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1 Summary and Acknowledgements 

Summary 
In order to increase drug safety we must better understand how medication interacts with the body of 

our patients and this knowledge should be made easily available for the clinicians prescribing the 

medication. This thesis contributes to how the knowledge of some drug properties can increase and 

how to make information readily accessible for the medical professionals. Furthermore it investigates 

the use of Therapeutic drug monitoring, drug interaction databases and pharmacogenetic tests in 

pharmacovigilance. 

Two pharmacogenetic studies in the naturalistic setting of psychiatric in-patients clinics have been 

performed; one with the antidepressant mirtazapine, the other with the antipsychotic clozapine. Forty-

five depressed patients have been treated with mirtazapine and were followed for 8 weeks. The 

therapeutic effect was as seen in other previous studies. Enantioselective analyses could confirm an 

influence of age, gender and smoking in the pharmacokinetics of mirtazapine; it showed a significant 

influence of the CYP2D6 genotype on the antidepressant effective S-enantiomer, and for the first time 

an influence of the CYP2B6 genotype on the plasma concentrations of the 8-OH metabolite was found. 

The CYP2B6*/*6 genotype was associated to better treatment response. A detailed hypothesis of the 

metabolic pathways of mirtazapine is proposed. In the second pharmacogenetic study, analyses of 75 

schizophrenic patients treated with clozapine showed the influence of CYP450 and ABCB1 genotypes 

on its pharmacokinetics. For the first time we could demonstrate an in vivo effect of the CYP2C19 

genotype and an influence of P-glycoprotein on the plasma concentrations of clozapine. Further we 

confirmed in vivo the prominent role of CYP1A2 in the metabolism of clozapine.  

Identifying risk factors for the occurrence of serious adverse drug reactions (SADR) would allow a 

more individualized and safer drug therapy. SADR are rare events and therefore difficult to study. We 

tested the feasibility of a nested matched case-control study to examine the influence of high drug 

plasma levels and CYP2D6 genotypes on the risk to experience an SADR. In our sample we compared 

62 SADR cases with 82 controls; both groups were psychiatric patients from the in-patient clinic 

Königsfelden. Drug plasma levels of >120% of the upper recommended references could be identified 

as a risk factor with a statistically significant odds ratio of 3.5, a similar trend could be seen for 

CYP2D6 poor metaboliser.  Although a matched case-control design seems a valid method, 100% 

matching is not easy to perform in a relative small cohort of one in-patient clinic. However, a nested 

case-control study is feasible. 

On the base of the experience gained in the AMSP+ study and the fact that we have today only sparse 

data indicating that routine drug plasma concentration monitoring and/or pharmacogenetic testing in 
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psychiatry are justified to minimize the risk for ADR, we developed a test algorithm named “TDM 

plus” (TDM plus interaction checks plus pharmacogenetic testing). 

Pharmacovigilance programs such as the AMSP project (AMSP = Arzneimittelsicherheit in der 

Psychiatrie) survey psychiatric in-patients in order to collect SADR and to detect new safety signals. 

Case reports of such SADR are, although anecdotal, valuable to illustrate rare clinical events and 

sometimes confirm theoretical assumptions of e.g. drug interactions. Seven pharmacovigilance case 

reports are summarized in this thesis.  

To provide clinicians with meaningful information on the risk of drug combinations, during the course 

of this thesis the internet based drug interaction program mediQ.ch (in German) has been developed. 

Risk estimation is based on published clinical and pharmacological information of single drugs and 

alimentary products, including adverse drug reaction profiles. Information on risk factors such as renal 

and hepatic insufficiency and specific genotypes are given. More than 20’000 drug pairs have been 

described in detail. Over 2000 substances with their metabolic and transport pathways are included 

and all information is referenced with links to the published scientific literature or other information 

sources. Medical professionals of more than 100 hospitals and 300 individual practitioners do consult 

mediQ.ch regularly.  Validations with comparisons to other drug interaction programs show good 

results.  

Finally, therapeutic drug monitoring, drug interaction programs and pharmacogenetic tests are helpful 

tools in pharmacovigilance and should, in absence of sufficient routine tests supporting data, be used 

as proposed in our TDM plus algorithm.  
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Résumé 
Pour améliorer la sécurité d’emploi des médicaments il est important de mieux comprendre leurs 

interactions dans le corps des patients. Ensuite le clinicien qui prescrit une pharmacothérapie doit avoir 

un accès simple à ces informations. Entre autres, cette thèse contribue à mieux connaître les 

caractéristiques pharmacocinétiques de deux médicaments. Elle examine aussi l’utilisation de trois 

outils en pharmacovigilance : le monitorage thérapeutique des taux plasmatiques des médicaments 

(« therapeutic drug monitoring »), un programme informatisé d’estimation du risque de combinaisons 

médicamenteuses, et enfin des tests pharmacogénétiques.  

Deux études cliniques pharmacogénétiques ont été conduites dans le cadre habituel de clinique 

psychiatrique : l’une avec la mirtazapine (antidépresseur), l’autre avec la clozapine (antipsychotique). 

On a traité 45 patients dépressifs avec de la mirtazapine pendant 8 semaines. L’effet thérapeutique 

était semblable à celui des études précédentes. Nous avons confirmé l’influence de l’âge et du sexe sur 

la pharmacocinétique de la mirtazapine et la différence dans les concentrations plasmatiques entre 

fumeurs et non-fumeurs. Au moyen d’analyses énantiomères sélectives,  nous avons pu montrer une 

influence significative du génotype CYP2D6 sur l’énantiomère S+, principalement responsable de 

l’effet antidépresseur. Pour la première fois, nous avons trouvé une influence du génotype CYP2B6 sur 

les taux plasmatiques de la 8-OH-mirtazapine. Par ailleurs, le génotype CYP2B6*6/*6 était associé à 

une meilleure réponse thérapeutique. Une hypothèse sur les voies métaboliques détaillées de la 

mirtazapine est proposée. Dans la deuxième étude, 75 patients schizophrènes traités avec de la 

clozapine ont été examinés pour étudier l’influence des génotypes des iso-enzymes CYP450 et de la 

protéine de transport ABCB1 sur la pharmacocinétique de cet antipsychotique. Pour la première fois, 

on a montré in vivo un effet des génotypes CYP2C19 et  ABCB1 sur les taux plasmatiques de la 

clozapine. L’importance du CYP1A2 dans le métabolisme de la clozapine a été confirmée.  

L’identification de facteurs de risques dans la survenue d’effets secondaire graves permettrait une 

thérapie plus individualisée et plus sûre. Les effets secondaires graves sont rares. Dans une étude de 

faisabilité (« nested matched case-control design » = étude avec appariement) nous avons comparé des 

patients avec effets secondaires graves à des patients-contrôles prenant le même type de médicaments 

mais sans effets secondaires graves. Des taux plasmatiques supérieurs à 120% de la valeur de 

référence haute sont associés à un risque avec « odds ratio » significatif de 3.5. Une tendance similaire 

est apparue pour le génotype du CYP2D6. Le « nested matched case-control design » semble une 

méthode valide qui présente cependant une difficulté : trouver des patients-contrôles dans le cadre 

d’une seule clinique psychiatrique. Par contre la conduite d’une « nested case-control study » sans 

appariement est recommandable.  
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Sur la base de notre expérience de l’étude AMSP+ et le fait que nous disposons que de peux de 

données justifiant des monitorings de taux plasmatiques et/ou de tests pharmacogénétiques de routine, 

nous avons développé un test algorithme nommé « TDMplus » (TDM + vérification d’interactions 

médicamenteuses + tests pharmacogénétique).   

Des programmes de pharmacovigilances comme celui de l’AMSP (Arzneimittelsicherheit in der 

Psychiatrie = pharmacovigilance en psychiatrie) collectent les effets secondaires graves chez les 

patients psychiatriques hospitalisés pour identifier des signaux d’alertes. La publication de certains de 

ces cas même anecdotiques est précieuse. Elle décrit des événements rares et quelques fois une 

hypothèse sur le potentiel d’une interaction médicamenteuse peut ainsi être confirmée. Sept 

publications de cas sont résumées ici. 

Dans le cadre de cette thèse, on a développé un programme informatisé sur internet (en allemand) – 

mediQ.ch -  pour estimer le potentiel de risques d’une interaction médicamenteuse afin d’offrir en 

ligne ces informations utiles aux cliniciens.  Les estimations de risques sont fondées sur des 

informations cliniques (y compris les profils d’effets secondaires) et pharmacologiques pour chaque 

médicament ou substance combinés. Le programme donne aussi des informations sur les facteurs de 

risques comme l’insuffisance rénale et hépatique et certains génotypes. Actuellement il décrit en détail 

les interactions potentielles de plus de 20'000 paires de médicaments, et celles de 2000 substances 

actives avec leurs voies de métabolisation et de transport. Chaque information mentionne sa source 

d’origine; un lien hypertexte permet d’y accéder. Le programme mediQ.ch est régulièrement consulté 

par les cliniciens de 100 hôpitaux et par 300 praticiens indépendants.  Les premières validations et 

comparaisons avec d’autres programmes sur les interactions médicamenteuses montrent de bons 

résultats. 

En conclusion : le monitorage thérapeutique des médicaments, les programmes informatisés contenant 

l’information sur le potentiel d’interaction médicamenteuse et les tests pharmacogénétiques sont de 

précieux outils en pharmacovigilance. Nous proposons de les utiliser en respectant l’algorithme 

« TDM plus » que nous avons développé.  

 

 



11 

   

Acknowledgements 
I thank Prof. Pierre Baumann, my mentor and thesis promoter for his support and patience during all 

the years of my thesis and our collaboration in other projects. I highly appreciate that you accepted to 

direct a thesis in unusual circumstances and in a field where my primary interests lay. I learned from 

you that research is guided by intuitive thinking, paired with consequent searching and rigorous work. 

I also thank the jury president Prof. Lucas Liaudet from Lausanne and the two experts Prof. Bruno 

Müller-Oerlinghausen from Berlin and Dr. Pierre Voirol from Lausanne for their time and efforts they 

put in the review of my thesis and the examination. I appreciated the way you did it. 

I am very grateful to Dr. Mario Etzensberger for his continuous support and for believing in my ability 

to realise my dream of a clinician friendly interaction program, also then when everybody else 

doubted. Mario I learned from you to stand to my beliefs. 

Special thank goes to the mediQ-Team, without you this thesis would never have been possible! To 

Dr. Patrik Stephan for all your precious work on the AMSP-project, to Irina Gabard for your thorough 

data entries and data collection, Dr. Sabine Harenberg for the many statistical analyses of the different 

research projects, Dr. Branka Knezevic for the many clinical interviews, and last but not least: Dr. 

Antje Heck, Daniel Ackermann, Dr. Sabine Harenberg, Melanie Muskovic, Dr. Patrik Stephan and 

Irina Gabard for your great work for the mediQ-interaction program. We followed our ideas also in 

difficult times and together were able to succeed. 

Many patients of the clinic Königsfelden collaborated with our pharmacovigilance and 

pharmacogenetic research; they consented to have extra tests and interviews and with that made our 

research possible. I like to express my gratefulness to you, and I hope that we together made a small 

step toward better understanding how we can improve drug safety in psychiatry. 

I also thank all the clinicians from the Klinik Königsfelden who actively supported our research 

projects with recruiting patients and discussion adverse drug reactions. Here I like to mention Dr. 

Bernhard Müller who supported from the beginning the pharmacovigilance project. 

I address also my gratefulness to the laboratory team of Königsfelden who agreed to the do extra work 

for our research and who always was willing to help us improving our procedures. Special thanks to 

Tamara Hartmann who actively supported us in all our clinical research projects.  

I like to thank Prof. Chin Eap for his support of most of my clinical research with extensive laboratory 

testing, scientific discussions and help with my editing scientific papers. And I thank you for 

clarifying things which I found sometimes so difficult to understand. 



12 

   

Special thanks is going to the whole research and laboratory group of the Unité de Biochimie et 

Psychopharmacologie Clinique, Lausanne, for their thorough testing of all the pharmacogenetic 

samples and many plasma levels. 

I thank also Prof. Katharina Rentsch and her team for the support of the plasma level analyses which 

could not be done in Lausanne and helpful discussions we had. 

Further I am grateful to my colleagues of the AMSP-project from whom I learned so much about 

pharmacovigilance in psychiatry: Dr. Renate Grohmann and Prof. Eckart Rüther, directors of the 

international project; Prof. Waldemar Greil and Dr. Andreas Horvath from the Swiss project and all 

the other colleagues. 

As member of the AGNP TDM expert group I gained more insight in the Therapeutic Drug 

Monitoring and I thank especially Prof. Christoph Hiemke for our discussions. 

Many thanks go to the programmers of the prototype and the final versions of the mediQ interaction 

program: Dr. Stefan Kunz for the prototype and Pierre Gumy for the final version. You forced me to 

think different, thorough and mindful of potentially large consequences of a small step of 

programming. 

I also like to thank Dr. Christoph Bieri for the interesting and helpful discussion we had about drug 

interaction programs and their differentiation.  

Without my parents Lucretia and Michel and the foundation for my life they gave me I would not 

stand where I stand now.  I am very grateful for what you were able to give me. 

I thank also my daughter Daphné and her father Gérard for their patience in supporting my work, for 

all the moments I was not there with them.  

I thank Jan-Willem for the enormous moral support and many helpful discussions during the last 

years. You guided me through the most difficult moments, and I learned so many beautiful things from 

you, among others that my work counts.  

 

 



13 

   

2  Aims  
 

“Pharmacovigilance is the science and activities relating to detection, assessment, 
understanding, and prevention of adverse effects or any drug-related problems “   

(World Health Organisation 2002) 

 

The main and general aim of this thesis is a contribution towards improving drug safety for the 

psychiatric patient by finding means to minimize the risks of his or her drug treatment. Drug safety in 

psychiatry requires special attention: on the one hand, drugs are administered to patients who cannot 

always communicate their symptoms and who are sometimes treated against their will and in pressing 

situations of emergency, often involving polypharmacy and high doses. On the other hand, the 

pharmacology of psychotropic drugs and their interactions in drug combinations are still insufficiently 

known, as are the biological foundations of the diseases to be treated. 

In order to minimize risks, we have to be aware of them. Knowledge about drug characteristics and 

interactions with patient factors has to improve. To this goal, we performed two clinical studies in 

order to increase the clinically relevant pharmacokinetic knowledge about the antidepressant 

mirtazapine and the antipsychotic clozapine.  

Therapeutic Drug Monitoring, drug interaction checking programs and pharmacogenetic tests are in 

2011 considered to be useful tools for clinicians to minimize risks of drug therapies and help in 

causality assessment in pharmacovigilance. However, at the preparation of this thesis in 2001 

clinicians hardly used or even knew these tools. We implemented the use of Therapeutic Drug 

Monitoring (TDM) and pharmacogenetic tests in a clinical setting and in a case-control study 

evaluated the relationship between drug plasma levels, CYP2D6 genotypes and the risk of 

experiencing a serious adverse drug reaction. 

Furthermore, we developed a user-friendly drug interaction database that estimates the risk of drug 

combinations by taking into account pharmacokinetic and pharmacodynamic properties of the 

combined substances and some patient-related risk factors such as pharmacogenetics, diet and 

lifestyle. 

This thesis is structured as follows:  
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Introduction (chapter 3) 

In chapter 2 general considerations about pharmacovigilance in psychiatry and, more specifically, the 

drug safety project AMSP (Arzneimittelsicherheit in der Psychiatrie) will be presented, followed by an 

introduction to TDM, pharmacogenetics and drug-drug interactions. 

The pharmacogenetics of mirtazapine and clozapine (chapters 4 and 5) 

In chapters 4 and 5 the clinical trials with mirtazapine, in depressed, and clozapine, in schizophrenic 

patients, are presented, which examine the influence of pharmacogenetics and other factors on their 

pharmacokinetics and subsequent clinical consequences. Therapeutic drug monitoring and 

pharmacogenetic tests (genotyping and phenotyping) were used in connection with a clinical study 

protocol. These protocols, moreover, mimic the normal practice of a psychiatric in-patient clinic.  

Feasibility study AMSP+: a nested casecontrol study with psychiatric 
inpatients (chapter 6) 

Within the international quality assurance and research project AMSP the feasibility of using 

therapeutic drug monitoring and pharmacogenetic tests in the causality assessment of serious adverse 

reactions has been evaluated. In addition, a pilot nested case-control study was set up to test the 

feasibility of this design for a larger study examining the relationship between plasma levels and 

genotypes and the risk of developing a serious adverse drug reaction.  

Webbased  drug interactions database: mediQ.ch (chapter 7) 

Risk assessment in drug combination therapy is often very complex and time-consuming and, when 

this thesis was still in its preparatory phase in 2001, it was hardly part of clinical routine at all. Major 

risks were taken and serious adverse reactions resulted which could be have been avoided if such 

knowledge had been available more easily. A major part of this thesis consisted of creating an accurate 

and user-friendly drug interaction program offering clinicians this knowledge in an easily accessible 

and timely manner, always keeping in mind the time constraints of the clinical work context. 

Pharmacovigilance case studies (chapter 8) 

Anecdotal information from well-documented individual cases can be valuable for the detection of 

rare adverse drug effects and also for didactic purposes. A selection of such cases is presented in 

chapter 8. 
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Concluding remarks and outlook (chapter 9) 

Chapter 9, finally, looks back and summarizes the contributions of this thesis to improve drug safety 

for the psychiatric patient and provides an outlook on further activities planned in relation to this 

project. 
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3 Introduction 
Not only effective but also safe and well tolerated medication is one of the major goals of today’s drug 

development. In spite of all these efforts the number of serious and life threatening adverse drug 

reactions seems not to decrease. A meta-analysis from 1998 (1) showed an incidence of 6.7% serious 

adverse drug reactions (SADR), whereas fatal reactions involved 0.32% of hospitalized patients;  

calculated for the population of the United States of America (USA) meaning that about 2.2 Mio in-

patients suffer annually from SADR and 100 000 die from it. A study from the Food and Drug 

Administration (FDA) in the USA show a 2.6 fold increase in SADR and related deaths over the 

period from 1998 to 2005 (2). These numbers represent a serious medical and socio-economical 

problem (3-6).  

The majority of Adverse Drug Reactions (ADR) are predictable from the pharmacologic action of the 

drug (type A reactions, see also table 1) and are therefore considered at least partly avoidable. One 

strategy is to identify vulnerable individuals by biomarker tests (e.g. pharmacogenetic) (7), by taking 

into account co-morbidities and life style of the patient, and eventually by checking possible drug 

interaction potentials. Another strategy is intensified surveillance of the patient during treatment by 

e.g. Therapeutic Drug Monitoring (TDM), laboratory testing, electrocardiogram (ECG), and others for 

early detection and intervention to limit the extent of harm. Large pharmacovigilance surveillance 

programs such as the AMSP project (see page 17) help to detect adverse drug reactions and their risk 

factors. 

 

Pharmacovigilance in Psychiatry 
In psychiatry we are often confronted with chronic diseases requiring long term medication and with 

increasing polypharmacy (8-10). Polypharmacy is on average 3.5 and 5 drugs in patients  < 65 years 

and 65 years and older, respectively (AMSP (11) data on file, R. Grohmann personal communication). 

Psychotropic drugs have many side effects but the rate of serious adverse drug reactions seems with 

1.5 - 2% (data from the AMSP project) lower than in other medical disciplines with 6-7% (1;3). That 

could be explained by underreporting or because psychiatric patients are not always easy with 

expressing their suffering of side effects, and differentiation between adverse drug reactions and 

symptoms of underlying illness can be difficult. Data of the AMSP project show that a serious adverse 

drug reaction leads to a doubling of the hospitalisation duration which means a considerable burden, 

also economically, the average hospitalisation duration increasing from approximately 25 days to 50 

days (data from the AMSP project). 
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Type of Adverse Drug Reactions (12) 

When a causal relationship with the drug taken is established, an adverse drug event (ADE) is 

considered to be an adverse drug reaction (ADR). A serious adverse drug reaction meets one of the 

generally accepted following criteria: death, life threatening, causing permanent damage, leading to or 

prolonging hospitalisation (Definitions ICH E2A 1995 Step 5 revised in 2006).  

 

Two major classes of ADR exist: Type A and Type B (13).  Type A are common (> 80% of all ADR), 

predictable, and tend to be dose- or more exactly concentration-related and less serious than those 

aberrant effects of the Type B reactions. Type A reactions can result from too much of a drug (too 

high dosage, pharmacokinetic drug interaction, normal dosage but the person metabolises or excretes 

the drug only very slowly, normal dosage but the person absorbs more drug than common, normal 

dosage but the person is overly sensitive), but also by pharmacodynamic drug interactions (serotonin 

syndrome by combining several serotonin agonists) or in response to a secondary drug pharmacology 

(torsade de pointes in a patient with a long QT syndrome) (Table 1). 

 

Table 1:  Classification of adverse drug reactions 

Predictable  
(also known as Type A) 

Unpredictable  
(also known as Type B) 

• Overdosage/toxicity: e.g., nephrotoxicity 
caused by elevated aminoglycoside levels; 
coma because of elevated benzodiazepine 
levels  

• Side effects: e.g., constipation caused by 
chronic opiate use  

• Secondary or indirect effects 
o related to drug alone: e.g., 

disturbance of vaginal flora due to 
antibiotic use  

o related to both disease and drug: 
e.g., ampicillin rash in association 
with Epstein- Barr virus 

• Drug interactions: e.g., use of terfenadine 
(now withdrawn from the market) in 
combination with ketoconazole can result in 
torsade de pointes caused by elevated 
terfenadine levels; combination of 
fluvoxamine and clozapine can results in 
delirium due to very high clozapine plasma 
levels 

• Intolerance: e.g., tinnitus caused by small 
doses of aminosalicylic acid   

• Allergic (hypersensitivity or immunologic): 
result of an immune response to a drug, e.g., 
penicillin-induced urticaria  
 

• Pseudo-allergic (non-immunologic): 
immediate, generalized reaction involving 
mast cell mediator release, e.g., respiratory 
symptoms induced by non-steroidal anti-
inflammatory drugs  

 
• Idiosyncratic: unexpected response to a drug 

and differing from its pharmacological 
actions; not related to an allergic mechanism, 
e.g., anticonvulsant hypersensitivity 
syndrome reaction (characterized by fever, 
cutaneous eruption and internal organ 
involvement) 
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Since the majority of ADR are type A reactions, which tend to be concentration-dependent, one could 

hypothesize that (too) high plasma concentrations are a risk factor for an ADR and that by avoiding 

them a substantial amount of ADR could be prevented. This seems obvious when studying some 

individual cases but how relevant is this risk in a larger patient population?  

 

The Project „Arzneimittelsicherheit in der Psychiatrie“ AMSP 

Legislated pharmacovigilance took its beginning in the early1960ties with the invalidating thalidomide 

effects on babies of mothers who took this drug against morning sickness during pregnancy. The 

government of the USA decided to regulate Drug Safety within the FDA. Other countries followed 

with their own regulatory bodies and legislation, and post marketing surveillance was institutionalized. 

In 1973 a number of fatal cases of agranulocytosis cases occurred under treatment with clozapine 

which led to the withdrawal of this efficacious antipsychotic drug in several countries. As a reaction to 

that, in 1979, the AGNP (Arbeitsgemeinschaft für Neuropsychopharmakologie) founded the 

pharmacovigilance working group AMÜP (Arzneimittelüberwachung in der Psychiatrie). The AMÜP 

study was a model for the continuous and systematic post marketing surveillance of psychiatric in-

patients collecting data on the nature and frequency of adverse drug reactions in a natural psychiatric 

setting (14;15). It was performed in the university clinics of Munich, Göttingen and Berlin and was 

supported by the former Bundesgesundheitsamt (federal office of health) of Germany. It lasted 20 

years.  

With the methodology and experience of AMÜP the AMSP project was developed from 1990 – 1993 

by Hans Hippius, Eckart Rüther, Rolf Engel and Renate Grohmann (16). Since 1993 AMSP surveys 

around 30’000 beds in approximately 57 psychiatric clinics in Germany, Austria and Switzerland. 

Serious adverse drug reactions (as defined by the AMSP project, table 2) are collected by AMSP drug 

monitors (medical doctors) in the naturalistic setting of the psychiatric inpatient clinic.  

Causality assessment is made by the drug monitor and the responsible treating doctor according to 

standard causality assessment criteria:  

1. Association in time between drug administration and event,  

2. Pharmacology (features, previous knowledge of side effects),  

3. Medical plausibility (characteristic sign and symptoms, laboratory assessments, pathological 

findings), and  

4. Likelihood of other causes, risk factors (17).  
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Table 2: Serious adverse drug reactions according AMSP criteria 

Life threatening or fatal, permanent disability, potentially life threatening, severely incapacitating. Examples by 
organ system: 

Psychic ADR: Suicide, suicide attempt, suicidal ideation, delirium, paranoid/hallucinatory or catatonic 
syndrome, depression, mania, coma, sopor, somnolence, aggressivity, obsessive compulsive symptoms, 
substance dependency, severe sedation, respiratory depression, frightening nightmares, severe psychomotor 
agitation,.. 

Neurological ADR: Incapacitating extrapyramidal-motor symptoms such as severe early dyskinesia, Parkinson 
syndrome, and akathisia; tardive dyskinesia, malignant neuroleptic syndrome, catatonic neuroleptic syndrome, 
Rabbit syndrome, atypical dyskinesia such as Pisa syndrome. Furthermore seizures, serotonin syndrome, ataxia, 
severe myocloni, severe tremor, speaking disorder, tinnitus, severe accommodation disturbances, diplopia, 
paraesthesia, restless legs. 

Cardiovascular ADR: Collapse, heart insufficiency, cardiac arrest, myocardial infarct, myocarditis, deep vein 
thrombosis, embolia, cerebrovascular disturbances, hypertension > 180/110 mmHg, symptomatic hypotension < 
90 mmHg, conduct disorders, arrhythmia, bradycardia < 40/min., tachycardia > 120/min, atriofibrillation, AV-
block II and III, QT-interval prolongation > 500ms or increase of > 25%, torsade de pointes, .. 

Liver disturbances: Liver value increase > 5 times the norm value, (AST, ALT, Y-GT, AP), severe cholestasis, 
hepatitis, ..  

Gastro-intestinal ADR: Severe vomiting or diarrhoea, severe nausea of longer than week, severe constipation, 
massive hypersalivation, pancreatitis, subileus and ileus, oesophagitis, .. 

Dermatological ADR: Allergic dermatological reactions, severe rash, Quincke oedema, allergic vasculitis, new 
manifestation or exacerbation of psoriasis, severe acne, severe hair loss, massive oedema, ..  

Haematological ADR: Neutropenia < 1500 neutrophiles/mm3 = <1,5/nl and agranulocytosis (< 500 
neutrophiles/mm3 = < 0,5/nl). Anaemia Hb < 8mg/dl, thrombopenia < 100.000/mm3 =< 100/nl, panzytopenia, 
coagulation disturbances, eosinophilia > 1500/mm³= > 1,5/nl absolute.  

Kidney and bladder disturbances: Disturbances of the kidney function, severe micturation problems (urine 
retention, pollakisuria), incontinence,... 

Sexual disturbances: Sexual disturbances which last > 4 weeks and are very bothersome for the patient, severe 
sexual disturbances, priapism,.. 

Endocrine and metabolic disturbances: Severe galactorrhoea, amenorrhoea > 6 months, symptomatic 
hypothyreosis, hyponatriemia <130 mmol/l; diabetes: new manifestation or exacerbation, hyperlipidemia which 
needs treatment, CK- increase > 2000 U/l, rhabdomyolysis.  

Respiratory disturbances: All forms of dyspnoea 

Other ADR: Weight increase > 10% body weight, metabolic syndrome, binging attacks, severe lasting cephalea, 
fever > 39°C. Loss of efficacy will only be taken into account as consequence of a drug interaction. 

Case and causality assessment are re-discussed in regional AMSP conferences and some complex 

cases in the international AMSP conferences as well. For estimation of the ADR frequencies, all 

medication from each surveyed patient is noted on 2 index days per year. 
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The AMSP project is a prospective multicentre dynamic cohort study under naturalistic conditions. Its 

aim is among others signal detection, in a case-by-case or qualitative analysis (18;19) as shown in 

figure 1. The signal can be a new ADR or a frequency change of an ADR associated to a certain drug 

or a change in severity.  

Figure 1: process of signal detection 

 

When a signal has been identified, a hypothesis is made which has to be verified in e.g. a case-cohort, 

case-control or other adequate epidemiological study (fig. 2). 

Figure 2: Potential Study designs in epidemiology. 
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Epidemiological studies allow calculating incidences, prevalence and risk ratios; risk factors such as 

age, certain genotypes, drug interactions or certain diseases can be identified. For risk calculations, 

incidence in the exposed population versus incidence in the non-exposed population is compared 

(table 3). 

Table 3: Two by two table for the calculation of risk ratios.  (RR = relative risk (for cohort studies); OR = 

odds ratio (for case-control studies); SAE = serious adverse event; Exposure: exposed to e.g. a drug; a = 

exposed and SAE, b = exposed no SAE, c = non exposed, but SAE, d = non exposed and no SAE.) 

 

For more detailed methodology of the AMSP project see www.amsp.ch and (16;20). Some case 

reports from the AMSP project are presented in Chapter 8, a case-control study from a sub-population 

of the AMSP project in Chapter 6. 

 

Inter- and intra-individual variations in drug plasma levels 
Drug plasma levels are determined by pharmacokinetic parameters (absorption, distribution, 

metabolism, elimination = ADME) that determine the amount of drug reaching the site of action. Drug 

transporting proteins (e.g. P-glycoprotein (Pgp)) and most important drug metabolising enzymes 

(e.g. Cytochrome P450 (CYP450)) are relevant factors determining the pharmacokinetic profile. Drugs 

may be metabolised by many different sequential and/or competitive chemical processes comprising 

phase I metabolic reactions (oxidation e.g. CYP450, reduction, hydrolysis) and/or phase II reactions 

(e.g. glucuronidation, acetylation). 

Inter- and intra-individual variations in drug plasma levels depend on biological variables and also on 

lifestyle and environmental factors.  Figure 3 illustrates examples of factors influencing plasma levels 

and subsequently the risk of developing adverse drug reactions. 

 

http://www.amsp.ch/�
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Figure 3: Interaction of drug, patient and environmental factors 

 

 

 

 

 

 

 

 

 

 

 

 

Therapeutic Drug Monitoring TDM 
TDM is based on the hypothesis that the concentration of a drug in the blood (plasma or serum) 

reflects - better than its dose - its concentration at target site. TDM is also based on the assumption that 

there is a definable relationship between drug plasma concentration and clinical effects (therapeutic 

effect and toxicity). In case of active metabolites the sum of the parent compound and the active 

metabolites (i.e. the active moiety) should be measured (e.g. venlafaxine and O-desmethylvenlafaxine 

ODV). This yields information on its contribution to the overall clinical activity of the compound, but 

also on the metabolism of the drug (e.g. ratio metabolite/parent compound). 

In psychiatry, these relationships have been mainly investigated for lithium, tricyclic antidepressants 

and antipsychotic drugs (the latter with inconsistent results) (21-31). Methodological limitations of 

many studies might be the reason for the lack of an evident relationship between concentration and 

effects or side effects (32-36). However,  systematic reviews and meta-analyses (37) based on 

adequately designed studies have produced convincing evidence for this relation. A correlation 

between plasma levels, dopamine D2 receptor occupancy and extrapyramidal side effects could be 

demonstrated for antipsychotic medication, e.g. for haloperidol (38;39). For drugs with a wide 

therapeutic index such as SSRIs, TDM is mainly used as a basis to adapt doses for special populations 
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such as the elderly, patients with hepatic impairment or patients with a known pharmacogenetic 

polymorphism affecting the metabolism of the prescribed drug (40).  

Indications 

Table 4 outlines indications where TDM is useful in relation to drug safety. In psychiatry, monitoring 

of substances with a narrow therapeutic index, especially when used in long term treatment and 

compliance control are probably dominant; TDM in particularly vulnerable patient populations may 

prevail in other medical specialities. TDM gains importance in the presence of unexpected adverse 

drug reactions.  

Table 4: List of indications for TDM in relation with pharmacovigilance 

o In case of adverse drug reaction type A 

o Monitoring of substances with a narrow therapeutic window 

o Combination therapy with pharmacokinetic drug-drug interaction potential   

o Known pharmacogenetic polymorphisms (drug metabolic enzymes, transporter proteins) 

o Pharmacotherapy in special patient populations (elderly, children, pregnant women, patients 
with renal or hepatic insufficiency) 

o Problems occurring after switching different preparations of the same compound (e.g. original 
preparation versus generic) 

 

Consensus guidelines for the use of TDM 

In 2004, the first international Consensus Guidelines for TDM of psychopharmacological agents were 

published by the interdisciplinary TDM expert group of the Arbeitsgemeinschaft für 

Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP) (41), an update will be published in 

the fall of 2011. These guidelines cover indications for TDM, levels of recommendation, practical 

guidelines for clinicians and laboratories, and importantly, give reference plasma levels for the 

therapeutic window, as well as expected dose-dependent plasma levels under steady state conditions. 

Where therapeutic ranges are missing, target ranges corresponding to the normally observed plasma 

levels at therapeutic drug doses are given. 

Sometimes, individual optimal serum concentrations seem to be preferred over consensus values, 

especially for long term and combination treatments (42;43).  This is supported by studies on 

predicting relapse or rehospitalisation of patients under clozapine treatment; it was found that the 

variability in plasma levels in an individual patient seems to be predictive for a psychotic exacerbation 

(44;45).  
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In the difficult situation of a relative overdose (e.g. a very high plasma concentration due to a genetic 

deficiency for a metabolic enzyme or due to a drug-drug interaction (DDI)), it is important to know the 

toxic plasma levels of a drug. However, these are unknown for many, especially newer drugs, which in 

general have wider therapeutic indexes. Some listings of toxic drug concentrations exist (46;47); they 

have been generated by reviewing case reports of intoxications. A laboratory alert level has been 

included in the consensus guidelines 2011 indicating potentially harmful drug concentrations.  

Reference plasma levels are generally based on trough steady-state concentrations. The difference 

between peak and trough levels can be very important, as e.g. in the case of quetiapine (fig. 4). Special 

attention is necessary when comparing results from immediate release galenic forms and extended 

release forms (48). Methylphenidate (49;50), atomoxetine (51;52) and agomelatine (CHMP 

assessment report of Valdoxan Procedure No. EMEA/H/C/000915) are exceptions, such that steady 

state peak plasma levels have to be measured. Methylphenidate and agomelatine have a very short half 

life, so inter-individual variability in drug pharmacokinetics and trough plasma concentrations are 

difficult to detect. In the case of atomoxetine the peak compared to trough plasma concentrations are 

less affected by the CYP2D6 genotype-dependent inter-individual variability. In patients treated with 

an intramuscular depot preparation of an antipsychotic drug, blood should be sampled immediately 

before the next injection and also during steady state conditions (often only reached after 2 - 4 months) 

(53). 

 

Figure 4: peak (blood sampling 90 minutes after drug intake) and trough plasma concentrations of 

quetiapine immediate release of 13 patients participating in a multicentre pharmacogenetics study on 

quetiapine (manuscript in preparation) 
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TDM is a valid tool to optimise pharmacotherapy, but it does not replace clinical judgement. Since the 

majority of adverse drug reactions is dose-dependent, measuring drug plasma levels seems to be a 

highly rational approach to prevent these reactions, to reveal possible causes and, subsequently, to take 

steps to adjust drug treatment.  

 

Pharmacogenetics 
 

Definition 

Pharmacogenetics describes hereditary factors influencing the response to drug treatment - therapeutic 

effect and potential side effects - either dealing with the fate of drugs in the body (ADME) or the 

interaction of the drug with the body at the target site (pharmacodynamics, e.g. neurotransmitter 

transporter polymorphism). “Genetic polymorphism” refers usually to genetic loci for which variants 

occur with a frequency of at least 1% (54).  

Cytochrome P450 polymorphisms 

Genetic polymorphisms of drug metabolising enzymes and their effects on treatment response for 

certain patients have been extensively studied since the late 1970s (55-57). Individual genetic 

disposition determines their activity, and the number of active alleles in a gene determines to a great 

extent how much enzyme will be produced. Some Cytochrome P450 isozymes are primarily involved 

in phase I reactions of psychoactive drugs, most importantly CYP2D6, but also CYP1A2, CYP2B6, 

CYP2C19 and CYP3A. CY2D6 and CYP2C19 are genetically polymorphic, some genotypes leading 

to complete enzyme deficiency. CYP3A as well as CYP1A2 are largely influenced in activity by 

enzyme induction or inhibition but genetic polymorphisms in these two CYP enzymes are less 

important for the phenotype. From a genetic point of view, four types of drug metabolisers have been 

identified, which are not found with all drug metabolising CYP450 enzymes. The most 

comprehensively studied CYP isoform is CYP2D6 and the following definitions are established 

mainly on the basis of observations about the metabolism of substrates by this enzyme.  

1. ”Poor metaboliser” (PM) carry two alleles predicting a low (e.g. CYP2D6*10 or *17)(58) or 

no enzyme activity (e.g. CYP2D6*3, *4, *5);  

2. “intermediate metaboliser” (IM) are normally referred to individuals being heterozygous 

carriers of one inactive allele or have two alleles with reduced activity, leading to a reduced 

enzyme activity;  

3. ”extensive metaboliser” (EM) are carriers of two active alleles having a normal activity; 
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4. ”ultra-rapid metaboliser” (UM) have a very high enzyme activity which is genetically caused 

by gene duplication expressed as 2XN (so far found for CYP2D6). Recently rapid 

metabolisers for other CYP450 enzymes have been found, e.g. in patients carrying the 

CYP2C19*17 allele (59;60) .  

The phenotypes reflecting the actual enzyme activity still show high inter-individual variation 

especially within the intermediate and extensive metaboliser groups. Thus, genetic prediction of 

enzyme activity is best possible for the poor and ultra-rapid genotypes but poor or ultra-rapid 

metabolizing activity can also be caused by enzyme inhibition or induction (61;62).  Instead of this 

classical approach of attributing phenotypes to genotypes, efforts have been made to predict a CYP450 

enzyme activity score by genotype (63). Figure 5 illustrates genotype dependent plasma concentrations 

and expected therapeutic and toxic effects.  Extensive information on the activity of different CYP450 

alleles can be found on www.imm.ki.se/CYPalleles.  

 

Figure 5: Schematic illustration of CYP2D6 genotype-based plasma concentration differences and 

therapeutic consequences (64) (wt = wild type, mut = mutant;      = genotype based plasma 

concentration at steady state). In the case of a person with the wild type genotype there is an optimal 

balance between drug efficacy and toxicity, in the case of a person with homozygote mutant genotype 

the risk for toxicity is high.   
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The prevalence of different types of metabolisers varies greatly between ethnic groups (table 5) (65).  

Table 5: Estimate of the prevalence of relevant CYPP450 polymorphisms in different ethnic populations 

Ethnicity CYP450 Poor metaboliser Ultra rapid metaboliser 

Various* 1A2* Rare (66-68) Induction polymorphism (68-72)  

Clinical relevance unclear 

- Caucasian (73-75) 

- Asian (76;77) 

- African (78) 

2C8/9 1-10%  

0-2% 

up to 4% 

None 

- Caucasian (75;79), African 
(80), Saudi Arabia (81) and   
Turkish (82)  

- Asian (77;83-85) 

2C19 1-5%, 

 

13-23% 

CYP2C19*17 (59;60) 

Various 2B6 High inter-ethnic differences (86-
92)  

CYP2B6*4 (93) 

- Asian (79;94) 
- Turkish (82)  

- African (80;94) and   Afro 
American 

- Caucasian (75;95-99)  

 

-Saudi Arabia (81;100) 

- Aethiopian 

 

- Asian (101) 

- African (80) 

 

2D6 

 

1-2%                                                   
.                                                            

2-4 %                                                 
.       

5-7% 

 

 

 

Carrier of an allele with reduced 
activity(102-104) 

up to 50% (CYP2D6*10)  

up to 30 % (CYP2D6*17)  

up to 2%                                        
5-10% 

2%                                                    
.  

1-2 % North Europe 

5-10% South Europe 

20% 

up to 29% 

 

 

 

 

- Caucasian (105) 

- Afro Americans (105) 

- Japanese (106) 

- Chinese (107) 

3A5 About 70 % 

About 40% 

30-40% 

about 50% 

 

Various (108) 3A** Wide variability in metabolic 
capacity, few functional 
polymorphisms identified. 

Wide variability in metabolic 
capacity, few functional 
polymorphisms identified. 

* The inter-individual variability of the CYP1A2 metabolic capacity is wide, with a bi- or tri-modal distribution 
depending on the population; only few functional genes have been identified to date. 

**The inter-individual variability in the CYP3A metabolic capacity is wide but no bi- or multimodal distribution 
has been found, indicating that most probably several genes contribute to the function.  
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CYP2D6 and CYP2C19 show a polymodal distribution of activity in the population. For CYP2D6 

which catalyses the oxidative biotransformation of many tricyclic antidepressants and other 

psychotropic drugs, 5 to 8% poor metabolisers and 1 to 10 % ultra-rapid metabolisers have been found 

in Caucasians. CYP2C19 polymorphisms are less prevalent in Caucasians and seem to be therefore 

less important (109) although several tricyclic antidepressants and citalopram are catalysed by this 

enzyme. In Asians, however, about 20% of the population are poor metabolisers. The unimodal 

distribution of large inter-individual variability of CYP3A4 activity suggests multiple influence factors 

on enzyme activity of this important enzyme which is highly expressed in human liver. Two other 

CYP3A enzymes are existing, CYP3A5 for which genetic polymorphisms have been detected to 

predict enzyme expression, and CYP3A7 which is mainly expressed during foetal life and later in a 

low percentage of adults (110;111). CYP3A5 is only expressed in 10-30% of the Caucasians and their 

contributing effect to overall CYP3A activity is low. The clinical relevance of the CYP1A2 

polymorphism (C->A) (66;70) associated with high inducibility is unclear and conflicting results have 

been reported (69;71;112). Genetic and environmental factors can interact synergistically or in an 

antagonistic way by e.g. adding a CYP2D6-blocking agent in pharmacological treatment with a 

CYP2D6 substrate taken by a CYP2D6 ultra-rapid metaboliser (113). 

Recent investigations indicate that drug transporters, such as P-glycoprotein (Pgp) and organic anion-

transporting polypeptides (OATP), in the intestinal mucosa and the blood brain barrier are also 

relevant for the pharmacokinetic variability of many drugs (114-119). 

P-glycoprotein, coded by the MDR-1 (multi-drug resistance, also known as ABCB1) gene, is an 

adenosine triphosphate (ATP)-dependent efflux pump for xenobiotic compounds with broad substrate 

specificity (120;121).  A model of Pgp-mediated substrate transport (fig. 6) can be found in recent 

publications (122). Pgp plays an important role in drug absorption, disposition and excretion, and is 

found in several organs such as the gut, liver, gonads, kidneys, brain and others (116;117;123;124) 

(fig. 7). Reported genetic polymorphisms of MDR-1 show high inter-ethnic variability and appear to 

play a role similar to that of drug-metabolizing enzymes (114;125-129). Pgp function can be 

influenced by drugs, food, smoking, age and gender, and it can be inhibited or stimulated. 

Interestingly, Pgp and CYP3A4 are often co-expressed in the same cells and they share a large number 

of substrates and modulators (inhibitor and inducer). The disposition of such drugs is influenced by 

both drug transport and metabolism, and the interaction with modulators acting on both systems will 

multiply the effect; for example, cyclosporine is a substrate of CYP3A4 and Pgp (130-132), whilst St. 

John’s wort is an inducer of both (133-135). 
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Figure 6:  Model of substrate transport by the efflux pump Pgp (lilac), membrane between two 

horizontal lines. Pgp-substrates (pink) enter a cavity of the P-glycoprotein lined up with amino acids 

(blue) which can bind to many different molecules.  ATP (adenosine triphosphate) binds to two 

nucleotide-binding domains which causes a conformational change ejecting the substrate to the 

outside. Adapted from (122) 

 

 

Figure 7: Pgp acts as an efflux pump for xenobiotics at the brain, the liver, the intestine, the gonads, 

the kidney, and at the placenta in order to protect vital organs. Adapted from (136) 

                                         

With regard to the occurrence of wanted or unwanted clinical effects, the contribution of drug 

transporters is less well understood than that of drug metabolising enzymes. Digoxin is a typical Pgp 

substrate with a narrow therapeutic index that can be affected by Pgp inhibition or induction. Certain 
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phenotypes of Pgp can lead to increased plasma levels of digoxin (125) and subsequently to serious 

adverse drug reactions. Another example is the Pgp substrate loperamide, a potent opiate anti-

diarrhoea drug that has limited access to the brain due to Pgp activity. When combined with the Pgp 

inhibitor quinidine, it can enter the brain and cause respiratory depression (137) without any change in 

plasma levels of loperamide.  

Pharmacogenetic tests 

Depending on the particular CYP450 enzyme, different geno- or phenotyping methods are today 

available for the clinician. Genotyping and phenotyping differ in their clinical significance. 

Genotyping is considered as a “trait marker” and its result does not depend on environmental factors, 

meaning that it has only to be performed once in a person’s lifetime. In general a DNA probe is 

extracted from a non-centrifuged whole blood sample, but buccal swabs or saliva samples may also 

serve. Most laboratories analyse only the most common alleles for which a functional significance is 

known. Standard methods such as real-time polymerase chain reaction (PCR) (138) are mainly used 

for rapid and inexpensive genotyping of the common alleles. More than 95% prediction of the poor 

metaboliser of CYP2D6 is possible with genotyping of the (few) alleles predicting deficient enzyme 

activity such as CYP2D6*3, *4, *6 and *5 (104;139-141), and for CYP2C19 80% and almost 100% of 

the poor metaboliser can be predicted in analysing CYP2C19*2 and *3 (142) in Caucasian and Asian 

respectively. In cases where many alleles of more than one gene should be analysed, microarray-based 

genotyping devices (“gene chips”) (143;144) are recommended. Unfortunately the costs for gene chip 

analysis are still relatively high. A very short time lag between collecting a DNA probe and obtaining 

the results is a prerequisite if genotype-based dosing is applied.  

 

Phenotyping tests exist for more CYP450 enzymes but they represent “state markers” meaning that 

they are situation dependent. This carries the advantage of reflecting the metabolic situation of the 

patient at a specific moment, and allows its evolution to be followed. Some persons especially among 

psychiatric patients experience the fact that they have to ingest a test substance which will be later 

analysed in a blood or urine sample together with its metabolites as disadvantage. Phenotyping test 

probes should be isozyme specific such as dextromethorphan (145), sparteine/desbrisoquine for 

CYP2D6 (146;147), mephenytoin (145) or omeprazole for CYP2C19 (148), tolbutamide or 

flurbiprofen for CYP2C9 (149;150), caffeine for CYP1A2 (69) and midazolam for CYP3A (151;152). 

However, some of these probes lack enough specificity as is the case for dextromethorphan to clearly 

distinguish ultra-rapid from extensive metaboliser (and intermediate metabolisers).  
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Genetic association - haplotype analysis (153) 

Single nucleotide polymorphisms (SNPs) in a gene can be analysed either considering them each as a 

separate predictor or by haplotypes. A haplotype is a combination of alleles or SNP’s, a set of DNA 

variations, located on the same chromosome and which tend to be inherited together. Special statistical 

methods exist for inferring haplotypes and population haplotype frequencies from the genotypes of 

unrelated individuals. These methods, and the software that implements them, rely on the fact that in 

region of low recombination relatively few of the possible haplotypes will actually be observed in any 

population. True haplotypes are more informative than genotypes, but inferred haplotypes are typically 

less informative because of uncertain phasing. However, the information loss that arises from phasing 

is small when linkage disequilibrium is strong (153).  

These complex statistical methods are commonly applied when studying the association of ABCB1 

SNPs to e.g. drug plasma concentrations or drug effects (see e.g. chapter 5). 

 

Pharmacogenetic Studies in Pharmacovigilance 
Sufficient clinical data are missing to give clear cut recommendations concerning pharmacogenetic 

testing before initiating treatment. Kirchheiner et al (154-156) developed a scheme for genotype-based 

dose adjustments. They recommend genotyping for drugs where a minimum 2 fold difference in AUC 

for the active moiety has been observed between poor metabolisers and ultra-rapid or extensive 

metabolisers and/or for which a twofold or more risk for an adverse drug reaction or therapy failure 

exists. Some clinical studies in psychiatry found a higher number of patients not tolerating treatment as 

a consequence of a genetically deficient drug metabolism (157-164). In case of genotype-based dose 

adjustments the drug plasma concentrations will be controlled by TDM since most genotype-based 

dose recommendations are based on calculations rather than on clinical data. 

TDM and pharmacogenetic tests can advantageously be combined, and TDM can to a certain extent be 

considered as a phenotyping procedure. A valuable strategy is proposed in the algorithm in chapter 6 

“TDM plus” (65). It reflects a pro-active and systematic approach to a situation of treatment failure or 

intolerability where pharmacogenetic tests are performed based on unexpected plasma levels and after 

exclusion of pharmacokinetic drug interactions. Pharmacogenetic tests might also be indicated in the 

case of unusual plasma concentration to dose relations or when the ratio of parent substance to 

metabolite is distorted. 

Polymorphic drug metabolising enzymes represent some of the most common genetic risk factors 

associated with adverse drug reactions (165-169) but may also be the reason for non-response. In poor 

metabolisers increased plasma concentrations can reach toxic levels and lead to serious adverse drug 
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reactions, in ultra-rapid metabolisers on the contrary, non-response might occur due to subtherapeutic 

plasma concentrations. Differences in drug clearance between poor and rapid metabolisers sometimes 

vary up to 20-fold which certainly has an influence on drug efficacy and adverse drug effects. 

However, if analyzing phenotypes such as drug responders or occurrence of adverse drug effects, a 

simple monogenic association between a single polymorphic drug metabolising enzyme and response 

or an adverse event, seems in many cases not evident. Therefore new high-dimensionality analysing 

methods like “combinatorial pharmacogenetics” (170) which allow an insight in the complexity of 

possible metabolic processes and pathways in the human body are necessary. Other for the 

pharmacokinetic variability of many drugs relevant systems such as phase II enzymes (e.g. UDP-

glucuronosyltransferases UGT), N-acetyltransferases (NAT)) and drug-transporting-proteins, e.g. P-

glycoprotein and organic anion-transporting polypeptides (OATP), show genetic polymorphisms as 

well. The clinical relevance of phase II enzyme polymorphisms such as UGT polymorphisms in 

pharmacopsychiatry seems to be far less pronounced than those of CYP450 isozymes (171).  Genetic 

polymorphisms of the drug transporter Pgp have been studied extensively, but the functional 

significance of genotypes or haplotypes remains controversial (136;172).  

No doubt, pharmacodynamic parameters are important and clinically relevant genetic polymorphisms 

for receptor proteins or neurotransmitter transporters have been described (173-176). For instance 

numerous studies show a robust association between  the serotonin transporter gene promoter 

polymorphism and the therapeutic effect of SSRI (177). Therefore, results of pharmacogenetic tests for 

pharmacokinetic and –dynamic variables should - where possible - be analysed together. However, the 

use of pharmacogenetic tests for pharmacodynamic parameters is not yet validated in clinical practice. 

 

Drug-Drug Interactions 
Drug-drug interaction means a change of the drug’s effect as a result of the presence of another drug. 

Considering pharmacokinetic and pharmacodynamic drug interactions including the risk increase for 

serious adverse reactions due to similar side effect profile, the risk estimation of a certain drug 

combination can become very complex. Classical information sources on drug interactions such as 

Pharmavista (http://www.pharmavista.net) or Drugdex (http://www.thomsonhc.com) give risk 

estimations based on clinical observations, and deducted from these class effects. However, this 

method is often not accurate and incomplete. Another more precise approach would on one hand 

include – if available - clinical observations of a specific drug combination and on the other hand look 

at the pharmacokinetic and pharmacodynamic properties of the combined drugs as well as at their side 

effect profile and make then risk estimation.  

 

http://www.pharmavista.net/�
http://www.thomsonhc.com/�
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Pharmacokinetic interactions 

Pharmacokinetic interactions are due to the effect of drug A on drug B’s movement through the body. 

Alterations can occur during absorption, distribution, metabolism and elimination. They are expressed 

by a change in the expected concentration of one or both substances at the target site, and often also in 

the blood. TDM is therefore a valuable instrument in controlling the effect of a pharmacokinetic drug 

interaction, even if it is not a direct measure of the drug concentration at the target site. The usefulness 

of TDM may be limited in situations where drug transport through the blood brain barrier shows high 

inter-individual variability and is determined by active transport mechanisms (116;123). Information 

on mechanisms of metabolic interactions can be found in text books (178) or other literature 

(179;180). 

Drugs can be substrates for one or several metabolic enzymes, which contribute to their 

biotransformation using major and minor pathways (e.g. clozapine (181), see Fig. 8) and drug 

metabolism can be stereoisomer specific (e.g. mirtazapine, see chapter 4) . This is important when 

estimating the effects of inhibition or induction of one of these pathways. The extent of an interaction 

is dependent on the baseline enzyme activity. No inhibition occurs in people with almost no enzyme 

activity (e.g. in the situation of a genetic deficiency of this enzyme), whilst the inhibitory effect may 

be pronounced in people with high baseline activity.  

It is not an easy task to estimate the interaction potential of a particular combination therapy. 

Numerous tables listing drugs as substrates and inhibitors/inducers for different metabolic enzymes, 

mostly CYP450 enzymes exist. Many do not differentiate between major and minor pathways, and 

many translate in vitro results into in vivo data, which can lead to misinterpretation. Clozapine in vitro 

is metabolised by almost all relevant CYP450 enzymes (fig.8 (181)). However, in vivo (see chapter 5), 

it appears that CYP1A2 is the major pathway, CYP2C19 plays a relevant role (182) and CYP3A4 is 

probably involved in a concentration-dependent manner, while CYP2D6 plays a negligible role 

(181;183-186).  

Predicting in vivo interactions from in vitro data is difficult; a number of reviews have been published 

on the impact of various factors on the accuracy of such an extrapolation and on prediction models 

(187-191). There is great need for data on drug metabolism and transport in vivo and where possible in 

patient populations. With newer drugs this information becomes more accessible since more 

pharmacokinetic data are requested from the authorities. But with older substances these data are not 

available.  
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Figure 8: Dose dependent CYP450 mediated metabolism of clozapine in vitro (181), reaction rates in 

mol/h per mole CYP450 isoform. (Reproduction of the figure with kind permission of “Drug 

Metabolism and Disposition”) 

 

Some drug interaction lists give the interaction potential of drug classes, such as found for the SSRIs, 

but SSRIs form a very heterogeneous group especially concerning their CYP450 enzyme inhibiting 

properties. Fluvoxamine is a potent inhibitor of CYP1A2, but not of CYP2D6. Paroxetine and 

fluoxetine are potent inhibitors of CYP2D6, but not of CYP1A2, and so forth.  The thesis author, 

recognising these shortcomings, developed an online interaction program, mediQ.ch, which is 

described in greater details in chapter 7. Table 6 indicates some Internet sites with clinically relevant 

information on drug interactions, cytochrome P450 and other drug metabolising and transporter 

systems. 

Table 6: Examples of Internet sites providing information on drug-drug interactions, CYP450 enzymes 
and drug-transporting proteins (retrieved 2011) 

www.mediQ.ch  www.psiac.de   http://medicine.iupui.edu/flockhart  

www.genemedrx.com    www.imm.ki.se/CYPalleles   www.themedicalletter.com 

www.drugs.com   www.druginteractioninfo.org  http://www.thomsonhc.com 

http://www.pharmavista.net   http://www.hiv-druginteractions.org 

http://www.mediq.ch/�
http://www.psiac.de/�
http://medicine.iupui.edu/flockhart�
http://www.genemedrx.com/�
http://www.imm.ki.se/CYPalleles�
http://www.themedicalletter.com/�
http://www.drugs.com/�
http://www.druginteractioninfo.org/�
http://www.thomsonhc.com/�
http://www.pharmavista.net/�
http://www.hiv-druginteractions.org/�
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Since the extent of a specific drug-drug interaction is not easy to predict, TDM should be used in drug 

combinations where affected drugs have a narrow therapeutic index. Figure 9 shows that the clinical 

consequences strongly depend on the therapeutic index of the drug. It would not be wise to avoid 

combinations when they appear to be of little risk and promising from a therapeutic point of view. 

Inhibition can last for several weeks after discontinuation of the inhibiting agent, as is the case with 

fluoxetine, and especially its metabolite norfluoxetine, which has a very long elimination half-life. In 

cases of a rapid change of medication from fluoxetine to another serotonergic compound, an increased 

risk for serotonergic side effects, including serotonin syndrome (192-195) has been reported.  

Figure 9: The importance of a drug-drug interaction or a drug metabolising enzyme polymorphism 

depends on the therapeutic index of the affected drug (adapted from (196)) 
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For drugs with active metabolites, the active moiety has to be considered, especially when the active 

metabolite is formed by the affected enzyme. In a study with 12 schizophrenic patients (197) 

risperidone was shown to be inhibited by paroxetine in a dose-dependent manner. Daily doses of 10, 

20 or 40 mg paroxetine resulted in a 3.8- to 9.7- fold increase in the concentration of risperidone. The 

concentration of the “active moiety” (risperidone + 9-OH-risperidone) was not significantly increased 

by low doses of paroxetine, but a 1.8-fold increase occurred after 40 mg/day paroxetine. However, 

extrapyramidal side effect scores increased significantly also with 20 mg/day paroxetine. 

Modulation of drug metabolism can be enantioselective, as is the case for warfarin, methadone, some 

antidepressants (e.g. venlafaxine, citalopram, mirtazapine) and other substances (198-206). Since in 
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many cases the effect of each enantiomer is distinct, it is important to know which metabolic pathway 

is affected.  

In addition, it should be noted that an inhibitory effect occurs as soon as the inhibitor is introduced and 

disappears – with exception of mechanism based inhibition - as soon as the interacting compound is 

eliminated from the body, which implies that the time course depends on the elimination half-lives of 

the drugs (and metabolites) implicated in the interaction. 

The induction process takes time since more, new enzyme has to be synthesized. As a rule of the 

thumb, one could say the induction effect can generally be expected after one week and the full effect 

might take several weeks. This has to be kept in mind when applying TDM. When an inducer is 

removed from treatment (207), plasma levels of the substrate will increase with about the same lag 

time until a new equilibrium is reached. 

Pharmacodynamic interactions 

Pharmacodynamic interactions are due to the influence of drug A on drug B at the target site of drug 

action (end organ, receptor site). Serious complications such as serotonin syndrome, resulting from a 

combination of several serotonin agonistic drugs (e.g. SSRI plus the analgesic tramadol or the 

anorectic sibutramin) (208-210), or delirium caused by a combination of drugs with anticholinergic 

properties, are examples. Pharmacodynamic interactions are not easily measured in vivo. 

 

Other Interactions 
Individual drug response is also dependent on factors, such as age, gender, organ function (especially 

renal and hepatic), co-morbidity but also lifestyle or environmental factors like diet or smoking. These 

factors certainly affect CYP450 enzyme function but glucuronidation and the expression of drug 

transporters also seem to be sensitive.  

Smoking 

Smoking induces CYP1A2 which means that smokers are likely to have lower plasma levels of 

CYP1A2 substrates than non-smokers. Importantly, the tar particles in the smoke rather than nicotine 

are responsible for this effect. A similar effect is also seen when consuming barbecued meat, for 

instance. Smoking also slightly induces glucuronidation, as seen with codeine (211). Environmental 

and genetic factors can produce either synergistic or antagonistic effects. It appears that there is also a 

genetic polymorphism for inducibility (e.g. by tobacco smoke) of CYP1A2 (66;70). 

Smoking cessation in patients on drugs like clozapine, olanzapine, tacrine or theophylline, which are 

mainly metabolised by CYP1A2, can lead to drug intoxication. Several cases have been described for 
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clozapine and olanzapine, (212-214) with adverse drug reactions including seizures, heavy sedation, 

cardiac problems and delirium. The induction effect of smoking seems to have a mean elimination half 

life of about 39 hours (range 27 - 54h) (207); a new steady state could be expected after about 2 

weeks. De Leon in his study overview (213) suggests a mean dose correction factor of 1.5 for change 

in smoking behaviour. In individual patients, however, smoking cessation may lead to a more marked 

increase in plasma levels. Other authors refer to mean correction factors of up to 5 (71;215). A 

stepwise dose reduction with TDM control is strongly recommended. 

Food 

Recently there has been increased awareness that grapefruit juice can have an important interaction 

with as many as 40 orally taken drugs (216;217). In particular, interaction with certain HMG-CoA 

reductase inhibitors (statins), such as simvastatin, atorvastin and lovastatin, can lead to serious 

complications such as rhabdomyolysis (217;218); with some antihypertensive agents (e.g. felodipine 

or nifedipine) it might result in excessive vasodilatation. For drugs with a narrow therapeutic index 

such as the immunosuppressant cyclosporine or the antimalarial agent halofantrine special attention is 

necessary. In psychiatry, drugs such as midazolam, triazolam, buspirone, carbamazepine or quetiapine 

are affected. The type of interaction consists mostly in an increase in drug plasma levels, seen in either 

the area under the concentration-time curve (AUC) or the maximum plasma concentration (Cmax). The 

main mechanism is the inhibition of the intestinal CYP3A4 pathway, inhibition of P-glycoprotein 

might play a role as well. A review on pharmacokinetic interactions with citrus juices (mainly 

grapefruit) (216) gives more insight in possible mechanisms of action. 

Interactions with other food constituents (caffeine, cabbage, chargrilled food, water cress, and others) 

exist but, with the exception of the combination of clozapine and caffeine (219;220), seem to play a 

less important role. 

Age and gender 

Divergent responses to drug treatment are often observed between the elderly, young and adult 

population. In children, some clinical studies indicate that higher doses (on a weight-adjusted basis) 

are often needed, as compared with adults, to reach therapeutic drug concentrations (221;222). This 

seems to be based on an increased clearance of the drug in younger children. In contrast, in elderly 

patients, impaired renal and sometimes hepatic function often leads to a decrease in drug elimination 

and reduced drug metabolism, respectively, and therefore dose adaptation may be recommended 

(196;197). It is also probable that the therapeutic index of some drugs in some individuals is narrower, 

due to an increased sensitivity to drugs in the elderly (223). 
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Men and women often differ in their response to drug treatment. Gender differences in subjective 

tolerability might account for part of this (224), but biological factors are certainly also important 

(225). An extensive overview of gender-specific factors such as body build, hormonal transitions, diet 

and other environmental or cultural factors was recently presented in relationship to antipsychotic 

therapy (226). The author states that, for a given dose, the mean plasma levels in men tend to be lower 

than in women and concludes that the evidence collected suggests that women need lower doses than 

men. Another review (227) mentions that the adverse drug reaction risk for women is about 1.5-fold 

greater compared to men. Own data from a naturalistic cohort study including 165 psychiatric in-

patients with a severe adverse drug reaction showed that women (n=79) were more likely to have 

unexpectedly high plasma drug levels than men (n=82) (36% versus 22% (228). This gender 

difference has been demonstrated previously and the findings have been reviewed by Pollock et al 

(229). The use of TDM rather than adoption of a standard recommended dose could help optimise 

individual doses of therapeutic agents. 

Pronounced gender differences are, for example, described for clozapine (230;231) and olanzapine 

(232), both of which are mainly metabolised by CYP1A2. Perry et al (230) developed a clozapine 

dosing model comprising the variables dose, smoking and gender. To reach therapeutic plasma levels, 

smoking men may need twice the dose required by non-smoking women (fig. 10).  

Figure 10: Gender-related dose differences for clozapine (adapted from (230)) 
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Gender differences are observed in drug metabolizing enzymes and drug transporter proteins 

(233;234). Men appear to have higher CYP1A2 activity, and maybe also CYP2E1, as well as of some 

UGTs and Pgp, while women may have higher CYP2D6 activity (235). Of course there are other 

physiological differences between women and men: women have generally lower bodyweight and 

organ size, a higher percentage of body fat, lower glomerular filtration rate and different gastric 

motility than men.  

In general, however, gender-based pharmacokinetic differences account for only subtle changes in 

drug response; gender-based pharmacodynamic processes such as QTc prolongation seem to be more 

important (234). 

Co-morbidity 

The effect of renal or hepatic insufficiency on the fate of a drug may be dramatic, but it depends on the 

means of elimination. Not widely known is that plasma levels of CYP1A2 substrates can vary in the 

presence of an inflammatory process and lead to an intoxication with drugs such as clozapine. The 

hypothesis is that cytokines (e.g. interleukin-6) inhibit CYP1A2 activity (236).  Several animal studies 

have shown that different CYP450 enzymes are down-regulated during sepsis (237) or after 

endotoxin-induced inflammation, but the mechanism for this reduction is still under debate.  

 

In this introductory chapter, present knowledge is summarized about the basics of 

pharmacovigilance, TDM and pharmacogenetics, as well as of drug-drug interactions and other 

factors influencing the drug concentration in our patient’s body. 
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4  Multicentre study on the clinical effectiveness, pharmacokinetics and 
pharmacogenetics of mirtazapine in depression 

Summary 
Pharmacogenetic tests and therapeutic drug monitoring may considerably improve the 

pharmacotherapy of depression.  The aim of this study was to evaluate the relationship between the 

efficacy of mirtazapine (MIR) and the steady-state plasma concentrations of its enantiomers and 

metabolites in moderately to severely depressed patients, taking their pharmacogenetic status into 

account.  In- and out-patients with major depressive episode (17-item Hamilton Depression Rating 

Scale (HAMD) total score ≥18 points and Mini-Mental State Examination score ≥24) received MIR 

for 8 weeks (30 mg/day on days 1-14 and 30-45 mg/day on days 15-56).  A total of 45 patients (mean 

age 51 years; range 19-79) were included.  MIR treatment resulted in a highly significant (p < 0.0001, 

Wilcoxon test) improvement in mean HAMD total score at the end of the study. The analysis of the 

enantiomers of MIR and its hydroxylated (OH-MIR) and demethylated (DMIR) metabolites in non-

hydrolysed and hydrolysed plasma samples on days 14 and 56 showed a clear influence of gender and 

age on these parameters. Moreover, non-smokers had higher MIR plasma levels than smokers: S-

MIR: 9.40±3.85 vs. 6.15±5.50 (p = 0.005); R-MIR: 24.4±6.54 vs. 18.5±4.06 (p = 0.003). Only in non-

smokers, plasma levels of S-MIR and metabolites depended on the CYP2D6 genotype. In patients 

presenting the CYP2B6 *6/*6 genotype (n = 8), S-OH-MIR concentrations were higher than in the 

other patients (n = 37), and the reduction of the HAMD scores was significantly more pronounced in 

the CYP2B6 *6/*6 genotyped patients at the end of the study. However, it is not known, if S-OH-MIR 

is associated to the therapeutic effect of mirtazapine. 

 

Introduction 
Pharmacogenetic tests and therapeutic drug monitoring of psychotropic drugs are increasingly 

recommended for the optimization of the pharmacological treatment of depression (41;64;154;238).  

Many antidepressants are chiral drugs in that they possess one or several asymmetric centres which 

give rise to enantiomers differing by their metabolism, pharmacokinetics and pharmacological 

properties. However, the majority of studies on the drug plasma concentration - clinical effectiveness 

relationship of chiral antidepressants were usually carried out using achiral analytical methods, which 

are unsuitable for the assay of the individual enantiomers (199;239).  

Many studies have documented the clinical effectiveness of the chiral antidepressant drug mirtazapine 

(MIR) in the treatment of depression (240), including in elderly patients (241;242).  It has an unusual 

pharmacological profile (table 7) (243), acting as an antagonist at central presynaptic α2-adrenergic 
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inhibitory autoreceptors and heteroreceptors, thereby causing an increase in the release of 

noradrenaline. The subsequent excitation of postsynaptic α1-receptors, which mediate serotonin (5-

HT) cell firing, and the direct blockade of inhibiting α2-heteroreceptors located on 5-HT terminals, 

possibly lead to an increase in the release of 5-HT. The effect of the released 5-HT is exerted mainly 

via 5-HT1 receptors, since 5-HT2 and 5-HT3 receptors are blocked directly by the drug (244-246). The 

extent of the serotonergic effect of MIR is, however, somewhat controversial (243;247;248).  The S(+) 

enantiomer of MIR (S-MIR) is a more potent α2-receptor antagonist than the R(-) enantiomer (R-

MIR), whilst the inverse is true regarding 5-HT3-antagonism (246;249;250).  Contrary to other chiral 

antidepressants, the differential receptor affinity profile of both MIR enantiomers seems to lead to an 

advantage of the racemate over a single enantiomer (199). Probably, the antidepressant effect of MIR 

resides mainly in the S-enantiomer, while the R-enantiomer may prevent some adverse effects such as 

nausea, due to stimulation of 5-HT3-receptors. A small study comparing cerebrospinal fluid (CSF) 

concentration with plasma levels of MIR and its enantiomers in MIR treated patients evinced much 

lower S-MIR than R-MIR CSF concentrations (251). Interestingly, Brockmöller et al (252) found 

enantioselective differences regarding adverse drug effects, with the effect of MIR on the heart rate 

and blood pressure correlating more strongly with the R-enantiomer than with the S-enantiomer.  

Table 7: Pharmacological profile of mirtazapine with some enantioselective differences. In case of the 
α1- antagonistic property it is speculated that the R-enantiomer might be more potent since it is more associated 

with orthostatic hypotension and tachycardia. 

receptor             mirtazapine 
5HT2 Potent antagonist (S-enantiomer >> R) 
5HT3 Potent antagonist (S-enantiomer << R) 
H1 Potent antagonist 
M Moderate antagonist 
α1 Moderate antagonist (S-enantiomer << R?) 
Presynaptic α2 Antagonist (S-enantiomer >> R) 
 

MIR kinetics is linear within the dose range 15 to 80 mg, but shows gender and age effects (253-257). 

Plasma levels in males are, independent of age, reportedly lower than those of females, and the plasma 

half-life is significantly shorter in adults than in the elderly (20 and 40 hours, respectively) (253). 

Renal and hepatic insufficiency can also result in substantially reduced clearance (253).  Several 

isoforms of cytochrome P-450 (CYP) contribute in vitro to the enantioselective biotransformation of 

MIR: CYP1A2, CYP2D6 and CYP3A (258;259). For CYP2C19 no significant contribution has been 

found in vitro, a possible role of CYP2B6 has not been studied. The main metabolites are 8- 

hydroxymirtazapine (8-OH-MIR), N-desmethylmirtazapine (DMIR) and mirtazapine-N-oxide (MIR-

N-oxide).  N-demethylation and N-oxidation are catalysed by CYP3A (253;260). The 8-hydroxylation 
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process (followed by glucuronidation) is under the control of CYP2D6 and, to some extent, CYP1A2 

(more important at higher MIR concentrations) and it is essentially associated with the S-enantiomer.  

For the R-enantiomer, (reversible) N-ammonium glucuronidation is the main metabolic step 

(259;261). A study in healthy volunteers did not suggest differences in the pharmacokinetics of MIR 

between extensive (EM) and poor metabolisers (PM) (CPY2D6) (260).  However, a reanalysis of the 

samples using a stereoselective method showed that the elimination half-life of the R-enantiomer was 

longer than that of the S-enantiomer in EM (22.5 and 13.2 hours, respectively), and that the half-life of 

the S-enantiomer was increased in PM (18.8 hours) (253). A population pharmacokinetic analysis of 

MIR (262) found a distinct difference in clearance between CYP2D6 EM and intermediate 

metabolisers (IM), the clearance being reduced by 26% in IM. No other factor had a significant 

influence on MIR clearance. The similarity between CYP2D6 PM and EM might be related to a 

relatively lower importance of CYP2D6 in favour of CYP1A2 with increasing MIR exposure (262). 

One may then postulate that with low CYP2D6 activity, other pathways become more important. 

Wide inter-individual variability in MIR plasma concentration in relation to dose has been found (255) 

and no drug plasma concentration-clinical effectiveness relationship has been demonstrated. The 

recommended therapeutic doses of 15-45 mg/d result in plasma levels ranging from 5-100 ng/ml 

(253); the recommended target range is 40-80 ng/ml (41). 

The aim of this study was to evaluate the relationship between steady-state plasma concentrations of 

the enantiomers of MIR and its metabolites and the clinical effectiveness of MIR in moderately to 

severely depressed and CYP genotyped patients, including in elderly patients, taking their 

pharmacogenetic status into account. 

 

Materials and Methods 
 

Patients 

This multicenter study recruited in- and out-patients (aged ≥18 years) with a primary diagnosis of 

major depressive episode (DSM-IV), unipolar or bipolar II (296.2, 296.3 or 296.89 according to the 

DSM-IV checklist), in one French (Besançon) and in 6 Swiss (Adult psychiatric and psychogeriatric 

university hospitals, Prilly-Lausanne; Königsfelden; Brig; Herisau; psychogeriatric university hospital 

Chêne-Bourg (Geneva)) psychiatric hospitals. Patients were scheduled according to age: 18-39 y (n = 

20), 40-64 y (n = 30) > 64 y (n = 30).  They were required to have a 17-item Hamilton Depression 

Rating Scale (HAMD) (263) total score of ≥18 points at baseline and a Mini-Mental State 

Examination MMSE (264) score of ≥24 at screening (day -3 to -1). Exclusion criteria included: 
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unacceptable severe cognitive impairment (defined as <24 on the MMSE); duration of current 

depressive episode >12 months; known or suspected active suicidal tendencies; a history of or current 

schizophrenia or organic mental disorders; current primary anxiety disorders (according to DSM IV), 

epilepsy, a history of seizure disorders or prior treatment with anticonvulsant medication for epilepsy 

or seizures; any clinically meaningful non-stable renal, hepatic, cardiovascular, respiratory or 

cerebrovascular disease or other serious progressive physical diseases; participation in other trials in 

the last 30 days; and pregnancy or lactation.  Patients were also excluded if they had received MAO 

inhibitors of any type within 2 weeks of the start of treatment, fluoxetine within 5 weeks, and 

electroconvulsive therapy within 3 months or other psychotropic drugs within 2-3 days. 

After procedures and possible side effects had been explained, all patients gave written informed 

consent prior to entering the study. The study was conducted according to Good Clinical Practices and 

the Declaration of Helsinki. In particular, the protocol was accepted by the corresponding local ethical 

committees. All investigators (one per centre) met twice for an inter rater’s training. 

Treatment 

After a 3-day wash-out period, patients received oral MIR for 8 weeks. MIR was dispensed as 30 mg 

tablets to be taken as a single night-time dose of 30 mg/day on days 1-14 and 30-45 mg/day on days 

15-56. The dose could not be modified between visits, but could be adapted on days 15, 28 and 42. 

Deviations from this dosing schedule, such as dose reductions below 30mg or at other time points, 

were only allowed in case of emergence of intolerable adverse events. Any unessential concomitant 

medication and the use of alcohol were discouraged. Concomitant medication for physical illnesses 

other than those specified by the exclusion criteria was permitted.  In cases where sleeping problems 

persisted or were aggravated during the course of treatment, zopiclone (maximum 7.5 mg/day), 

zolpidem  (maximum 10 mg/day) or chloral hydrate (maximum 2,000 mg/day) were allowed for night-

time sedation. The following co-medications were not permitted: any other psychotropic drug, 

including short- and long-acting benzodiazepines (stable benzodiazepine users were allowed to remain 

on the same dose during the study - a maximum 30% change in dose was allowed); sedative drugs 

(including sedative antihistaminergics and antiemetics); antiepileptic drugs (including carbamazepine 

and valproate); and thyroid hormones. 

For the evaluation of an interaction between MIR and co-medications, the interaction program used 

was: http://www.mediq.ch/ (retrieved March 2010). 

Clinical assessments 

Assessments were performed at screening (day -3 to -1), baseline (day 0) and days 7, 14, 21, 28, 42 

and 56 of treatment or at endpoint. Clinical assessments comprised the 17-item HAMD (Hamilton 

http://www.mediq.ch/�
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Depression Scale) (263) and the clinical global impression (CGI), vital signs, spontaneous adverse 

events, the UKU (Udvalg for Klinske Undersogelser) side effect rating scale (265), and smoking 

behaviour, alcohol and caffeine consumption. An ECG was recorded at screening and on day 56. 

Biological assessments 

Steady state trough plasma concentrations of the enantiomers of MIR, DMIR and 8-OH-MIR, were 

measured on days 14, 28, 42 and 56 using a recent stereoselective LC-MS method (200), after a 3-step 

extraction of the compounds. The limit of quantification (LOQ) for all enantiomers was 0.5ng/ml, and 

the intra- and inter-day coefficients of variation (CVs) were within 3.3% to 11.7% (concentration 

ranges 5-50 ng/ml). All plasma levels are expressed in ng/ml; for conversion in nmol/l: 1 ng/ml is 

equivalent to 3.774 nmol/l. Total (free and glucuroconjugated) concentrations of MIR and metabolites 

were also determined after submitting the plasma samples to enzymatic hydrolysis (hydrolysed 

samples). If not otherwise specified, drug concentrations mentioned in the text are those of non 

hydrolysed samples. As on day 14, all patients were medicated with the same mirtazapine dose 

(30mg/day), absolute plasma concentrations are given. For drug plasma concentrations measured on 

days 28, 42 or 56, dose corrected concentrations (ng/ml/mg dose) are presented or used for statistical 

comparisons. 

At the end of the wash-out period, patients were phenotyped with dextromethorphan (CYP2D6) and 

mephenytoin (CYP2C19) (145).  Dextromethorphan and its metabolite dextrorphan, and S- and R-

mephenytoin were assayed in urine as previously described (145). Patients were also genotyped for 

CYP2D6 (alleles *1, *3, *4, *5, *6,*16 2XN (amplified)), CYP2C19 (alleles *1, *2, *3), CYP2B6 

(alleles *1, *4, *5, *6, *7, *9) and CYP1A2 (allele *1F) as previously described (138). The patients 

were classified according to their CYP2D6 and CYP2C19 genotypes (ref. (138) and cf. Table 1): 

ultrarapid (UM), intermediate (IM), extensive (EM) and poor (PM) metabolisers.  

Standard clinical chemistry (sodium, potassium, calcium, chlorine, inorganic phosphate, fasting 

glucose, total cholesterol, high-density lipoprotein (HDL)- cholesterol, triglycerides, albumin, total 

protein, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, γ-glutamyl 

transpeptidase, urea, creatinine, lactate dehydrogenase, total bilirubin, triiodothyronine (T3), thyroxine 

(T4), thyroid stimulating hormone (TSH)) and haematology (haemoglobin, haematocrit, mean 

corpuscular volume, erythrocytes, leucocytes, platelets) parameters were measured at baseline and at 

the end of the study. 

Statistical analysis 

The dependence of genotypes, sex, age and plasma levels of MIR enantiomers and metabolites were 

analyzed by the Kruskal Wallis test for >2 groups and the Mann Whitney test for two groups. All 
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values were reported as mean ± SD or median (minimum- maximum). A p-value < 0.05 was 

considered to indicate statistical significance.  Confidence interval was 95%. Correlations were 

assessed by Spearman`s test. The same analysis was performed for the dependence of genotypes, 

HAMD total score, and change in HAMD score during the study, and plasma levels of MIR 

enantiomers and metabolites. In this exploratory study no corrections for multiple comparisons were 

made. Efficacy was assessed using the CGI and HAMD scales and the results were analyzed 

descriptively and graphically over time. The two-sample Wilcoxon test for paired data was applied to 

compare the CGI and HAMD scores at the beginning and end of the study.  A responder was defined 

as a patient whose HAMD score fell by >50% compared with baseline at some time during the study. 

The rate of responders was displayed graphically over time both for the study completers and using the 

last observation carried forward (LOCF) method. Side effects measured with the UKU side effect 

scale were analyzed descriptively. Changes in weight and plasma levels of total cholesterol, HDL-

cholesterol, triglycerides, glucose, T3, T4 and TSH over time were analyzed graphically and 

descriptively.  The Wilcoxon test for unpaired data was applied to compare laboratory parameters in 

responders and non-responders. For detection of optimal cut-off values regarding responders/ non-

responders receiver operating characteristic (ROC) curves were applied and the area under the curve 

(AUC) was calculated. For ROC- derived optimal cut-off values sensitivity, specificity, positive (PPV) 

and negative (NPV) predictive value were calculated. Optimal cut-off values are values corresponding 

with the highest accuracy. SPSS 16.0 (SPSS Inc. Chicago, IL) was used to perform the statistical 

analysis.  

 

Results 
 A total of 45 patients (32 females (f)) were included in the study. The mean age was 51 years (range 

19-79) and the age distribution was: 18-39 years n=13 (8 f), 40-64 years n=19 (13 f), and >64 years 

n=13 (11f). All patients were diagnosed with unipolar depression (13 with DSM296.2, 32 with 

DSM296.3). Twenty eight patients were non-smokers (22f), and 17 smokers (10f). One patient had a 

HAMD score of 17 at baseline (20 at screening), but was nevertheless included in the analyses because 

this protocol violation was considered non significant. Thirty one patients (69%) completed the study.  

The rate of study completion increased with age: 18-39 y: 54% (n=7); 40-64 y: 68% (n=13); > 64 y: 

85% (n=11).  Reasons for drop-out were loss to follow up (n=5), withdrawal of consent (n=5), 

protocol violation (n=1), inefficacy (n=1) and combined inefficacy/intolerability (n=2).  A 37 year-old 

male patient was unable to tolerate the higher dose of 45 mg/d because of restless legs, sweating and 

agitation; he was switched back to the 30 mg dose, which proved ineffective, and then withdrawn from 

the study. Then 0.5 mg/d alprazolam and 5 mg/d olanzapine were added to his treatment with MIR. 
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Seven days later, during a family fight, he committed suicide by shooting himself. The investigators 

attribute causality for this suicide to the underlying disease that did not respond to treatment. 

Co-medications 

Anxiolytics/hypnotics were the most frequent co-medications: 58 times a drug of this class has been 

mentioned as co-medication, sometimes for the whole study period, sometimes for some days only; 

most frequently zolpidem, zopiclone and chloralhydrate for nighttimes’ sedation, and lorazepam as 

anxiolytic stable co-medication. None of these drugs interferes pharmacokinetically with MIR. 

Cardiovascular drugs were co-prescribed 25 times.  Twelve times an analgesic has been given, 3 times 

rofecoxib.  In 2 patients rofecoxib was present on day 14. These patients showed higher plasma levels 

of S-MIR (median 17.4 ng/ml (15.9-18.9) versus 7.1 ng/ml (0.6-18.9), p = 0.029) and a higher ratio 

SMIR/SDMIR than the rest (median 9.9 (9.6-10.2) versus 2.6 (0.6-6.8), p = 0.018). Other medications 

included mainly vitamins, minerals, contraceptives, and drugs acting on the gastrointestinal tract. 

None of them were identified interacting with MIR metabolism.  

Efficacy 

All patients started their MIR treatment with 30mg/d for a minimum of 14 days. Thereafter the dose 

was either 30mg or 45mg daily; mean dose on day 56 was 38mg/d. The treatment resulted in a 

significant (p < 0.0001, Wilcoxon test) improvement in mean ± SD HAMD total score from 24.8 ± 4.9 

at baseline to 9.8 ± 7.9 at the end of this open, not placebo controlled study (LOCF analysis). The 

response rate as assessed by the HAMD scale increased from 22.7% (confidence interval: 0.355, 

0.099) at week 1 to 80.7% (confidence interval: 0.951, 0.662) at week 8, when 23 out of 31 patients 

were considered as responders. This clinical improvement was reflected by the CGI severity scale that 

showed a clear shift from mainly moderately to extremely ill patients at baseline to mainly not ill or 

borderline ill patients by the end of the study. Some patients showed a rapid improvement from week 

1 onwards. 

Drop-outs 

14 patients dropped out during the study. Reasons and moments of drop out are found in table 8, 
further characteristics in table 9. 

Table 8: Reason and moment of study drop out 

Number of patients per reason of drop out Last visit Remark 

1 protocol violation Base line for clinical values, day 14  
3 inefficacy/intolerability 1 day 14, 2 day 28  
5 withdrawal of informed consent 2 day 7, 2 day 14, 1 day 21 2 (day 7) without laboratory 
5 loss of follow up 1 day 7, 1 day 14, 2 day 28, 1 day 42  
14 Total (7 responder, 7 non responder)   
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Table 9: Characteristics of study completers and dropouts.  

 Completers (n= 31) Dropouts (n=14) 

Mean age (years) 52.8 45.7 

Sex 23f, 8m: f:m=2.9 9f, 5m: f:m=1.8 

CYP1A2 4 *1/*1 =13% 

7*1F/*1F 23% 

3  *1/*1 =21% 

6 *1F/*1F = 42% 

CYP2B6 6 *6/*6 = 19% 2 *6/*6 = 14% 

CYP2D6 1 PM = 3% 

2UM = 6% 

2 PM = 14%  

1 UM = 7% 

 

Tolerability and safety 

No serious adverse drug reactions were reported during the study. The doctor’s and patient’s global 

assessments of side effects according to the UKU side effect rating scale were strikingly similar at all 

assessment points.  Baseline and reported treatment emergent complaints were partly identical but at 

baseline more patients reported complaints than during the study period (fig. 11); > 50% suffered from 

asthenia/lassitude, concentration difficulties, tension/inner unrest, reduced sleep, sexual disturbances, 

failing memory, emotional indifference, all symptoms of a depressive illness. During the study the 

following adverse events, rated as possible or probable, were mentioned in >10% of the patients (by 

their decreasing frequency (LOCF)): asthenia/lassitude, weight gain, concentration difficulties, 

increased dream activity, headache, failing memory, increased sweating and decreased salivation. Side 

effects were mostly mild to moderate. Sedation and increased duration of sleep were more often 

reported at the start of treatment. Restless legs were spontaneously reported by 11% of the patients 

outside the UKU scale. When comparing side effects with baseline complaints weight gain was clearly 

associated to the treatment with MIR. 

There was a weight gain during the study of 2.7 ± 2.9 kg (p<0.001; ANOVA Chi2 test) (range -1.1 kg 

to 11.0 kg), with weight gains > 4 kg in 15.6%, and > 2 kg in 29% of the patients.  The patient with a 

weight gain of 11 kg experienced deterioration of pre-existing dyslipidemia, dry mouth and restless 

legs, which were not associated with unusual plasma levels of MIR.  There were four patients (9%) 

who had a weight gain of >10% during the study (a weight gain of >10%, according the AMSP criteria 

(16;266) (Arzneimittelsicherheit in der Psychiatrie (Drug Safety in Psychiatry)), is considered to be 

medically significant).  There were no clinically significant overall changes in any laboratory 

parameters during the study.  
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Figure 11: Baseline and reported treatment emergent complaints as rated by the UKU scale 

 

 

Cytochrome P-450 genotypes (Table 10) and phenotypes 

None of the 45 genotyped patients presented a genetic deficiency of CYP2C19 (PM), but 9 and 36 

subjects were classified as CYP2C19 IM (CYP2C19 *1/*2) or EM, respectively. The mephenytoin test 

demonstrated that all patients were EM or IM (as the mephenytoin test does not allow discriminating 

EM from IM). CYP2D6 genotyping showed that 3 patients (6.7%) were PM, 3 patients were ultrarapid 

metabolisers (UM), 14 patients (31%) were IM, and 25 subjects were classified as EM. The phenotype 

predicted by the genotype was not congruent in all cases with the observed phenotype characterized by 

the dextromethorphan test.  Four patients (2 IM and 2 EM by genotype) were identified as PM by 

phenotyping with dextromethorphan.  Thirteen patients (29%) were homozygote for the CYP1A2 

allele *1F. In this study group, 14 subjects (31%) had the *1/*1 wild type CYP2B6 genotype and 8 

(18%) the *6/*6 genotype (Table 10). 
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Table 10. Cytochrome P-450 genotypes and the predicted phenotypes of the patients treated with 
mirtazapine (MIR) 
          

Genotype  n Frequency (%) Predicted phenotype 
          

CYP1A2 CYP1A2*1F   
 *1/*1 7 15.6% 
 *1/*1F 25 55.6% 
 *1F/*1F 13 28.9% 
    
CYP2B6 alleles *4/*5/*6/*7/*9   

 *1/*1 14 31.1% 
 *1/*4 1 2.2% 
 *1/*5 4 8.9% 
 *1/*6 12 26.7% 
 *1/*7 4 8.9% 
 *4/*6 1 2.2% 
 *5/*5 1 2.2% 
 *6/*6 8 17.8% 
    
    
CYP2C19 alleles *2/*3   
 *1/*1 36 80.0% EM 
 *1/*2 9 20.0% IM 
    
CYP2D6 alleles 

*3/*4/*5/*6/*16/*XN 
  

 *1/*1 24 53.3% EM 
 *1/*4 10 22.2% IM 
 *1/*5 4 8.9% IM 
 *1/*xN 3 6.7% UM 
 *3/*4 1 2.2% PM 
 *4/*6 1 2.2% PM 
 *4/*xN 1 2.2% EM 
 *5/*16 1 2.2% PM 
          

Classification of the patients according to their genotypes and predicted phenotypes (35): 
UM: ultrarapid metabolisers; IM: intermediate metabolisers; EM: extensive metabolisers; 
PM: poor metabolisers 

 

 
 
Pharmacokinetics 
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Only the pharmacokinetic data of day 14 will be presented here extensively, as all 45 patients were 

treated with the same daily dose of MIR (30 mg/day): Median (range) MIR plasma concentration 

reached 30.4 ng/ml (13.2-53.4) and in hydrolysed samples, this value increased drastically to 70.1 

ng/ml (21.2-117.7). Complete data for plasma levels and geno- and phenotypes were available for 40 

patients. 

There were important stereoselective differences in the pharmacokinetics of MIR (Table 11). R-MIR 

and R-DMIR concentrations were about 2.8 and 6.5 times higher than their corresponding S-

enantiomers, but this stereoselectivity almost disappeared when the enantiomers of OH-MIR were 

compared (when not otherwise specified, non-hydrolysed samples are meant). The situation was 

similar when hydrolysed samples were compared, except for the metabolite OH-MIR: the mean 

concentration of S-OH-MIR was almost 5 times higher than that of R-OH-MIR. While hydrolysis of 

the samples increased drastically the concentrations of the enantiomers of MIR and OH-MIR, this 

treatment had apparently only a small but nevertheless significant effect on R-DMIR (p = 0.026) but 

not S-DMIR (ns) plasma concentrations. 

Table 11: Median (ranges) plasma concentrations (ng/ml) of the enantiomers of mirtazapine (MIR), 

desmethylmirtazapine (DMIR) and 8-hydroxymirtazapine (OH-MIR) on day 14 in CYP2D6 genotyped 

patients 

 

Plasma levels of MIR and metabolites were higher in non-smokers (n = 28) than in smokers (n = 17). 

Most comparisons reached statistical significance (median plasma levels (min-max), not dose 

corrected): S-MIR: 9.4 ng/ml (1.8-16.2) vs. 4.3 ng/ml (0.6-18.9) (p = 0.014); R-MIR: 24.1 ng/ml 

(11.5-37.2)  vs. 18.6 ng/ml (12.2-27.8)  (p = 0.007); S-DMIR 3.5 ng/ml (1.1-7.9) vs. 2.0 ng/ml  (1.0-

4.9)  (p = 0.006); but R-DMIR 19.0 ng/ml (7.3-41.7) vs. 16.5 ng/ml (7.4-25.7) (p = 0.053; ns). The 



51 

   

ratio S-/R-MIR was higher in non smokers with 0.41(0.15-1.06) vs. 0.25(0.04-1.01) in smokers 

(p=0.025 Mann-Whitney). Such significant differences were not observed in hydrolysed samples (not 

shown).  

Significant positive correlations were observed between age and plasma concentrations of MIR 

enantiomers and metabolites, in the samples submitted to hydrolysis: (S-MIR: r = 0.377 (p = 0.018); 

R-MIR: r = 0.576 (p = 0.0001); S-DMIR: r = 0.618 (p = 0.001); R-DMIR: r = 0.503 (p = 0.001); R-

OH-MIR: r = 0.331 (p = 0.04)). Similar significant correlations were obtained at weeks 4, 6 and 8 (not 

shown). Inconsistent results were obtained by the statistical analysis of non-hydrolysed samples as at 

week 2, significant correlations were only observed for R-MIR: r = 0.398 (p = 0.01) and R-DMIR: r = 

0.328 (p = 0.04), and only for R-MIR, significant correlations were also observed on weeks 4 and 8. 

Age and smoking status were not significantly correlated (r = -0.205, p = 0.177), and therefore the 

effect of smoking was not confounded by age.  

The study of the relationship between gender and MIR kinetics (table 12) showed that female had 

significantly higher median R-MIR, R-DMIR and S-MIR plasma levels than male patients, both in 

samples without and with hydrolysis.  

Table 12: Significant differences in plasma concentrations of MIR enantiomers and metabolites 

between female and male patients.  

 non- hydrolysed  hydrolysed  
gender R- MIR R- DMIR S- MIR R- MIR R- DMIR S- MIR 
female 23.46±6.87  20.23±7.25  9.47±4.91 57.36±16.75  23.29±21.17  16.47±9.00  
male 19.31±3.39 15.00±4.88  5.79±3.89  43.21±18.81 13.97±10.58  10.34±6.42  

p 0.029 0.015 0.029 0.022 0.024 0.035 

 

Pharmacokinetics – pharmacogenetics relationships 

Relationships between the pharmacogenetic status of the patients regarding CYP2C19 polymorphisms 

and plasma concentrations of MIR and its metabolites as measured on day 14 (but also at weeks 4, 6, 

and 8) were calculated. There was apparently no evidence for a direct effect of the CYP2C19 

pharmacogenetic status of the patients on MIR kinetics (not shown).  

A statistically significant influence of the CYP2D6 genotype (PM, IM, EM, UM) on plasma levels of 

MIR enantiomers or metabolites was only observed for S-DMIR plasma concentrations at almost all 

data points (p= 0.09, 0.014, 0.02, 0.006 respectively) after 2, 4, 6, and 8 weeks (data not shown).  

Ratios between the concentrations of the parent compound and the metabolite, as well as between the 

enantiomers, which could be formed by a particular enzyme, were calculated in order to examine 
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pharmacogenetic relationships (table 13): In the whole patient population, the ratios S-MIR/S-OH-

MIR (p = 0.014) and S-MIR/R-MIR (p = 0.043) in the hydrolyzed samples showed a statistically 

significant CYP2D6 dependence, S-DMIR/R-DMIR showed a trend (Kruskal Wallis test, data not 

shown). Analyzing smokers and non-smokers separately, these effect could only be confirmed in non-

smokers (S-MIR/S-OH-MIR (p = 0.023); S-MIR/R-MIR (p = 0.015)) (Table 14a and b).   

Table 13: Median (ranges) ratios of the enantiomers of MIR, DMIR and OH-MIR on day 14 in plasma 

of CYP2D6 genotyped patients treated with mirtazapine 30mg/d. 

 

 

Table 14a: Median (ranges) concentrations and ratios of the enantiomers of MIR, DMIR and OH-MIR 
on day 14 in non-hydrolysed plasma samples of CYP2D6 genotyped patients treated with mirtazapine 
30mg/d: smokers vs. non- smokers. 
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Table 14b: Median (ranges) concentrations and ratios of the enantiomers of MIR, DMIR and OH-MIR 

in hydrolysed plasma samples of CYP2D6 genotyped patients treated with mirtazapine 30mg/d: 

smokers vs. non-smokers  

 

For CYP1A2*F we found some significant influence on day 14 for D-MIR (p = 0.039), in smokers for 

the ratio S-DMIR/R-DMIR (p = 0.039), and in non-smokers for the ratio R-MIR/R-DMIR (p = 0.047). 

For the distribution of CYP1A2*1F genotypes cf. table 15.  

 

 Table 15: CYP1A2*1F genotypes in smokers and non smokers 

  CYP1A2       
  *1/*1 *1/*1F *1F/*1F total 
smoker 1 11 5 17
non smoker 6 14 6 31

 

One patient treated throughout the study with 30 mg/day MIR had consistently high plasma levels of 

enantiomers of MIR and its metabolites. Her racemic MIR plasma levels rose steadily from 41ng/ml 

after 2 weeks to 91ng/ml after 8 weeks. Her dose-corrected plasma MIR levels rose steadily from <1.5 

ng x day /ml x mg after 2 weeks of treatment to 3.0 ng x day /ml x mg after 8 weeks.  In contrast, the 

remaining patients had dose-corrected levels of <1.5 ng x day /ml x mg at almost all time points for 

the entire duration of the study.  She weighed 48 kg, was 157 cm tall and smoked around 20 cigarettes 

per day.  She was an ex-alcohol abuser and had high levels of liver enzymes (γ-GT consistently >100 

U/L).  As well as receiving MIR, at a dose of 30 mg/day, she was also taking concomitant vitamin B, 

calcium, acamprosate and propranolol.  The fact that propranolol is a moderate inhibitor of CYP2D6 
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(267) may have contributed to the higher than expected MIR plasma levels.  Her genotype for 

CYP2D6 was determined as IM *1/*5 (*5 a deficient allele); however her observed phenotype as 

characterized by the dextromethorphan test was not a PM which is against the hypothesis above. Her 

other genotypes were: CYP1A2 *1/*1F, CYP2B6 *6/*6, CYP2C19 *1/*1. 

Patients with the genotype CYP2B6 *6/*6 (n=8) compared with those presenting another CYP2B6 

genotype (n = 37) had similar plasma concentrations of R-MIR: 24.0 ng/ml (16.2 -37.2) (median, 

range) vs. 22.0 ng/ml (11.5-36.4) and S-MIR: 7.2 ng/ml (2.6-18.9) vs. 7.2 ng/ml (0.6-18.9), but 

somewhat higher levels of R-DMIR: 21.9 ng/ml (8.8-25.3) vs. 16.7 ng/ml (7.3-41.7); S-DMIR: 3.2 

ng/ml (1.3-4.4) vs. 2.6 ng/ml (1.0-7.9); R-OH-MIR: 5.8 ng/ml (5.8) vs. 1.0 ng/ml (0.5-1.2); they were 

significantly higher only for S-OH-MIR (1.7 ng/ml (1.2-3.5) vs. 0.9 ng/ml (0.6-1.6) (p = 0.01)). In 

patients displaying the CYP2B6 *6/*6 genotype, the sum of the two enantiomers of MIR (and that of 

its metabolites) were also somewhat higher but without reaching statistical significance (results not 

shown). 

Pharmacokinetics, pharmacogenetics, clinical outcome 

On day 56, at the end of the 8-week study period, the mean dose of mirtazapine was 38.5 ± 7.6 and 

37.5 ± 8.0 mg/day in responders (n = 23) and non responders (n = 8) respectively. The plasma (not 

dose corrected) concentrations (median (min-max)) of MIR and its metabolites were: R-MIR: 25.2 

ng/ml (15.0-65.2) and 25.1 ng/ml (8.5-40.3), S-MIR: 9.7 ng/ml (0.8-49.1) and 5.8 ng/ml (0.5-14.2), R-

MIR + S-MIR: 34.9 ng/ml (17.4- 108.2) and 31.6 ng/ml (9.0-54.5). There was no evidence for a 

significant plasma concentration – clinical effectiveness or tolerability relationship regarding any 

pharmacokinetic parameter. Although plasma concentrations of the enantiomers of MIR and MIR 

metabolites did not differ between responders and non-responders, a ROC-analysis of our data 

indicates that patients with a plasma concentration of S-MIR ≥ 5 ng/ml will be responders with a 

probability of 77% (sensitivity 91%, specificity 50%). Also in the Chi square test this difference is 

statistically significant (table 16). 

 

Table  16: Study completers divided in responders and non responders and S-MIR plasma 

concentration. Chi square is 4.64(p= 0.031) 

S‐MIR   Responders  Non responders All
> 4.96ng/ml  20  4  24 
< 4.96ng/ml   3  4  7 
Total  23  8  31 
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With the exception of CYP2B6 there were no significant relationships between CYP genotypes, 

HAMD total scores or change in HAMD total scores. Patients with the CYP2B6 *6/*6 genotype had a 

higher reduction in HAMD scores (p = 0.016, Mann-Whitney test) than the patients presenting another 

CYP2B6 genotype (Table 17).  

 

Table 17: Association between CYP2D6 genotype and HAMD scores at baseline/study end 

 

 

Discussion 

Clinical outcome 

Although this was not a blind, placebo controlled study design, the results confirm the clinical 

response of MIR in patients (19-79 years old, 13 being >64 years old) suffering from an episode of 

major depression, resulting in a significant improvement in HAMD and CGI severity score (240;268). 

In this 8-week study, there was a mean decrease of 15 points on the HAMD scale, in comparison to a 

mean 11.5 points decrease found in a meta-analysis of 5 randomized, double-blind trials with 5 – 60 

mg/d MIR administered during 5 – 6 weeks (240). In another analysis of MIR studies in patients with 

moderate to severe depression, response rate varied from 51 to 80 % after a 4 – 7-week treatment 

(240) – the response rate was 81% in the present study.  The tolerability and safety profile was also as 

expected, with sedative effects and body weight increase being the most common adverse events.  One 

patient committed suicide some days after being withdrawn from the study because of lack of 

therapeutic effect. Although in some cases a causal relation to antidepressant treatment has been 

suggested, this was not the case with this patient, and furthermore a recent analysis of 15 pooled 

studies with mirtazapine showed no increased but a lowered risk (269).     
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Cytochrome P-450 genotypes/phenotypes 

The patients were phenotyped and/or genotyped for some (CYP2D6, CYP1A2) but not for all 

(CYP3A) enzymes known to be implicated in the metabolism of MIR (258;260). In particular, it was 

found that the percentage of patients (29%) homozygote for the CYP1A2 allele *1F was lower than 

expected from the incidence of around 50% seen in the general population (70), but that could be a 

chance finding due to the low number of our study population.  Homozygote subjects for this allele 

might show higher inducibility of CYP1A2 (70). The allele frequency for CYP2C19*2 was low in our 

population with no PM, neither by genotype nor by phenotype (64;140;270). This makes it difficult to 

identify a possible effect of this enzyme but anyway, available literature on this subject does not 

suggest a relevant role of CYP2C19 in the metabolism of MIR (258;259). Regarding CYP2D6, no co-

medication was identified that could sufficiently explain the difference between the predicted and 

observed phenotypes. It is known that the UM phenotype cannot be identified by the 

dextromethorphan test, and genotyping reveals only about 30% of UM (271;272). For statistical 

comparisons with clinical and pharmacokinetic parameters, only genotyping data were used. On the 

other hand, for the first time, a possible contribution of CYP2B6 in the biotransformation of MIR has 

been examined in this study, where 15% of the 45 patients presented the genotype CYP2B6 *6/*6 

(CYP2B6 G to T polymorphism at position 516). 

MIR pharmacokinetics 

The concentrations of the enantiomers of MIR and its metabolites (Tables 11-14) can only to a limited 

extent be compared with data from the literature. All previous measurements of the enantiomers of 

MIR and its metabolites in steady-state conditions were performed by the same laboratory, using the 

same method ((200;251;257), as in this study. In all these investigations, R-MIR concentrations were 

generally higher than those of S-MIR, both in hydrolysed and non-hydrolysed samples (including in 

those from CYP2D6 PM), except in those from patients co-medicated with CYP2D6 inhibitors such as 

fluoxetine (200). However, it seems probable, that the antidepressant effect of MIR is mainly exerted 

by S-MIR, due to its preferential affinity for α2-receptors (243;246;250).  

This study also confirms that R- and S-MIR, R- and S-OH-MIR are largely conjugated (200;251), but 

as these conjugated products were apparently never synthesised as pure compounds, no data are 

available on their pharmacological profile and therefore, on their possible clinical contribution.  

Mainly after hydrolysis, significant positive correlations were observed between almost all drug or 

metabolite levels and age and as well non-conjugated as total drug or metabolite concentrations were 

significantly higher in females than in males. The data suggest that these age and gender effects may 

probably be more pronounced with regard to the pharmacokinetics of the R-enantiomer. In the already 

mentioned study which reported only non-conjugated levels of MIR and DMIR (257), the 
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concentrations of the enantiomers of MIR and DMIR were also found to be higher in elderly (> 65 y) 

than in younger patients, but on the other hand, these levels only tended to be higher in females than in 

males. Finally, in the therapeutic drug monitoring study (with the same patients as reported in (257)), 

where only achiral methods were used, both higher age and female gender were related with higher 

levels of dose corrected MIR and DMIR (256). In summary, after taking into account also some single 

dose studies (273), higher plasma concentrations of MIR and its metabolites are rather expected in 

elderly patients and in female subjects, but the mechanism is not clear (metabolism by cytochrome P-

450 isozymes or conjugating enzymes, liver blood flow, renal elimination) (253). 

Smokers had significantly lower plasma concentrations of S-MIR (p = 0.014), R-MIR (p = 0.007) and 

S-DMIR (p = 0.006) than non-smokers, their ratio S-/R-MIR was lower as well (p=0.025). These 

findings, to some extent, are in line with previous publications (257). Using an achiral method, dose 

corrected MIR and DMIR concentrations were found to be lower in smokers than in non-smokers in 

the 6-month therapeutic drug monitoring study (256). A reanalysis of the samples of this investigation 

(256) by a stereoselective method (200) revealed that S-MIR (p = 0.026) and R-DMIR (p = 0.036), as 

well as the ratio S-/R-MIR were lower in smokers than in non-smoking patients (257).  This suggests 

that CYP1A2, which is induced by smoke (274), contributes to the biotransformation of MIR. 

However, as already discussed earlier (256;257), in vitro studies with recombinant enzymes suggest 

that CYP1A2 may dose-dependently be involved in N-demethylation, hydroxylation and N-oxidation 

of MIR (258). In another in vitro study, limited methodologically by the fact that only the decrease of 

substrate but not the formation of a metabolite was measured, CYP1A2 preferentially but only 

marginally (in comparison to CYP2D6) metabolised S-MIR (S-(+)-MIR), while it was found to be 

inactive towards R-(-)-MIR (259). 

Only few of co-medicated drugs can be considered as potentially interfering with the metabolism of 

MIR: The 2 β -blocking drugs metoprolol (275) and propranol (267) have some inhibitory potential on 

CYP2D6, and rofecoxib inhibits CYP1A2 activity (276;277). In 2 patients co-medicated with this 

analgesic drug, which in the meanwhile is not any more available on the market, S-MIR 

concentrations were higher than in the other patients (p = 0.026). Actually, in a patient treated with 

MIR (200), co-medication with several psychotropic and somatic drugs including omeprazole (a 

CYP1A2 inducer and CYP2C19 inhibitor) and rofecoxib, a ratio S/R-MIR = 9.4 could be observed in 

plasma, which seems to be the highest ratio ever reported.  

Pharmacokinetic-pharmacogenetic relationships 

While these comparisons between the smoking status of the patients and drug plasma concentrations 

show the influence of environmental factors on the stereoselective biotransformation of MIR, genetic 

factors also play an important role, which may be partly masked in smokers. Indeed, considering the 
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non-hydrolysed samples only, there is some evidence of a control of the metabolism of S-MIR (p = 

0.031) and S-DMIR (p = 0.025) by CYP2D6 (Table 14a) only in non-smokers. Probably due to the 

low number of CYP2D6 PM, the ratio S-MIR/S-OH-MIR only shows a tendency to vary with the 

pharmacogenetic status of the patients (p = 0.093). These relationships appear more clearly when total 

(conjugated and non-conjugated) concentrations of S-MIR (p = 0.003), S-DMIR (p = 0.008) and S-

MIR/S-OH-MIR (p = 0.023) are considered (Table 14b). In addition, CYP2D6 also contributes to 

some extent to the metabolism of R-MIR (p = 0.04). Again, CYP2D6 effects were stronger in non-

smokers. These observations confirm those obtained earlier in 95 patients, which showed a 

relationship between the CYP2D6 genotype and S-MIR concentrations and with the S/R-ratio (257). 

The MIR plasma concentrations from the 3 UM (CYP2D6) did not significantly differ from the EM 

(CYP2D6). It might be assumed that UM undergo a risk of therapeutic failure due to low tissue 

concentrations as CYP2D6 accounts for about a third to half of their total MIR biotransformation 

(278).  However, of the 3 UM in this study, two responded well and the third withdrew prematurely.  

Similarly, in a previous study conducted in healthy volunteers, the impact of this genotype on MIR 

pharmacokinetics was less than expected (278). Definite conclusions cannot be drawn due to the low 

number of subjects, but S-MIR in the only smoking UM was considerably lower than in the 2 UM 

non-smokers, both in hydrolysed and non-hydrolysed plasma samples (Tables 14 a and b). This 

supports again the hypothesis that CYP1A2 activity, mainly in smokers, masks that of CYP2D6. 

CYP1A2*1F has been associated with increased CYP1A2 activity in smokers, possibly because of 

increased inducibility (69;70). The CYP1A2*F polymorphism believed to enhance the inducibility of 

CYP1A2 did show some significant influence on enantiomeric MIR and metabolites plasma 

concentrations. However, these findings are difficult to interpret, since also non-smokers seemed to 

show some CYP1A2*F genotype dependency; but also for clozapine, mainly metabolised by CYP1A2, 

findings were contradictory (71;182;279).  

The finding that the plasma concentrations of S-OH-MIR are significantly higher (p = 0.01) in patients 

presenting the genotype CYP2B6 *6/*6 (CYP2B6 G to T polymorphism at position 516) than in the 

other patients is highly interesting, however also difficult to interpret. It is to note that the 

concentrations of the other metabolites were also higher in the CYP2B6 *6/*6 patients, but these 

differences did not reach statistical significance, possibly due to the low number of tested subjects. 

Nevertheless, this suggests the hypothesis that in CYP2B6 *6/*6 patients, metabolism of S- and 

possibly also of R-MIR is enhanced, but the question remains open whether both hydroxylation and N-

demethylation are concerned. Only a few other psychotropic drugs were as yet shown to be substrates 

of CYP2B6, including bupropion (93), sertraline (280;281) and methadone (with a stereoselectivity in 

favour of S-methadone) (138).  Most often, the presence of the CYP2B6 *6/*6 genotype is 
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synonymous with decreased enzymatic activity as a consequence of a decreased enzyme protein 

expression, but with some substrates, increased metabolism has also been observed (282). 

MIR pharmacokinetics and pharmacogenetics relationship with clinical outcome 

Steady-state plasma concentrations of the enantiomers of MIR and its metabolites were dependent on 

age, gender, smoking, and they were related with the pharmacogenetic status of the patients regarding 

CYP2D6 and probably also CYP2B6 genotypes, but not regarding  CYP2C19 or CYP1A2*F 

genotypes. However, there was no significant relationship between plasma concentrations of MIR or 

its metabolites, or the pharmacogenetic status of the patients and clinical outcome, except that patients 

presenting the CYP2B*6/*6 genotype had a better clinical response than the other patients (Table 17). 

The question arises if S-OH-MIR contributes to the therapeutic effect of MIR. No similar studies were 

previously published, but a clinical study with depressive patients treated with MIR for a varying 

period suggests that MIR plasma concentrations < 30 ng/ml represent a risk for decreased 

response(283). Unfortunately, no enantioselective methods were used to allow comparison with the 

present study, where concentrations of S-MIR > 5 ng/ml were synonymous with a higher response 

rate. Although recommended doses of MIR were given in this study, mean or median plasma 

concentrations hardly met the recommended target of 40-70ng/ml (41).  

In summary, several forms of cytochrome P-450 are involved stereoselectively in the metabolism of 

MIR: CYP2D6, CYP3A, CYP1A2 and, as shown in this study, possibly also CYP2B6. Dose 

dependently, the contribution of the various enzymes varies, but also in relationship with the 

pharmacogenetic status of the patient (CYP2D6, CYP2B6), his phenotype with respect to CYP1A2 

(e.g. induction by smoking) and probably also to CYP3A; gender and age affect also MIR plasma 

concentrations.  Hedlund et al. (284) formulated the question: "2B or not 2B" with regard to its 

possible presence in the brain. This question is also justified considering the preliminary findings in 

this study about the metabolism of MIR by CYP2B6. In order to clarify this very complex situation, in 

vitro studies would be helpful as those carried out for sertraline (280) and clozapine (181), which 

allowed presenting the relative activity of each CYP isoform in function of the drug dose. In figure 12 

a hypothesis is presented, how these different CYP450 enzymes could be involved in the metabolism 

of mirtazapine. Studies with larger groups of patients are needed in order to ascertain the role of 

CYP2B6 in the metabolism of MIR and its implication in the clinical response of the patients to this 

antidepressant. Indeed, the relatively small study size must be borne in mind and it is possible that a 

larger sample size may reveal more significant correlations. Moreover, neither CYP3A genotypes nor 

phenotypes have been examined and, in addition to rofecoxib and some β-blockers, other co-

medications may also have influenced MIR pharmacokinetics.  
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Figure 12: Possible metabolic pathways of mirtazapine 
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5 Pharmacogenetic study of clozapine 1 

Summary 
In order to examine the genetic factors influencing clozapine kinetics in vivo, 75 patients treated with 

clozapine were genotyped for CYPs and ABCB1 polymorphisms, and phenotyped for CYP1A2 and 

CYP3A activity. CYP1A2 activity and dose corrected trough steady-state plasma concentrations of 

clozapine correlated significantly (r=0.61; p=1x10-6), with no influence of the CYP1A2*1F genotype 

(p=0.38). CYP2C19 poor metabolisers (*2/*2 genotype) had 2.3-fold higher (p=0.036) clozapine 

concentrations than the extensive metabolisers (non *2/*2). In patients co-medicated with 

fluvoxamine, a strong CYP1A2 inhibitor, clozapine and norclozapine concentrations correlated with 

CYP3A activity (r=0.44, p=0.075; r=0.63, p=0.007, respectively). Carriers of the ABCB1 3435TT 

genotype had 1.6 fold higher clozapine plasma concentrations than non-carriers (p=0.046). In 

conclusion, this study showed for the first time a significant role of CYP2C19 and the Pgp transporter 

in the in vivo pharmacokinetics of clozapine. CYP1A2 is the main CYP isoform involved in clozapine 

metabolism, with CYP2C19 contributing moderately, and CYP3A4 contributing only in patients with 

reduced CYP1A2 activity. In addition, ABCB1, but not CYP2B6, CYP2C9, CYP2D6, CYP3A5 nor 

CYP3A7 polymorphisms, influence clozapine pharmacokinetics. 

Introduction 
The first atypical antipsychotic drug clozapine is still considered superior in its efficacy to that of other 

antipsychotics (285), but because of its side effect profile (with amongst other the risk of severe 

haematological problems) it is mainly used in difficult to treat patients who failed to respond to other 

medication. However, about 30% of the patients do not respond adequately (286), one of the reasons 

could be too low plasma levels in spite of normal dosing. The well defined therapeutic window of 

clozapine of 350 – 600 ng/ml has been found in several studies (287;288); high plasma concentrations 

(>1000 ng/ml) are associated with a higher risk for serious adverse reactions such as generalised 

seizures, delirium, confusion (289). 

The therapeutic effect of the drug clozapine is mainly attributed to the parent compound but the main 

active metabolite N-desmethyl clozapine (norclozapine) might have antipsychotic properties as well 

and beneficial effects on cognition (290;291) attributed to the M1 partial agonistic activity.  In some 

studies a higher metabolic ratio of norclozapine/clozapine showed to be associated to a higher 

response rate (292;293). Norclozapine is, as the antipsychotic aripiprazole, a partial agonist for D2 and 

D3 receptors (294) which could explain the low incidence of EPS and maybe also positive effect on 

                                                            

1 This study contributed also to the medical thesis of Branka Knezevic 2009 
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the negative symptoms of schizophrenia. Clozapine N-oxide seems not to have a significant clinically 

relevant activity (291;293;295;296). A comparison of the pharmacological profile of clozapine and 

norclozapine shows many similarities but also some striking differences (table 18). 

Table 18: Pharmacological profiles of clozapine and norclozapine (291;293;297;298) 

receptor clozapine norclozapine
D2 inverse agonist/antagonist middle potent partial agonist 
D3 inverse agonist/antagonist middle potent partial agonist 
D4 antagonist antagonist 

5HT1a weak partial agonist weak partial agonist 
5HT2a inverse agonist, high affinity inverse agonist, high affinity 
5HT2c inverse agonist inverse agonist, high affinity, higher potency 
5HT6 middle potency inverse agonist,  middle potency inverse agonist, high affinity 
5HT7 middle potency inverse agonist, high middle potency inverse agonist, high affinity 

H1 high potency inverse agonist inverse agonist, but << than clozapine 
H3 antagonist, middle affinity antagonist, low affinity 

M1 antagonist potent partial agonist 
M2 agonist partial agonist 
M3 - partial agonist 
M4 agonist partial agonist 
M5 - partial agonist 

α1A antagonist, high affinity antagonist, but lower affinity than clozapine 
 

Considering side effects, M1 agonistic activity of norclozapine explains the observed sialorrhea, the 

M2 antagonism of the parent compound clozapine the relative protection against extrapyramidal 

symptoms. The H1 antagonistic activity of clozapine and norclozapine could explain the weight gain 

observed with clozapine, clozapine being more potent. This seems contradictory to the clinical 

observations of less weight gain with lower norclozapine plasma levels. However, the different inverse 

agonistic potency at the 5HT2c receptor could explain this association (298-301). 

Clozapine displays a high inter-individual variability in dose-corrected plasma concentrations which 

might be explained by the influence of genetic and environmental factors on the metabolism and drug 

transport of clozapine (112;302;303).  

In vitro studies suggest the contribution of several Cytochrome P450 enzymes (CYP) in the 

metabolism of clozapine (181;186;304): CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A, with 

CYP1A2 having a major role in the N-demethylation of clozapine to its main active metabolite 

norclozapine (304). Figure 13 illustrates probable metabolic pathways of clozapine. In vivo the role of 

CYP1A2 has been confirmed (69;305), and it explains the lower plasma levels in smokers compared 

to non-smokers  (306) since CYP1A2 is induced by smoking (307). A small pharmacogenetic study 
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did not find a significant influence of CYP2D6 nor CYP2C19 in the in vivo metabolism of clozapine 

(308). CYP3A could play a significant role since clozapine plasma concentration is lowered in 

presence of carbamazepine, a strong CYP3A inducer (309) but it is not known which CYP3A isoforms 

are implicated. 

Figure 13: Possible metabolic pathways of clozapine (304;310-312) 

 

Clozapine could be a substrate of the P-glycoprotein (Pgp), encoded by the ABCB1 gene, as found in 

one in vitro study (313) but not found in another (314).  

The aim of this study was to examine the in vivo influence of genetic polymorphisms of CYP isoforms 

(CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, and CYP3A7) and ABCB1 on 

the steady state plasma concentrations of clozapine. Patients were also phenotyped with the caffeine 

test for CYP1A2 and the midazolam test for CYP3A since genotyping reflects only partly the activity 

of these two CYP enzymes. Further environmental factors such as smoking and co-medication were 

investigated.  Finally, we examined a possible causal association of clozapine plasma concentrations 

with side effects, especially with weight gain (315;316). 

Methods 
Seventy-five in-patients of 2 psychiatric clinics aged 18 years and older, on stable clozapine treatment 

and unchanged co-medication for at least 2 weeks (4 weeks for fluoxetine) were included in the study. 

Serious uncontrolled illnesses, organic psychiatric illness, or substance dependence were exclusion 
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criteria. To ensure compliance the patients took their medication under the supervision of a nurse, 

clozapine being dissolved in the four days before blood sampling. Patients or their legal representative 

signed the written informed consent, and the study was approved by the local ethics committees of the 

2 clinics (Königsfelden and Prilly-Lausanne). 

Blood sampling: on the morning of day 1, before first drug intake, 75µg oral midazolam diluted in a 

glass of water was given to the patient for CYP3A phenotyping (152). A blood sample was taken 30 

minutes later for the determination of the 1’OH-midazolam/midazolam plasma ratio (152) and trough 

clozapine and norclozapine plasma concentrations. Thereafter the patients received their usual 

medication together with 200mg caffeine for CYP1A2 phenotyping (317). 6 hours later a second 

blood sample was taken for the determination of the paraxanthine/caffeine plasma ratio (317). No 

caffeine containing food or beverage was allowed on the test day until after the second blood 

sampling. All the samples – plasma after centrifugation and K-EDTA whole blood – were kept frozen 

at -20ºC until analysis. To control compliance, plasma concentration measurements of clozapine and 

norclozapine were repeated on day 7. Since there were no significant differences between them, results 

are expressed as the mean of the 2 blood samplings. 

Assays of drugs:  Clozapine and norclozapine concentrations were determined by gas chromatography 

with a nitrogen-phosphorus detector (69). Fluvoxamine (318), midazolam and 1′OH-midazolam 

(151;152) caffeine and paraxanthine (69) were measured by gas chromatography-mass spectrometry. 

Measured clozapine and norclozapine plasma concentrations were corrected by clozapine daily dose, 

and hereafter are referred to as plasma concentrations. 

Genotyping: Genomic DNA was extracted from EDTA blood samples with the FlexiGene DNA Kit 

(Qiagen, Hombrechtikon, Switzerland). All the SNPs, with the exception of CYP2D6*5 and 

CYP2D6*xN, were detected by real-time PCR with 5’-nuclease allelic discrimination assays (ABI 

PRISM 7000 Sequence Detection System, Applied Biosystems, Rotkreuz, Switzerland) with primers 

and probes obtained from Applied Biosystems. The CYP1A2*1F, CYP2B6*4, CYP2B6*5, 

CYP2B6*6, CYP2B6*7, CYP2B6*9, CYP2C9*2, CYP2C9*3, CYP2C19*2, CYP2C19*3, 

CYP2D6*3, CYP2D6*4, CYP2D6*6, CYP3A4*1B, CYP3A5*3, ABCB1 61A>G, 2677G>T and 

3435C>T SNPs were analyzed as previously described (69;138). CYP2D6 gene deletion (allele *5) 

and duplication/multi-duplication (allele *xN) were analyzed by quantitative real-time PCR and long 

PCR, respectively (138). CYP3A7*1C (-262T>A and -270T>G) allele was determined as previously 

described (319). CYP2C19*17 (-806C>T) allele was determined using the following primers, 

GTTTGGAAGTTGTTTTGTTTTGCTAA (forward), CATCGTGGCGCATTATCTCTT (reverse), 

and labelled probes, 6-FAM-TTCTCAAAGcATCTCT-MGBNFQ, and VIC–

TTCTGTTCTCAAAGtATCT-MGBNFQ. The 25µl PCR mixture contained 12.5µl TaqMan Universal 
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PCR Master Mix (Applied Biosystems), 900nM of each primer, 200nM of each TaqMan minor groove 

binder non-fluorescent quencher probe, and 40ng (100ng for CYP2C19*17) of genomic DNA. After 

an activation step comprising AmpErase (50°C for 2 min) and AmpliTaq Gold enzyme activation 

(95°C for 10min), 60 PCR cycles (50 cycles for CYP2C19*17) were performed with 15s at 92°C and 

1min at 58°C (1.5min at 60ºC for CYP2C19*17). CYP3A4 rs4646437C>T were analyzed with 

commercial TaqMan® Drug Metabolism Genotyping Assays according to the manufacturer’s 

instructions (Assay Ids C_32306227_10; Applied Biosystems).  

Clinical assessments: At baseline all patients underwent a physical examination and routine 

haematological and chemistry parameters were measured. Their medical history was recorded and 

their psychiatric and somatic diagnoses were confirmed. On days 1 and 7, weight, vital signs, adverse 

events and lifestyle factors such as smoking, caffeine consumption and grapefruit intake were noted. 

Weight gain data during the entire clozapine treatment were collected from the patient’s medical files. 

Statistical Analysis:  Clozapine and norclozapine blood concentrations were compared between 

different genotypes by non-parametric analyses (Kruskal-Wallis for >2, Mann-Whitney U Test for 2 

groups). Correlations between plasma concentrations and CYP1A2 or CYP3A activity were assessed 

by Spearman’s test, and multivariate analyses were performed using linear regression (backward 

method). A p-value <0.05 was considered to indicate statistical significance. All statistical tests were 

performed in the whole group of patients and in the two subgroups with and without fluvoxamine as 

inhibition by fluvoxamine could mask the potential influence of other factors. Statistical analyses were 

performed using SPSS version 15.0 (SPSS Inc, Chicago, IL, USA). For ABCB1 polymorphisms, 

Hardy-Weinberg equilibrium was tested and linkage disequilibrium (Lewontin’s D’coefficient) was 

estimated with STATA (version 10, StataCorp, College Station TX, USA). Haplotypes were inferred 

using the haplo.em function in R (http://www.r-project.org/), which uses expectation-maximization 

algorithm. As none of the inferred haplotypes had a posterior probability below 98%, haplotype 

uncertainty can be considered as minimal. Genetic association studies were conducted using the 

haplo.score function in R (which uses generalized linear models and takes haplotype uncertainty into 

account) with an additive effect and a Gaussian distribution for the trait.  

Results  
Seventy-five patients (39 men/36 women; 73 Caucasian/1 Asian/1 Black African) participated in the 

study. Their median age was 44 years (mean 48; SD 17; range 20-90). The majority were diagnosed 

with schizophrenic disorders (n=73), one with bipolar disorder, and one with dementia. 

Table 19 gives an overview of the observed genotype frequencies of CYP1A2, CYP2B6, CYP2C9, 

CYP2C19, CYP2D6, CYP3A4, CYP3A5, CYP3A7 and ABCB1.  They are similar to those previously 

described in Caucasian populations (http://www.cypalleles.ki.se) (64;139)and all the SNPs are in 

http://www.cypalleles.ki.se/�
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Hardy-Weinberg equilibrium for the Caucasian sub-sample (n=73). All 3 SNPs of the ABCB1 genes 

are in strong linkage disequilibrium, as previously reported (136). 

Table 19: Frequency of CYP1A2*1F, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, 

CYP3A7 and ABCB1 genotypes in 73 white patients treated with clozapine 

Genotype n Frequency (%) 95% Cl (%) 
 CYP1A2*1F    
 *1/*1 8 10.9 4.8-20.5 
 *1/*1F 31 42.5 31.0-54.6 
 *1F/*1F 34 46.6 34.8-58.6 
 CYP2B6    
 *1/*1 30 41.1 29.7-53.2 
 *1/*4 1 1.4 0.03-7.4 
 *1/*5 8 10.9 4.8-20.5 
 *1/*6 20 27.4 17.6-39.1 
 *1/*7 4 5.5 1.5-13.4 
 *5/*5 2 2.7 0.3-9.5 
 *6/*6 8 10.9 4.8-20.5 
 CYP2C9    
 *1/*1 51 69.9 58.0-80.1 
 *1/*2 11 15.1 7.8-25.4 
 *1/*3 8 10.9 4.8-20.5 
 *2/*2 1 1.4 0.03-7.4 
 *2/*3 2 2.7 0.3-9.5 
 CYP2C19    
 *1/*1 24 32.9 22.3-44.9 
 *1/*2 17 23.3 14.2-34.6 
 *1/*17 18 24.6 15.3-36.1 
 *2/*2 4 5.5 1.5-13.4 
 *2/*17 4 5.5 1.5-13.4 
 *17/*17 6 8.2 3.1-17.0 
 CYP2D6    
 *1/*1 40 54.8 42.7-66.5 
 *1/*3 4 5.5 1.5-13.4 
 *1/*4 16 21.9 13.1-33.1 
 *1/*5 3 4.1 0.9-11.5 
 *1/*6 1 1.4 0.03-7.4 
 *1/*xN 4 5.5 1.5-13.4 
 *4/*4 4 5.5 1.5-13.4 
 *4/*xN 1 1.4 0.03-7.4 
CYP3A CYP3A5*3    
 *1/*1 1 1.4 0.03-7.4 
 *1/*3 8 10.9 4.8-20.5 
 *3/*3 64 87.7 77.9-94.2 
 CYP3A7*1C    
 *1/*1 66 90.4 81.2-96.1 
 *1/*1C 6 8.2 3.1-17.0 
 *1C*1C 1 1.4 0.03-7.4 
 CYP3A4 rs4646437 (intron 7)   
 CC 58 79.4 68.4-88.0 
 CT 14 19.2 10.9-30.1 
 TT 1 1.4 0.03-7.4 
ABCB1 61A>G (exon2)    
 AA 71 97.3 90.5-99.7 
 AG 2 2.7 0.3-9.5 
 2677G>T (exon 21)   
 GG 25 34.2 23.5-46.3 
 GT 38 52.1 40.0-63.9 
 TT 10 13.7 6.8-23.8 
 3435C>T (exon 26)   
 CC 18 24.6 15.3-36.1 
 CT 40 54.8 42.7-66.5 
 TT 15 20.5 12.0-31.6 
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Dose-plasma level relation 

The median clozapine daily dose was 250mg (range: 25-800mg). Six patients received clozapine 

mono-therapy; 17 patients (23%) had co-medication with the strong CYP1A2 and moderate CYP3A 

and 2C19 inhibitor fluvoxamine (dose range: 25-300mg/day) (320;321). The dose corrected median 

trough plasma concentrations of clozapine and norclozapine were 1.14ng/ml*mg (0.15-6.24) and 

0.60ng/ml*mg (0.04-2.36) in the whole group of patients and 0.99ng/ml*mg (0.15-2.88) and 

0.49ng/ml*mg (0.04-1.28) in the group of patients without fluvoxamine, respectively. The median 

clozapine, norclozapine, and clozapine + norclozapine plasma concentrations were 3.5-, 2.4- and 3.3-

fold higher, respectively, in the group with as compared to the group without fluvoxamine (p=4.9 x  

10-7, p=1.3x10-5 and p=1.1x10-6, respectively). Correlations (logarithmic regressions) were calculated 

between fluvoxamine plasma concentrations and clozapine (r2=0.65), norclozapine (r2=0.11) and 

clozapine + norclozapine (r2=0.52) plasma concentrations (fig. 14). In addition, this figure suggests 

saturation of inhibition in the range 50 to 100ng/ml of fluvoxamine. In agreement with a strong 

inhibition of CYP1A2 activity by fluvoxamine, the median paraxanthine/caffeine ratios were 0.72 

(0.19–3.12) and 0.33 (0.08–3.49) in the groups of patients without and with fluvoxamine, respectively. 

Flattening of the correlation curve (power regression, r2=0.71) between fluvoxamine plasma 

concentrations and paraxanthine/caffeine ratios suggests saturation of the inhibition of CYP1A2 

activity with increasing fluvoxamine plasma concentrations (fig. 15). 

Figure 14: Correlations (logarithmic regressions) between fluvoxamine plasma levels and (■) 

clozapine (y=0.84Ln(x) +0.88, r2=0.65), (▲) norclozapine (y=0.11Ln(x) +0.85, r2=0.11) and (○) 

clozapine + norclozapine (y=0.96Ln(x) +1.73, r2=0.52) dose normalised plasma levels. 
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Figure 15:  Correlation between fluvoxamine plasma levels and CYP1A2 activity measured by the 

paraxanthine/caffeine ratio (power regression: y=1.62x-0.51, r2=0.71). The outlier corresponds to a 

patient with a CYP2D6 ultra rapid metaboliser polymorphism with very low fluvoxamine plasma 

levels. 

 

 

 

 

 

 

 

 

 

A group of patients was identified with other possibly relevant co-medications (maximal dose; number 

of patients): sertraline (322) (150mg/day; 6), paroxetine (323) (40mg/day; 3), fluoxetine (324) 

(20mg/day; 1), levomepromazine (325) (150mg/day; 3), amlodipine (10mg/day; 2), phenytoin (326) 

(300mg/day; 1) and omeprazole (327) (20mg/day; 1). There was no significant effect of these co-

medications on clozapine (p >0.3), norclozapine (p ≥0.9) or clozapine + norclozapine (p >0.6) 

concentrations when considered individually or as a group. Gender and age in the total study 

population did not appear to influence clozapine plasma concentrations (p=0.34, p=0.43 respectively, 

data not shown). However, when excluding patients taking fluvoxamine, women had significantly 

higher clozapine but not norclozapine (p=0.12, data not shown) plasma concentrations (median: 1.11 

(0.18–2.88) ng/ml*mg versus 0.61 (0.15-2.72) ng/m*mg, in women and men respectively, p=0.027).  

Forty-five patients were smokers (26 men/19 women) and 30 were non-smokers (13 men/17 women). 

The number of cigarettes smoked per day ranged from 1 to 60 (median 20). Smoking induces 

CYP1A2 as shown by the 1.5-fold higher median paraxanthine/caffeine ratio (p=0.031) in smokers 

(0.74 (0.08–3.49)) compared with non-smokers (0.50 (0.09–1.15)). Lower norclozapine (median of 

0.49 versus 0.67 ng/ml*mg, p=0.039), but not clozapine (1.03 versus 1.30 ng/ml*mg, p=0.175), 

plasma concentrations were measured in smokers compared with non-smokers. As expected, this 

effect was more pronounced in the group without fluvoxamine, where the influence of smoking was 

also significant on clozapine plasma concentrations (median of 0.72 versus 1.21ng/ml*mg, in smokers 
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and non-smokers, respectively, p=0.011). The effect of smoking on clozapine or norclozapine plasma 

concentrations was not related to the number (>20, 11 to 20, 6 to 10, ≤5) of cigarettes smoked per day 

(data not shown). 

Since only three patients drank grapefruit juice, and all but two had regular caffeine intake, the effect 

of grapefruit and caffeine on clozapine plasma concentrations could not be determined. In contrast to 

two previous studies (315;316), there was no significant correlation between norclozapine plasma 

levels (not corrected by dose) and weight gain (r=0.11, p=0.38), nor after subgroup analysis of non-

smokers (r=0.28, p=0.14) and smokers (r=-0.07, p=0.65). 

Plasma level and side effects 

Clozapine treatment was in general well tolerated at the time of the study; the most frequent 

complaints were hyper-salivation and weight gain. Four patients developed diabetes in the course of 

their clozapine treatment, but all before this study. 

The median weight at entry to the study was 79 kg (range: 52-128 kg; 74.5 kg and 83 kg, for women 

and men, respectively). The median body mass index (BMI) was 27.4 kg/m2 (range: 19.1-36.6). 

Thirty-two (43%) patients gained 10% or more of their starting body weight during the course of 

clozapine treatment, with the maximum increase being 97% over 15 years for a male aged 32 with a 

BMI of 36.6 kg/m2. Three patients lost weight, 25 remained stable, 13 increased their weight slightly 

to moderately (<10% of body weight), and for 2 patients the initial body weight was unknown. 

In contrast to two previous studies (315;316), there was no significant correlation between 

norclozapine plasma levels (not corrected by dose) and weight gain (r=0.11, p=0.38), nor after 

subgroup analysis of non-smokers (r=0.28, p=0.14) and smokers (r=-0.07, p=0.65). 

Hyper-salivation did correlate with neither clozapine nor norclozapine plasma levels. 

Cytochrome 1A2: 

Induction polymorphism CYP1A2*F 

Genetic polymorphisms for the CYP1A2*F allele were without influence on clozapine, norclozapine 

or clozapine + norclozapine plasma levels: CYP1A2 (p=0.386, 0.632, 0.533), in the whole group (and 

in the patients without fluvoxamine (data not shown)).  

Phenotyping with the caffeine test 

A strong correlation was observed between CYP1A2 activity and plasma concentrations of clozapine, 

norclozapine and clozapine + norclozapine in the whole population (r=-0.61, p=1·10-6; r=-0.48, 
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p=2·10-5; r=-0.59, p=1·10-6), in the subgroup without fluvoxamine (n=58) (r=-0.51, p=5·10-5; r=-0.41, 

p=0.001; r=-0.50, p=1·10-4), and in the fluvoxamine subgroup (n=17) (r=-0.69, p=0.002; r=-0.39, 

p=0.12; r=-0.64, p=0.006).  

Cytochrome 2C19 polymorphism 

In the whole patient group (n=75) CYP2C19 genotypes significantly influenced clozapine (p=0.036) 

but not norclozapine (p=0.185) plasma concentrations (Fig. 16a and b), with a 2.3-fold higher median 

clozapine concentrations in poor metabolisers (*2/*2 genotype, n=5, 2.58ng/ml*mg (1.10-5.98)) than 

in extensive metabolisers (non-*2/*2 genotypes, 1.11ng/ml*mg (0.15-6.24)) and 1.9-fold (p=0.057) 

higher clozapine + norclozapine levels. Similarly, between carriers of the *17 allele associated with an 

increased CYP2C19 activity (*17/*17, *1/*17) and poor metabolisers the differences were 2.3-, 1.9-, 

and 1.6-fold respectively for clozapine p=0.033, clozapine + norclozapine 0.039, and norclozapine 

0.112. On the other hand, no significant differences in clozapine (p=0.558), norclozapine (p=0.186) 

and clozapine + norclozapine (p=0.407) plasma levels were found between the carriers of the *17 

allele (*17/*17, *1/*17) and extensive metabolisers (*1/*1, *1/*2, *2/*17; data not shown). In the 

smaller group of patients without fluvoxamine, significant differences were observed between 

CYP2C19 *1/*1, *1/*17 or *17/*17 and *2/*17, *1/*2 or *2/*2 individuals for clozapine (p=0.027), 

norclozapine (p=0.074) and the sum of both (p=0.042). 

Figure 16 a: Boxplot with median and interquartile range of clozapine plasma concentration 

(ng/ml x mg) according to CYP2C19 genotypes. (Patient nr. 38’: clozapine plasma levels not 

detected). 
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Figure 16 b: Boxplot with median and interquartile range of norclozapine plasma concentration 

(ng/ml x mg) according to CYP2C19 genotypes. (Patient nr.1’: norclozapine plasma levels not 

detected) 

 

 

Cytochrome 2D6 polymorphism 

The CYP2D6 pharmacogenetic status of the patient had no influence on the plasma concentration of 

clozapine, norclozapine, and of the sum clozapine + norclozapine: (p=0.464, 0.696, and 0.718). The 

frequency of the different CYP2D6 genotypes was as expected in a white population (64). 

Cytochrome 3A:  

CYP 3A4, 3A5 and 3A7 polymorphisms 

The CYP3A pharmacogenetic status of the patient was without influence on clozapine, norclozapine 

or clozapine + norclozapine plasma levels: CYP3A4 (p=0.355, 0.341, 0.444), CYP3A5 (p=0.865, 

0.206, 0.627), and CYP3A7 (p=0.586, 0.384, 0.493), in the whole group (and in the patients without 

fluvoxamine (data not shown)). 

CYP3A phenotyping with the Midazolam Test  

No correlation was found between clozapine (r=-0.16, p=0.16), norclozapine (r=-0.07, p=0.58), and 

clozapine + norclozapine (r=-0.161, p=0.172) plasma concentrations and CYP3A activity in the whole 

group. In the fluvoxamine subgroup, however, a weak correlation was found between CYP3A activity 
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and clozapine + norclozapine (r=0.51, p=0.038), a moderate correlation with norclozapine (r=0.63, 

p=0.007), and a trend with clozapine concentrations(r=0.44, p=0.075).  

Other CYP450 isozyme polymorphism 

Finally, other genetic polymorphisms were without influence on clozapine, norclozapine or clozapine 

+ norclozapine plasma levels: CYP2B6 (p=0.664, 0.540, 0.522), CYP2C9 (p=0.252, 0.344, 0.370), in 

the whole group (and in the patients without fluvoxamine (data not shown)).  

ABCB1 polymorphism 

In the whole patient group (n=75) ABCB1 3435 C>T polymorphism significantly influenced clozapine 

plasma concentrations (p=0.046), with a 1.6-fold higher median clozapine concentrations in 3435TT 

genotype (n=16, median=1.6 ng/ml*mg (0.27–5.98) in TT genotypes; n=59, median=1.1ng/ml*mg 

(0.15-6.24) in CC/CT genotypes). Statistical analysis on the 61 A>G polymorphism was not performed 

due to the low observed genetic variability (table 22). No significant influence of the 2677 G>T 

polymorphism on clozapine plasma concentration was observed (data not shown). In addition, 

norclozapine and clozapine + norclozapine plasma concentrations did not differ significantly between 

different genotypes (2677G>T and 3435C>T) (data not shown). Haplotype analysis revealed a trend 

towards higher clozapine concentration for carriers of 2677G-3435T haplotype (global score: 0.1, 

haplotype specific score: 0.01). Because of the small sample size when considering haplotypes, we 

also computed permutation tests (global empirical p-value: 0.10; haplotype-specific empirical p-value: 

0.01), which are in very close agreement with the asymptotic p-values based on a chi-square 

distribution. Similar results were obtained after adjusting for sex and age (data not shown).  

Multivariate Analysis 

Multivariate analyses between clozapine, norclozapine and clozapine + norclozapine plasma 

concentrations and the main factors potentially influencing their kinetics yielded the following models 

in the whole group of patients. For clozapine, presence of fluvoxamine (p<10-8), high fluvoxamine 

concentrations (p=0.0001), low CYP1A2 activity (p=0.0001) and absence of CYP2C19 *17*17 or 

*17/*1 genotype (p=0.008) were predictive of higher plasma concentrations (r=0.84, p<10-17). Other 

variables such as fluvoxamine dose (p=0.88), gender (p=0.19), smoking (p=0.29), CYP3A activity 

(p=0.67), CYP3A4 rs4646437 allele T (p=0.69), CYP1A2*1F/1F genotype (p=0.32), ABCB1 2677TT 

genotype (p=0.22) and ABCB1 3435TT genotype (p=0.17) did not significantly contribute to the 

model. For norclozapine, presence of fluvoxamine (p<10-8), non-smoking (p=0.004), low CYP1A2 

activity (p=0.025) and absence of CYP2C19 *17*17 or *17/*1 genotype (p=0.036) were predictive of 

higher plasma concentrations (r=0.72, p<10-9). For clozapine + norclozapine, presence of fluvoxamine 

(p<10-8), high fluvoxamine concentrations (p=0.004), low CYP1A2 activity (p=0.0001) and absence 
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of CYP2C19 *17*17 or *17/*1 genotype (p=0.012) were predictive of higher plasma concentrations 

(r=0.82, p<10-15). Similar models can be built including presence of CYP2C19 *2/*2 or *2/*1 

genotype instead of absence of CYP2C19 *17*17 or *17/*1 genotype as a significant covariate for 

higher clozapine (p=0.017) and clozapine + norclozapine (p=0.030) plasma concentrations. 

Discussion 
The measured trough plasma concentrations of clozapine, norclozapine, and clozapine + norclozapine 

corrected by daily dose showed very wide inter-individual variability, with a 41-, 59-, 23-fold 

variation, respectively. Determination of genetic and environmental factors contributing to this 

variation is therefore of clinical relevance, considering the narrow therapeutic window of clozapine 

(350-600ng/ml) (287); plasma levels over 800-1000ng/ml are associated with an increased risk of side 

effects such as convulsions (289). Previous in vitro and in vivo studies suggested that the main CYP 

isoform mediating the metabolism of clozapine is CYP1A2 (112;186;305). Therefore, modulation of 

CYP1A2 activity will have a major influence on clozapine plasma levels and its effects. We examined 

4 factors believed to have a relevant influence on CYP1A2 activity: CYP1A2*1F polymorphism, the 

effect of smoking and caffeine consumption, and co-medication with fluvoxamine. 

CYP1A2*1F has been associated with increased CYP1A2 activity in smokers, possibly due to 

increased inducibility (69;70). Contrary to two previous studies (69;70), but in accordance with two 

other (71;279), we could not confirm an influence of CYP1A2*1F polymorphism on clozapine plasma 

concentrations or CYP1A2 activity, either in the whole group or in the subgroup of smokers; a strong 

influence of this polymorphism on clozapine plasma concentrations appears therefore unlikely. On the 

other hand, the important inducing effect of smoking on CYP1A2 activity and clozapine metabolism 

(306) has been confirmed in our study by the 1.5-fold higher CYP1A2 activity in smokers compared 

with non-smokers in all patients and in those without fluvoxamine as co-medication. Measured 

clozapine and norclozapine plasma levels in smokers compared with non-smokers were 93% (ns) and 

77% (p=0.039) in the whole group, and 67% (p=0.011) and 64% (p=0.003) in the group without 

fluvoxamine. Interestingly the number of cigarettes seemed to be of little relevance. The demonstrated 

decrease in clozapine plasma concentrations in smokers is in accordance with most other studies 

(71;306;328;329). Considering the narrow therapeutic window of clozapine, therapeutic drug 

monitoring is recommended when smoking habits are changed, as cessation of smoking can lead to a 

significant rise in clozapine concentrations and the risk of overdose (212).  

In the present study, 23% of the patients were co-medicated with the antidepressant fluvoxamine. Such 

high proportion is explained by the fact that in one study centre (Königsfelden) patients not 

responding and/or intolerant to high doses of clozapine are switched to a combination of low dose 

clozapine and fluvoxamine (– of course with therapeutic drug monitoring to adapt clozapine doses 
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(69;315;330)). Fluvoxamine is a strong CYP1A2 inhibitor, which is confirmed by the 2.2-fold higher 

paraxanthine/caffeine ratios determined in the patients without fluvoxamine compared to those with 

fluvoxamine. Accordingly, fluvoxamine markedly increases clozapine (3.5-fold) and norclozapine 

plasma concentrations (2.4-fold), indicating that it blocks the metabolism of both clozapine and 

norclozapine. The question arises whether the blocking effect of fluvoxamine on CYP1A2 is dose-

dependent or is saturable at low doses. We investigated this in an earlier case series and the conclusion 

was that co-medication with 150mg/day fluvoxamine has the same blocking effect as 300mg/day 

(331). This is confirmed by the relationship between fluvoxamine, clozapine and norclozapine plasma 

concentrations (Fig.14) suggesting saturation of inhibition at low fluvoxamine plasma levels (around 

50-100ng/ml). Thus, a daily dose of about 100mg fluvoxamine (41) would be sufficient to have a 

major blocking effect on the metabolic pathways of clozapine and norclozapine. Saturation of the 

inhibitory effect on CYP1A2 activity is also observed with paraxanthine/caffeine ratios at around 

50ng/ml fluvoxamine (fig. 15). Finally, published studies have suggested that caffeine consumption, in 

particular when consumption fluctuates over time, can influence clozapine plasma concentrations, 

possibly by inhibition of CYP1A2 (219). In the present study, since all but two patients had regular 

intake of caffeine, the influence of caffeine on clozapine plasma concentrations could not be verified. 

Conflicting results have been published on the implication and relative importance of other CYP 

isoforms besides CYP1A2 in the metabolism of clozapine and norclozapine (304;308;312;332). We 

found no evidence of an effect of CYP2B6, CY2C9, CYP2D6, CYP3A5, or CYP3A7 on the steady-

state kinetics of clozapine or norclozapine. On the other hand, this seems to be the first study to 

demonstrate a significant in vivo involvement of CYP2C19 in the pharmacokinetics of clozapine, 

previously suggested by an in vitro study (304) but challenged by an in vivo study with a single oral 

low dose of clozapine (308). Thus, in the present study, CYP2C19 poor metabolisers had 2.3-fold 

higher plasma concentrations of clozapine than patients with other CYP2C19 genotypes (fig. 16a). The 

absence of a significant influence of the CYP2C19*17 allele could be attributed to its limited effect 

especially when present in one copy only (60). A possible explanation for the negative results 

observed in the single dose (10 mg) study is that, with such a low oral dose (308), only CYP1A2 was 

responsible for the metabolism of clozapine.  

Fluvoxamine is also a CYP2C19 inhibitor (320;333;334). One can hypothesise that only the 

metabolism of clozapine but not norclozapine is affected. That could explain the different impact of 

fluvoxamine metabolic inhibition on clozapine and norclozapine plasma levels (fig. 14). 

The effect of CYP3A4 has been previously examined in interaction studies with CYP3A4 inhibitors 

and inducers (309;332). Based on in vitro data, it has been suggested that its role becomes increasingly 

relevant with higher doses of clozapine (304). In our study, the dose ranged from 25 to 800mg/day, 
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with a median of 250mg/day. In the whole study population, there was no correlation between CYP3A 

activity and clozapine or norclozapine plasma concentrations. On the other hand, the observed 

correlation between 1-OH-midazolam/midazolam ratios and clozapine plasma concentrations in the 

fluvoxamine co-medication group probably reflects the increasing importance of CYP3A4 in patients 

with blocked CYP1A2 activity. The formation of clozapine N-oxide is CYP3A4 dependent but this 

metabolite is less important than norclozapine (295) and its conversion back to clozapine is 

hypothesised (296;304). 

The very strong inhibition of clozapine metabolism by fluvoxamine can be explained by the fact that 

fluvoxamine is not only a strong CYP1A2 inhibitor but also a moderate inhibitor of CYP3A4 

(321;335) and CYP2C19 (320;333;334).  

Finally, the present study was the first, to our knowledge, to suggest that clozapine plasma 

concentration is significantly influenced by the genetic polymorphism of the ABCB1 gene, with higher 

concentrations measured in the 3435TT genotype, a genotype previously associated with lower Pgp 

expression (136). The result of a clinical trial with 40 male and 20 female schizophrenic patients 

(published at the same time as our study) confirmed our findings (336). Interestingly, in their study, 

patients with the ABCB1 3435CC or C/T genotype needed higher clozapine daily doses than patients 

with the 3435TT genotype in order to reach satisfactory therapeutic results. Since these ABCB1 

genotypes have an influence on clozapine plasma levels we can assume that Pgp plays a role in the 

intestinal absorption process of clozapine, regulating its bioavailability. A role of Pgp at the blood 

brain barrier has been evaluated earlier with negative results (314). 

No serious adverse drug reactions were reported, but hyper-salivation and weight gain were frequently 

reported to be troublesome and difficult to manage. Sialorrhea is a consequence of the M1 agonistic 

properties of norclozapine, weight gain can be attributed to the H1 and 5HT2 inverse agonistic 

properties of both clozapine and norclozapine (table 18). Weight gain is considered one of the major 

side effects of clozapine and it is an important risk factor for developing a metabolic syndrome. In our 

study 43 percent of patients gained 10% or more body weight during clozapine treatment. Some 

authors found a reduced risk for weight gain when combining fluvoxamine with clozapine (315). 

Another group found a correlation between norclozapine plasma concentrations and weight gain in 

non-smoking patients (316). These results could not be confirmed in our study probably because of the 

small number of non-smokers included. Another limitation is that the duration of clozapine treatment 

and the nature of pre-treatment could not be determined for all patients and that some patients were co-

medicated with valproic acid and lithium which are also associated with weight gain. Due to the 

important clinical problems associated with weight gain in patients treated with atypical antipsychotics 

(337), the role of norclozapine should be examined further in prospective longitudinal studies.  
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It would be interesting to compare the metabolic ratio of patients with a clozapine monotherapy with 

patients taking a combination of fluvoxamine and clozapine to search for differences in efficacy and 

tolerability as done by other authors (292;293).  

In conclusion, our study examined thoroughly the in vivo implications of drug metabolizing enzymes 

and transporters in clozapine kinetics with the aim to explain its large inter-individual variability. 

CYP1A2 is the major CYP isoform involved in clozapine metabolism in vivo, with CYP2C19 

contributing to a moderate extent and CYP3A4 contributing in the presence of co-medications that 

induce activity of this isozyme or when CYP1A2 is blocked by drugs such as fluvoxamine. ABCB1 

genetic polymorphism also contributes to clozapine pharmacokinetic variability. To our knowledge, 

this is the first study showing a significant in vivo role of CYP2C19 and the Pgp transporter in 

clozapine kinetics. Besides these genetic factors, environmental factors such as smoking or co-

medications (e.g. fluvoxamine) markedly influence the kinetics of clozapine. Finally, because of the 

limited sample size, the results of the present study should be replicated by another study with a larger 

number of patients. 
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6 Nested case-control study in psychiatric in-patients: AMSP+ 

Summary 
From experiences with individual cases we learned that high drug plasma concentration and certain 

CYP450 genotypes seem to be associated with an increased risk for (S)ADR.  However, there exist no 

studies in psychiatry which confirm these risk factors for a patient population and which might justify 

routine TDM and/or routine pharmacogenetic testing.  

We therefore performed a nested case-control study in the psychiatric in-patient clinic Königsfelden 

comprising 62 SADR cases and 82 matched controls in order to examine the feasibility of a nested 

matched control study design. Firstly, in an open cohort, SADR according to the AMSP criteria were 

collected and analyses of the plasma concentrations of suspected drugs made. In this phase of the 

AMSP+ project, correct TDM but also pharmacogenetic tests were introduced to the clinicians of the 

clinic. In a second phase 62 SADR cases were collected, their drug plasma levels analysed, a CYP2D6 

genotyping and a midazolam test performed.  These cases would be matched with 3 controls each, 

matching for the imputed drug (combination), gender and age group (< 65 or ≥ 65 years old).  

Matching proved to be more difficult than expected and the original study design was changed to a 

non matched case-control study. Some of the reasons were the very heterogeneous patient population, 

drug combinations which were difficult to match because unusual or rare, and the difficult recruitment 

of controls.  

Preliminary results showed that the group of SADR patients and the group of controls were similar in 

age, gender, medication (matching criteria) but also in weight, BMI, renal function and smoking 

behaviour. However, the odds ratio for drug plasma levels ≥ 120% of the upper reference limit was 

3.49 CI95: 1.42-8.57 (p=0.005) in SADR patients compared to the control patients.  

SADR patients had more often a CYP2D6 poor metaboliser genotype, controls more often a CYP2D6 

ultra rapid genotype; however that was statistically no significant. Larger studies with more patients 

have to show if these results can be confirmed. 

For future studies the difficulties of a nested matched control design has to be considered. A non-

matched case-control study in a large cohort study seems more realistic and feasible. A multi-centre 

approach would help finding SADR cases and controls in a timelier manner. 
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Introduction 
The usefulness of TDM and pharmacogenetic tests in single cases can be shown.  However, larger 

clinical trials are needed to answer the question “in which situation or for which drug should we apply 

TDM and/or pharmacogenetic tests?” or “should we routinely measure plasma levels and/or perform 

pharmacogenetic tests in order to improve drug safety?”  

Such large studies will in general exceed the possibilities of one study centre and are very cost 

intensive.  

Fewer resources are needed for a nested case-control study which we performed within the dynamic 

AMSP cohort of the clinic Königsfelden: AMSP+. In a first phase TDM and Pharmacogenetic Tests 

were introduced in association with the causality assessment of serious adverse drug reactions. In the 

second phase a patient with a SADR (= case) was matched with control patients. The AMSP+ study 

must be seen as a feasibility study, because within this field of TDM and pharmacogenetics no 

previous case control studies have been carried out. Ethics approval from the local ethics committee 

has been obtained for both phases. Two questions were addressed in the AMSP+ study: 1) Do patients 

with a SADR have higher drug plasma levels? 2) Are certain CYP450 enzyme genotypes associated 

with an increased ADR risk? 

Do ADR patients have higher drug plasma levels? 

The majority of ADR are of type A, i.e. mostly drug concentration dependent. Better than the 

administered dose, drug plasma levels reflect the concentration of the drug at target site, in psychiatry 

mostly the brain. Although we know that in an individual patient the ADR risk with increasing drug 

plasma level will increase, clinical experience shows us that the threshold for developing an ADR is 

different between patients and that several other factors play a significant role as well. Establishing a 

therapeutic index of drug plasma levels is not for every drug possible. The question remains: do 

patients with an ADR have higher drug plasma levels?  

Are certain CYP450 enzyme genotypes associated with an increased ADR risk? 

Some authors found an increased risk in small clinical studies (see chapter “Pharmacogenetic Studies 

in Pharmacovigilance”). Interestingly, certain CYP450 enzyme genotypes predicting a decreased 

enzyme function seemed to show an increased ADR risk, but a connection with increased drug plasma 

concentrations was not always shown. A large case-control study might be an adequate study design to 

further examine these relationships. 

Collaborations 
For the pharmacovigilance parts of the AMSP+ study a close collaboration with the leaders of the 

AMSP project: Dr. Renate Grohmann, Prof. Rolf Engel (both university of Munich), Prof. Eckart 
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Rüther (university of Göttingen), Prof. Waldemar Greil (university Munich and Sanatorium 

Kilchberg), and Dr. Andreas Horvath (Sanatorium Kilchberg) were important. 

Drug plasma levels have been analysed in the laboratories of Prof. Pierre Baumann and Prof. Dr. Chin 

Eap from the University of Lausanne and of Prof. Dr. Katharina Rentsch from the University of 

Zurich, both laboratories granting research prices for the analyses. 

Pharmacogenetic tests have been done in the laboratory of Prof. Pierre Baumann and Prof. Dr. Chin 

Eap at the University of Lausanne, within the common research project free of charge.  

Advice on the study design and methodology has been given by Prof. Richard Farmer, University of 

Surrey, Prof. Sammy Suissa, University of Montreal, and by Jan-Willem van der Velden, MD, all 

pharmacoepidemiologists and experts in Drug Safety studies. Literature searches and discussions with 

these three experts made clear that before initiating any large case-control study, we need feasibility 

studies. 

Method: Feasibility study   
Phase I Awareness - collection of SADR and plasma level analysis of imputed 
drugs 

In a first phase, serious ADR cases from the clinic Königsfelden were collected within the AMSP 

project and blood samples for plasma level analysis of the medication involved were taken. 

Pharmacogenetic testing was only performed in cases where the presence of a particular 

pharmacogenetic status was suspected. This first phase was necessary to introduce the notion of TDM 

and pharmacogenetic testing in relation to the causality assessment of serious ADR in the daily 

clinical routine and to obtain the cooperation of the clinicians.  

Phase II nested matched control study 

In the second phase the aim was to test the feasibility of using a nested case-control study to 

investigate possible associations between drug plasma concentrations and/or CYP2D6 genotypes and 

the event of a serious adverse drug reaction. 

For this purpose 1 SADR case was matched with 3 control patients for the same imputed drug 

(combination), gender and age group (< 65 or ≥ 65 years old). Plasma levels of the imputed drugs 

were analysed and CYP2D6 genotyping and CYP3A phenotyping were routinely performed in all 

cases. 
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Stimulated spontaneous ADE reporting 

Systematic ADE reporting where every ADE is captured is very resource intense and only possible 

within a delimited research project. Stimulated spontaneous ADE reporting is also feasible in the 

context of the naturalistic setting of a large psychiatric hospital. The stimulation consisted in 

explaining the research and quality assurance project AMSP+ to all parties involved: in the first line to 

the clinicians, but also the nurses and the laboratory personnel. This procedure was repeated several 

times per year, combining it with AMSP case presentations. Furthermore, posters with the AMSP 

criteria for SADR and what to do in case such an SADR is found were posted in every ward office, 

easy to fill in forms were distributed to all clinicians and the wards to announce such cases to the 

AMSP drug monitors. In order to further motivate the clinicians, all AMSP cases were thoroughly 

documented for them and for the patient history. 

Collection of SADR according to the AMSP definition 

The AMSP+ study was performed in close collaboration with the clinicians of the 400 beds psychiatric 

in-patient hospital Königsfelden in Switzerland, medically directed by Dr.med. Mario Etzensberger 

(till end of 2008 and time of data collection), and member of the AMSP project since 2001. Three 

medical doctors (Patrik L. Stephan most of the cases, Lukas Ritz, and Evelyne Rechsteiner) acted as 

AMSP drug monitors coordinating the collection of the SADR, and making the first causality 

assessment after seeing the patient themselves and after taking the relevant patient history and further 

development of the ADR into consideration. This causality assessment was discussed with the treating 

clinicians and the author of the thesis before entering them in the central AMSP database at the 

University of Munich. There all entries were controlled for completeness of the case, inconsistencies 

and plausibility. Finally the cases were discussed at one of the Swiss case conferences with the other 

participants of the Swiss AMSP project (currently 13 psychiatric inpatient clinics, 13 manufacturers of 

psychotropic drugs, and members of the regional pharmacovigilance centres). If during this conference 

the causality was assessed differently, changes were added in the central database. Difficult cases were 

further discussed in one of the international conferences which participants of the different countries 

attend (mainly Germany, Austria and Switzerland). Again, if amendments to the cases are made, these 

are entered in the central database. All case reports including all amendments were also sent to the 

pharmacovigilance authorities and to the relevant pharmaceutical company. 

Blood sampling for drug plasma level analysis  

Blood samples were taken in the morning before any drug intake in order to obtain drug trough plasma 

concentrations, knowing that the drug free interval would vary between about 12 to 24 hours (for 

twice respectively once daily administration, evening respectively morning intake). 
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Blood samples were immediately centrifuged and serum was sent in the morning per priority mail to 

the laboratory. Blood samples obtained during the weekend were kept in the refrigerator till Monday 

morning when they were treated as described before. 

All the samples were analysed under routine conditions when received and the results were sent back 

to the clinician. This procedure allowed the clinician to adjust their treatment and reflects a naturalistic 

study design. 

Pharmacogenetic testing 

Pharmacogenetic testing was not readily accepted by the clinicians in the beginning of the study. In 

phase I pharmacogenetic testing was only done in case of strong suspicion of an unusual genotype. 

In Phase II every ADR patient and all matched control patients were genotyped for CYP2D6 (138), 

alleles *1,*3, *4, *5 and 2XN and wildtype, and phenotyped for CYP3A with the midazolam test 

(151;152;338). The results were sent to the clinician as soon as available, again in order to be of 

clinical help. This clearly was a motivation for them to collaborate in the study. 

For every pharmacogenetic test, for research purpose or for diagnostic reasons, a written informed 

consent by the concerned person or his or her tutor has to be obtained. Not only for doctors not 

familiar with this kind of tests can it be challenging to explain to psychiatric ill patients what a 

pharmacogenetic test means for them. Further to the informed consent the treating or research 

physician has to explain the results of the test to the patient, unless he or she explicitly refuses this 

knowledge. For every patient the pharmacogenetic test results were interpreted for the treating 

clinicians in the test report, put in the patient history and a personal genetic pass in credit card format 

was given to the patient explaining very briefly the test results as well (fig. 17).  

Figure 17: Example of short genetic information given to the patient in credit card format 

 
 

  
   

mediQ 
 

Zentrum für 
Medikamentensicherheit 

und Diagnostik 
 

Tel  056 462 23 21 
Fax 056 462 27 66 
mediQ@pdag.ch 

 

Ausweis 
Pharmakogenetik 
 
  
 Anna Muster 
 11.11.1941 

 
   CYP2D6 Genotyp *4/*4 = keine Aktivität 
 
   CYP2C19 Genotyp*1/*1= unauffällig 
   (untersucht Allele *2, *3) 
    
  

 
  Therapie-Empfehlung: 
  Medikamente, die v.a. über  CYP2D6  
  abgebaut werden vorsichtig dosieren. Grosszügige   
  Indikation für Kontrolle von Plasmaspiegel, v.a. bei   
  enger therapeutischer Breite und Nebenwirkungen.                

                                                               . 
                                                                 16.2.2006 
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Matching criteria for the control group 

Three patients of the dynamic cohort of the patient population of the clinic Königsfelden, without an 

ADR at the time of selection, were matched for gender, age group (< 65 or ≥ 65 years old), and 

imputed drug (combination) of the SADR case. Concerning the drug treatment they had to have the 

same drug(s) but were allowed to have other drugs besides as well. We did not match for the duration 

of drug intake with exception of the cases of weight gain where the controls had to have at least a 

month drug intake. 

Collection of control patients 

Ideally controls are selected shortly after the case is identified. Although lists with matching criteria 

were distributed to all wards, this did not always work. On one hand there were not enough patients 

fulfilling all criteria and on the other hand not all potential controls gave informed consent.  Therefore 

we tried to form a pool of potential control patients to be matched with later cases. Regular meetings 

were arranged in the wards explaining the research project and recruiting control patients.   

Statistical analysis 

This feasibility study is primarily analysed descriptively. Odds ratios have been calculated between 

cases and controls (see also table 2). 

 

Preliminary Results 
From 62 collected SADR cases only 20 could be matched with 3 controls, 8 cases with 2 controls, 7 

with 1 control, and 27 cases could not be matched at all. 5 SADR cases were 65 or more years old. 

None of them could be matched with control patients. 

Patient characteristics AMSP+ phase II 

37 (60%) SADR cases were female, 25 (40%) were male, mean age was 44 ±11 years, median 44 (20-

80) years. 31 (50%) were smokers, 23 (37%) non smokers, and in the remaining 7 cases smoking 

behaviour is unknown. 

All patients in the clinic Königsfelden are diagnosed according to the ICD-10 International 

Classification of Diseases. 29 (46%) patients suffered from a schizophrenic disorder (ICD10 - F2), 14 

(23%) from an affective disorder (F3), 10 had a neurotic disorder (ICD10-F4), 4 a personality disorder 

(ICD10-F6), 3 a substance abuse disorder (ICD10-F1), and 2 an organic mental disorder (ICD10-F0).  

Type of SADR were: 9 weight gain, 4 each for serotonin toxicity, exanthema, 3 each for somnolence, 

liver enzyme increase, hyponatremia, hair loss, 2 each for tachycardia, seizures, oedema, hypotension, 
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hypersalivation, extrapyramidal syndrome, delirium, and 1 each for vomiting, urinary retention, 

tremor, taste distortion, tardive dyskinesia, singultus, priapism, pericarditis, night mares, neutropenia, 

metabolic syndrome, intoxication due to a drug interaction, ileus, galactorrhoea, eosinophilia, 

dizziness, diarrhoea, bleeding, amaurosis. 

Weight and body mass index (BMI) were: mean weight was 75 ± 15kg, median weight 72 (47-128); 

mean BMI 26.1 ± 4.6, median BMI 24.4 (17.2-38.1). 

For the measure of the renal function, creatinine clearance was calculated: mean clearance was 113 ± 

28 ml/min; median was 116 (40-197) ml/min. 

Results of the CYP3A activity or midazolam test (ratio 1’OH midazolam/midazolam ) were: for 50 

patients results from the midazolam were obtained with a mean of 6.8 ± 5.7, median of 3.6 (0.28-

68.4); as reference: After oral administration of 75 µg midazolam, the 30-min total 1’OH-

midazolam/midazolam ratios measured without co-medication, with ketoconazole (a strong CYP3A-

inhibitor) and with rifampicin (a strong CYP3A-inducer) were (mean ± SD): 6.23 ± 2.61, 0.79 ± 0.39 

and 56.1 ± 12.4, respectively (152).  

CYP2D6 genotype frequencies were as follows: 42 EM (68%), 14 IM (23%), 4 PM (6.5%), 1UM 

(1.6%), and 1 unknown. The PM had the following SADR and imputed medication: 

1) Liver enzyme increase, tachycardia, hypotension, dizziness under clomipramine 300mg/d 

(plasma level of clomipramine + desmethyl clomipramine: 1228ng/ml; ref: 175-450ng/ml) and 

quetiapine 700mg/d (plasma level: 826ng/ml; ref. 70-300ng/ml). This same patient had also a 

low CYP3A activity in the midazolam test with a value of 1.1. 

2) Metabolic syndrome under olanzapine 30mg/d (99ng/ml; ref: 20-80ng/ml) and valproate 

1500mg/d (66ng/ml; ref: 50-100ng/ml), (additionally the antihypertensive combination 

atenolol/chlortalidone 50mg/ 12.5mg/d). The result of the midazolam test was 2.56. 

3) Abnormal bleeding under acetyl salicylic acid 100mg/d (no plasma levels) and fluoxetine 

40mg/d (total 1054ng/ml, ref. 120-300ng/ml; fluoxetine  667 ng/ml ; norfluoxetine 386ng/ml), 

(additionally olanzapine 10mg/d (plasma level 15ng/ml, ref. 20-80ng/ml), enalapril 2.5mg/d, 

torasemide 20mg/d, potassium, vitamin D). The result of the midazolam test was 4.06. 

4) Hair loss under lithium (0.78 mmol/l, ref. 0.5-1.2 mmol/l), venlafaxine (total 206ng/ml; ref. 

195-400ng/ml; venlafaxine 111ng/ml; O-desmethylvenlafaxine 95ng/ml). No result of the 

midazolam test was available. 

35 drugs were imputed in the SADR cases (table 20). 
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Table 20: Listing of the imputed drugs of the SADR cases (several drugs per case possible). n.d. = non 

detected; nc = non compliant 

drug Imputed 
with 
SADR 

SADR only 
attributed 
to this drug 

Reference plasma 
levels in ng/ml 
(including active 
metabolites, other 
units mentioned) 

Cases with high 
plasma levels (% 
of recommended 
upper limit) 

Cases with low 
plasma levels (% 
of recommended 
lower limit) 

Plasma 
level 
missing 

Acetyl salicylic 
acid 

1 0 no ref value - - 1 

Alprazolam 1 0 20 - 40  - n.d. - 

Aripiprazol 2 1 150 - 250  118, 120 - - 

Biperiden 3 0 no ref value - n.d.  2 

Buspirone 1 0 1 – 5  - - 1 

Carbamazepine 4 3 4-10 µg/ml 113, 120, 125 - 1 

Chlorprothixene 1 0 20 – 200  - - - 

Citalopram 1 1 30 – 130  - - - 

Clomipramine 1 0 175 – 450  273 - - 

Clotiapine  2 0 no ref value no ref value no ref value 1 

Clozapine 13 8 350 – 600  109, 111 257,120,     
186 

14 (nc), 57, 66 - 

Diclofenac  1 0 No ref value - - 1 

Fluoxetine 1 0 120 – 300  351 - - 

Flupentixol 1 1 2 – 15  127 - - 

Fluvoxamine 5 2 150 - 300 494, 284 8 (nc) - 

Haloperidol  4 0 5 – 17  - 68, 64, 68, 33 - 

Lamotrigine 1 0 3 -14 μg/ml -  - 

Levomepromazine 1 0 15 – 60  -  - 

Lithium 4 1 0,5-1,2 mmol/l 139 - - 

Lorazepam 1 0 10 – 15  - - 1 

Methadone 2 0 400 – 600  - 31 1 

Mianserin 1 0 15 – 70  204  - 

Mirtazapine 2 1 30 – 80  -  1 

Olanzapine 4 0 20 – 80  124  20, 97 - 

Oxcarbazepine 2 0 10-35 µg/ml - - - 

Paroxetine 2 0 30 – 120  - - - 
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Promazine 2 0 no ref value no ref value no ref value 1 

Quetiapine 5 2 70 – 300  275  - 1 

Risperidone 2 2 20 – 60  - - - 

Sertraline 2 1 10 – 50  - - - 

Trazodone 1 1 700 – 1000  - 57 - 

Valproate 13 2 50-100 μg/l - 28, 86, 44 - 

Venlafaxine 5 1 195 – 400  135, 571, 237 - - 

Zolpidem 1 0 80 – 150  - 69 - 

Zuclopenthixol 6 2  4 – 50  182 - 1 

 

99 times a drug has been imputed in our SADR cases, in 13 cases drug plasma levels are missing; 

from the rest (n=86): 23 (27%) had levels above the upper limit of the TDM reference level (41), 19 

(22%) had drug plasma levels of 120% or more of this upper limit. 18 (21%) had drug plasma levels 

below the lower limit of the TDM reference level, 16 (19%) had drug plasma levels of  80% or less of 

this lower limit. 

43 of the imputed drugs were antipsychotics, 24 were mood stabilising drugs, 21 antidepressants, 4 

anxiolytics/hypnotics, 3 anticholinergic drugs, 2 analgesics and 2 methadone. 

Control group characteristics 

82 control patients could be matched to the 62 SADR cases, 47 (57%) females and 35 males. Mean 

age was 42 ± 9 years, median 44 (20-64) years. 46 (56%) were smokers, 34 were not smoking, and 

from 2 the smoking data are missing.  

44 (53%) suffered from a schizophrenic disorder (ICD10-F2), 21 (26%) from an affective disorder 

(ICD10-F3), 8 had a substance abuse disorder (ICD10-F1), 7 a neurotic disorder (ICD10-F4, and 1 

each had an organic disorder (ICD-10-F0), a behavioural disorder (ICD10-) F5, and a disorder of the 

psychological development (ICD10-F8). 

Mean weight was 75 ± 13kg, median 72 (50 – 127) kg. Mean BMI was 26.1 ± 4.1, median 25.3 (18.5-

39.5). 

Mean creatinine clearance was 117 ± 29 ml/min, median was 112 (55-220) ml/min. 

For 78 out of the 82 controls results from the midazolam test were available. Mean was 8.9 ± 6.8, 

median 5.4 (0.25-69.6). 
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The CYP2D6 genotype frequencies were: 51 EM (62%), 25 IM (30%), 2 PM (2.4%), 4 UM (4.9%), 

and 1 unknown. The two PM had the following medication: 

1) Trazodone with plasma levels of 283 ng/ml (40% of the lower reference limit) 

2)  Clozapine with 595 ng/ml (within the recommended reference plasma levels) 

Table 21: Drug levels analysed in the control patients 

drug Number 
of plasma 
levels 

Reference plasma 
levels in ng/ml 
(including active 
metabolites, other 
units mentioned) 

Reference 
plasma 
levels 

Controls with high 
plasma levels (% 
of recommended 
upper limit) 

Controls with low 
plasma levels (% 
of recommended 
lower limit) 

Plasma 
level 
missing 

Acetyl salicylic 
acid 

- no ref value no ref 
value 

- - - 

Alprazolam - 20 - 40  20 - 40  - - - 

Aripiprazol 6 150 - 250  150 - 250  160 45, 77 - 

Biperiden 2 no ref value no ref 
value 

- - - 

Buspirone - 1 – 5  1 – 5  - - - 

Carbamazepine 1 4-10 µg/ml 4-10 µg/ml 113 - - 

Chlorprothixene - 20 – 200  20 – 200  - - - 

Citalopram 3 30 – 130  30 – 130  - - - 

Clomipramine + 
metabolite 

- 175 – 450  175 – 450  - - - 

Clotiapine  - no ref value no ref 
value 

- - - 

Clozapine 19 350 – 600  350 – 600  114, 137, 155 50, 90, 65, 65, 31, 
17 

- 

Diclofenac  - No ref value No ref 
value 

- - - 

Fluoxetine - 120 – 300  120 – 300  - - - 

Flupentixol - 2 – 15  2 – 15  - - - 

Fluvoxamine 9 150 - 300 150 - 230 182, 207, 193 85, 90, 82, 47 - 

Haloperidol  1 5 – 17  5 – 17  199 - - 

Lamotrigine - 3 -14 μg/ml 3 -14 
μg/ml 

- - - 

Levomepromazine - 15 – 60  15 – 60  - - - 

Lithium 5 0,5-1,2 mmol/l 0,5- 1,2 
mmol/l 

- - 1 
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Lorazepam - 10 – 15  10 – 15  - - - 

Methadone 2 400 – 600  400 – 800  - 14, 89 - 

Mianserin 3 15 – 70  15 – 70  180 86 - 

Mirtazapine 3 30 – 80  40 – 80  - 96, 66 - 

Olanzapine 5 20 – 80  20 – 80  - 88 - 

Oxcarbazepine - 10-35 µg/ml 10-35 
µg/ml 

- - - 

Paroxetine - 30 – 120  70 – 120  - - - 

Promazine - no ref value no ref 
value 

- - - 

Quetiapine 9 70 – 300  70 – 170  107 74, 74, 46, 87 - 

Risperidone + 
metabolite 

6 20 – 60  20 – 60  - 55, 70, 35, 45 - 

Sertraline 2 10 – 50  10 – 50  - 90 - 

Trazodone 3 700 – 1000  650 – 1500 - 44, 40 - 

Valproate 21 50-100 μg/l 50-100 
μg/l 

105, 110, 115, 111 20, 92, 82 2 

Venlafaxine + 
metabolite 

5 195 – 400  195 – 400  186, 117 96 - 

Zolpidem - 80 – 150  80 – 150  - - - 

Zuclopenthixol 6 4 – 50  4 – 50  - - - 

 

108 plasma levels of control patients have been analysed (table 21). 17 (16%) were higher than the 

upper limit of the TDM reference value, 9 (8%) were 120% or higher.  33 (31%) controls had lower 

plasma concentrations than the lower limit of the TDM reference, 20 (19%) were 80% or lower. 

Comparison of cases and control 

Considering the low number of matched case-control groups we abandoned the analysis of a matched 

control study and compared all cases with all controls which led to the following results: 

Cases and controls are similar for gender, age, weight, BMI, renal function, and smoking behaviour.  

The diagnose frequencies differ somewhat; in the control group the two main diagnosis groups F2 plus 

F3 sum up to 80%, in the cases to70%; more control patients suffered from an F1, and more cases 

from an F6 diagnosis.  
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A preliminary analysis of the data suggests that the CYP3A activity as measured by the midazolam 

test seems somewhat lower in the cases (mean 6.8 ± 5.7, median of 3.6 (0.28-68.4)) than controls 

(mean 8.9 ± 6.8, median 5.4 (0.25-69.6)). 

The two groups seem also to differ in CYP2D6 genotype frequencies with an odds ratio of 2.84 CI95, 

calculated according to the method explained in table 2: 0.58-13.69 (p=0.20) for PM, and for UM 0.33 

CI95: 0.05-2.3 (p=0.3) but this does not reach statistical significance. 

In the cases the 4 PM were under treatment with drugs being at least partly metabolised by CYP2D6: 

clomipramine, olanzapine, fluoxetine and venlafaxine. The 2 PM of the controls did get drugs which 

are not metabolised by CYP2D6: trazodone and clozapine.  

Drug plasma concentrations of the cases compared to those of the controls seem to be more often 

higher than the upper reference level. The odds ratio for high plasma levels is: 1.95 CI95: 0.97-3.92 

(p=0.045), restricting the analysis to plasma levels of 120% or more the odds ratio reaches 3.49 CI95: 

1.42-8.57 (p=0.005). 

Comparing the number of cases (n=17) with that of the controls (n=8) having drug levels higher than 

120% of the upper reference level, the odds ratio is 3.11 CI95: 1.35-7.17 (p=0.006).  

 

Discussion 
This first analysis of the results of this study shows some positive but also negative aspects which 

hindered the full realisation of all the aims. To select matched control patients turned out to be much 

more difficult than anticipated. There was the problem of obtaining written informed consent, which is 

recognized to be a challenge in psychiatry since the first obligation is to evaluate a mentally ill 

patient's competence to consent (339). In the case of psychotic patients, they were not able to give 

informed consent, and often no tutor was appointed. In cases where the patient was able to give 

informed consent or where a tutor was available, the challenge of explaining the reasons for 

pharmacogenetic tests had to be met. Another hurdle was the phenotyping with the midazolam test. In 

our experience, psychiatric patients are not easily willing to drink test substances like the midazolam 

solution. Further many potential control patients were very ill, and they were not willing to consent to 

in their opinion unnecessary procedures such as taking extra blood samples for tests they were not 

interested in.  

A study in a naturalistic setting of a large psychiatric inpatient clinic seems on first sight easier to 

perform than clinical trials with stringent in- and exclusion criteria. However, that is not necessarily 

true. First we are confronted with a broad heterogeneity of the patient population, with many different 
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diagnoses, drug treatments and co-morbidities. In-patients of such a clinic are very ill and their 

medication is mostly complex. 

When an SADR occurs, they naturally tend to occur in patients with heavy drug treatments or with 

drugs with a less favourable side effect profile. Often these patients do not respond to other better 

tolerated medication and represent a special patient selection (selection bias). Matching control 

patients with the same medication proved sometimes impossible. In case of carbamazepine treatment 

this was prominent.  

Some ADR such as heavy weight gain were common under certain medications such us olanzapine or 

clozapine (in line with the literature (340-342), matching these cases was not easy because the ADR is 

so common with these drugs, but also because of the time component of gaining weight.  

Some drug combinations were so rare (e.g. haloperidol and clozapine) that we could not find matched 

controls, amongst other combinations with interaction risks such diclofenac with lithium. However, in 

some cases it might be acceptable to match only for the plasma concentration of the SADR causative 

agent and not for the interacting substance as well. No comparable pharmacovigilance study could be 

found where ADR cases have been compared in a matched control design with control patients under 

the same medication (combination) but without the ADR.  

Another problem is the latency between the moments a SADR appears and the plasma concentrations 

are measured. Side effects are a major factor leading to non-compliance, and there are some cases 

where we suspect at least partial mal-compliance at the moment the blood sampling was taken. 

Therefore the number of patients with a high drug plasma concentration may be underestimated. 

Comparison of the cases and controls showed similar characteristics. However, for the targeted risk 

factors such as high plasma levels or CYP2D6 genotypes associated with low CYP2D6 activity 

differences appeared. CYP2D6 PM are expected to have higher plasma levels of drugs being substrate 

of CYP2D6 and therefore might be more vulnerable to concentration dependent side effects. In a 

retrospective matched case control study (343) 18 CP2D6 PM were matched each with one CYP2D6 

IM and on CYP2D6 EM. The risk for extrapyramidal symptoms or tardive dyskinesia, and for mal-

compliance, was significantly higher in CYP2D6 poor metaboliser than in patients with another 

CYP2D6 genotype. Another study showed that the CYP2D6 genotype had a significant and clinically 

relevant influence on risperidone plasma concentrations and that average plasma concentration of the 

active moiety of risperidone was significantly higher in persons suffering from dystonia or 

parkinsonism (344). In our population the 4 SADR cases with a CYP2D6 poor metaboliser genotype 

were all under medication (clomipramine, olanzapine, fluoxetine, venlafaxine) which was at least 

partly metabolised by CYP2D6, 3 had higher than recommended plasma levels of these drugs, the 
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patient under venlafaxine treatment at the time of the blood sampling not. This could be due to poor 

compliance as consequence of intolerability. In contrast to the 4 cases the 2 CYP2D6 PM control 

patients were not treated with a medication metabolised by CYP2D6 (trazodone, clozapine) and their 

drug levels were not exceeding the recommended plasma concentrations. Although the odds ratios for 

CYP2D6 genotype did not reach statistical significance, CYP2D6 PM seem to have a higher SADR 

risk, while CYP2D6 UM seem to have a protective effect. One can expect that with a higher number 

of patients and controls these odds ratios become statistically significant. In order to estimate the 

importance of certain genetic factors in drug safety, more and larger prospective studies in drug 

development and post marketing must examine this potential risk (345). 

A recent review (346) summarises the results of studies on the effect of certain genotype on 

therapeutic efficacy and side effects of antipsychotics. Most of these were case-control or cohort but 

not matched control studies. CYP2D6 poor metaboliser showed in the majority a higher risk for 

extrapyramidal side effects (EPS); for tardive dyskinesia this relation was less clear. The studies 

showing a significant CYP2D6 genotype dependent risk for EPS/tardive dyskinesia comprised 50 or 

more cases. 

Up to today we do not know the number of patients to genotype to prevent a serious side effect, a 

prerequisite for routine testing. And we do not yet have sufficient data to support or reject genotype 

based dosing as proposed by Kirchheiner et al (154;156;238). 

High plasma levels (120% or more of the upper reference level) could be identified as a risk factor, in 

analysing the number of patients/controls with high plasma concentrations or in comparing the number 

of high plasma levels between the two groups. Other groups found also a higher risk with higher 

plasma levels with certain antipsychotics such as risperidone (344), clozapine (289) or tricyclic 

antidepressants (37).  

In our feasibility study we had not enough matched case-control-pairs so that an unmatched case-

control analysis has been performed and odds ratios were calculated. With our limited number of cases 

and controls this showed statistically significant results for high plasma levels and a trend for CYP2D6 

polymorphisms. A more extensive analysis about the influence of high plasma levels will be 

performed at a later stage adding more SADR cases to the current study cohort including plasma 

concentration information but without genotype determination and using more (unmatched) control 

patients (patients without an SADR).  

Heterogeneity of the cohort 

Although a case-control study seems an adequate study design for a heterogenic patient population, 

the nested case-control study was limited by the relative low number of cases and controls within one 
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in-patient hospital cohort. A case-control study in the entire AMSP cohort would generate far more 

cases but most of the clinics who participate in the AMSP project do this mainly for reasons of quality 

assurance and are not always interested in or able to perform research, many times also because there 

are no personnel resources for clinical research.  

 

TDM plus 

On the base of the experience gained in the AMSP+ study and the fact that we have only sparse data 

indicating that routine drug plasma concentration monitoring and/or pharmacogenetic testing (347) in 

psychiatry are justified to minimize the risk for ADR, we developed a test algorithm - which could be 

named “TDM plus” (TDM plus interaction checks plus pharmacogenetic testing) - on how to proceed 

in presence of an ADR (fig. 18) (64). 

 

Figure 18: TDM plus algorithm 
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When a patient experiences an adverse drug effect, especially when serious or unexpected, drug 

plasma levels of suspected drugs are analysed. When the plasma levels are expected (dependent on the 

administered dose) a pharmacodynamic explanation is probable. If unexpectedly high or low a 

pharmacokinetic explanation should be considered.  

Firstly the possibility of a pharmacokinetic drug interaction is examined. It is important to know all 

drugs taken, also oral contraception or over-the-counter preparations and herbal medication. Also prior 

medication, depending on its half-life, can be important. Furthermore lifestyle and diet should be taken 

into account: most importantly smoking, grapefruit, and consumption of alcohol or illegal drugs. All 

this information is checked in a drug interaction program reliable for its pharmacokinetic information 

(see chapter 5). Alternatively, the pharmacokinetic characteristics such as metabolism and transport 

pathways of the suspected drug or drug combination are looked up in the summary of product 

characteristics of each drug or in text books and the interaction potential is estimated.  

If no pharmacokinetic drug interaction is found and the suspected drug(s) are metabolised by a 

polymorphic enzyme (e.g. CYP450) a pharmacogenetic test should be proposed. As explained in the 

introduction, genotyping is a trait marker but not available for all CYP450 enzymes. Phenotyping 

shows the activity of the tested enzyme, is a state marker and dependent on environment (here e.g. the 

drug taken). When genotyping is done, the information should be written in the patient’s history and 

also given to the patient for all future treatment. Important tested alleles should be mentioned (fig.11). 

Pharmacogenetic tests exist also for other enzymes such UGT or for transporter proteins e.g. Pgp but 

the interpretation of their results is more difficult since less is known about substrate specificity and 

the clinical relevance of their different genotypes (64;348). 

For some drugs routine TDM is recommended such as for lithium or clozapine (41), for other drugs 

with a narrow therapeutic index such as tricyclic antidepressants, TDM can prevent serious side effects 

(e.g. cardiac conduct disturbances, epileptic seizures, anticholinergic delirium), for all other drugs the 

proposed TDM plus algorithm seems, especially in the light of the health economical situation, more 

realistic. 

Recommendations for further studies 

A case-cohort study might help to overcome the problems we encountered to match controls to our 

cases, and inclusion of more cases will probably generate a clearer result concerning CYP2D6 

genotype dependent (S)ADR risk. Limiting the heterogeneity of the cases in choosing either for a 

certain ADR group such as EPS or for a certain drug or drug group such as antipsychotics or 

antidepressants would be advisable as well. If one chooses a matched control design a more 
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homogenous patient group is advisable in order to reach the necessary number of matched case-control 

pairs to perform a more detailed risk analysis by logistic regression tests.  

Written informed consent for drug plasma level monitoring, pharmacogenetic testing and use of these 

data for research purposes is ideally obtained of all patients of the clinic as soon as possible after 

admission. Blood samples for pharmacogenetic tests of all patients are taken; however, analyses are 

only done when needed. In this way costs are limited. 

In conclusion, case-control or case-cohort studies seem appropriate to study drug safety risk factors 

such as pharmacokinetics’ influencing genotypes or too high plasma concentrations of psychotropic 

medication. A recent state of the art paper on pharmacogenetic studies concluded that in rare and 

severe adverse drug reactions, case-control studies might be the sole feasible design (349). 
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7 mediQ.ch,  a Web based Drug-Drug Interaction Database  

Summary 
The internet based drug interaction program mediQ.ch (www.mediQ.ch) meets the need of the 

clinicians for an easily accessible tool to rapidly check the risks of drug and drug combination 

therapies. Different levels of information depth allow rapid checks for significant interaction risks for 

uncomplicated treatments as well as more detailed information for complex cases. The information 

source for drug information and for the risk estimation is referenced and direct links to Pubmed allow 

access to the abstract of the source publications. 

Risk estimation of drug combinations is mostly made for drug pairs, based on published data of 

clinical studies, case reports and drug characteristics. Pharmacokinetic and –dynamic as well as the 

side effect profile are taken into account. 

Risk estimation is also provided for the influence of diet, lifestyle or pharmacogenetic factors. In the 

summary of the drug profile, mainly based on the summary of product characteristics, the clinician 

finds also information on the need of dose adaptation in case of renal or hepatic insufficiency, the 

potential for QT prolongation and for lowering the seizure threshold. In addition detailed and 

referenced information is given on the metabolic and transport pathways of the active substances 

described. 

The main difference with other drug interaction programs is risk estimation for each drug pair in 

contrast to risk estimations based on class effects. This has the advantage to be more accurate and the 

disadvantage of generating a large amount of data which has to be, and is, regularly updated.  

The program was originally set up by the author of this thesis to serve the clinicians of the psychiatric 

in-patient hospital Königsfelden but in the meantime it is implemented in over 100 hospitals in 

Switzerland, Germany and Austria and several hundred private practices. 

 

Introduction 
Unintended adverse drug effects are a more frequent cause of death than traffic accidents in developed 

countries(350). It is estimated that 200 to 700 cases of unintended adverse drug reactions occur in a 

hospital with 500 beds per year, and the extra costs per year reach an amount of 400 million EUR in 

Germany alone (351). In Switzerland, a study from 1999 estimated the costs of drug-related hospital 

admissions to 70-100 million Swiss francs (352).  

http://www.mediq.ch/�
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The main reasons for serious adverse drug reactions are prescription errors, e.g. to incorrect dosage, 

double prescription, wrong medication and harmful drug-drug interactions (DDI) (353-356) which are 

either unknown or not considered. About 10% of all severe unintended adverse drug effects are due to 

adverse DDIs, in the elderly this increases to 15-20% (357;358). DDI are a major medical problem. 

This becomes more important as polypharmacy becomes more common; patients are treated for 

several conditions in parallel and more therapies build on combination therapy (e.g. HIV, cancer, 

infectious diseases, cardiovascular, and psychiatric disorders). Polypharmacy is also driven by the 

increase of age of the population in the developed world (i.e. more patients with multiple conditions to 

be treated), and the increased number of available drugs.  Therefore, at the same error rates, harmful 

DDI will increase if no tools are developed to support the prescription process in order to prevent 

harmful effects to patients.  

Combination pharmacotherapy is most common today in psychiatry. According to different studies 

only 20% of the hospitalised patients get a psychotropic monotherapy (8;359)(data from the AMSP 

database), the mean being 3.5 and 5 for patients under 65 and over 65 years old, respectively (data 

from the AMSP database). Besides the aimed benefit there is also the risk of potentially harmful DDI. 

It is estimated that clinicians identify 20 to 40 % of potentially hazardous interactions (360;361). 

Taking into account that the Swiss market comprises about 6000 medicinal drugs with about 2000 

active substances there are 2 million combination pairs (2 drugs) possible. Cautious calculations 

estimate the number of potentially harmful combinations to 40’ – 70’000 (Chistoph Hiemke, personal 

communication) taken all medication together and about 7000 in psychiatry only. These calculations 

do not take additive risks of multiple drugs’ combinations into account, nor interactions with food, 

lifestyle, genetic background and health status of the patient. 

Pharmacogenetic factors further complicate the prescription process 

Comparison of the list of drugs most commonly implicated in adverse drug reactions with the list of 

metabolizing enzymes with known polymorphisms shows that drugs commonly involved in adverse 

drug reactions were also those that were metabolized by enzymes with known polymorphisms (162). 

For certain new drugs pharmacogenetics is already part of standard practice for prescriptions 

(64;362;363). Thus, the clinician ideally knows the patient history, effects of food and life style, the 

exact medication with potential DDI, and in addition the potential effect of a certain pharmacogenetic 

status to determine whether a prescription is safe.  

Information Technology (IT) support systems 

To manage the overwhelming amount of data on potential drug effects, health professionals use more 

and more IT-based decision support systems when making prescriptions. Current databases which are 
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included in IT-based decision support systems list drug-drug interactions on one hand based on past 

observations of adverse effects in clinical practice, on the other hand, drugs are not treated individually 

but as members of an “effectors’ class”.  

The volume and complexity of knowledge and information e.g. through extended drug innovations or 

front line research insights such as in the above mentioned pharmacogenetics require the use of IT-

systems to support the prescription process. In general, medical practitioners lack behind other 

professions in implementing IT to support processes and share information. For example, only 14 % of 

all General Practitioners in Switzerland use electronic patient files (personal communication from e-

mediat at e-health conference 2010). Estimations from the US say that that the use of IT could prevent 

2 million adverse drug interactions and subsequent 190’000 hospitalisations a year (364).  

The US government therefore plans regulations to make electronic prescriptions (as opposed to paper 

prescriptions) mandatory by 2011. Prescription devices or systems will have to include an automatic 

check for interaction risk assessments. In Europe, similar regulation is likely to follow. Several 

initiatives are underway in Switzerland to overcome this systemic weakness, with the electronic 

patient files (e.g. a “patient smart card”) as one of the steps.  

Concept of the interaction program mediQ.ch 
The program has been designed and built to meet the need of the clinicians for an easily accessible 

source of reliable information where they can rapidly check the risks of drug and drug combination 

therapies. Different levels of information depth does allow the rapid check for significant interaction 

risks for uncomplicated treatments as well more detailed information for complex cases. The user of 

the program should always be able to know on which source the information of the risk estimation is 

based on, so information is referenced. 

The program does also inform (at least partly) on the interactions of patient factors such as 

pharmacogenetic status, renal and hepatic insufficiency, and the risk for long Qt syndrome or lowered 

convulsion threshold with a certain drug or drug combination treatment. 

The mediQ.ch database is built “bottom-up” on pharmacological data (fig. 19), which allows 

integrating pharmacogenetic and other new information as it is established. Thus, the data base can be 

extended easily by the “genetics” dimension or e.g. by the influence of co-morbidities, which is not 

possible – or very laborious – in other data bases. In addition, new drugs can be easily assessed for 

potential interactions when their metabolism and mode of action are known. 

For this deductive and mechanistic approach, mediQ.ch has filled an outstanding database on the 

pharmacological profile of pharmaceutical compounds and pharmacogenetic data, including detailed 
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information for about 20’000 interactions, 5’000 drugs, 2’000 substances, 400 indication classes, 150 

metabolic/transport pathways and 25 genotypes, including links to original scientific literature. 

The mediQ.ch source data is retrieved from the summary of medicinal product characteristics for 

healthcare professionals and published medical literature, based wherever possible on clinical data. 

The corresponding literature references are indicated. In order to keep up with the new research 

results, mediQ.ch’s data-base is continuously online updated and extended. Furthermore, several 

research collaborations help mediQ.ch to stay abreast of the scientific development (Unité de 

Biochimie et Psychopharmacologie Clinique, Centre des Neurosciences Psychiatriques of the 

University of Lausanne, IKC of the University of Zürich, and Psychiatric University Institute in 

Munich amongst others). 

Thus, the mediQ.ch system is an easy to use tool to access the fundamental data relevant to assess drug 

interaction risks with the ability to integrate new biomedical insights in a dynamic and intuitive way. 

Figure 19: Estimation of interactions potential on pharmacological bases (Number of potential 

interaction pairs of “n” drugs: n*(n-1)/2: At 2’000 known compounds this yields 2 millions 

interactions, not taking into account genotypes.) 
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Information Sources 
Besides the prescriber’s information or Summary of product characteristics (SPC) the following 

sources are used: 

1. Drug interaction/combination studies in patients: these studies can give a proper insight in the 

expected interactions in the studied patient population. Importantly, one has to consider that drugs 

are sometimes used in different indications, with a different patient population and therefore 

different risks. If these studies show no clinically relevant interaction, vulnerable patients could 

still be at risk. 

2. Drug interaction studies in healthy volunteers: These studies are mostly performed to study 

pharmacokinetic interactions, pharmacodynamic effects are sometimes neglected. Healthy 

volunteers are in general less vulnerable to adverse drug reactions than patients. 

3. Case reports: case reports are a valuable source of clinical information on the potential risk for rare 

adverse events of a drug combination.  

4. Pharmacological information is retrieved from the prescriber’s information and pharmacological 

studies, mainly found through literature search in Pubmed or in other drug interaction programs 

such as Micromedex (Thomson Micromedex, Thomson Reuters 1974-2010) or Genelex 

(www.genemedrx.com). 

4.1. Pharmacokinetic information (absorption, distribution, metabolism, excretion)  

4.1.1. In vivo: it is important to extensively search for in vivo data, since it is difficult from in 

vitro data to predict the in vivo activities.  

4.1.2. In vitro: where no in vivo data are available in vitro information is taken. However, the 

interpretation is done more cautiously than with in vivo data.  

4.2. Pharmacodynamic information (e.g. receptor affinity, agonistic/antagonistic action): 

pharmacodynamic information is sometimes difficult to find and interpret. In 2010 this 

information is still mostly missing in mediQ.ch.  

5. Side effect profile: the risk for certain drug reactions can substantially increase (accumulated risk) 

when more than one drug bears this risk (e.g. prolongation of QT-interval and risk of torsade de 

pointes; liver enzyme disturbances; electrolyte disturbances; neurotoxicity etceteras.)  

Literature searches are mostly done in Pubmed, supported by e-alerts from scientific journals and 

alerts from drug safety authorities such as FDA, EMEA and Swissmedic 

Concise risk estimation 

Concise risk estimation comments are written by experienced health professionals (pharmacists, 

physicians, pharmacologists…) and corrected by at least one peer (minimum 4 eyes).  All information 

is updated as new data become available and periodically, normally all 2 years. 

http://www.thomsonhc.com/home/dispatch�
http://www.genemedrx.com/�


99 

   

In cases where no clinical information is found, mediQ’s risk estimation is compared to the 

information in other drug interaction programs, e.g. Micromedex, Genelex, Pharmavista 

(www.pharmavista.net), PSIAC (www.psiac.de). 

 

Structure of the mediQ.ch interaction program 
The program is web-based in order to be easily accessible, always updated, dynamic with links to 

other information sources and interactive with online advice on specific questions 

Core of the program is the interaction-check where two or more substances can be combined, also with 

information on genetic polymorphisms. The answers will be presented in different ways and amount 

of details (see examples with screen shots below).   

In addition each substance is described with a summary of the prescriber’s information, important 

safety information (dose decrease in renal or hepatic insufficiency, potential for QT-prolongation, 

lowering of seizure threshold), pregnancy category , and detailed information on metabolism and 

transport of the drug,  

There is also information in which galenic formulation under which trade name a substance is 

available.  

All information is accessible via the name of the active substance or the trade name of the medicinal 

drug. 

As a supplement a glossary with useful definitions and links to other information sources in the field 

of drug interactions are given. 

The user guide explaining all the features is accessible on www.mediQ.ch under “So funktioniert es.... 

Screenshots und Präsentationen”. 

 

Examples 
Example 1 

A 40 year old male patient suffering from schizoaffective disorder, under olanzapine treatment needs 

an antidepressant, paroxetine being the first choice. The same patient suffers from a dry cough and he 

asks for a cough syrup containing dextromethorphan. He also mentions that he considers stop 

smoking.  No other health problems are known. 

 

http://www.pharmavista.net/�
http://www.psiac.de/�
http://www.mediq.ch/�
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Figure 20: First page after log in of the drug interaction program mediQ 

 

 

 

The entry page (fig. 20) displays on the left side different search categories, most important in blue the 

page which leads to the interaction check of drug combinations. We choose “Interaktions-Check”. 
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Figure 21: Drug entry page for the interaction check in mediQ.ch 

 

On the page “Interaktions-Check” (fig. 21) active substances (“Substanzen”) and/or drugs with their 

trade name (“Medikamente”) and/or a pharmacogenetic status (“Genetik”) can be combined. The 3 

drugs of our example and smoking (“Rauchen”) are chosen for checking the interactions under „Jetzt 

checken“.  

First an overview (fig. 22) of the clinical relevance of a potential interaction per drug pair is found. 

Red, meaning “highly relevant interaction, often also contra-indicated”, orange: “clinically 

meaningful”, yellow: “might be relevant in special clinical situations or vulnerable patients”, gray: no 

clinically relevant interaction expected. Besides that the user can see if there are relevant issues around 

liver (L) or renal (N) insufficiency, potential for QT-prolongation (Q) or lowering of the seizure 

threshold (K). 
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Figure 22: graphic overview of the relevance of potential interactions between the chosen substances 

 

 

In our example we find a highly relevant interaction between dextromethorphan and paroxetine, a 

clinically relevant interaction between smoking and olanzapine, two weak interactions between 

olanzapine and dextromethorphan and paroxetine respectively. We further see that for paroxetine and 

olanzapine we need to adapt the dose in cases of renal or hepatic insufficiency; further that both drugs 

have a certain potential for QT prolongation and that olanzapine lowers the seizure threshold. 

We now have the choice to click on one of combinations either in the first, or as seen in the next slide 

(fig. 23), second overview. We want to know what effect smoking has on olanzapine and click on the 

second combination comment. 

 

 

 

 

 

 

In English:                                                                  
N = dose adaptation in case of renal insufficiency       
L = dose adaptation in case of hepatic insufficiency   
Q = QT prolongation                                                    
K = lowering of seizure threshold 
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Figure 23: Second overview with summary of the potential interaction per drug pair is listed under the 

first overview.  

 

 

We click on the second combination “olanzapine and smoking” in order to obtain the detailed 

description of this combination comment (fig. 24).  
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Figure 24: Detailed combination comment on the influence of smoking on olanzapine treatment with 

information source references  

 

The comment explains that smoking (not nicotine) induces CYP1A2 and that sudden smoking 

cessation without dose adaptation can lead to high olanzapine plasma concentration and high risk for 

adverse drug reactions. It also mentions that the induction effect comes with latency. Clicking on a 

reference (e.g. Zullino DF et al 2002) brings us to the abstract of the source information (fig. 25). 
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Figure 25: abstract of source reference from the open access literature service “Pubmed” 

 

Under the second overview we find a rough overview of CYP450 interactions (fig.26). The variation 

in bioavailability is not yet taken into account or some other factors such as where different CYP450 

isoforms are active (e.g. intestinal vs. hepatic...). 

Figure 26: Rough overview of CYP450 interactions 
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Below an overview of metabolic and transport pathways with importance of substrate affinity and 

strength of modulating activity is found (fig. 27). 

Figure 27: Overview of metabolic and transport pathways with substrate affinity and modulating 

effects 

 

In case we want to know on what information sources mediQ relies for e.g. CYP2D6 and paroxetine 

we will find that in clicking on the right information button under details (fig. 28). 
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Figure 28: Source references, all with direct link (click on the author name in green) to their abstract 

in the open access literature service “Pubmed” or link to the journal, especially in case where free 

full text is available. 

 

 

 

Example 2 

A 54 year old female bipolar patient consults because she fears experiencing another manic episode. 

She presents with profuse and for her untypical sweatening; she feels restless, suffers from 

handicapping tremor (cannot handle the computer mouse, cannot hold a cup without spilling...). A 

month ago she added some new drugs to her existent medication after consulting a gynaecologist for 

menopausal complaints and weight gain. Her medication presented as follows: since several years:  

paroxetine 20mg/d, lithium 660mg/d, and levothyroxine 0.05mg/d; since 4 weeks tibolone 2.5mg/d 

against menopausal symptoms and sibutramine 10mg/d to reduce her weight gain. 
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The result of the interaction check presents as follows with the first graphic overview (fig. 29), below 

the second overview with the summaries of the most relevant information for each combination pair 

(fig. 30) and finally a detailed comment for the combination of lithium with paroxetine (fig. 31).  

Figure 29: Graphic overview of the interaction risk of the combination pairs in the combination 

treatment of paroxetine, lithium, levothyroxine and sibutramine 

 

 

The 3 orange flagged combination pairs show a serotonin agonistic potentiation of the sibutramin, 

paroxetine and lithium and warn of the risk of serotonin toxicity. mediQ.ch only displays comments 

on drug pairs; therefore clinician should read all the comments in order to get the full picture. 

The summaries of the next overview (fig. 30) mention the most important symptoms of a serotonergic 

overstimulation such as hyperreflexia, myoclonus, agitation, confusional state, hyperthermia, 

sweatening, ataxia and diarrhoe, it shows also an increased risk for QT prolongation and 

hyponatriemia.  
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Figure 30: Summary overview for the drug pairs of the combination treatment with paroxetine, 

lithium, levothyroxine and sibutramine. 

 



110 

   

In figure 31 the details for the combination pair lithium and paroxetine is displayed. It mentions that 

this combination is used as augmentation therapy in patients with a difficult to treat depression but it 

bears a certain increased risk for serotonin toxicity and QT prolongation. 

 

Figure 31: Detailed comment on the combination of paroxetine with lithium 

 

 

 

For further information on serotonin toxicity a link will bring you to the glossary, as shown in figure 

32. 
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Figure 32: Glossary text on serotonin toxicity 
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Realisation 
First we built a standalone program based on Microsoft Access in collaboration with Stefan Kunz 

from the mathematical institute of the University of Berne. The complexity of the tasks and the high 

amount of data exceeded the capacity of this program quickly. It also became clear that an internet 

based program which is easily accessible and regularly updated would better cover the clinicians’ 

needs. 

Based on the gained experience from the prototype mediQ.ch was designed and subsequently 

implemented  in close collaboration with Pierre Gumy from Pronaos GmbH by using open source 

software Zope and Plone. The platform is hosted by Stephan Göldi from Goeldi.com. 

 

Discussion 
Validation of mediQ.ch: Medical Thesis of A. Vieth, Mainz, 2008 (365) 

One validation has been realized with data from 8/2007 in a medical thesis by Anna Vieth of the 

University of Mainz from 2008. She compared 4 German speaking drug interaction programs: PSIAC 

(www.psiac.de), mediQ (www.mediQ.ch), ifap (ifap index®KLINIK, on CD-ROM version 5/07 with 

data from ABDATA) and the interaction check from the Arznei-Telegramm (http://arznei-

telegramm.de). In a Pubmed search she identified 40 clinically relevant drug interactions and 30 not 

clinically relevant drug interactions, examined them in each of the programs with the following 

criteria: 

• Interaction pair in the program described? 

• Mechanism of interaction described? 

• Source reference of primary literature? (summary of product characteristic was not counted as 

such, neither were review articles or similar) 

• Recommendations for the clinicians? 

• Was the information to the interaction pair useful? E.g. was the relevance of the interaction 

adequately described? Was the information complete? And as most relevant, was the 

recommendation to the clinician helpful?   

In 8/2007, the index time of the data capture for the medical thesis, the mediQ program had less than 

4000 drug pairs described and stood at its beginning (although some evaluations concerning the 

program in general were made later when around 8000 drug combinations were described). End of 

2009 almost 20’000 drug pairs are described. This meant that relevant information at the index period 

http://www.psiac.de/�
http://www.mediq.ch/�
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was missing and sensitivity was rated as low (in 2009 all the examined drug pairs were described). 

The information found, however, was correct; the source information good with direct access to the 

abstracts of Pubmed, and as only program there was detailed information on the pharmacokinetics 

displayed as well. In 2007 only few recommendations to the clinicians were given, which was seen as 

drawback. This indeed was not an omission but at that time wanted. The mediQ team would only 

made risk estimations and the clinicians would then take the necessary measures. Three years 

experience with many different users of the mediQ program and the critique of A. Vieht, showed 

however, that many clinicians, especially young doctors or e.g. psychiatrists who rarely prescribe 

medication “cocktails” needed recommendations on what to do, and if necessary and possible, wished 

to get examples of alternative medications.   

At the index period the user- friendliness was rated as suboptimal since not the whole information was 

displayed on the first page of the results. This might seem a disadvantage when only asking for the 

combination of 2 drugs; however, is a clear advantage when asking for more complex combinations, 

where mediQ in a graphical overview shows the available information with a first rating of the clinical 

relevance. This graphical display has been realised after the index period of 8/2007. 

If the same validation would have been realised in 2009 or 2010, the mediQ program would have been 

rated high which according a personal communication of Christoph Hiemke from Mainz will be 

shown in a second thesis by Martina Hahn “Vermeidung von Interaktionen in der 

Psychopharmakotherapie“.  

Research project by Stefan Russmann et al, Zürich, 2009 - 2011 

A research project on the clinical utility of clinical information programs such as mediQ and Theraopt/ 

ID PHARMA CHECK® has been performed by the Clinical Pharmacology Unit of the University of 

Zurich (Stefan Russman et al). They have filled in AMSP prescription data of almost 85’000 

psychiatric in-patients in the mediQ-program and checked for the number and nature of alerts 

generated. A first manuscript on the results has been submitted in spring 2011. In a second step they 

plan to repeat this analysis with the medication of ADR cases of the AMSP project. 

Comparison with other drug interaction programs 

The use of dedicated software system in medical practice allows integrating automatic interaction 

checks directly into the work flow of the physician. These drug-interactions-checker-programs warn of 

the potential risks, give the level of significance of the interaction (major, moderate or minor), and in 

certain cases, provide the recommended course of action to manage the interaction. 

However, conventional databases have a number of shortcomings, including: 
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- They are often empirical only, i.e. based on collections of clinical observations whose 

underlying causes usually are explained ex-post. This means that new drugs are not assessed, 

and that new biochemical and genetic information are not integrated. 

- They assess interactions on the level of effectors classes of drugs, e.g. SSRIs, antipsychotics, 

etceteras. This can lead to dangerous misjudgements if combinations of drugs with an atypical 

compound included are assessed, e.g. a combination of clozapine and citalopram or clozapine 

with fluvoxamine is both rated as moderate interaction; however, fluvoxamine-clozapine can 

raise the plasma concentration of clozapine 10times and more, citalopram will probably have 

no effect at all.  

- Novel concepts like the use of genetic profiling to stratify patients are not integrated in the 

data sets. The potential of pharmacogenetics for the risk-assessment of drug-drug interactions 

is foregone.  

- Important information on diet or recreational drugs is not included. 

- They are often based on linear (“conventional”) texts and do not use the capabilities of 

electronic texts (such as hyperlinks inside the text, or links to references). These data sets tend 

to be heavy and cumbersome to use. 

Some of the above mentioned tools are available online or are downloadable as personal digital 

assistants on Black Berry or iPhone. In many cases, though very interactive and with the promise of 

regular up-dated information, there is no knowledge about the source of the information which may 

pose an error risk. 

Furthermore, with the exception of Genelex (www.genemedrx.com), pharmacogenetics and 

information on diet and recreational drugs are not integrated in the tools and new information-sets are 

very difficult to integrate without reprogramming the tools.  

The analysis in table 22 is based on the 5 programs: Micromedex (Thomson Micromedex, Thomson 

Reuters 1974-2010: www.thomsonhc.com ), Genelex (www.genemedrx.com), Pharmavista 

(www.pharmavista.net ), mediQ (www.mediQ.ch), PSIAC (www.psiac.de) which all reference the 

source of their information. 

 

 

 

 

http://www.genemedrx.com/�
http://www.thomsonhc.com/home/dispatch�
http://www.thomsonhc.com/home/dispatch�
http://www.thomsonhc.com/�
http://www.genemedrx.com/�
http://www.pharmavista.net/�
http://www.mediq.ch/�
http://www.psiac.de/�
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Table 22: Comparison of 5 drug interaction programs (Micromedex, Genelex, Pharmavista, mediQ, 

PSIAC). pk = pharmacokinetic 

abilities YES Partly NO 

Risk estimation of 
combination >2drugs 

 Genelex, mediQ  Micromedex, Pharmavista, 
PSIAC 

Pharmacokinetic 
information 

Genelex, mediQ PSIAC, Micromedex, 
Pharmavista 

 

Pharmacodynamic 
information 

Micromedex, Pharmavista, 
mediQ, PSIAC 

Genelex  

Side effect profile Micromedex, Pharmavista, 
mediQ, PSIAC 

Genelex  

Pharmacogenetics Genelex, mediQ  Micromedex, Pharmavista, 
PSIAC 

Age, gender, co-
morbidities 

  None, sometimes in the text 
a warning 

Diet/lifestyle Genelex, mediQ, PSIAC  Micromedex, Pharmavista 

Recommendations to the 
clinician 

Micromedex, Pharmavista, 
mediQ, PSIAC 

 Genelex 

Risk estimation without 
clinical cases 

mediQ, PSIAC Genelex pk, Micromedex/ 
Pharmavista class effects 

 

 

A broader overview is given in the table 23; it compares mediQ and the following databases/drug 
interaction programs on different features: 

• e-mediat / ABDATA databases: today the most used interaction databases used in German 
language clinical decision support systems. Its origin comes from the “Deutsche 
Apothekerverband” (www.dimdi.de) 

• Pharmavista (www.pharmavista.net): a standalone interaction program based on ABDATA 
• Medical Letter's Adverse DID (http://secure.medicalletter.org ): this program is currently 

overhauled and is expected to be available with more features mid of 2011.  
• Micromedex (Thomson Micromedex, Thomson Reuters 1974-2010: www.thomsonhc.com ) 
• PSIAC (www.psiac.de) 
• Genelex (www.genemedrx.com) 
• Epocrates (www.epocrates.com) 
•  PEPID (www.pepid.com) 
• Davis Drug Guide (www.unboundmedicine.com) 
• Lexicomp (www.lexi.com) 
• Skyscape (www.skyscape.com) 
• Drugs.com (www.drugs.com) 

http://www.dimdi.de/�
http://www.pharmavista.net/�
http://secure.medicalletter.org/�
http://www.thomsonhc.com/home/dispatch�
http://www.thomsonhc.com/�
http://www.psiac.de/�
http://www.genemedrx.com/�
http://www.epocrates.com/�
http://www.pepid.com/�
http://www.unboundmedicine.com/�
http://www.lexi.com/�
http://www.skyscape.com/�
http://www.drugs.com/�
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Table 23: Comparison of electronic information sources on drug interactions 
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 emediat/ABDATA 
Data collection 

health prof YES NO NO NO NO PARTLY YES YES PARTLY NO YES YES 

 Pharmavista (data 
from e-mediat) 

health prof YES NO NO NO NO PARTLY YES YES NO NO YES PARTLY

 Medical Letter's 
Adverse DID 

health prof YES PARTLY NO NO NO PARTLY YES PARTLY NO YES YES PARTLY

 Micromedex  health prof YES YES NO NO NO PARTLY YES YES NO NO YES PARTLY

 PSIAC (only 
psychiatry) 

health prof YES YES NO NO NO PARTLY YES YES NO YES YES YES 

 Genelex health prof YES YES YES YES PARTLY YES PARTLY PARTLY NO YES NO PARTLY

 Epocrates Rx health prof NO YES NO NO NO no info no info YES YES PARTLY PARTLY YES 

PEPID health prof NO YES NO YES NO PARTLY YES YES NO YES YES YES 

 DavisDrugGuide health prof NO PARTLY NO NO NO no info no info no info YES PARTLY YES YES 

 Lexi-Comp health prof  NO no info NO NO NO no info no info no info no info no info PARTLY YES 

 Skyscape (data from 
Medical letter) Patients:  

simple warning 
NO no info NO NO NO no info no info no info NO no info NO no info 

 Drugs.com 
Patients:  
with 
explanations 

NO PARTLY NO NO NO no info no info YES NO PARTLY YES YES 

 mediQ.ch health prof YES YES YES YES PARTLY YES YES YES PARTLY YES YES YES 

 

Other authors looked from a different angle to several drug interaction programs and rated e.g. time to 

retrieve the relevant information, accessibility through mobile devices, or studied the “signal to noise 

ratio”, the problem of too many alerts leading to ignoring given alerts (361;366-374). The risk of 

ignoring the alerts of an interaction program because there are too many alerts can lead to build in 

filters for seeing only the interaction bearing a major risk. However, this can be misleading by 

overlooking an accumulation of equal or similar effects in a drug combination with more than 2 drugs. 

Better than filters are short graphical overviews where the clinician gets on first eyesight an 

impression of the interaction potential, and from there he or she can decide to go more into details. 

Further points of critique were that patient factors are not taken into account, that there are no 

standards of how clinical relevance is rated and in mobile devices but also some pharmacy programs 
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the quality of information seems to be at times suboptimal, partly because no automatic updates were 

available. 

Drug interactions programs: clinician’s needs and program’s realities 

Electronic programs to aid the physician with prescribing drugs can be valuable tools for the safety of 

patients and may become integrated in the quality assurance in medical practice. Drug interactions 

programs give risk estimations of drug combinations, which dependent on the factors considered – 

also patient characteristics - will be more or less accurate. Currently there exists no program which is 

able to predict the outcome of a drug (combination) treatment, the interplay of a multitude of 

influencing variables being too complex. This is also true for mediQ.ch. 

Clinicians wish a precise risk prediction of a drug combination therapy, not only for the combination 

of two drugs but also for more. The program should also take into account patient factors such as renal 

or hepatic insufficiencies, age, gender, illnesses, pharmacogenetic factors, diet, and lifestyle.  

However, the complexity of the interplay between drugs and the patient variables represent a 

seemingly insurmountable challenge at least as of today. One can imagine that new mathematical 

models to combine all these variables will allow a more precise outcome prediction one day. The 

clinician has to be aware of the advantages but also of the shortcomings of today’s drug interaction 

programs. 

Financial and legal aspects 

As of today clinicians are not obliged to consult drug information programs but they have the duty to 

care and to prevent harm.  Being knowledgeable of the interaction risk of a drug combination might 

also legally belong to this duty. In Switzerland there is no court case known, where a doctor has been 

convicted because he or she has overlooked a drug interaction risk (personal communication with 

Ursula Eggenberger Stöckli, Bern, lic. Iur. and dipl. Pharm.). It will be interesting to see how this will 

change when electronic prescribing with an integrated drug interaction checker will become part of 

standard care. The situation in the USA is different. There exist lawyers who are specialised in 

medical malpractice and some are specialised in injuries as consequence of drug interactions.  Courts 

might view a drug interaction due to a pharmacokinetic interaction as excessive dosing or as failure to 

appropriately monitor plasma levels (375); some case of death or permanent injury resulted in high 

financial damage compensations, as e.g. in a case 1999 in Oregon where ciprofloxacin (strong 

CYP1A2 inhibitor) and theophylline (CYP1A2 substrate) were co-prescribed resulting in permanent 

brain damage because of theophylline intoxication (375).  

Another legal aspect is the liability of the authors of drug information programs.  Users must exercise 

their independent professional judgment and should always consider the latest manufacturer's legal 
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information. A drug interaction or information program has to be used as a clinical decision support 

system, it cannot be more.  Nevertheless the authors of drug information programs should be aware of 

their obligation to offer the most accurate information possible since clinicians will rely on their 

information and patients’ wellbeing might depend on it.  This also implies regular updates on one hand 

and dated information on the other hand.   

Costs play a role in the decision of doctors and pharmacist to consult drug information programs but 

costs are also important in building up and maintain high quality programs. Nowadays cost differences 

are high. Some programs such as www.drugs.com are freely accessible and are paid by advertisement. 

Others are expensive such as Micromedex Drug Reax where a single user licence for a clinician costs 

approximately 5000 Euros, Pharmavista costs around 650 CHF, more often the costs sum up to 100-

250 Euros per single user (PSIAC; Genelex, mediQ.ch...). For the moment, these programs are 

competing with each other, and each of them has high salary costs for qualified personnel to pay. In 

the case of mediQ.ch, salaries are paid by the clinic Königsfelden and the income generated by the 

mediQ.ch licences, no pharmaceutical sponsoring is allowed.  

Collaboration could be useful, as could be a governmental support to make high quality programs 

available to all.  

Future Challenges for mediQ.ch 

Challenges for the mediQ.ch program will be to become integrated in the (electronic) prescribing 

process, to keep all the information regularly updated in order to maintain a high quality database and 

to provide continuously clinically relevant information and recommendations to the clinician. The risk 

of over-alerting must be kept in mind. When a clinician considers the information too abundant and 

not enough relevant, he or she will discard the alerts and the interaction program loses its purpose. A 

multi-lingual program would serve more persons and would on the long-term become more cost-

effective.  mediQ.ch has a structure which would allow a multi-lingual approach.  If enough financial 

resources are to be found a translation in other languages is probable.   

Interfaces to clinical information systems are currently being programmed and first tests seem 

promising. Since most clinical information systems already have a more general drug interaction 

program such as Pharmavista integrated, the problem of too much and sometimes contradicting 

information will have to be addressed.  

 

http://www.drugs.com/�
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8 Pharmacovigilance in Psychiatry: case studies 
 

Case reports are important documentations of uncommon events – clinical studies are most often not 

large enough to document rare adverse drug reactions therefore post marketing surveillance is essential 

– case reports can illustrate theoretical assumptions and often serve didactic purposes as well. 

They are of particular interest as “real life” documentation of drug effects in patients where only 

studies in healthy volunteers or clinical studies with stringent in- and exclusion criteria exist.  

However, case reports can only be used for signal generation. False conclusions can be drawn when 

unexpected events are wrongly interpreted, sometimes because not all pieces of the puzzle are known. 

E.g. a drug B is added to a drug A, plasma levels of drug A raise: obvious conclusion: drug B inhibits 

drug metabolism of A – but: shortly before adding drug B a drug C had been stopped, this drug C is an 

inducer of the metabolism of drug A and that fact has been overlooked. A cause to effect relationship 

needs pharmaco-epidemiological studies.  

The following case (series) reports are examples; a brief summary of their publication is given here. 

 

Metabolic syndrome associated to clozapine and olanzapine (266) 

A case-series of three chronic schizophrenic patients are presented who responded only to clozapine or 

olanzapine but suffered from massive weight gain and developed a (partial or full) metabolic 

syndrome. A change of medication was not an option since treatment changes resulted in exacerbation 

of their schizophrenic symptomatology. Therefore pharmacological and non-pharmacological 

strategies to counteract the weight gain under these antipsychotics were searched.  

The first case describes a 34 years old man who developed tardive dyskinesia under zuclopenthixol 

and was therefore changed to olanzapine. He had a body mass index (BMI) of 29 before first intake of 

olanzapine 10mg/d, within 10 months of this treatment his BMI raised to over 35 and he developed a 

full metabolic syndrome (fig. 33).  As counteractive measure a galenic change to dispersible 

olanzapine tablets and diet and fitness counselling was installed. With this the patient lost 6kg within 4 

months. 
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Figure 33: Time course of weight and metabolic changes of case A during treatment with olanzapine 

 

The second case describes a 33 years old woman who gained 44 kg (76 kg to 120kg, BMI 37.5) within 

5 years of clozapine treatment, most of the time in combination with valproate. This massive weight 

gain corresponding to 58% of her original weight caused walking problems with pain and urinary 

stress incontinence. She began to develop a metabolic syndrome with lipid changes and partially high 

blood pressure. Change to another pharmacotherapy was several times tried but always failed. 

The third case describes a 33 years old male patient who almost doubled his weight (67 to 128kg) 

under clozapine treatment in less than 4 years. As counteractive measure combinations with 

topiramate (-8 kg) and later with fluvoxamine (-18kg) helped to lose weight. During his massive 

weight gain his blood pressure was high and lipids and glucose parameter were suboptimal which 

partially normalised following weight loss. 

Discussion:  

Weight gain is a common but often underestimated health problem with many antipsychotics, most 

important with clozapine and olanzapine. Sometimes, especially in the cases of massive weight gain, it 

is accompanied by a metabolic syndrome. The reader should get sensitised to the clinical impact of 

such weight gain and learn strategies to prevent or minimize it. 
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Electric sensations: neglected symptom of escitalopram discontinuation (376) 

Treatment with citalopram (20 mg/d) was initiated in a depressive patient, which was soon replaced by 

escitalopram (10 mg/d, as monotherapy), the pharmacological active enantiomer of citalopram. 

Responding well, the patient reduced after 2 months first this dose to 5 mg/d and three weeks later 

stopped treatment completely. About a week later, she experienced electric shock-like sensations or 

flashes which were also visual, lasting for about one second each. This was followed by a phase of 

spatial disorientation that lasted for about 30 seconds and was experienced as highly unpleasant and 

frightening. The sensations were only felt in an upright position; the patient has no history of loss of 

tonicity. These episodes occurred up to three times a day over a period of two weeks. Prodromal 

symptoms or specific triggers were not reported. While the patient was on citalopram/escitalopram, no 

side-effects were observed. About 6 weeks later her depressive symptoms returned, resulting in 

another therapy with escitalopram (10 mg). After feeling better she stopped again taking her 

antidepressant escitalopram and experienced another withdrawal syndrome with the same symptoms 

as the first time, although this time they were less intense. 

 

Discussion:  

This case describes in detail - including dechallenge and rechallenge of the drug treatment - the 

symptomatology of an SSRI withdrawal syndrome after cessation of an escitalopram treatment. This 

was then the first case about a withdrawal syndrome published with this specific SSRI.  

 

 

Smoking not nicotine (377) 

A 50-year-old female inpatient, a heavy smoker, was treated for organic psychotic disorder and 

epilepsy with clozapine 75 mg/day, fluvoxamine 150 mg/day and valproate 1.5 g/day. After smoking 

cessation, because of bronchitis with elevated CRP, and supported by nicotine substitution 

(transdermal patch), her serum level of the CYP1A2 substrate clozapine increased by factor 2, while 

dosage and co-medication with valproate and the strong CYP1A2 inhibitor fluvoxamine stayed the 

same. CYP1A2 is induced by polycyclic aromatic hydrocarbons (not nicotine) in tobacco smoke and 

probably inhibited by infect related cytokines. The lack of induction (smoking cessation) and transient 

inhibition of CYP1A2 (bronchitis) caused a marked increase of clozapine level, even in presence of 

the strong CYP1A2 inhibitor fluvoxamine. Smoking cessation and infections with elevated CRP while 

on clozapine therapy require evaluation of dose reduction, monitoring of serum levels and screening 
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for signs of overdosing. It is important to note that an increase of clozapine level is not prevented by 

nicotine substitution (cf. above). 

Discussion:  

This case illustrates how co-medication and patient factors can affect the plasma concentration of a 

drug with a relatively narrow therapeutic index. CYP450 modulation (induction and inhibition) are 

discussed as well as the fact that clozapine has not a linear concentration-dose relationship. 

 

Clonus, hyperreflexia and agitation in a patient with increased fluvoxamine plasma level: signs 

of serotonin toxicity (378) 

This case report describes a 28 years old woman with mild mental retardation and significant 

behavioral impairment resulting from anxiety and obsessive-compulsive symptoms. She was admitted 

to the psychiatric clinic Königsfelden. Neither her neurological examination including MRI and EEG 

nor laboratory values revealed any abnormalities. Her treatment with 200mg/d fluvoxamine was 

stepwise increased to 400mg/d and valproate 2000mg/d was added. She showed signs of sedation and 

her initially light tremor under fluvoxamine 200mg/d became more severe. She also complained about 

cramps in her legs. Neurological examinations showed a middle frequent tremor of all extremities, a 

marked hyperreflexia of the legs and an Achilles tendon reflex clonus of 3-5 contractions. Fever, 

tachycardia, excessive sweatening, and high blood pressure were not observed. Trough plasma levels 

were for fluvoxamine 620ng/ml (ref. 150-300ng/ml) and for valproate 154 μg/ml (ref. 50-100 μg/ml) 

(41).  Valproate was stopped and fluvoxamine stepwise reduced and with that the neuromuscular 

hyper-excitability disappeared gradually, after stopping fluvoxamine no hyperreflexia was noted 

anymore.  

Adverse drug reactions as a result of increased central serotonin levels are best described by the term 

”serotonin toxicity” (ST) implicating concentration dependent effects. ST is characterized by the triad 

of neuromuscular signs, changes of mental status and autonomic symptoms, clonus being a key 

symptom. Severe ST at therapeutic doses mainly occurs, when inhibitors of monoamine oxidase type 

A (MAOI-A) are combined with serotonin reuptake inhibitors (SRI) of any kind. In Switzerland 

irreversible nonselective MAOI antidepressants are not marketed. Nevertheless a number of drugs 

have MAO-A inhibiting properties: moclobemide (reversible, selective MAOI-A) and the antibiotics 

linezolid (reversible, nonselective) and isoniazid (irreversible, nonselective). The antiparkinson drug 

selegiline (irreversible, selective MAOI-B) loses MAO selectivity at higher doses, an effect which also 
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has been shown for rasagiline. A number of drugs and combinations can - even in absence of MAOI - 

precipitate mild to moderate ST, a condition which can be difficult to recognize and impair 

compliance: (S)SRI, tricyclic and ”dual action” antidepressants (and sibutramine), serotonin 

precursors, some opioids, stimulants and antihistamines. Treatment options are dose reduction (mild 

ST), treatment discontinuation, benzodiazepines and 5-HT2A-antagonists (severe ST). 

Discussion:  

With the description of this case under a high dosed SSRI, the symptomatology of serotonin toxicity 

which can comprise only some typical serotonergic symptoms up to a full serotonin syndrome is 

presented. Diagnostic criteria as well as precipitative agents and counter measures are discussed. 

 

 

Adverse drug reactions following non-response in a depressed patient with CYP2D6 deficiency 
and low CYP 3A4/5 activity: a pharmacovigilance case report (379) 

A 47-year-old male taxi driver experienced multiple adverse drug reactions during therapy with high-

dose clomipramine and quetiapine for major depressive disorder, after having been unsuccessfully 

treated with adequate doses of mirtazapine and venlafaxine. Drug serum concentrations of 

clomipramine and quetiapine were unusually high. Pharmacogenetic testing showed a poor 

metaboliser status for CYP2D6, low CYP3A4/5 activity and normal CYP2C19 genotype. After 

reduction of the clomipramine dose and discontinuation of quetiapine, all ADRs subsided except for 

the increase in liver enzymes. The latter improved but did not normalize completely, even months 

later, possibly due to concomitant cholelithiasis.  

Discussion:  

This patient showed an unusual combination of CYP2D6 *4/*6 and a probably genetically determined 

very low CYP3A activity comparable to inhibition by ketoconazole (a very strong CYP3A-inhibtor). 

Clinical effects, preventive and correcting measures are discussed, Therapeutic Drug Monitoring - re- 

or better proactive - being given special attention. 

 

Misinterpretation of a venlafaxine blood level (380) 

A 42 years old depressed female patient was admitted to the psychiatric clinic Königsfelden pre-

treated with an SSRI. Her treatment was changed to a regimen of 75mg/d venlafaxine, mirtazapine 

15mg/d and valproate 1000mg/d. Blood levels of venlafaxine (V) and its active metabolite O-
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desmethylvenlafaxine (ODV) were measured because she suffered of an adverse event. The results 

showed an unusual high concentration/dose (488ng/ml V + ODV with a venlafaxine dose of 75mg/d) 

and a very low metabolic ratio ODV/V of 0.1. Subsequently the dose was lowered to 37.5mg/d which 

finally led to a depression relapse. Further investigations revealed that the low metabolic ratio was due 

to a CYP2D6 inhibition by the formerly taken fluoxetine. Interestingly, two weeks after the last intake 

of fluoxetine 40mg the plasma levels (determined from a frozen serum probe) were still in the 

recommended therapeutic range: fluoxetine 136 ng/ml, norfluoxetine 136 ng/ml, ref. for the sum 120-

300 ng/ml. This unusual metabolic rate is also seen in CYP2D6 poor metabolisers, but this patient was 

in an earlier hospitalisation genotyped and genetically (CYP2D6*1/*1) a CYP2D6 EM. ”After 

readmission (10 weeks later) the patient’s venlafaxine doses was increased to 150mg/d, the plasma 

levels of venlafaxine plus O-desmethylvenlafaxine were with 349ng/ml lower than before and the 

metabolic ratio ODV/V was now 1.9 (fig. 34). 

Figure 34: metabolic ratio of O-desmethylvenlafaxine (ODV)/venlafaxine (V) with and without 

influence of the co-medication fluoxetine 

 

Discussion:  

This case illustrates how discontinuation of medication with a long half life can continue its effects 

including CYP450 modulation. The reader is invited to thoroughly judge the patient’s medication 

history. Further possible interpretations of the metabolic ratio including pharmacogenetics are 

discussed. 
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Blood levels of extended-release quetiapine: beware of misinterpretation (48) 

A patient treated with extended-release quetiapine showed an unusual high blood level (1204 ng/ml, 

therapeutic range 70-170 ng/ml). On the basis of this example and a further three cases the specific 

pharmacokinetics of extended-release quetiapine and problems concerning the interpretation of its 

blood levels are discussed. Plasma levels measured 12-16 hours after last drug intake are valid for 

quetiapine immediate but not for quetiapine extended release. Trough levels are not yet reached in the 

latter case.  Plasma levels measured 10 hours after drug intake were about 5 times higher than levels 

measured after 20 hours. 

Discussion:  

In many psychiatric clinics blood drawing for plasma level analysis is only done in the morning before 

first drug intake. Quetiapine is a drug which is mostly prescribed as an evening or night dose and 

therefore plasma levels are taken after about 12 hours. This common practice is acceptable for many 

psychopharmacological agents but as shown in the case series not for quetiapine (and probably other) 

extended release medication where trough levels are better taken after 20-24 hours. 

 

Combination of clozapine with fluvoxamine (69;331)  

 A 48-year-old smoker with chronic schizophrenia was treated with a very high dose of clozapine 

(1200 mg/day) in order to obtain plasma levels within the recommended range of 350-600 ng/ml and 

to attain a therapeutic response (the patient was phenotyped as a rapid CYP1A2 metaboliser due to a 

high smoking-related CYP1A2 inducibility). After 2 years of this high-dose treatment he experienced 

several grand mal epileptic attacks. It was hypothesized that the use of such a high dose of clozapine 

produced high peak plasma levels, which could be a risk factor for his epileptic attacks. Treatment was 

therefore changed to a combination of a strong CYP1A2 inhibitor, i.e. fluvoxamine (150 mg/day) + 

125 mg/day clozapine, in order to decrease peak plasma levels, while maintaining the trough levels. 

The therapeutic response remained stable and trough plasma levels stayed within the same range as 

those observed with high dose clozapine treatment. However, the patient did not experience any 

further epileptic fits. 

Discussion: 

Adding fluvoxamine to clozapine treatment can increase plasma levels of clozapine by up to 10-fold 

(69;315;381-383), which can be highly effective (69;315;382-384) but is not without risk of 

intoxication (drowsiness, epileptic seizures, delirium and cardiac problems). Regular TDM control 

during the treatment switching period is necessary, as well as an immediate adaptation of the clozapine 
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dose. It is important to remember that the extent of the inhibitory effect is dependent on the baseline 

metabolic activity of the enzyme to be blocked and on the dose of the blocking agent (320;385). 

Another effect will be a shift of the concentration relationship between the parent compound clozapine 

and the metabolite norclozapine, which might represent a certain advantage in the tolerability of the 

treatment since norclozapine seems to be more sedative. It has also been postulated that combination 

therapy with fluvoxamine causes less weight gain than monotherapy with clozapine alone (315). 

 

Drug interaction leading to loss of therapeutic effect  

A 38-year-old patient with a history of drug abuse, psychotic episodes and human immunodeficiency 

virus (HIV) infection was admitted to hospital in an aggressive psychotic state. Treatment with a high 

dose of zuclopenthixol 400 mg depot, diazepam 60 mg/day and methadone 90 mg/day improved his 

condition. Because of his HIV-infection he subsequently received lamivudine and efavirenz. Five days 

after starting the new HIV treatment the patient deteriorated rapidly and became highly aggressive 

again. TDM of methadone showed a decrease in the methadone concentration to 55% of the baseline 

value, resulting in methadone withdrawal symptoms. HIV treatment with efavirenz was stopped and 

the patient recovered after about one week; the methadone plasma levels concomitantly returned to 

baseline values.  

Discussion: 

The described case (unpublished observation) and similar published cases (386;387) demonstrate a 

drug metabolism-inducing effect leading to methadone withdrawal. Efavirenz (388) and nevirapine 

(389) are strong inducers of CYP3A4, a major pathway in the metabolism of methadone. A 

prospective stepwise increase of the methadone dose (in general about 25%) together with multiple 

daily dosing and TDM are recommended.  

 

Interaction with concomitant illness 

A 54-year-old obese diabetic non-smoking patient with chronic schizophrenia was treated with a 

stable clozapine dose (and stable plasma levels in the therapeutic range) for several months. She 

became drowsy and partly disoriented during a symptom free pericarditis. Her clozapine plasma levels 

were at 250% of the recorded levels before the pericarditis without any change in medication dose.  
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Discussion: 

Similar cases, mainly with respiratory infections like pneumonia have been described (390;391). The 

clinicians should be aware of potential clozapine intoxication in presence of a severe inflammatory 

process, measure clozapine plasma levels and adapt accordingly the dose. This might be valid for other 

drugs which are mainly metabolised by CYP1A2 such as olanzapine and theophilline. 

 

Conclusion 

Although case reports cannot be generalized they are issued from clinical “real life”. Sometimes they 

illustrate what previously existed only as a theoretical hypothesis (pharmacodynamic interaction) or as 

a prediction from in vitro data (e.g. pharmacokinetic interaction). Sometimes their events are 

completely unexpected and further systematic research with pharmaco-epidemiological tools can 

confirm or refute an unknown adverse drug reaction. Sometimes they also show how normally well 

tolerated drug combinations can be harmful in vulnerable patients with risk factors such as low renal 

function, pharmacogenetic mutations, or an electrolyte abnormality. 

Case reports containing information on confirmed or suspected drug interactions are useful in the 

estimation of drug interaction risks and are referenced in the drug interaction program mediQ.ch. 

Often this is the only published clinical information available.  
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9 Concluding remarks and outlook 
 

During the past decade, Therapeutic Drug Monitoring, drug interaction checking programmes and 

pharmacogenetic tests have become more integrated in the clinician’s prescription process. A major 

step forward was the publication of the TDM consensus paper for psychiatry in 2004 (41), which 

provides guidelines for plasma level analysis and reference plasma levels. Thanks to the experiences 

made in pharmacovigilance programmes such as AMSP, where drug plasma levels have become an 

important factor to assess causality, and from published case reports linking observed ADRs or 

therapeutic failures to unusual and/or unexpected plasma levels, awareness is increasing. In 2011, 

updated and extended TDM guidelines will be published for therapeutic and dose related reference 

levels and including, for the first time, the notion of an alert plasma level, since the upper value of the 

recommended levels is often misinterpreted as the toxic threshold. This can, in some cases, lead to 

unnecessary dose adaptations and subsequent treatment failure.  

Although in 2011 clinicians are more familiar with therapeutic drug monitoring than they were 10 

years ago, efforts to teach the correct handling and interpretation of drug plasma levels to ensure 

meaningful results must continue. At the Psychiatric Clinic Königsfelden, it seems that involuntary 

intoxications due to unrecognised drug interactions or pharmacogenetic vulnerability are being 

detected earlier and are becoming less common. To confirm this assumption, we plan to compare drug 

plasma level results and drug combination data from 2000-2002 with those of 2009-2011. However, 

the introduction of regular TDM is not the only factor that has contributed to a lower number of 

harmful drug interactions: the introduction of our drug interaction programme mediQ.ch in the autumn 

of 2006 has also had a significant impact, as did the introduction of our test algorithm TDM plus, 

following which pharmacogenetic test results explained a number of unusual plasma levels. 

 

How  did the work in connection with this thesis contribute to improve drug 
safety  for the psychiatric  patient? 

Psychiatric patients are often exposed to polypharmacy of different psychotropic and somatic drugs 

their whole life, whereby the latter are sometimes administered to combat adverse effects of the first. 

The chronic use of drugs bears extra risks (e.g. weight gain and metabolic syndrome with modern, 

tardive dyskinesia, in the case of classic antipsychotics), risks which are hardly detected before a drug 

reaches the market. In phases of symptom exacerbation, the psychiatric patient might be medicated 

against his or her will in an emergency situation, be given high doses of different psychotropic drugs 

while being unable to communicate negative side effects. It is important to recognize and understand 
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ADR risk factors by undertaking clinical trials, case-control studies and by learning from well-

analysed case reports. It is necessary to raise awareness of these risks and to offer a tool that helps 

clinicians assess risks quickly. 

AMSP is a pharmacovigilance programme which helps finding risk factors and generates safety 

signals for new ADR in psychiatric patients under naturalistic conditions. It represents an instrument 

of quality assurance and continuous education of medical doctors in psychiatric wards. By discussing 

the cases of the AMSP+ study, TDM and pharmacogenetics have been introduced to members of the 

AMSP programme during the different case conferences. In the course of the last decade, TDM has 

become a valuable tool for causality assessment of SADR, and pharmacogenetic variation is now 

generally recognized as a risk factor. The AMSP+ study was able to confirm that high drug plasma 

levels represent a risk factor for experiencing an SADR with a statistically significant odds ratio of 3.5 

for drug plasma levels >120% of the upper recommended reference level. AMSP data show that the 

hospitalisation period doubles when a psychiatric patient experiences a serious adverse reaction. If 

drug plasma levels are measured at an earlier stage, we are able to prevent a number of SADR. We can 

furthermore guide the clinician in his or her choice of reducing the dose or changing the drug. 

However, for economical reasons we cannot recommend routine TDM. The indications for TDM 

given in the consensus guidelines should be followed.  

The situation concerning pharmacogenetic tests is more complex. On the one hand, more research, 

such as our clinical trials with mirtazapine and clozapine, is needed to understand which genotypes 

influence the effects of which drugs. On the other hand, we have to understand the nature of genotype-

related risks. We were able to show that the case-control study design is appropriate to identify rare 

events such as SADR and their risk factors. A state-of-the-art paper on pharmacogenetic studies also 

mentions the case-control design as suitable for studying SADR and pharmacogenetics (349). We will 

continue our research into risk factors of SADR in psychiatry and will analyse a larger case-control 

group for the impact of high plasma levels and more CYP450, and possibly ABCB1, genotypes.  

Based on our experience gained during the AMSP+ study and on the fact that we have only sparse data 

to support routine TDM and/or pharmacogenetic testing, we developed the test algorithm “TDM plus”. 

This algorithm is followed at the Psychiatric Clinic Königsfelden and has been instrumental in 

avoiding unnecessary pharmacogenetic tests. It has also become part of many continuing medical 

education lectures in and outside Switzerland. It is our firm belief that TDM and pharmacogenetic 

tests are valuable instruments of pharmacovigilance, not only in the causality assessment of ADR, but 

also in limiting harmful effects and in preventing them in future treatments.  

It is not enough to study and publish pharmacological characteristics of drugs or ADR related risk 

factors, this knowledge must be available to the treating physician at the moment of prescribing the 
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medication for the patient. A variety of electronic drug information programmes have become 

available, with the most successful programmes being accessible through the internet, which allows 

information retrieval at any time from almost every location. Future prescribing will most probably be 

done electronically on a handheld device.  

mediQ.ch has taken another approach than most of the current drug interaction programmes by being 

designed “bottom up”, meaning that risk assessment is based on the clinical and pharmacological data 

available for the combination of two specific drugs. It allows easy updating and combining interaction 

risks with other factors such as specific genotypes, diet, lifestyle or co-morbidity. Medical 

professionals from more than 130 hospitals, and 400 independent physicians in the German-speaking 

countries, consult this programme regularly. Their feedback is taken into account to fine-tune the 

programme to meet the users’ needs. mediQ.ch gives more detailed and more in-depth information 

than most other programmes. However, this detailed information rather meets the needs of hospital 

doctors and pharmacists than those of doctors or pharmacists in the field. One might consider 

developing a “light” version for them and adapting it for use with mobile devices such as smart phones 

or the I-Pad. This may also meet the needs of patients. 

mediQ.ch will be developed further, ideally to cover all clinically significant interactions, although 

such a goal might seem ambitious considering the vast number of possible drug pairs. Each user has 

the possibility to request information about such drug pairs of a drug combination therapy that have 

not yet been described. Answers will be provided within 48 hours, and the missing information is 

added to the programme. All information has to be periodically re-examined and, if necessary, 

updated. To support this task, the programme has an automatically generated reminder for information 

that is older than 2 years.  

Another challenge will be the integration of the drug interaction check of mediQ.ch into the electronic 

prescribing process and to make this large information database available in other languages. In 

general, more collaboration and consensus between different drug information providers should be 

attained and information from different sources combined, so that drug prescribing becomes safer. In 

order to avoid possible medication errors, several governmental bodies are considering guidelines for 

electronic prescription programmes which would include an interaction check. This may eventually 

lead to a certain level of harmonisation between the information from different providers. 

Finally, has the target of avoiding high-risk drug combinations been reached? Are there fewer SADR 

due to drug interactions? A recent publication on AMSP data has shown that although polypharmacy 

has increased between 1993 and today, the number of high-risk combinations (as measured by 

mediQ.ch) has in fact decreased (392). This may indicate that high-risk combinations are avoided 

more often and replaced by low-risk drug combinations. Our impression based on the AMSP project is 
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that the severity of Type A ADR has decreased. Serotonin toxicity e.g. is being recognised early and a 

dramatic course is thus being prevented. Also, more targeted laboratory or ECG controls are carried 

out in high-risk drug combinations, which can prevent serious ADR. Very high drug plasma levels 

resulting from a pharmacokinetic drug interaction have also become less frequent. 

 

Our hope 

Increasing knowledge of drug characteristics, pharmacogenetics and environmental factors, together 

with more advanced and less costly laboratory and information technologies, will enable us to find a 

way to practice a (more) personalised medicine, ensure safer and better tolerated drug treatments and a 

higher therapy success rate.  
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