gmai}) Hc[zi,yi)({qnai}) day - -dag =
a1=0 0=1 1

1=
d el
= H/ s ys) {am i }) o, ) ({n i} devi,
i=1Y =0
which completes the proof of (3.2). O

Proposition 3.1 can now be used to calculate the L2-norm of the L2-discrepancy D ({qnoz})
with arbitrary weights k;:

Theorem 3.1

[p2 @), = (Gd m) Z Ek (34

lZn qm

Proof: By changing the order of integration we get

2
[, (0@man) da= [[ [ mg.adads,
Ud Ud
Jd
which by (3.2) yields
/U (D(2 ({Qna}) Zlkk //H[
d
T ))]dfdy*— [ T~ woazay=
T4 i1

9m " qn (Qma Qn) (Qma dn

= g: k‘nkmﬁ // [(yi—-’ﬂi)Q‘l‘MT (wi,yi,( m__ _n )>]d$idyi—

m,n=1 i:10§$iﬁyiﬁl dm * qn QmaQn) (Qma%t

- ﬁ // (yi — z;)%dwz; dy;.

=lo<ai<yi<
But from Corollary 2 in [10] it follows that for all a,b € N

0, for a#b,
T(xiayia a, b) dxl dy’t = { 1 for a ?:é b

120
0<z; <y; <1



so that

/Ud (D9 ({an))) da = Z k ka( 1 QZ,ZZQ) Z ! ka12 o

m,n=1 m,n=1
an=qm an7#qm
:Zkk Zkk12d+2kk
= ! (’Ir:lznq_m ;:L’an’r:b
= (Gd 12d> Z k k
lln qm

O
Example 1: For equal weights k, = %, (n =1,... ,N) and d = 1 in (3.4), we obtain

L@ 2 R
[ (PR tamen) da = 31,

an=4qm
which is given in Theorem 2 in [10].

Example 2: If (¢,)n>1 is a sequence of distinct positive integers, equation (3.4) gives

/Ud (D§V2>({qno7}))2da~ _ (6% - l—;d) ékg (3.5)

Remark: In [9] SCHOISSENGEIER pointed out that for ¢, = n,(n = 1,...,N), equal
weights k, = % and d = 1 the asymptotic order of the L?-norm of Dy is 1/ V/N. Equation
(3.5) shows that in this case 1/v/N is also the right order of magnitude of the L?-norm
of Dg\?) and, more generally, that this asymptotic result also holds for arbitrary, but fixed
dimension d and arbitrary sequences of distinct positive integers (gn)n>1-

In the theory of uniform distribution it is of particular interest to consider the discrepancy
of sequences with the underlying set system Jg consisting of intervals of the form [0,%) =
[0,91) X [0,y2) X ... x [0,y4) with 0 < y; < 1,7 = 1,...,d, which is called the star
discrepancy D} of w = ({gn@})n>1, s0

Dy(w) = sup Zk <o) ({m@}) — Aa([0,9)) |,

and correspondingly

PP W= [

T8

S

Zk o, {an@}) — Xa([0,7))

n=1

dy

By ROTH’s theorem (see e.g. [1]), for any dimension d there exists an absolute constant
d—1

cq > 0 such that (D}k\,@))2 > Cd% for any N points 71,... ,Zx € [0,1]¢.

Proposition 3.1 allows us to investigate the average value of D;V(Q) (w) (with respect to the

L2-norm):



Theorem 3.2

/Ud (D}*v‘”({qn&}))Qd& _ Z - ( 1 (g aa)? )d+

mon—1 12 gm - qn
5\¢ 1
+mzn:1 Kk, <2d (12) )—3—,1- (3.6)
an=49m

Proof: We proceed similarly to the proof of Theorem 3.1. As we now have z; = 0, (i =
1,...,d) we see from (3.2) that

1 1
2
[ (oxman) sa= [ [ [R5 i
yq=0

y1=0
2+ %(m({(qﬁb } ’{<qi",y§n>}) )

1

d

1 1 N
yr=0  yg=0 ™=1 =1
_{ qmYi }{ qnYi } dy, -- dyd_/ /Hyzdyl ~dyg =
QmaQn QmaQn il
=0 Ya= 0
> - (gm> qn)* gmYi anYi
— k k / ms n min { mdt }’{ nJdt } _
mznzl " mH . [yz 9mdn ( ( (QmaQn) (QmaQn) )
’ y’L
_{ GmYi }{ GnYi } dy,_i
(Qma Qn) (Qma Qn) boo3d

for a #0b,

Since

/0 (min({a’yi},{byi}) - {ayi}{byi}) dy; = { ?
67

for a=0,

for arbitrary a,b € N (see [10]), we conclude that

/Ud( 2)({qnoz}) dé = Zkk ( L (m; dn) ) Z ki

m,n=1 12 dmYn m,n=1
Qm?éQn am =dn
N d
— T2 Gm - n e 2d 12 3d’
an =4qm

Example 3: For d = 1 equation (3.6) gives

/ / R2 (0,9, )dyda—_ Z km n(q;n’qn Z kmkn,

m,n= 1 ’IL m,n=1
a9m =4qn



which for k, = &, (n =1,...,N) was already derived in [10].

Example 4: If (g,),>1 is a sequence of distinct positive integers, then it follows from
(3.6) that

[, (03 a m;kk( u)(_(_))zk—
(3.7)

Remark: GAL [3] showed that

o (4m )’
Z M<<N(loglogN)2

M=l dm9n

for every finite sequence (qn)n>1 of distinct positive integers!. This bound is also tight.
Thus for equal weights k, = +, (n = 1,... ,N) and arbitrary, but fixed d > 1 we can
determine the asymptotic behav1or of (3.7):

* — 2 — msn
/Ud (DN(Z)({‘]”O‘})) da = 3 12N2 12NZ . 341 Z {mot)

o1 94mdn

w505 z<@>(—(—>)_g

m,n=1
so that the L?-norm of D;‘V@) ({gn@}) is of asymptotic order 133\1/_%&
APPENDIX

Let g(i,7) be a superadditive function, i.e. a function satisfying

g(i,j) >0 forall 1<i<j<n
9(i,7) <g(i,7+1) forall 1<i<j<n
9(1,5) +9(j + 1,k) < g(i,k) forall 1<i<j<n

The following lemma is a special case of [7, Corollary 3.1]:

Lemma A.1. Let X1,... , X, be arbitrary random variables and put S(i,j) = X;+...+X;
and M(i,7) = max{|S(s,1)l,|S(i,i + 1)|,...,|S(E J)|} for 1 < i < j < n. Suppose that
there exists a superadditive function g(i,j) such that

E|S@,5)|" <g(i,j) forall 1<i<j<n
for a given real v > 1. Then

EM7(1,n) < g(1,n) (Llog’nj + 1)7.

! This result was extended for weighted sums in DYER AND HARMAN [2].
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