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This review focuses on the mechanisms and sites of action underlying b-adrenergic

antagonism in perioperative medicine. A large body of knowledge has recently emerged

from basic and clinical research concerning the mechanisms of the life-saving effects of

b-adrenergic antagonists (b-AAs) in high-risk cardiac patients. This article re-emphasizes

the mechanisms underlying b-adrenergic antagonism and also illuminates novel rationales

behind the use of perioperative b-AAs from a biological point of view. Particularly, it

delineates new concepts of b-adrenergic signal transduction emerging from transgenic

animal models. The role of the different characteristics of various b-AAs is discussed,

and evidence will be presented for the selection of one speci®c agent over another on

the basis of individual drug pro®les in de®ned clinical situations. The salutary effects of

b-AAs on the cardiovascular system will be described at the cellular and molecular

levels. b-AAs exhibit many effects beyond a reduction in heart rate, which are less

known by perioperative physicians but equally desirable in the perioperative care of

high-risk cardiac patients. These include effects on core components of an anaesthetic

regimen, such as analgesia, hypnosis, and memory function. Despite overwhelming evi-

dence of bene®t, b-AAs are currently under-utilized in the perioperative period because

of concerns of potential adverse effects and toxicity. The effects of acute administration

of b-AAs on cardiac function in the compromised patient and strategies to counteract

potential adverse effects will be discussed in detail. This may help to overcome barriers

to the initiation of perioperative treatment with b-AAs in a larger number of high-risk

cardiac patients undergoing surgery.

Br J Anaesth 2002; 88: 101±23

Keywords: sympathetic nervous system, adrenergic block; complications, side-effects; heart,

heart rate, perioperative; heart, cardioprotection; sympathetic nervous system, beta-

adrenergic receptor

Choice of literature

Literature relevant to the topic of the review was

identi®ed by literature search of Medline (1966 to

March 2001) using `beta-blocker', `beta-adrenergic

antagonist', `beta-adrenergic receptor', `cardioprotection',

`side-effect', `perioperative' and combinations of these

terms as keywords. The reference lists of relevant

articles were further reviewed and personal ®les were

searched to identify additional citations.

Clinical uses of perioperative b-adrenergic
antagonists

Current clinical uses of b-adrenergic antagonists (b-AAs)

include treatment of arterial hypertension, primary and

secondary prevention of myocardial infarction in patients

with coronary artery disease, treatment of atrial and

ventricular arrhythmias, and, most recently, the treatment

of the failing heart.28 29 37 60 111 121 167 b-AAs belong to the

group of ®rst-line antihypertensive agents, decreasing
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cardiac death by 30%,176 and long-term treatment with b-

AAs after myocardial infarction reduces total mortality by

more than 30%.74 Decreased elevation of the MB hetero-

dimer of creatine kinase after coronary interventions

associated with improved intermediate-term survival was

reported in patients with prior b-AA therapy compared with

those not on b-AAs.198 In addition, it has been estimated

from crude annualized mortality rates, derived from trials

with inhibitors of angiotensin-converting enzyme (ACE)

and with b-AA conducted in heart-failure patients, that b-

AAs are more than twice as effective as ACE inhibitors in

terms of average reduction in mortality.34 65 Thus, b-AAs

are highly potent cardiovascular drugs.

In spite of this overwhelming evidence, b-AAs are

underused in current clinical practice, and physicians

prescribe b-AAs only to approximately 50% of patients

qualifying for this therapy.21 122 130 242 Notably, medical

contraindications do not appear to explain the low use of b-

AAs, and it has been speculated that pharmaceutical

industry competitiveness may have contributed to it by

leading to exaggeration of the side-effects of b-AAs

(harmful lipid pro®le, decreased sexual function, potential

for precipitating congestive heart failure, decreased exercise

performance).112 210 The proof of the concept of b-

adrenergic antagonism in cardioprotection, however, is

now also ®rmly established in patients with coexisting

disease states that were traditionally considered as contra-

indications. Particularly, patients older than 80 yr with heart

failure (ejection fraction less than 20%), non-Q-wave

infarction, diabetes or chronic obstructive pulmonary dis-

ease have a disproportionate high bene®t from postinfarc-

tion b-adrenergic antagonism.74 205 Therefore, anaesthetists

should assume the role of primary caregivers and initiate

treatment with b-AAs in surgical patients with well-de®ned

indications for b-AAs who are admitted to the hospital

without proper treatment.78 232

Because gaining control over the autonomous nervous

system constitutes a signi®cant part of perioperative

medicine,59 184 b-adrenergic antagonism has been used

traditionally to maintain blood pressure and heart rate

within baseline values in various perioperative settings. In

particular, b-AAs were successfully used to blunt haemo-

dynamic responses to intubation,44 154 at the time of

emergence caused by decreasing anaesthetic depth,67 and

during electroconvulsive therapy.46 262 High-dose b-AA

treatment is used to maintain deliberate hypotensive

anaesthesia,105 219 and has been used most recently to

enable multiple-vessel coronary artery bypass grafting

(CABG) on the beating heart.170 152 Esmolol-enriched

normothermic blood also resulted in better myocardial

protection compared with crystalloid cardioplegia in

patients undergoing CABG surgery.19 In addition, peri-

operative b-AAs reduce the incidence of atrial ®brillation

after cardiac surgery,94 191 as well as after thoracotomy for

lung resection.100 Nonetheless, it was not until the late

1970s that it became generally accepted that patients taking

b-AAs preoperatively should be continued on b-AA treat-

ment perioperatively. In one study, Slogoff and col-

leagues202 reported pre-bypass ischaemia in patients

undergoing CABG surgery in 26% of patients with

Table 1 Perioperative administration of atenolol and bisoprolol. *If p.o. administration is not feasible in the perioperative period, esmolol, metoprolol or

atenolol should be administered i.v. to maintain a heart rate of 50±80 beats min±1

Perioperative atenolol142 Perioperative bisoprolol173

Major non-cardiac surgery under general anaesthesia Vascular surgery under general or regional
with tracheal intubation anaesthesia

Patients With coronary artery disease (CAD) With mild to moderate ventricular wall-motion

abnormalities as assessed by dobutamine stress

echocardiography

or at least two risk factors for CAD: Concomitant cardiac risk factors:

age >65 yr >70 yr

diabetes diabetes

current smoking angina

hypertension prior myocardial infarction

hypercholesterolaemia history of heart failure

ventricular arrhythmias

limited exercise capacity

Dosing 5±10 mg atenolol i.v. every 12 h 5±10 mg bisoprolol p.o.* once a day

30 min before induction 1 week before surgery

immediately after surgery

until discharged (i.v. or 50±100 mg

p.o.* every 12 h)

continued for 30 days postoperatively

(p.o.* or nasogastric tube, or metoprolol i.v.)

Safety heart rate >50 beats min±1 heart rate >50 beats min±1

systolic blood pressure >100 mm Hg systolic blood pressure >100 mm Hg

cave contraindications: active asthma, cave contraindications: active asthma,

high-degree heart block, manifest congestive high-degree heart block, manifest congestive

heart failure, allergies heart failure, allergies
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propranolol treatment continued in full dosage until oper-

ation, in 50% of patients with propranolol withdrawal and in

70% of patients with no b-AA treatment.

Administration of perioperative b-AAs controls haemo-

dynamic variables and successfully decreases the incidence

of ischaemic events in patients with or at risk of coronary

artery disease. This is particularly relevant as patients with

perioperative ischaemia have a nine-fold increase in the risk

of developing a serious adverse cardiac outcome during

hospitalization and more than a two-fold increase in the risk

of dying prematurely over the ®rst 6 months after

surgery.140 Patients with a postoperative in-hospital myo-

cardial infarction have a 28-fold increase in the rate of

subsequent cardiac complications within 6 months, a 15-

fold increase within 1 yr and a 14-fold increase within 2 yr.

Stone and colleagues212 administered a single oral pre-

operative dose of one of three different b-AAs (labetalol,

oxprenolol, atenolol) to patients with mild uncontrolled

hypertension undergoing non-cardiac surgery. The inci-

dence of myocardial ischaemia was 28% in the untreated

controls compared with 2% in the b-AA-treated patients,

based on ECG criteria (P<0.001). Wallace and col-

leagues231 administered i.v. atenolol preoperatively and

i.v. and oral atenolol for up to 7 days postoperatively in

patients with or at risk of coronary artery disease.

Myocardial ischaemia was assessed by continuous three-

lead Holter monitoring. Intraoperative myocardial ischae-

mia was reported to be 12% in each of the control and

atenolol-treated groups. Conversely, the incidence of

myocardial ischaemia was reported to be 34% in the control

vs 17% in the treated patients in the ®rst 48 h after surgery

(P<0.008) and 39 vs 24% over days 0±7 (P<0.029). More

recent studies by Raby and colleagues179 and Urban and

colleagues225 con®rm the powerful anti-ischaemic effect of

perioperative b-adrenergic antagonism and re-emphasize

the importance of stress-induced increases in heart rate in

the pathogenesis of perioperative myocardial ischaemia.

The association between the occurrence of perioperative

myocardial ischaemic events, perioperative tachycardia and

an adverse long-term cardiac outcome led to therapeutic

trials with b-AAs. However, it should be noted at this point

that the association between postoperative myocardial

ischaemia and adverse cardiac events does not necessarily

imply a causal relationship and that postoperative myocar-

dial ischaemia may represent only a manifestation of the

underlying cardiac disease. Factors other than reduced

ischaemia may contribute signi®cantly to the improvements

in outcome observed after administration of b-AAs. These

will be discussed extensively in this article. Using

preoperative (1 h before surgery) and postoperative (until

7 days after surgery) atenolol (Table 1), Mangano and

colleagues142 demonstrated in a well-designed study a

signi®cant reduction in postoperative myocardial ischaemia

in patients with or at risk of coronary artery disease. This

reduction in ischaemic events was associated with a 55%

decrease in overall mortality and a 65% decrease in cardiac

mortality at 2 yr for the atenolol-treated patients. The

protective effects of atenolol were evident in these patients

6 months after surgery (overall mortality 0 vs 8%, P<0.001)

and were preserved over the 2-yr follow-up period (overall

mortality 10 vs 21%, P<0.019). Recently, Poldermans and

colleagues173 randomized patients undergoing vascular

surgery with mild to moderate positive stress echocardio-

graphy to preoperative (from 1 week before surgery) and

postoperative (until 30 days after surgery) bisoprolol

treatment or placebo (Table 1). After the inclusion of 112

patients, this study was halted for ethical reasons associated

with large differences in morbidity and mortality rates

between the placebo and bisoprolol arms of the study.

Notably, the study reports a 10-fold decrease in the 30-day

perioperative incidence of death from cardiac causes and

non-fatal myocardial infarction in bisoprolol-treated pa-

tients (3.4 vs 34%, P<0.001). A critical evaluation of these

studies has been published recently in the British Journal of

Anaesthesia and can be recommended as additional read-

ing.96 Taken together, these data indicate that b-adrenergic

antagonism remains the sole proven pharmacological means

of reducing perioperative cardiovascular short- and long-

term cardiac morbidity and mortality in patients with or at

risk of coronary artery disease. In the light of the bene®ts of

perioperative b-AAs and the exceptionally low complica-

tion rate associated with the perioperative use of b-AAs,

future trials have to clarify whether the cumulative

morbidity and mortality associated with sophisticated and

expensive preoperative testing can be justi®ed in high-risk

cardiac patients undergoing surgery.128 144 190

New aspects of perioperative b-adrenergic antagonism

have emerged recently. Johansen and colleagues102 103

demonstrated that esmolol could potentiate the reduction in

minimum alveolar concentration for iso¯urane by alfentanil

(±26%) and decrease anaesthetic requirements for skin

incision during propofol/nitrous oxide/morphine anaesthe-

sia (±27%) in patients. The clinical utility of this effect was

subsequently demonstrated by Zaugg and colleagues254 in a

study with elderly surgical patients that evaluated three

anaesthetic regimens, two of them with atenolol. High-dose

intraoperative administration of atenolol decreased iso¯ur-

ane requirements by 37% and still allowed an adequate

depth of anaesthesia, as assessed by bispectral analysis

(mean bispectral index »50±60). Pre- and postoperative

atenolol as well as high-dose intraoperative atenolol also

Table 2 Classi®cation of b-adrenergic antagonists

Generation,
class

Characteristics Examples

1st I No ancillary properties Propranolol, timolol,

nadolol

2nd II b1-selective Metoprolol, atenolol,

bisoprolol, esmolol

3rd III b1-selective or non-selective,

important ancillary properties

Carvedilol, celiprolol,

bucindolol, nebivolol

b-Adrenergic antagonism in perioperative medicine
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decreased requirements for intraoperative fentanyl (±27%)

and postoperative morphine (±40%). As a consequence,

extubation time and recovery in the postanaesthesia care

unit were signi®cantly faster in patients treated with

atenolol.

The present armamentarium of b-adrenergic
antagonists

Although all b-AAs are able to antagonize the transduction

of the b-adrenergic receptor signal (b-AR), this class of

drugs is far from being homogeneous. Recently, antisense

oligonucleotides against b1-adrenergic receptor (b1-AR)

mRNA, which suppress protein translation at the ribosomes,

have been constructed and used successfully to treat

hypertensive rats.258 Currently used b-AAs, however,

competitively antagonize b-ARs and can be roughly classi-

®ed into three generations depending on their ancillary

properties (Table 2).28 29 The main ancillary properties of

individual agents include partial agonist activity (intrinsic

sympathomimetic activity), b-receptor subtype speci®city

(b1 vs b2), lipophilicity and membrane-stabilizing activity

(Table 3). Other ancillary properties include vasodilator

effects [b2 (celiprolol)-, anti-a1 (carvedilol)- or nitric oxide

(NO)-mediated effects (nipradilol, nebivolol)], class III

anti-arrhythmic activity (sotalol), antioxidant effects (car-

vedilol) and stereoselective hepatic metabolism (carvedilol,

metoprolol). Accordingly, carvedilol by oral administration

exerts equal effects on a- and b-ARs, whereas carvedilol by

i.v. administration exerts more b-AR effects than a-AR

effects because of decreased stereoselective hepatic

metabolism of the b-AR-speci®c S-isomer of carvedilol.164

Interestingly, stereoselective metabolism of metoprolol may

result in insuf®cient b-adrenergic antagonism in `poor

metabolizers' (S/R isomer ratio <1).201 203

Recent research in transgenic animal models also

emphasizes the importance of the two-state model of b-

AR activation in characterizing b-AAs (Fig. 1). This model

proposes an equilibrium between an inactive and an active

conformation of the receptor, which is differentially modu-

lated by various ligands (concept of inverse agonism:

neutral antagonist vs inverse agonist).18 Notably, it predicts

spontaneous activation of b-ARs, which was veri®ed

recently for the b2- but not the b1-AR.261 This model also

explains the inability of some b-AAs with pronounced

neutral antagonism to block the effects of receptor over-

expression fully, as neutral antagonists counteract activation

by endogenous catecholamines but not activation by

spontaneous transition into the active receptor conform-

ation.134 The physiological consequences are not yet

determined fully but may be of clinical relevance with

respect to the tolerability of various b-AAs and the

treatment of the withdrawal syndrome. Finally, there is

growing evidence that b-ARs differentially couple to

various G-proteins depending on the speci®c properties of

the ligand, thereby stimulating differential cellular re-

sponses.233

Interestingly, a meta-analysis of randomized controlled

trials revealed differential effects on cardiovascular events,

such as reinfarction and sudden cardiac death, metoprolol

being more effective than atenolol or propranolol. This led

the authors to conclude that the so-called class effect of b-

AAs may be less important than ancillary properties.204

However, the mechanistic concept of the class effect is

greatly supported by the observation that selective as well as

non-selective b-AAs decrease mortality signi®cantly in

chronic heart failure.121 Nonetheless, ancillary properties

are important with respect to the side-effects and tolerability

of the speci®c agents, which will be discussed separately.

Mechanisms and sites of action

The following sections will focus on the mechanisms and

sites of action elicited by b-AAs.

Cardiac considerations

Bradycardia, the link to many cardioprotective effects of

b-adrenergic antagonists

Elevated heart rate is a well-established independent

predictor of coronary artery disease and cardiovascular

morbidity and mortality.168 Also, delayed decrease in heart

Table 3 Ancillary properties of clinically used b-adrenergic antagonists. +=effect present; ±=effect absent

Drug b1/b2 selectivity Membrane-stabilizing activity Intrinsic sympathomimetic activity Lipid solubility Clearance Special

Propranolol 2.1 + ± +++ Hepatic Inverse agonist

Metoprolol 74 ± ± + Hepatic Inverse agonist

stereoselective

Atenolol 75 ± ± ± Renal ±

Esmolol 70 ± ± ± Erythrocytes ±

Bisoprolol 119 ± ± (+) Hepatic/renal ±

Celiprolol ~300 ± + ± Hepatic/renal b2-Agonist

Nebivolol 293 ± ± + Hepatic NO release,

bronchodilation

Carvedilol 7.2 ± ± + Hepatic Antioxidant,

stereoselective anti-adhesive,

a1-Antagonist

Bucindolol 1.4 ± + + Hepatic a1-Antagonist

Zaugg et al.
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rate after graded exercise predicts cardiovascular mortal-

ity.38 Bradycardia is suggested to be one important mech-

anism of cardioprotection elicited by b-AAs. Importantly, a

negative chronotropic response to b-AAs is preserved

among diabetic patients with progressive autonomic

dysfunction.111

In the perioperative period, increased heart rate is

strongly associated with myocardial ischaemia.141 143

Accordingly, myocardial oxygen balance is closely related

to heart rate and must be examined on a beat-to-beat basis

(Fig. 2). Increased heart rate results in elevated myocardial

oxygen demand via the Bowditch effect, which is, however,

nearly offset by decreased oxygen demand caused by the

lower ventricular wall tension at higher heart rates. Because

increased heart rate is usually accompanied by increased

inotropy and the length of diastole is signi®cantly decreased

in tachycardia, myocardial oxygen balance can deteriorate

seriously at higher heart rates in patients with coronary

artery disease. Increased left ventricular stiffness further

exacerbates impairment of ventricular ®lling. Importantly,

the heart rate at which patients are considered at risk of

developing ischaemia is not absolute and must be

individualized. Patients with severe angiographic narrowing

of the coronary arteries show a gradual decrease in cross-

sectional area by 32% when heart rate reaches 90

beats min±1.160 Therefore, it is not surprising that patients

with coronary artery disease and a heart rate greater than

100 beats min±1 almost inevitably develop myocardial

ischaemia.69

The deleterious effects of an increased heart rate on

infarction size have been reported. Augmentation of heart

rate after experimental coronary occlusion in dogs, by

ventricular pacing, isoproterenol or atropine, leads to

increases of 40, 70, and 40% respectively in myocardial

necrosis when compared with control.199 Consistent with

this notion, thiopental given during coronary occlusion

doubles infarction size by increasing heart rate. Notably,

tachycardia also accentuates endomyocardial to epimyo-

cardial maldistribution of ventricular blood ¯ow in

ischaemia.12 b-AAs effectively reverse all these untoward

effects by lowering heart rate.227 b-AAs also exert a

bene®cial effect in coronary artery disease by decreasing the

stiffness of atherosclerotic plaques, which results in

increased tensile strength.127 The stiffness of ®brous caps

of human atherosclerotic plaques is directly related to heart

rate, and increased heart rate promotes the ®ssuring of

atherosclerotic plaques. b-AAs prevent the rupture of

vulnerable atherosclerotic plaques, which leads to less

in¯ammation in the plaque and decreases the gradual

narrowing of the vessel lumen.63 66 178 Furthermore,

tachycardia causes activation of platelets.54 When coronary

blood ¯ow increases, platelets can be traumatized and

activated across the coronary bed, particularly at sites with

signi®cant narrowing. Histopathological analyses of peri-

operative myocardial infarction stress the importance of

plaque disruption and thrombosis as pivotal steps in the

pathogenesis of perioperative myocardial infarction.48

Alternatively, long-duration subendocardial ischaemia and

Fig 2 Myocardial oxygen balance. In patients with coronary artery

disease, tachycardia decreases myocardial oxygen supply and

concomitantly increases oxygen demand.

Fig 1 Two-state model of b-adrenergic receptor activation by

competitive ligands. Signalling at the receptor includes binding of the

ligand to the extracellular binding domain, transduction of the signal

through conformational changes of the receptor and activation of the

effector (G-protein complex). In the absence of a ligand, the receptor can

undergo spontaneous transition from the inactivated to the activated state.

Ligands can be classi®ed into agonists, neutral antagonists and inverse

agonists according to their tendency to shift this equilibrium. The agonist

shifts the equilibrium towards the active state and the inverse agonist

shifts it to the inactive state. Although most b-adrenergic antagonists

(b-AAs) act as inverse agonists, some b-AAs with weak inverse agonism

may be classi®ed as neutral antagonists.18 The relative degree of inverse

agonism increases in the following order: bucindolol<carvedilol

<propranolol<metoprolol.249 This model explains the observed lower

tolerability of patients treated with inverse b-AAs: they shift the receptor

population almost completely to the inactive state, particularly when the

sympathetic basal tone is low. On the other hand, b-AAs with weak

inverse agonism leave a sizeable fraction of the receptor in the active

state, thus explaining their better tolerability in clinical use.

b-Adrenergic antagonism in perioperative medicine
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subsequent non-Q-wave infarction resulting from prolonged

tachycardia were also proposed as the underlying mechan-

ism of perioperative myocardial infarction.124 The view that

postoperative myocardial ischaemia is a mere manifestation

of the underlying cardiac disease is speci®cally supported

by the ®ndings of the post-mortem study by Dawood and

colleagues.48 In this study, fatal postoperative myocardial

infarctions were associated with evidence of unstable

plaques in 55% of the patients. In contrast, imbalance of

myocardial oxygen supply/demand may play a causal role in

the pathogenesis of postoperative cardiac events. This view

is supported by the fact that most postoperative myocardial

infarctions are non-Q-wave infarctions that are preceded by

long-duration (>2 h) postoperative ischaemia.125 Because

cardiac complications are preceded by long-duration ST-

segment depression rather than elevation, it seems plausible

that the cascade of events leading to postoperative cardiac

complications does not begin with acute coronary occlusion

but with long-duration subendocardial ischaemia. This is

further supported by a recent study by Badner and

colleagues,8 which determined the incidence of post-

operative myocardial infarction after non-cardiac surgery

in a large group of patients at high risk. This study also

reports the preponderance of non-Q-wave infarction, which

differs from that seen in non-surgical patients presenting to

the emergency room. From a mechanistic point of view,

non-Q-wave infarctions result from prolonged ischaemia

rather than from total occlusion of the coronary arteries.

Certainly, further studies are needed to elucidate the role of

postoperative myocardial ischaemia in the cascade of events

leading to perioperative cardiac morbidity and mortality.

The institution of bradycardia was recently found to cause

restoration of contractile function in a canine model of

mitral regurgitation-induced left ventricular dysfunction.161

In this model, optimized myocardial Ca2+ handling and

bioenergetics are direct consequences of bradycardia and

are suggested to be responsible for the observed improve-

ment in contractility.257

At the cellular level, rapid electrical stimulation of

contraction reduces the density of b-ARs and their respon-

siveness,116 which appears to be associated with disassem-

bly of microtubules secondary to undue micromechanical

stress.248

Cardioprotective effects of b-adrenergic antagonists not

apparently associated with bradycardia

Stangeland and colleagues207 addressed the important

question of whether decreased heart rate is the only

mechanism responsible for cardioprotection elicited by b-

AAs. They treated anaesthetized cats with alinidine (a

clonidine analogue that decreases heart rate independently

of b-ARs) or timolol. Heart rate was similarly reduced by

40 beats min±1 in the treatment groups compared with the

control group, and regional ischaemia was induced by

occluding the left descending coronary artery. After 6 h of

ischaemia, the necrotic tissue was measured and expressed

as a percentage of necrotic tissue in the area at risk. Notably,

alinidine signi®cantly decreased necrosis from 87% present

in the control group to 77% (P<0.01), whereas timolol

decreased necrosis to 65% (P<0.001). This observation

clearly indicates that mechanisms other than decreased heart

rate contribute substantially to cardioprotection by b-AAs.

b-Adrenergic signal transduction in cardiomyocytes.

Biological responses mediated by b-ARs involve positive

chronotropy, dromotropy, inotropy and cardiomyocyte

growth and death (Fig. 3). b-ARs are members of the G-

protein-coupled superfamily, which share the characteristic

feature of the seven-transmembrane-spanning domains. In

healthy mammalian cardiomyocytes, b1-ARs constitute

around 70±80% of the b-ARs in human and rat

hearts.52 236 In many disease states with heightened

sympathetic drive, b1-ARs are down-regulated by phos-

phorylation (desensitization), translocation (sequestration)

and ®nally by degradation of the receptor.88 Conversely, b2-

ARs do not decrease in number; however, they show some

loss of contractile response to agonist stimulation as a result

of the up-regulation of b-AR kinases (b-ARK) and Gi

proteins (Table 4).26 In the failing human heart, b2-ARs

represent 40% of b-ARs and are of great importance in

mediating inotropic and chronotropic responses.25 Key

steps in signal transduction of b1- and b2-ARs involve

coupling to G-proteins and activation of the cAMP/protein

kinase A (PKA) pathway, which leads to phosphorylation of

target proteins such as phospholamban, the ryanodine

receptor, troponin I and L-type Ca2+ channels.209 244

However, apart from changes in myocardial contractile

function, b-ARs exert important effects on cellular metab-

olism, growth and death (gene expression) through the

activation of PKA and protein kinase C (PKC).90 Because

the b1-AR and the b2-AR share only 54% of amino acid

sequences overall, it is possible that b-AR subtypes couple

to distinct signal transduction pathways.243 245 Although

both b1- and b2-ARs increase the contractile response and

hasten relaxation in ventricular myocytes, several striking

differences with respect to G-protein binding characteristics

and signal transduction downstream from the receptor have

been revealed. In contrast to b1-ARs, b2-ARs exhibit dual

coupling to Gs and Gi that can completely negate Gs-

mediated responses. Also characteristic of b2-mediated

signalling is the exceptionally modest increase in cAMP and

the compartmentalized increase in PKA activity, which is

restricted to the vicinity of L-type Ca2+ channels.124 260

Finally, b2-ARs may also bind to Gq-activating phospho-

lipase C (Fig. 3). These data indicate that b-AR subtypes

differentially modulate cardiac function and cardiomyocyte

phenotype. Therefore, the subtype speci®city of various b-

AAs affects biological responses signi®cantly.

Little is known about the role of b3-ARs in cardiomyo-

cytes. Whereas b3-ARs are known to exert important

physiological effects in brown adipose tissue, gut relaxation

and vasodilation, b3-ARs mediate negative inotropy by a

NO-dependent pathway in cardiomyocytes.70 226 Studies
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Fig 3 b-Adrenergic signalling cascades in cardiomyocytes. (A) Binding of an agonist (L) to either the b1- or the b2-adrenergic receptor (b1-AR, b2-

AR) stimulates Gs protein, which dissociates from the receptor and binds to adenylate cyclase (AC), causing production of cAMP from ATP and

activation of protein kinase A (PKA). G-protein-coupled receptors interact by their intracellular loop 3 with the heterotrimeric G complex and promote

GDP release. PKA phosphorylates the voltage-dependent L-type Ca2+ channels, the Na+/H+ exchange channels and the Na+/K+ pump at the

sarcolemma, phospholamban (PLB) and the ryanodine receptor (RYR) at the sarcoplasmic reticulum (SR) and cardiac troponin-I (cTnI) in the

sarcomeres, leading to increased inotropic and lusitropic (relaxation) responses. In contrast, the b2-AR is also able to couple to Gi or Gq proteins. Gi

inhibits adenylate cyclase (AC) and opposes the effects of Gs. Gq activates phospholipase C (PLC). By splitting phosphatidylinositol bisphosphate,

PLC liberates the two intracellular second messengers diacylglycerol (DAG) and inositol trisphosphate (IP3). IP3 binds to the IP3 receptor (IP3R),

which releases Ca2+ from the SR. Ca2+ combines with calmodulin (CaM) and directly activates the sarcolemmal Ca2+ pump as well as several CaM-

dependent protein kinases (CaMKs). This signalling pathway leads to phosphorylation of PLB, ventricular myosin light chain 2 (MLCV2) and the

Na+/Ca2+ exchanger. DAG and CaM together activate PKC, which in turn phosphorylates the mitochondrial ATP-dependent K+-channel and MLCV2.

In its unphosphorylated state, the regulatory protein PLB is bound to the SR Ca2+-pump (SERCA2), inhibiting its activity. When phosphorylated by

PKA and/or CaMK, it dissociates from SERCA2, relieving the inhibitory effect. On the other hand, direct phosphorylation of RYR at Ser-2809

dissociates the regulatory component FKBP (FK506 binding protein), leading to increased activity of the RYR channel. PKA and PKC both affect

gene expression in the cell nucleus via the common MAPK (mitogen-activated protein kinases) signalling pathway: Ras (monomeric GTPase), Raf (a

MAPKKK), MEK (mitogen-activated ERK activating kinase) and ERK (extracellular signal regulated kinase). To protect the cardiomyocyte from

b-adrenergic overstimulation, a negative feed-back loop (not shown in the diagram) is built in, which degrades cAMP to AMP by means of CaM-

activated phosphodiesterase III. (B) Diagram showing in more detail the dissociation of the heterotrimeric G complex from the b-AR upon binding of

the agonist (L). After this dissociation, the adenylate cyclase (AC) becomes activated by binding to the a-subunit. Desensitization of the b1- and

b2-ARs is mediated by phosphorylation of the intracellular C-terminal part of the receptor by either PKA or the b-adrenergic receptor kinase (b-ARK,

GRK2 and 3). Binding of arrestin and clathrin to the phosphorylated b-AR mediates internalization to the endosome. After dephosphorylation, b-ARs

may be either degraded or resensitized. Note that an additional negative feed-back loop leads to inhibition of the b-ARK via increased Ca2+-

calmodulin (CaM).17 58 90 147 148 171 189
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evaluating the distribution and quanti®cation of b1/b2/b3-

AR subtypes in heart tissue have revealed subtype propor-

tions for the left porcine ventricle as follows:

b1:b2:b3=72%:28%:0.25%.151 This implies that, in the

normal myocardium, b3-AR may be of less importance.

However, recent observations in heart failure patients

demonstrate that opposite changes in the abundance of b1-

AR (down-regulation) and b3-AR (up-regulation) occur and

may play a role in the progressive functional degradation in

the failing human heart.155

Cell death signalling: apoptosis and necrosis.

Catecholamines, although bene®cial in the short-term

cardiovascular response, exert signi®cant cardiac toxicity.

The toxic effects of catecholamines on cardiomyocytes have

been known since the beginning of the 20th century.82

However, necrotic and apoptotic cell death has been closely

related to enhanced b-adrenergic signalling only re-

cently.145 Apoptotic cardiomyocyte death by activation of

the b-adrenergic signalling pathway was reported in

norepinephrine-stimulated adult rat ventricular myocytes.39

Zaugg and colleagues255 further demonstrated that apopto-

tic cardiomyocyte cell death is dissociated from b2-ARs and

selectively mediated by b1-ARs in adult ventricular

myocytes (Fig. 4). This is in line with clinical observations

that cardiac lesions associated with massive catecholamine

bursts were prevented with atenolol in patients with

subarachnoid haemorrhage.43 Communal and colleagues40

and Chesley and colleagues36 further showed that b2-AR

stimulation may protect cardiomyocytes from apoptosis-

inducing stimuli. The abilities of b-AR stimulation and

tachycardia to induce cardiomyocyte apoptosis were

addressed by Shizukuda and colleagues200 in an in vivo rat

model. Rats were treated with placebo or isoproterenol to

establish whether catecholamines per se in the absence of

signi®cant increases in systolic load and tachycardia induce

myocardial damage via apoptosis. After only 24 h of

isoproterenol treatment, a signi®cant increase in apoptotic

events was detected. Animals exposed to ventricular pacing

to induce tachycardia equivalent to that produced by

isoproterenol treatment did not show an increase in

Table 4 Major changes in components of b-adrenergic signalling in the failing human heart28 147 171

mRNA Protein Function

Signalling components

b1-ARs ¯ ¯ ¯
b2-ARs ¬® ¬® ¬®
Gs protein ¬® ¬® ¬®
Gi protein   
b-adrenergic receptor kinase (b-ARK)   
Adenylate cyclase  ? ¯

Intracellular Ca2+ handling

L-type Ca2+ channel ¬® ¬® ¬®
Na+/Ca2+ exchanger   
SR Ca2+ pump (SERCA2) ¯ ¯ ¯
Phospholamban ¬® ¬® 

Fig 4 Cardiotoxicity of catecholamines. Adult rat ventricular myocytes (ARVMs) grown on coverslips were exposed to norepinephrine (NE)

(10 mmol litre±1) alone or in the presence of atenolol (AT) (10 mmol litre±1) for 12 h and subjected to TUNEL (terminal dUTP nick end labelling)

staining, which is speci®c for apoptotic cell death. (A) Mean percentage of TUNEL-positive ARVMs on coverslips. Data are mean (SEM). *P<0.0001

vs control; P<0.0001 vs NE. (B) Control ARVMs with rod-shaped morphology. (C) NE-exposed ARVMs with rounded morphology and black

apoptotic nuclei. (D) NE+AT-treated ARVMs. Note preservation of rod-shaped morphology with NE treatment (reproduced with permission from

Circulation255).
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apoptosis. The authors concluded that apoptotic cardiomyo-

cyte death resulting from isoproterenol treatment may not

be explained by increased heart rate alone. Conversely, in a

canine model, rapid ventricular pacing per se increased

apoptotic cell death and led to cardiac myopathy.136

Importantly, decreased apoptosis has been reported in

carvedilol- and propranolol-pretreated rabbit hearts sub-

jected to ischaemia±reperfusion injury.252 Because apopto-

tic cell death occurs in only a few hours, apoptosis may be

an important mechanism for loss of viable cardiomyocytes

and myocardial dysfunction in the immediate perioperative

period.253

New insight from gene-targeted animals. While experi-

mental results indicate incontrovertibly that enhanced b1-

AR signalling is exceptionally cardiotoxic, data on the

effects of the b2-AR with respect to bene®cial and

detrimental effects are contradictory. Recent research in

the ®eld of heart failure tried to construct genetically altered

mouse models mimicking increased sympathetic nervous

system activity (Table 5). In particular, transgenic mouse

models with cardiac-speci®c overexpression of various G-

proteins and b-AR subtypes were constructed.3 45 61 71 134 153

Mice with Gsa overexpression typically develop a charac-

teristic hypertrophic cardiomyopathy at 15 months of age.

Sections of these hearts reveal hypertrophic myocytes with

increased cross-sectional areas and an increased number of

apoptotic myocytes. Importantly, propranolol, a non-select-

ive b-AA, abolished the hypertrophic response and the

development of dilated chambers, thereby improving sur-

vival. Similar results were reported for mice overexpressing

Gqa- and b1-AR. Notably, mice with only ®ve-fold

overexpression of the b1-AR develop fatal cardiomyo-

pathy,61 whereas mice with 30- to 60-fold overexpression of

the b2-AR exhibit enhanced cardiac function and do not

develop overt cardiomyopathy.134 Although no long-term

toxic effects were reported by some authors in mice with

200-fold overexpression of the b2-AR,209 244 increased

susceptibility to ischaemic injury42 and augmented after-

load56 were clearly observed. Nonetheless, it was suggested

that manoeuvres that serve to augment b2-adrenergic

signalling, which improves systolic and diastolic function,

may offer a potential therapeutic approach in patients

suffering from impaired cardiac function. For this purpose,

pharmacological means and ultimately in vivo gene transfer

strategies were proposed and investigated.110 150 196

Accordingly, the contractility of single myocytes isolated

from the ventricles of rabbits chronically paced to produce

heart failure can be functionally restored by adenovirus-

mediated transfer of b2-ARs.4 Consistent with this notion, a

dual-expressing `designer' mouse with cardiac-speci®c

Gqa expression and concomitant b2-AR expression at low

(303), medium (1503) and high levels (10003) was

constructed recently.55 Gqa mice with low concomitant

expression of b2-ARs, i.e. a ~30-fold increase in b2-AR

compared with wild type, displayed rescue of hypertrophy

and ventricular function. Importantly, these effects occurred

in the absence of any improvement in basal or agonist-

stimulated adenylate cyclase (AC) activity, indicating the

restoration of a compartmentalized b2-AR±AC signalling

pathway.124 260 The summarized experimental results,

which clearly demonstrate bene®cial effects of modest b2-

adrenergic signalling in an animal model of heart failure,

have found their clinical counterpart very recently.30

Studies of b2-AR gene variations in twins revealed that

speci®c b2-AR polymorphisms, which resulted in enhanced

down-regulation of the b2-AR, increased cardiac dimen-

sions (septum thickness, posterior wall thickness, left

ventricular mass).

In summary, the concept that b-adrenergic signalling may

not mediate deleterious effects exclusively but may also

have bene®cial effects in the compromised heart is based on

several experimental observations. In this regard it is

interesting to note that, in patients with symptomatic heart

failure, pan-adrenergic antagonism using central sympatho-

lysis (moxonidine, an a2-agonist) was terminated because

of excess mortality.121 b2-AR agonism as an adjunct to b1-

AR antagonism may therefore have the potential to improve

the therapeutic tolerance, particularly during the initiation

of b-AA therapy, and to improve survival in the treatment of

the failing heart. Interestingly, b1-AR antagonism enhances

the b2-AR-mediated inotropic response to catecholamines,

which may, in part, also explain the better tolerability of

selective b1-AAs.84

Mechanical unloading and modulation of gene expression.

b-AAs allow the heart to `rest' by emulating a state of

ventricular unloading. Accordingly, the expression of

Table 5 Gene-targeted mice mimicking enhanced b-adrenergic signalling

Cardiac-speci®c overexpression of
(increase in expression compared with control)

Changes in phenotype/outcome

Gsa (33±5)71 Hypertrophy, apoptosis, premature death due to congestive heart failure

Gqa (32±4)45 Hypertrophy, apoptosis, premature death due to congestive heart failure

b1-AR (35)61 Hypertrophy, apoptosis, premature death due to congestive heart failure

b2-AR (330±60)134 Enhanced cardiac function, no long-term adverse effects

b2-AR (3200)42 56 Enhanced cardiac function, but long-term adverse effects: decrease recovery after ischaemia

and premature death with aortic constriction

b2-AR (3350)134 Hypertrophy, apoptosis, premature death due to congestive heart failure

Gqa+b2-AR (330)55 Reversal of hypertrophy and prevention of death from cardiac cause induced by

Gq overexpression
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tumour necrosis factor a (TNF-a), an indicator of increased

mechanical load, is similarly reduced by b-AAs and by

mechanical circulatory support.174 221 High-dose atenolol

also prevents angiotensin II- and tachycardia-induced

activation of metalloproteinases and diastolic stiffening.195

Changes in gene expression caused by b-AAs also involve a

decrease in endothelin-168 and sarcoplasmic reticulum

proteins217 and an increase in atrial natriuretic factor.250

Furthermore, carvedilol decreases Fas receptor expression

(cell death signalling receptor) after ischaemia±reperfusion

injury, which leads to decreased apoptotic cell death.252

Taken together, these observations suggest altered gene

expression as a potential site of cardioprotection by b-AAs.

Platelet aggregability and coagulation. The adrenergic

system in¯uences coagulation and ®brinolysis, particularly

during episodes of heightened adrenergic drive, but con-

tributes much less to baseline levels of coagulatory and

®brinolytic function. Epidemiological studies revealed a

signi®cant morning increase in the incidences of infarction,

sudden cardiac death and transient myocardial ischaemia,

which appears to be related to increased morning catecho-

lamine levels and coagulation.158 238 Perioperatively,

increased catecholamine levels and tissue damage greatly

increase the propensity to coagulation. Propranolol de-

creases thromboxane synthesis and platelet aggregation in

patients receiving long-term propranolol treatment.32 One

study evaluating the effect of metoprolol on platelet

function did not ®nd any inhibitory effect,239 whereas

another study reports decreased platelet aggregability in

patients with stable angina being tested for exercise

stress.241 Metoprolol also prevents stress-induced endothe-

lial injury by increasing prostacyclin biosynthesis75 and

decreasing epinephrine-induced increases in von

Willebrand factor antigen.126 Esmolol has in vivo inhibitory

action on neutrophil superoxide generation and platelet

aggregation in a canine model of myocardial ischaemia±-

reperfusion.186 b-AAs also decrease the af®nity of low-

density lipoprotein to arterial proteoglycans and endothelial

wall damage by reducing plasminogen activator inhibitor-

1.216 Conversely, increased platelet aggregability and

decreased platelet cAMP production were reported after

timolol treatment.240

b-Adrenergic receptor down-regulation and target

protein hyperphosphorylation. Prolonged and intensive

perioperative agonist stimulation leads to desensitization

and down-regulation of b-ARs, which may seriously impair

cardiac function.28 29 Conversely, down-regulation of the

sensitivity and number of receptors may be bene®cial with

respect to arrhythmogenicity.251 Tachycardia,116 free oxy-

gen radicals133 and increased serum levels of TNF-a,79

which are, notably, all factors signi®cantly affected by b-

AAs, were further implicated in the down-regulation of b-

ARs and the subsequent attenuated cardiovascular response.

Importantly, down-regulation occurs after only a few hours

of agonist stimulation.88 At the molecular level, the process

involves uncoupling of the b-AR from Gs-proteins by PKA

and b-adrenergic receptor kinase 1 (b-ARK) and binding of

inhibiting arrestin to the receptor, which is followed by

internalization and degradation or resensitization of the

receptor (Fig. 3B). Early uncoupling and late down-regula-

tion of myocardial b-ARs were reported after cardiopul-

monary bypass.72 193 Similarly, persistent down-regulation

and desensitization of b-ARs were reported after thoracot-

omy or laparotomy throughout the ®rst week after surgery.5

Hyperphosphorylation of channels and regulatory proteins

such as the sarcoplasmic ryanodine receptor (RYR) may

occur, resulting in hypersensitivity to cytosolic Ca2+.147 148

b-AAs potentially prevent hyperphosphorylation in the

perioperative period, which is similar to their effects in

congestive heart failure.91

Anti-arrhythmic effects. Sustained arrhythmias may be

haemodynamically relevant and may affect the outcome

adversely.13 Almost half of all high-risk cardiac patients

undergoing non-cardiac surgery have ventricular ectopic

beats or some sort of ventricular tachycardia.166 Patients

undergoing cardiac surgery have a high risk of developing

new-onset atrial ®brillation.6 From a mechanistic point of

view, sympathetic tone plays an important role in most

ventricular as well as atrial arrhythmias.192 b-AAs shift the

autonomic balance towards a higher vagal and lower

sympathetic tone.224 Studies on infarctions in pigs clearly

showed that b-adrenergic mechanisms play a major role in

ventricular ®brillation threshold during experimental cor-

onary occlusion.119 This is consistent with the notion that b-

AAs prevent sudden electrical cardiac death.62 112

Regarding atrial arrhythmias, b-AAs may be superior to

newer class-III anti-arrhythmic drugs in the treatment of

perioperative atrial ®brillation, as these drugs carry the risk

of drug-induced polymorphic ventricular tachycardia.

Notably, b-AAs also counteract epinephrine-induced hypo-

kalaemia, which signi®cantly predisposes to arrhythmias.

Bioenergetics. b-AAs are known to reduce NADH oxidase

activity in mitochondria, which may lead to an energy-

sparing effect.177 Also, b-AAs shift cellular metabolism

from fatty acid oxidation to glucose utilization, which

effectively reduces the myocardial oxygen requirement.22

Recently, oxidative metabolism was evaluated in patients

with ventricular dysfunction using C-11-acetate positron

emission tomography. The results of this study showed a

signi®cant reduction in cellular oxidative metabolism under

metoprolol treatment.10 Accordingly, in patients undergoing

cardiopulmonary bypass, chronic propranolol treatment

reduces oxygen consumption.108 Interestingly, patients

receiving chronic b-AA treatment compensate for reduced

arterial oxygen content by increases in cardiac output and

oxygen extraction, whereas patients not receiving b-AA

treatment demonstrate only an increase in oxygen extrac-

tion.206 Reduced production of lactate during exercise and

increased oxygen extraction as a result of decreased cardiac

output were reported previously under b-adrenergic antag-

onism.175 b-AAs also prevent the decrease in mitochondrial

CK activity after myocardial infarction.97
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Neuroendocrine stress response. There is a reduction in

renin activity by selective as well as non-selective b-AAs

mediated by antagonizing b-ARs, and some studies have

even reported decreased catecholamine release after initi-

ation of b-adrenergic antagonism.157 Most studies, however,

did not observe a decrease in catecholamine serum levels254

but rather an increase.93 One study in pigs reported

decreased neuropeptide Y serum levels associated with

increased heart rate variability after treatment with

metoprolol.1

Preconditioning. Theoretically, b-AAs may prevent pre-

conditioning of the heart, which renders it more resistant to

subsequent sustained ischaemia. However, metoprolol does

not neutralize the favourable effects of preconditioning.237

On the contrary, nipradilol, a nitric oxide-generating b-AA,

clearly induces preconditioning by itself.95

Non-cardiac considerations

Effects of b-adrenergic antagonism on core components of

an anaesthetic regimen

Anaesthetic and analgesic requirements. Previous studies

focused on the anti-ischaemic properties of peri- and

intraoperative b-adrenergic antagonism. Recently, it was

shown that esmolol can potentiate the reduction in the

minimum alveolar concentration (MAC) for iso¯urane

(±26% at esmolol 250 mg kg±1 min±1) and decrease

anaesthetic requirements for skin incision during propofol/

nitrous oxide/morphine anaesthesia (±27% at esmolol 250

mg kg±1 min±1).102 103 Esmolol also decreases nociception in

a variety of experimental settings, suggesting the potential

to decrease the intraoperative anaesthetic requirements.47

Altered distribution and decreased metabolism of opioids by

b-AAs may underlie this anaesthetic-sparing effect.182

Furthermore, although b-AAs per se do not provide

analgesia or hypnosis, they are known to have central

nervous system modulating activities and anxiolytic

effects.76 146 158 b-AAs potentially affect central nervous

system pathways, which include neurones in the hypotha-

lamus, hippocampus and cerebral cortex.120 234

Accordingly, the favourable changes in heart rate variability

after b-AA treatment are ascribed to lower activity of the

central sympathetic nervous system. In mice and rats, the

locus coeruleus-associated noradrenergic system partici-

pates in arousal, and b-adrenergic antagonism within this

region reduces forebrain electroencephalographic activity.16

Similarly, amphetamine-induced activation of the rat

forebrain is clearly inhibited by timolol, and in humans

norepinephrine is known to enhance the responsiveness of

the cerebral cortex to excitatory neuronal transmission.15 181

Notably, pure b-adrenergic antagonism is crucial for the

observed anaesthetic-sparing effect because labetalol in-

creases the anaesthetic requirement.47 Even though esmolol

and atenolol are hydrophilic b-AAs, they produce the same

plasma/cerebrospinal ¯uid ratio as lipophilic b-AAs, there-

by affecting the centrally located surface b-ARs.120 Another

mechanism that may signi®cantly contribute to the anaes-

thetic-sparing effect elicited by b-AAs involves decreased

excitatory stimulation of central nervous effector sites of

hypnosis and somatic response. In this case, peripheral

interruption of centripetal b-adrenergic autonomic path-

ways, like spinal and epidural anaesthesia, decreases

afferent input and anaesthetic requirement.163

Memory storage. b-AAs also possess attenuating effects on

memory storage. Effects of opioids on memory are known

to be mediated through noradrenergic in¯uences.98

Importantly, propranolol was reported to impair memory

storage of particularly emotional events in humans.31 Also,

b-AAs impair arousal-induced enhancement of working

memory in elderly patients.165 As intraoperative recall and

subconscious processing of information is particularly

increased for emotionally charged information,132 it is

tempting to speculate that b-AAs, as anaesthetic adjuvants,

might actually decrease the risk of intraoperative awareness

and recall. However, this may be different for haemodyna-

mically compromised patients with concomitant cardio-

vascular medication. Nonetheless, adequate depth of

anaesthesia, as indicated by the bispectral index, was

achieved in a group of elderly patients using high-dose

intraoperative atenolol and a restricted amount of anaes-

thetic.254

Fig 5 Schematic depiction of left ventricular volume±pressure loops in

a patient with heart failure. (A) Volume±pressure loop without b1-

adrenergic receptor (AR) antagonism. (B) Volume±pressure loop with

acute exposure to b1-A antagonism. End-systolic elastance (Ees) is

decreased under b1-AR antagonism, which is accompanied by

decreased cardiac output, decreased stroke volume and decreased +dP/

dtmax. In contrast, whereas the duration of active isovolumetric

relaxation may increase only slightly (decrease in ±dP/dtmax), passive

diastolic function, as indicated by end-diastolic elastance (Eed, chamber

stiffness), remains largely unaffected by b1-AR antagonism.

Importantly, afterload, as indicated by arterial elastance (Ea), is

decreased by b1-AR antagonism. Also, the ratio Ees/Ea, which

represents ventriculoarterial coupling (the relationship between systolic

function and afterload), is well preserved. Note that the area enclosed

by the volume±pressure loops is closely related to myocardial oxygen

consumption and is markedly reduced by b-AAs.
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Recovery. Faster recovery from anaesthesia was reported in

patients receiving propranolol or metoprolol101 208 and in

patients receiving intra- or perioperative atenolol.254

Titration of anaesthetics to heart rate and blood pressure

without administration of b-AAs may lead to prolonged

recovery from anaesthesia as a result of `relative over-

dosing' with administered anaesthetics (MACBAR>

MACAWAKE).183 Furthermore, speci®c properties of b-

AAs may alleviate recovery from anaesthesia. In cats

receiving atenolol, waking times were signi®cantly pro-

longed,92 and human sleep disturbance is a well-known

side-effect of b-AAs.159

Immune response and b-adrenergic antagonism

The perioperative stress response impairs immune compe-

tence, particularly natural killer cell cytotoxic activity.220 In

the experimental setting, reduction of natural killer cell

cytotoxicity was achieved by electrical stimulation of the

splanchnic nerve in rats, and was completely antagonized by

nadolol.109 Recently, Ben-Eliyahu and colleagues14 re-

ported that hypothermia in barbiturate-anaesthetized rats

suppresses natural killer cell cytotoxic activity and thereby

accelerates the spread of tumour cells. Interestingly, nadolol

attenuated the effect of hypothermia on natural killer cells

and increased resistance to tumour metastasis.

Tolerability of perioperative administration
of b-adrenergic antagonists

Contraindications to the use of b-AAs result directly from

their anti-adrenergic action. Drug intolerance greater than

20% as a result of decreased contractile function and

increased afterload were previously reported in ®rst-gener-

ation compounds.215 However, drug tolerability for second-

generation compounds is 80±100% and for third-generation

compounds 90±100%.27 Recent research has revealed an

exceptionally low complication rate associated with the use

of b-AAs in heart failure patients as well as perioperatively

in high-risk cardiac patients.142 173 179 225 231 254

Speci®cally, these studies do not report an increased

number of episodes with severe hypotension, bradycardia

or bronchospasm. Therefore, administration of b-AAs

according to the reported dosing by Mangano and col-

leagues142 and Poldermans and colleagues173 does not

require additional monitoring. Even when started acutely

with high doses and in combination with potentially

negative inotropic agents, b-AAs were well tolerated in

compromised patients. Nonetheless, certain contraindica-

tions to b-AAs must be considered.

Haemodynamics

Excessive sympatholysis is undesirable in patients who

depend heavily on central sympathetic tone for adequate

circulatory function. While chronic administration of b-

AAs improves systolic and diastolic function in heart failure

patients,73 115 228 acute exposure to b-AAs may lead to

intolerable bradycardia and arterial hypotension and poten-

tially result in an adverse outcome.215 Accordingly, eye-

drops with b-AAs were implicated in the progression of

ischaemic optic nerve disorders and the progression of

visual loss attributable to recurrent nocturnal hypotensive

episodes.89 Therefore, patients with advanced conduction

defects or symptomatic bradycardia should not receive b-

AAs without concomitant pacemaker therapy. However,

patients with a resting heart rate below 60 beats min±1 may

receive therapy with caution. One study evaluating the

tolerability of b-AA titration in patients with idiopathic

dilated cardiomyopathy found that generally accepted

measures of the severity of heart failure were not predictive

of problematic up-titration of b-AAs.7 A low systolic blood

pressure (<120 mmHg) was the strongest predictor of

complications. The mechanisms underlying the good

tolerability of initiation of b-AAs in patients with heart

failure was previously investigated by Halpern and col-

leagues81 (Fig. 5). Acute effects of metoprolol on systolic

and diastolic function as well as on ventriculoarterial

coupling were evaluated using volume±pressure loops.

The results of these studies indicate that decreased afterload,

as assessed by arterial elastance and the preservation of

ventriculoarterial coupling and passive ventricular proper-

ties, explain the excellent tolerance of b1-AR antagonists in

heart failure patients (Fig. 5). Notably, b1-AR antagonists

also leave inotropic responses to b2-AR receptors intact and

thereby produce less cardiac depression and vasoconstric-

tion. Conversely, studies using a pulmonary artery catheter

technique showed an increase in systemic vascular resist-

ance (SVR) after metoprolol administration in chronically

treated, mostly NYHA III heart-failure patients.123

Similarly, acute graded administration of esmolol in

patients with severe ventricular dysfunction increased

SVR to compensate for the decrease in cardiac output.99

Intraoperatively, SVR decreases signi®cantly during undis-

turbed anaesthesia, but increases markedly under surgical

stimulation in metoprolol as well as placebo-treated

patients.139 However, SVR depends on loading conditions

and contractility, which were not measured in all these

studies. Therefore, SVR may not properly re¯ect the effects

of b-AAs on distension in the arterial system, i.e. afterload.

Accordingly, in mitral regurgitation-induced left ventricular

Table 6 Haemodynamic effects of b-adrenergic antagonists (b-AA),

phosphodiesterase 3 inhibitors (PDE3I) and their combination in heart failure

patients

Variable b-AA PDE3I b-AA+
PDE3I

Heart rate ¯  ¯
Systolic function ¯ then   
Diastolic function ¬® or   
End-diastolic pressure ¬® then ¯ ¯ ¯
Myocardial oxygen consumption ¯ ¬® or  ¯
Propensity to arrhythmia ¯  ¬®
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dysfunction b-AAs decrease left atrial hypertension inde-

pendently of changes in heart rate, which is thought to result

from decreased afterload.33 228

Experience with recent large trials indicates that fewer

than 5% of patients need to be withdrawn from b-AAs

because of worsening heart failure when they are carefully

monitored. The favourable haemodynamic effects and

safety of perioperative b-AA administration is now also

documented in several studies with brittle elderly surgical

patients.142 173 179 225 231 254 As the potentially adverse

clinical effects of esmolol completely disappear within

minutes of its discontinuation, current experience suggests

the initiation and up-titration of this short-acting b1-AR

antagonist even in compromised patients perioperatively.9

Coronary vascular resistance

Sympathetic nerve stimulation in the presence of propra-

nolol was reported to increase diastolic coronary resistance

by 30%.64 This coronary vasoconstriction is less likely to

occur after administration of b1-AR antagonists.2 More

importantly, in a study that measured simultaneously total

coronary ¯ow (sinus out¯ow) and local tissue ¯ow (heated

thermocouples), sympathetic stimulation after b-AA admin-

istration resulted in a decrease in sinus out¯ow but an

increase in the nutritional microcirculatory ¯ow.107 This

implies that a reduction in total coronary out¯ow does not

necessarily parallel a decrease in tissue ¯ow at the

microcirculatory level. Also, the mechanism of the reduc-

tion in blood ¯ow after administration of b-AAs is likely to

be a result of decreased myocardial oxygen demand. This is

strongly supported by the notion that atenolol decreases

myocardial blood ¯ow by 16% and increases coronary

vascular resistance by 23%.211 At the same time, however,

the myocardial arteriovenous oxygen difference remains

unaltered. Furthermore, when paced at the pre-atenolol

heart rate, there is no decrease in coronary blood ¯ow or

increase in vascular resistance under atenolol treatment,

which again clearly indicates that the observed decreases in

coronary ¯ow can be ascribed solely to decreased left

ventricular work and myocardial oxygen demand. Adverse

effects of b-AAs on feed-forward coronary vasodilation

(mediated by b2-ARs) clearly do not occur. Importantly,

even in patients with vasospastic angina, administration of

propranolol does not precipitate coronary spasms.51

Strategies to treat bradycardia and hypotension
caused by b-adrenergic antagonists

In general, untoward circulatory effects can be treated easily

with vagolytic drugs (atropine) or can be overcome

pharmacologically with inotropic agents. If atropine is not

effective in treating bradycardia, i.v. glucagon 2.5 mg kg±1

may be administered.137 187 The haemodynamic improve-

ments after glucagon treatment result mainly from its

pronounced chronotropic effect. Importantly, b-adrenergic

agonists are not the inotropic agents of choice in treating

cardiac decompensation from b-adrenergic antagonism.138

In the presence of fully established b-adrenergic antag-

onism, high doses of catecholamines, which signi®cantly

increase afterload and pulmonary artery pressure, have to be

administered to overcome the receptor antagonism.137 138 222

In metoprolol-treated patients, the response to phospho-

diesterase III inhibitor (PDE3I) is superior to the response to

dobutamine. Milrinone 25 mg kg±1 given over 10 min is well

tolerated in patients with heart failure under carvedilol

treatment and signi®cantly improves the cardiac index with

virtually no changes in heart rate and mean arterial pressure.

PDE3Is retain their full haemodynamic effects in the face of

b-adrenergic antagonism, because their site of action is

beyond b-ARs. PDE3Is act speci®cally on the phospho-

diesterase III isoenzyme, which is anchored to the

sarcoplasmic reticulum.246 Inhibitory effects on degradation

of cAMP remain compartmentalized and thereby lead

selectively to increased activity of sarcoplasmic reticulum

PKA, which preferentially improves systolic and diastolic

function.129 Notably, the combination of glucagon and

milrinone effectively restores cardiac output, but may

increase heart rate excessively.187 Interestingly, the com-

bination of PDE3I and b-AA, administered on a short- or

long-term basis, confers additive bene®cial but subtractive

adverse effects (Table 6).197 Accordingly, concomitant

administration of PDE3Is was used to improve the

tolerability of starting b-adrenergic antagonism in patients

with severe heart failure by counteracting the myocardial

depressant effect of adrenergic withdrawal. The results of

these studies suggest that the combined treatment may have

bene®cial effects beyond those produced by b-AAs.

Similarly, the use of prophylactic concomitant PDE3I

administration may have the potential to facilitate the

introduction of acute preoperative b-adrenergic antagonism.

Along with their favourable effects on cardiac function,

PDE3Is also partially activate protein kinase G in bronchial

smooth muscle, counteracting the bronchoconstriction of b-

AAs. In the future, adverse negative inotropic effects of b-

AAs may be reversed by the transient use of Ca2+

sensitizers, which are currently under investigation.194

Management of acute poisoning with b-adrenergic

antagonists

Most poisoning is uneventful, but serious effects of agents

with membrane-depressant effects, such as propranolol and

oxprenolol, have been reported.41 In very high doses,

respiratory and cardiovascular depression occurs and arti-

®cial ventilation may be necessary.218 Insulin improves

survival in a canine model of acute b-AA toxicity and seems

to be a better antidote than glucagon or epinephrine.114 In an

animal model of spontaneously breathing rats and propra-

nolol intoxication, administration of catecholamines (dopa-

mine and isoprenaline) signi®cantly reduced survival

time.218 Importantly, an effect of extracellular ions on b-
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AA cardiotoxicity had been described.113 Low extracellular

K+ and high extracellular Na+ may reverse refractoriness to

pacing associated with atenolol and propranolol, which is

consistent with the hypothesis that b-AA toxicity is

mediated by membrane hyperpolarization.

Drug interactions and the withdrawal phenomenon

Concurrent administration of b-AAs with drugs that alter

gastric, hepatic or renal function may affect the blood levels,

duration of action and ef®cacy of b-AAs. In general, doses

of lipophilic b-AAs must be reduced in the presence of liver

dysfunction, whereas doses of hydrophilic b-AAs need to be

adjusted in renal dysfunction. Although lipophilic sub-

stances generally have larger volumes of distribution, they

usually have shorter plasma elimination half-lives because

of the greater capacity for drug clearance by the liver than

the kidneys. Polymorphic metabolism of b-AAs is of

clinical relevance. In particular, lipophilic b-AAs are

metabolized by oxidative pathways and glucuronidation,

and oxidative clearance is in¯uenced by the debrisoquine

hydroxylation gene.104 201 203 Poor metabolizers with

polymorphic variants of cytochrome P450 may therefore

have increased plasma levels. Also, changes in metabolism

related to the genetic background appear to be responsible

for decreased ef®ciency of b-AAs in black patients.

Notably, bisoprolol is independent of any genetic poly-

morphism of oxidation.131

Concomitant administration with Ca2+ channel blockers

results in additive myocardial depression, and QT pro-

longation may occur with hypokalaemia, particularly if

treatment with b-AAs is associated with the use of

diuretics.118 Sinus arrest and atrioventricular block were

described under combined administration of diltiazem and

b-AAs, but this seems to occur only rarely.156 A combined

infusion of nifedipine and metoprolol has been used

successfully in patients undergoing CABG surgery.172

Importantly, sinus node dysfunction may be further

enhanced by digoxin, guanidine, procainamide, disopyr-

amide, methyldopa, reserpine, clonidine, cimetidine, lith-

ium and lidocaine. The practice of concomitant amiodarone

and b-AA treatment is not hazardous.20 However, the

potential for conduction abnormalities and arterial hypoten-

sion must be considered carefully.

In patients receiving b-AAs, the duration of regional

anaesthesia is prolonged by 30±60% after administration of

local anaesthetic containing epinephrine.256 Severe compli-

cations were reported in cancer patients receiving b-AA

treatment after administration of aminoglutethimide as a

hormonal cancer therapy.85 Although the novel ultra-short-

acting opioid remifentanil is metabolized by the same non-

speci®c esterases in the blood as esmolol, there is no

apparent pharmacokinetic interaction between remifentanil

and esmolol in a rat model.83 Importantly, the use of non-

steroidal anti-in¯ammatory drugs offsets the antihyperten-

sive effects of b-AAs.57 Carvedilol may increase plasma

levels of digoxin by 15%. Conversely, the bioavailability of

digoxin may be decreased after oral administration of

talinolol, a b1-AR antagonist, as a result of competition for

intestinal P-glycoprotein between digoxin and talinolol.235

Interference of propofol and volatile anaesthetics with b-

adrenergic signal transduction has been reported and may

modulate the response to b-AAs.86 253 259

When combining a2-agonists and b-AAs, the following

issues need to be addressed. Concomitant administration of

sotalol and clonidine produces an increase in blood

pressure. Conversely, propranolol potentiates clonidine-

induced decreases in blood pressure, which is even more

pronounced with atenolol.135 Special caution must be used

in treating withdrawal syndromes from a2-agonists, as a2-

agonists and b-AAs cannot be used interchangeably.

Whereas clonidine successfully blunts b-AA withdrawal,

b-AA substitution in clonidine withdrawal provokes haz-

ardous hypertension.106 Abrupt autonomic changes occur

with b-AA withdrawal, and sudden cardiac death may

occur.223 230 This withdrawal phenomenon is virtually

absent in b-AAs with intrinsic sympathetic activity.

Importantly, inadvertent withdrawal, particularly from

hydrophilic b-AAs, must be considered after massive

intraoperative transfusion. Although ACE inhibitors may

induce catecholamine-resistant intraoperative hypotension,

preoperative withdrawal of ACE inhibitors may lead to

decreased b-AR responsiveness and down-regulation.247

Renal function

In general, b-AAs decrease renal blood ¯ow and glomerular

®ltration rate as a result of decreased cardiac output.11

However, this is not of clinical signi®cance, and most b-

AAs, particularly the b1-AR antagonists, alter renal

haemodynamics only slightly. b-AAs reduce tubular

reabsorption of ¯uid and electrolytes leading to reduced

sodium and water retention, while renal function is well

maintained.169 213 This effect is bene®cial, particularly in

the perioperative period. Very few cases of clinically

evident deterioration in patients with already impaired renal

function have been reported.

Pulmonary function

Chronic obstructive pulmonary disease is not a contraindi-

cation for perioperative b-adrenergic antagonism, and even

patients with inactive stable asthmatic disease might be

given a trial of a low dose of a highly selective b-AA with

appropriate ancillary properties [nebivolol (NO release),

celiprolol (b2 stimulation), bisoprolol].35 However, patients

with active asthma and a demonstrable bronchodilator

response should not receive b-AAs. Celiprolol

(200 mg day±1) and atenolol (25 mg day±1) can be used

relatively safely in stable asthmatic patients, while meto-

prolol signi®cantly increases airway resistance.214 Albuterol

administered as four puffs before tracheal intubation blunts
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airway response signi®cantly in patients with reactive

airway disease and should be used prophylactically in

these patients.149 Interestingly, b-AAs increase hypoxic

pulmonary vasoconstriction, which may be favourable in

patients undergoing one-lung ventilation.24

Metabolic changes associated with b-adrenergic

antagonists

Several large studies indicate that there is some hypergly-

caemic effect in patients receiving b-AAs.77 However, as

pointed out earlier, this is not a reason to withhold b-AA

treatment. Early treatment of myocardial infarction with b-

AAs results in a 13% reduction in mortality in all patients

compared with a 37% reduction in diabetic patients.117

Similarly, reinfarction is reduced by 21% in patients without

diabetes compared with 55% in diabetic patients.80

Nonetheless, b-AAs impaired glucose tolerance and

appeared to increase the risk of diabetes on a long-term

basis by 28% in a recent study.77 Other studies (atenolol,

acebutolol) did not show an increased risk of hyperglycae-

mia or diabetes in subjects taking long-term b-AA

treatment.162 188 Importantly, prolonged hypoglycaemia

with delayed recovery may complicate b-AA treatment in

diabetic patients, particularly those with non-insulin-

dependent diabetes mellitus.50 Sweating, but not tachycar-

dia or palpitations, may be present in hypoglycaemic

episodes.229 Also, diastolic blood pressure may be increased

signi®cantly as a result of unopposed epinephrine-induced

a-AR stimulation. Hypoglycaemia as a complication of b-

AA therapy is virtually absent with b-AAs that have

intrinsic sympathetic activity.

Although not of immediate concern in the perioperative

period, unfavourable changes in lipid metabolism have been

reported with b-AA treatment. b1-AR antagonists and

labetalol do not increase triglycerides but may elevate

very low density lipoproteins.49 Atenolol does not affect

high-density lipoproteins, whereas metoprolol decreases

them.185 However, total cholesterol, is largely unaffected by

b-AA treatment and a myriad of clinical and experimental

studies document the anti-atherosclerotic effect of b-AAs.

Cognitive dysfunction

The association between b-adrenergic antagonism and

depression remains controversial. More recent studies did

not ®nd any relationship between b-AA use and depression

or cognitive impairment.23 53 However, sleep disturbances,

dif®culty in falling asleep and vivid dreams with nightmares

are clearly associated speci®cally with the use of lipophilic

b-AAs.

Vascular complications

Large studies on patients with peripheral occlusive artery

disease do not show any adverse effects of b-AAs on

walking capacity or symptoms of intermittent claudication,

even in patients with severe disease.180 Also, b-AAs do not

increase vascular complications in these patients.87 Because

of epinephrine-induced effects mediated by the b2-AR, the

administration of b1-AR antagonists may even result in

decreased arterial resistance, which may increase nutritive

blood ¯ow.

Conclusions

The collective interpretation of the experimental and

clinical data summarized here is that the consistently

demonstrable bene®cial effects of b-adrenergic antagonism

on the cardiovascular system, as well as on stress acting

through the nervous system, translates into favourable

changes in outcome. b-Adrenergic antagonism should

therefore be employed more generously in the stressful

perioperative period. Many favourable effects on the

biology of cardiomyocytes are closely related to bradycar-

dia. By cautious dose titration and selection of a highly

speci®c b1-AA, the majority of patients, even those with

impaired ventricular function, can be started safely on b-

AAs and up-titrated successfully to cardioprotective doses.

However, b-AAs with strong inverse agonism should be

avoided in these patients. Diabetes and chronic obstructive

pulmonary disease are not contraindications to perioperative

b-AA therapy. Patients with obstructive pulmonary disease

should be treated with a highly selective b1-AA with

bronchodilating ancillary properties (b2-adrenergic agon-

ism, NO release). Many important questions regarding the

optimal drug pro®le of b-AAs for speci®c patient sub-

populations and the optimal dosing and duration of

perioperative b-AA treatment remain to be addressed in

future studies. For improved safety, the potential bene®t of

combined treatment with b-AAs and PDE3Is should be

evaluated in severely compromised patients. If we accept

that b-AAs act on fundamentally detrimental biological

processes, we will use them more comfortably periopera-

tively.

Addendum

During the review process of this article, two important

studies concerning perioperative b-AAs were published and

need consideration.263 264 Poldermans and colleagues re-

ported that postoperative continuation and up-titration of

perioperative bisoprolol treatment enhanced the protective

effects in the study population described previously.173

Most of the effect was observed in the ®rst 6 months after

surgery and was preserved over the following 2 yr.

Therefore, combined perioperative and long-term bisoprolol

treatment leads, in this highly selected patient population, to

a reduction of more than 50% in cardiovascular morbidity

and mortality.

Using a retrospective and non-randomized approach,

Boersma and colleagues264 investigated 1351 consecutive
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vascular patients to assess the relationship between clinical

characteristics, dobutamine stress echocardiography, b-AA

therapy and perioperative cardiac events. The reported

cardiac complication rates were greatly reduced in most

patient categories (98% of patients) by b-AA treatment.

Only 2% of patients with three and more risk factors (age

>70 yr, current angina, prior myocardial infarction,

congestive heart failure, prior cerebrovascular accident,

diabetes and renal failure) and extensive dobutamine stress

echocardiography-induced ischaemia (at least ®ve seg-

ments) would not pro®t from b-AAs.

These studies thus support the conclusion that periopera-

tive b-adrenergic antagonism is likely to improve long-term

outcome in selected groups of patients with or at risk of

coronary artery disease.
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