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ABSTRACT

The generalized finite-element method (GFEM) has been ap-
plied frequently to solve harmonic wave equations, but its use in
the simulation of transient wave propagation is still limited. We
have applied GFEM for the simulation of the acoustic wave
equation in models relevant to exploration seismology. We also
perform an assessment of its accuracy and efficiency. The main
advantage of GFEM is that it provides an enhanced solution ac-
curacy compared to the standard finite-element method (FEM).
This is attained by adding user-defined enrichment functions to
standard FEM approximations. For the acoustic wave equation,
we consider plane waves oriented in different directions as the
enrichments, whose argument includes the largest wavenumber
of the wavefield. We combine GFEM with an unconditionally
stable time integration scheme with a constant time step. To
assess the accuracy and efficiency of GFEM, we compare
the GFEM simulation results against those obtained with the

spectral-element method (SEM). We use SEM because it is
the method of choice for wave propagation simulation due
to its proven accuracy and efficiency. In the numerical examples,
we first perform a convergence study in space and time,
evaluating the accuracy of both methods against a semianalyt-
ical solution. Then, we consider simulations of relevant
models in exploration seismology that include low-velocity
features, an inclusion with a complex geometric boundary
and topography. Results using these models indicate that GFEM
presents comparable accuracy and efficiency to those based
on SEM. For the given examples, the GFEM efficiency
stems from the combined effect of local mesh refinement,
nonconforming or unstructured, and the unconditionally stable
time integration scheme with a constant time step. Moreover,
these features provide great flexibility to the GFEM implemen-
tations, proving advantageous when using, for example, un-
structured grids that impose severe time step size restrictions
in SEM.

INTRODUCTION

Numerical simulations of wave propagation play a relevant role
in several exploration seismology applications, such as seismic im-
aging (Baysal et al., 1983; Zhu and Lines, 1998; Cho et al., 2019)
and field parameter estimation (Vigh and Starr, 2008; Virieux and
Operto, 2009). In these applications, it is common to find geologic
structures characterized by complex geometric boundaries and/or
large contrasts in the material properties with respect to the sur-
rounding rock. For instance, carbonate reservoirs present near-sur-
face diagenetic features that are a product of massive dissolution,

collapse, and fracturing of rocks (Wright and Smart, 1994; Lucia,
1999), which result in the formation of caves, vugs, and fracture
systems with irregular geometries (Lindsay et al., 2006; Huang
et al., 2017). High impedance contrast can be found at the interfaces
between an intact rock and collapsed structures partially filled with
different material such as loose sediments, breccias, or water (Lucia,
1999; Regone et al., 2017). Furthermore, discontinuous material
properties and rough interfaces reduce the smoothness of the solu-
tion of the underlying partial differential equation, i.e., the solution
presents a reduced differentiability. These geologic characteristics
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pose challenges for the creation of suitable computational meshes

and for the choice of suitable simulation methods.
Irregular free surfaces also pose meshing issues as meshes have

to conform as close as possible to the irregular boundaries to obtain
accurate numerical solutions. Examples of features with irregular
surfaces include sand dunes, dry river beds, salt flats, and col-
lapse-filled karst, among others (Bridle et al., 2007; Keho and
Kelamis, 2012), which in general cause body and surface wave
scattering and may also trap seismic energy producing unwanted
multiples (Keho and Kelamis, 2012). Furthermore, free surface
conditions create complex wavefields whose simulation requires
accurate and cost-effective numerical methods.
The finite-difference method (FDM) has been widely used to

simulate wave propagation due to its simplicity of implementation
and to the fact that it can be easily coupled with explicit time in-
tegration schemes. However, its main disadvantage is the lack of
flexibility when domains of complex shapes are considered.
Although new approaches aim to address this issue, they require
the implementation of special numerical procedures making
FDM less attractive. For instance, Appelo and Petersson (2009) in-
corporate complex geometry on free surfaces by extending the work
of Nilsson et al. (2007), who introduce boundary-modified differ-
ence operators. Similarly, Lan and Zhang (2011) propose a further
extension of the method to three dimensions including anisotropy of
the medium. However, as stated by Appelo and Petersson (2009),
these implementations are less efficient than standard FDM because
they involve more complicated stencils.
In contrast to FDM, the standard finite-element method (FEM)

allows flexible meshing without the need of particular implemen-
tations, proving to be a versatile numerical method capable of
obtaining accurate numerical solutions (Marfurt, 1984) even for
complicated geometric boundaries (Frehner et al., 2008; De Basabe
and Sen, 2009). However, FEM presents efficiency issues for the
simulation of wave propagation, even when combined with explicit
time integration schemes because it involves the solution of a large
linear system at each time step (Cohen and Fauqueux, 2000). In-
deed, low-order polynomial approximations require excessively fine
meshes as the wavenumber increases to reduce the dispersion error
and obtain numerical solutions with acceptable accuracy (Marfurt,
1984; Ihlenburg and Babuška, 1995b; De Basabe and Sen, 2007).
On the other end, although higher order polynomial approximations
may provide higher convergence rates for smooth problems (Ihlen-
burg and Babuška, 1995a; De Basabe and Sen, 2007), the number of
degrees of freedom (DOF) could be particularly large.
The spectral-element method (SEM) is one of the first proposed

variations of FEM that has a proven capability of improved effi-
ciency for the simulation of wave propagation (Komatitsch and Vi-
lotte, 1998; Komatitsch and Tromp, 1999; Cohen and Fauqueux,
2000). In SEM, the DOF nodes (the basis function nodes) coincide
with the quadrature points of a selected quadrature rule. Chebyshev
polynomials initially have been proposed as basis functions when
SEM was first introduced for solving the wave equation (Priolo
et al., 1994; Seriani and Priolo, 1994). Nonetheless, Legendre poly-
nomials, together with a Gauss-Lobatto (GL) quadrature rule, have
become the standard for SEM because this formulation yields a
mass matrix that is inherently diagonal (Faccioli et al., 1996; Ko-
matitsch and Vilotte, 1998; Cohen and Fauqueux, 2000; Cohen
et al., 2001). This property, combined with explicit time integration
schemes, allows avoiding the costly solution of a linear system.

High-order approximations enable SEM to achieve accurate solu-
tions with low dispersion error (Komatitsch et al., 2005; De Basabe
and Sen, 2007) for problems with smooth data and geometries.
Nonetheless, high-order approximations impose a strict Courant-
Fredrichs-Lewy (CFL) condition, restricting the time step size in
simulations, which becomes even more severe when combined with
high-order explicit time integration schemes. Moreover, SEM can-
not take advantage of the diagonal mass matrix property if com-
bined with nonconforming meshes. Although discontinuous
SEM formulations overcome this shortcoming (Käser and Dumb-
ser, 2006; De Basabe et al., 2016), these approaches entail imposing
even more severe CFL constraints (De Basabe and Sen, 2010).
Nonetheless, the introduction of enrichment functions in these for-
mulations aims to reduce the associated computational cost (Vamar-
aju et al., 2018).
The generalized FEM (GFEM) is a different strategy to improve

the accuracy of FEM. GFEM uses additional basis functions, be-
sides the FEM standard ones, which incorporate user-defined en-
richment functions (enrichments) to enhance the approximation
of the numerical solution. This avoids the requirement of excessive
mesh refinement as the wavenumber increases, without the need of
high-order polynomials (Strouboulis et al., 2006, 2008). Typical en-
richments are closed-form analytical solutions of particular partial
differential equations (Babuška and Sauter, 1997; Strouboulis et al.,
2000; Davydov et al., 2017). The enrichments are weighted with
standard FEM basis functions, following an approach similar to
the partition of unity method (Melenk and Babuška, 1996; Babuška
and Melenk, 1997).
Regarding the simulation of wave propagation, GFEM has

mostly been applied to solve the harmonic wave equation (i.e., the
Helmholtz equation) with a variety of oscillatory enrichments. For
instance, Babuška and Sauter (1997) and Strouboulis et al. (2006)
propose using plane waves in different directions as additional en-
richments and show an improved accuracy of GFEM compared to
FEM. Strouboulis et al. (2008) consider other enrichments such as
wave band functions and Vekua functions and test the performance
and the convergence rate for different meshing strategies. Further-
more, Imbert-Gérard and Monk (2017) propose exponential enrich-
ments (generalized plane waves) with polynomial exponents. They
present a discontinuous implementation of the method as well as the
corresponding convergence analysis. El Kacimi and Laghrouche
(2009) propose a solution for the time-harmonic elastic wave equa-
tion incorporating plane waves at different directions to enrich P- and
S-waves. They show that it is possible to simulate larger frequencies,
without the need of further mesh refinement, while maintaining the
accuracy of the solution. Ham and Bathe (2012) expand the appli-
cation of GFEM to the solution of the transient wave propagation
for the acoustic case, but their study is confined to homogeneous me-
dia only. In their work, they propose enrichments comprised of multi-
ple harmonic patterns to improve the accuracy of low-order FEM
approximations, but they do not evaluate the computational efficiency
of this technique. In a similar way, Komijani and Gracie (2017) sim-
ulate elastic wave propagation through a fractured media. They use
the enrichments proposed by Ham and Bathe (2012) together with
specific ones to model discontinuities (Song et al., 2006).
The generalized multiscale FEM (GMsFEM) introduced by

Efendiev et al. (2013) is a closely related numerical technique.
In this method, additional basis functions are calculated by solving
a local problem in a fine mesh, by which local heterogeneities are
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captured. Then, they are used to solve numerically the partial differ-
ential equation in a coarser mesh. GMsFEM has been applied to
simulate acoustic wave propagation (Chung et al., 2014; Chung
and Leung, 2016; Fu et al., 2019) and the elastic wave equation (Gao
et al., 2015; Cho et al., 2018). In contrast to this method, GFEM
introduces user-defined enrichments that are usually part of analyti-
cal solutions.
As discussed above, most of the work found in the literature ap-

plies GFEM principally to solve harmonic wave equations, either
for the acoustic or elastic case, with few applications for the sim-
ulation of transient wave propagation. Similarly, accuracy and effi-
ciency assessments of the method for transient wave simulations are
still limited. In this work, we extend the GFEM application for the
simulaton of the acoustic wave propagation in relevant models for
exploration seismology. Furthermore, we perform accuracy and ef-
ficiency assessments for the proposed examples. For the GFEM im-
plementation, we follow Strouboulis et al. (2006) and use, as the
user-defined enrichments, plane waves in different directions with
their wavenumber proportional to the largest wavenumber of the
wavefield. Thus, these enrichments mimic radial wave propagation
based on a relevant wavenumber. We combine GFEM with an un-
conditionally stable time integration scheme with a constant time
step. This time integration strategy allows, first, the use of time steps
that are as coarse as possible, constrained only by a desired level of
solution accuracy, and, second, it allows performing the costly ma-
trix factorization for inversion only once, upfront the time loop.
Moreover, we use local mesh refinement, unstructured or noncon-
forming, when needed to reduce the number of DOF. To assess the
accuracy and efficiency of GFEM, we compare the GFEM simula-
tion results with those obtained using SEM because this method
provides higher accuracy and efficiency than FEM as previously
discussed. We implement SEM with a GL quadrature rule that
yields a mass diagonal matrix, and we combine it with an explicit
time integration scheme because this strategy leads to a trivial solu-
tion of the linear system at each time step. In the first numerical
example, we perform a convergence study of both methods to assess
their accuracy with respect to a semianalytical solution. We also
perform an assessment of their efficiency. For the following two
examples, we consider more realistic models. For the second case,
we present a model with a low-velocity layer and a low-velocity
inclusion with a complex geometric boundary. The third case adds
a free-surface topography. In these models, we evaluate error esti-
mates and efficiency of GFEM simulations with respect to an SEM
reference solution. Overall, the results show that GFEM simulations
present similar accuracy and efficiency to those based on SEM. For
these examples, the efficiency and utility of GFEM arises from the
combined effects of local mesh refinement and the unconditionally
stable time integration scheme with constant time step. These same
features render GFEM a powerful alternative to SEM.

THEORY AND METHOD

The strong and weak formulations of the acoustic wave equation,
as well as the discretization approach, follow the mathematical pre-
sentation in Bangerth et al. (2010), which is similar to the treatment
of Komatitsch and Vilotte (1998). Moreover, both numerical meth-
ods, GFEM and SEM, are implemented in deal.II, an open-source
FEM library (Bangerth et al., 2007; Deal.II, 2020).

Acoustic wave equation

Let Ω ⊂ R2 be a bounded domain representing an acoustic
medium. The boundary of the domain is denoted by ∂Ω, and its
outward normal vector is denoted by n̂. The medium has an acoustic
velocity c inΩ and a velocity cb in ∂Ω. We want to find the transient
propagation of the pressure p in the time interval I ¼ ð0; T� pro-
duced by a localized and known source f. The p and f terms are
assumed to be functions of the position x ∈ Ω and time t ∈ I. In
general, c is assumed to be a function of position x ∈ Ω. The mixed
formulation of the acoustic wave equation reads (Bangerth et al.,
2010)

∂v
∂t

¼ ∇ · ðc2∇pÞ þ f in Ω × I;

∂p
∂t

¼ v in Ω × I; (1)

where v is the time derivative of pressure. Unless stated otherwise,
we impose absorbing boundary conditions of the form:

∇p · n̂ ¼ −
1

cb

∂p
∂t

on ∂Ω × I; (2)

and zero initial conditions for p and v. The mixed formulation as
presented in equation 1 facilitates the use of the θ method for time
discretization (Grossmann et al., 2007; Quarteroni and Valli, 2008),
which is a straightforward scheme to implement whose stability and
convergence have been widely studied.
We define the seismic source as the force density f ¼ fðx; tÞ, in a

way similar to Yue and Guddati (2005):

fðx; tÞ ¼ aof1ðtÞf2ðxÞ;
f1ðtÞ ¼ foðt − toÞ expð−π2f2oðt − toÞ2Þ ∀ t ≤ 2to;

f2ðxÞ ¼
�
1 −

kx − xok2
R2
s

�
3 1

V
∀ kx − xok ≤ Rs: (3)

Here, ao is a scaling factor, fo ¼ 1∕to is the central frequency of the
source, xo is the source center, k · k is the Euclidean norm, Rs is the
source radius, and V ¼ π∕4R2

s is the source volume.

Weak formulation

We multiply the first line of equation 1 by a test function ϕ ∈ V
and the second line of equation 1 by test function ψ ∈ Q, where V
and Q are the two function spaces to be defined later. Applying
Gauss’ theorem to the divergence term and using the boundary con-
ditions, we express the weak form as
For every t ∈ I, find p ∈ V and v ∈ Q such that

�
cb

∂p
∂t

;ϕ

�
∂Ω

þ
�
∂v
∂t

;ϕ

�
Ω
¼ −ðc2∇p;∇ϕÞΩ þ ðf;ϕÞΩ ∀ ϕ ∈ V;

�
∂p
∂t

;ψ

�
Ω
¼ ðv;ψÞΩ ∀ ψ ∈ Q; (4)

where ð·; ·ÞΩ denotes the L2 scalar product over the set Ω. Typical
choices for the function spaces are Q ¼ L2ðΩÞ and V ¼ H1ðΩÞ,
where L2ðΩÞ is the space of square-integrable functions over Ω
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and H1ðΩÞ is the space of functions with square-integrable deriv-
atives over Ω.

Continuous Galerkin approximations

To discretize equation 4 in space, we introduce a mesh τ covering
the domain Ω with quadrilateral elements κ ∈ τ. We introduce a set
D of DOF and the basis functions Λj with j ∈ D. We define the two
approximation spaces as

Vh ¼ Qh ≔ spanΛj: (5)

Hence, the approximations to p and v, respectively, denoted by ph

and vh, can be expressed as

phðx; tÞ ¼
X
j∈D

PjðtÞΛjðxÞ; vhðx; tÞ ¼
X
j∈D

VjðtÞΛjðxÞ:

(6)

Replacing the definitions of equation 6 in equation 4, we obtain
the algebraic formulation

E _PðtÞ þM _VðtÞ ¼ −KPðtÞ þ FðtÞ;
M _PðtÞ ¼ MVðtÞ; (7)

where M is the mass matrix, whose components are given by
Mij ¼ ðΛi;ΛjÞΩ; K is the stiffness matrix, whose components are
given byKij ¼ ðc2∇Λi;∇ΛjÞΩ; and E is the boundary mass matrix,
whose components are given by Eij ¼ ðcbΛi;ΛjÞ∂Ω. Moreover,
FðtÞ ¼ ðfðtÞ;ΛiÞΩ is the discretization of the source term.

FEM and basis functions

Standard FEM is based on the polynomial approximation space
Xσ
h. In the case of quadrilateral meshes, such a space is defined as

Xσ
h ¼ fv ∈ C0ðΩÞ∶vjκ°Fκ ∈ Qσ ∀ κ ∈ τg; (8)

where Fκ∶ð−1; 1Þ2 ¼ ∶κ̂ → κ is a map from the reference element
to the physical element κ and Qσ is the space of polynomials with
degree less than or equal to σ with respect to each of the components
of the position vector x. The polynomial basis functions are usually
chosen as the Lagrangian nodal functions associated to a node ξi,
and we denote them by Nσ

i . These basis functions are such that

Nσ
i ðξjÞ ¼ δij; (9)

where δ denotes the Kronecker delta. To specify the dependence of
the set of DOF on σ, we denote it by Dσ. For this work, we consider
only the space X1

h and its piecewise bilinear polynomials Ni as the
set of FEM basis functions.

SEM and numerical quadrature

SEM can be treated as a high-order FEM combined with a
numerical quadrature rule defined so that the nodes coincide with
GL quadrature points. For the polynomial space Xσ

h, we use a GL
quadrature rule with ðσ þ 1Þ2 quadrature points corresponding to
the polynomial nodes ξi. In this way, the number of quadrature
points is the same as the number of nodes for the polynomial space

Xσ
h. For the polynomial approximation, we use Lagrangian nodal

basis functions Nσ
i with σ ≥ 3.

For instance, the entries of the mass matrix in equation 7 are ap-
proximated by the following numerical quadrature:

Mij ¼
Z
Ω
Nσ

i N
σ
jdx ≈

X
k∈Dσ

pkNσ
i ðξkÞNσ

j ðξkÞ; (10)

where pk is the GL quadrature weights. Similar expressions apply
for other matrices in equation 7. Because Lagrangian basis func-
tions satisfy the property in equation 9, the GL quadrature rule leads
to diagonal matrices M and E. The GL rule is exact for calculating
the entries of K if Fκ is linear.

GFEM and enrichment functions

This approximation technique exploits the partition of unity
property of the standard FEM basis functions (Babuška and
Melenk, 1997), for which

P
iN

σ
i ðxÞ ¼ 1 at any point x. A gener-

alized finite-element function, e.g., ph, is written as

ph ¼
X
i∈Dσ1

PiN
σ1
i þ

X
l∈Dσ2

Nσ2
l

Xq
j¼1

Pl;jw
j
q; (11)

where wj
q is some global enrichment functions and q is their car-

dinality.
Following Strouboulis et al. (2006), we choose the space of

global enrichment functions as

Wq ¼ spanfwj
qðxÞ ¼ cosðk · xÞg; (12)

where k ¼ kðcosð2πj∕qÞ; sinð2πj∕qÞÞ, with j ¼ 0; : : : ; q − 1, are
the possible wave vectors for a given wavenumber k. Here, q rep-
resents the total number of directions considered. The enrichment
function wj

qðxÞ ¼ R½expðik · xÞ� is the real part of a general plane
wave in space traveling in the direction ðcosð2πj∕qÞ; sinð2πj∕qÞÞ.
With these definitions, we observe from equation 11 that an ap-

proximated solution of GFEM can be written as the sum of the parts,
one that belongs to the standard finite-element space Xσ1

h and one
that belongs to the enrichment space:

Wσ2
q ¼ spanfNσ2

l ðxÞwj
qðxÞg: (13)

Hence, the discretization spaces are defined as Vh ¼ Qh ¼
Xσ1
h ∪ Wσ2

q and the set of basis functions is fNσ1
i g ∩ fNσ2

l wj
qg. In

this work, we consider the case σ1 ¼ σ2 ¼ 1. We use a reference
wavenumber k ¼ 2πfo∕cmin for the enrichments, where fo is the
source reference frequency and cmin is the lowest velocity over
the medium. The assembly of matrices and vectors is performed
per element as for SEM, and we use Gauss-Legendre quadrature
rule to calculate the integrals. To solve the system, we use the
frontal solver UMFPACK, which implements the lower-upper (LU)
factorization technique for a sparse matrix inversion (Davis and
Duff, 1997).

Time integration

Two different θ methods are applied for the time integration in
equation 7.We subdivide the time interval I ¼ ð0; T� into subintervals
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In ¼ ðtn−1; tnÞ of equal length Δt ¼ tn − tn−1. Hence, the time-dis-
crete form of equation 7 becomes

E
Δt

½Pn −Pn−1� þ M
Δt

½Bn −Bn−1� ¼ −K½θ1Pn þ ð1− θ1ÞPn−1�
þ ½θ1Fn þ ð1− θ1ÞFn−1�;

M
Δt

½Pn −Pn−1� ¼M½θ2Bn þ ð1− θ2ÞBn−1�:
(14)

For GFEM, we set θ1 ¼ θ2 ¼ 0.5, leading to the Crank-Nicolson
or Newmark scheme, which is unconditionally stable (Grossmann
et al., 2007). For SEM, we set θ1 ¼ 0 and θ2 ¼ 1, obtaining the
central difference explicit method for pressure. We use the CFL
(Courant et al., 1967) condition to establish the maximum time step
size that could be used in the numerical examples. In particular, we
check that Δt satisfies the CFL condition, i.e., Δt ≤ hmin∕cmax,
where hmin is the smallest grid size of the mesh and cmax is the maxi-
mum velocity of the medium. However, for SEM, the CFL condi-
tion is stricter due to the implementation of high-order polynomials
and the presence of unstructured grids (Komatitsch et al., 2005;
Quarteroni and Valli, 2008). For GFEM, we restrain the time step
to increase the accuracy of the solution.

Nonconforming mesh refinement

We use conforming quadrilateral meshes; however, when needed,
we apply local mesh refinement by subdividing each element of a
targeted subdomain into four identical elements. This operation
leads to nonconforming meshes with hanging nodes, meaning that
some vertices of the refined elements will lie on the edge of neigh-
boring unrefined elements (Šolín et al., 2008). This refinement tech-
nique produces solutions that are not continuous along the edges
with hanging nodes. The continuity of the numerical solution is im-
posed according to the dominant shape functions, which are the ones
corresponding to the coarser elements across an edge with hanging
nodes. Thus, we constrain the DOF of the refined elements by a set of
linear relationships relating the constrained DOFDni with the uncon-
strained DOF Dj (Bangerth and Kayser-Herold, 2009):

Dni ¼
X
j∈Im

αijDj ∀ i ∈ In; (15)

where In is the subset of constrained DOF, Im is the subset of uncon-
strained DOF, and αij are the weighting factors relating the ith con-
strained DOF with the jth unconstrained DOF. In this way, the
hanging nodes are not actual DOF.

NUMERICAL EXAMPLES

In this section, we compare GFEM and SEM in terms of accuracy
and computational cost by means of three numerical examples. For
GFEM simulations, we consider plane waves with three, five, and
seven directions. For SEM simulations, we consider polynomial
orders three and five. For all of the examples, we define a reference
mesh size hr ¼ 1.5625 m and a reference time step size Δtr ¼
10−4 s. We point out that the value hr is exact for the first numerical
example, whereas we tried to create meshes that respect this con-

dition for the second and third numerical examples. We identify the
different methods by s ¼ md-αh-βt, where m denotes the method
(p for SEM and q for GFEM), d denotes either the polynomial order
for SEM or the number of plane waves for GFEM, and αh and βt
denote the multiples of the reference mesh size and time step size,
respectively. For example, s ¼ q5-4h-2t denotes a GFEM simula-
tion performed with five enrichment functions, a mesh with mesh
size of 4hr, and a time step size of 2Δtr. Note that, for naming the
methods, we are simplifying the notation of the mesh and time step
size. We are using h instead of hr and t instead of Δtr, respectively.
To evaluate the error over space, we define a set of receiver posi-

tions xi indexed by i and we compute the error as the maximum of
the L2 error over the set of all receivers

errs ¼ max
i
kSsxi − SrxikL2ðIÞ ¼ max

i

�Z
T

0

ðSsxi − SrxiÞ2dt
�1

2

;

(16)

where Srxi and Ssxi refer to the reference seismogram and a seis-
mogram obtained using a method s, respectively, at a position xi.
Furthermore, a seismogram Sxið·Þ ¼ pðxi; ·Þ, meaning that it is the
time series of computed pressures at position xi.
To evaluate the computational cost of SEM and GFEM, we con-

sider solutions presenting the least error for each of the methods.
For each of them, we compare the DOF per time step and the seis-
mogram error with respect to CPU time.

Homogeneous medium

The objective of this example is to validate the implementation of
the GFEM as well as to test its accuracy and computational cost. In
a way similar to Komatitsch and Tromp (1999), we compare the
results of our numerical simulations against a reference solution
produced by the source fðx; tÞ described in equation 3. The refer-
ence solution prðx; tÞ is calculated by applying the representation
theorem (Aki and Richards, 1980) over R2:

prðx; tÞ ¼
Z

∞

−∞
dτ

Z
R2

fðζ; τÞGðx; t; ζ; τÞdζ; (17)

where Gðx; t; ζ; τÞ is the Green’s function of the wave equation.
That is, its solution at ðx; tÞ is due to an impulse force at ðζ; τÞ.
In R2, the Green’s function has the following form (Duffy, 2015):

Gðx; t; ζ; τÞ ¼ 1

2πc2
Hðt − τ − r∕cÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt − τÞ2 − r2∕c2

p ; (18)

where c is the medium velocity, r ¼ kx − ζk, and Hð·Þ is the
Heaviside step function. In this example, the reference solution
prðx; tÞ has been computed by evaluating the integral in equation 17
with Mathematica software. For this reason, we refer to it as the
semianalytical solution.
For the numerical simulations, we consider a domain Ω ¼

ð0; 2lÞ × ð−l; 0Þ with l ¼ 400 m. The medium has a homogeneous
acoustic velocity of 1800 m/s. For the source function, we set
fo ¼ 40Hz, Rs ¼ 3.125 m, and xo ¼ ð−l∕2; lÞ, so that it is located
at the center of the domain. We obtain seismograms at the following
receiver locations:
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xdi ¼ xo þ d

�
cos

�
πi
4n

�
; sin

�
πi
4n

��
with i ¼ 0; : : : n;

(19)

with n ¼ 5. We set d ¼ 50 m for the near-offset receivers and d ¼
100 m for the far-offset receivers. To ensure that no reflections
reach any of the receivers, we set the simulation time to 0.12 s,
which is shorter than the required time (0.167 s) for the onset of
the first reflection at the far receivers.
We perform simulations with mesh sizes of 2hr, 4hr, 8hr, and

16hr, and time step sizes of Δtr, 2Δtr, 4Δtr, 8Δtr, and 16Δtr.
For GFEM, we perform local nonconforming mesh refinement
around the source position, so that the mesh size at the source lo-
cation is always hr. For SEM, we include simulations with an extra
time step size of 0.5Δtr. For SEM simulations, we do not include
local nonconforming mesh refinement to keep the mass matrix
diagonal but we double the quadrature points for the computation
of FðtÞ (equations 7 and 14).
Figure 1 shows the semianalytical and the numerically computed

seismograms, as well as their difference with respect to the refer-
ence seismogram evaluated at two near receivers and two far
receivers.

Then, we study the convergence properties in space and time for
SEM and GFEM. The errors are evaluated using equation 16 for
which the reference seismograms have been obtained evaluating
the semianalytical solution at the near and far receiver positions.
Figure 2 shows errors with respect to the time step size and mesh
size for SEM simulations. According to these results, we observe
how refinement in space reduces the error, whereas refinement in
time has no effect. This suggests that the restriction on the time step
given by the CFL condition provides an accurate enough time
step size.
The numerical computation of the semianalytical solution, as

well as the use of double-precision floating point numbers, may
explain the lack of convergence in the seismogram errors for
SEM with p5 for the finest mesh 2hr (Figure 2c and 2d).
In a similar way, Figure 3 reports seismogram errors with respect

to the time step size and mesh sizes for GFEM simulations. In this
case, we observe that, as the mesh gets finer, the error reduction due
to temporal refinement has a more pronounced effect (from 16Δtr to
4Δtr). Conversely, mesh refinement for a fixed time step size has
less influence on error reduction as the number of enrichment func-
tions increases. This latter effect on the error can be explained by the
additional enrichments that favor the spatial convergence because
they consider the wavenumber of the propagating wave.

Figure 1. Semianalytical and numerical seismograms, as well as their corresponding difference with respect to the reference seismogram
evaluated at two near receivers, (a) 0° and (b) 54°, and two far receivers, (c) 0° and (d) 54°.
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Figure 4a reports the CPU time for different computational tasks
for both methods as well as their corresponding DOF per time step.
The computational tasks that we consider are:

• Initialization, which refers to the CPU time spent on the al-
location of sparse matrices and vectors according to the spar-
sity pattern of the mesh. It also considers the CPU time spent
in performing nonconforming mesh refinement for GFEM
implementations.

• Assembly, which corresponds to the CPU time spent on the
assembly of the mass, stiffness, and boundary mass matrices.

• Factorization, which, for SEM, corresponds to the CPU time
spent on finding the reciprocal of the entries in the diagonal
of the stiffness matrix and, for GFEM, corresponds to the
CPU time spent in computing the LU decomposition of
the stiffness matrix that will be used to solve the linear equa-
tion at every time step.

• Time step solve, which corresponds to the CPU time spent on
computing the solution for one time step.

Observe that the first three tasks are performed only once outside
of the time advancing scheme. Note as well that, for any example,
the major fraction of the CPU time corresponds to the assembly
time. The factorization time is negligible for SEM, but it represents

the second largest fraction for GFEM and it increases with the num-
ber of plane waves used.
Figure 4b shows the mean seismogram errors between far and

near receivers with respect to the total CPU time spent for the com-
plete simulation of 0.12 s. This CPU time comprises the time spent
on the solution for all time steps and the additional computational
tasks out of the time loop. Note that the maximum and minimum
CPU times correspond to GFEM simulations. Nonetheless, the least
error belongs to SEM with p5.

Medium with low-velocity features

For this example, we consider a medium with a top low-velocity
layer (900 m/s) and a low-velocity inclusion (1500 m/s) as shown in
Figure 5a. The model dimensions and the source parameters are the
same as in the previous case. For this example, the source is located
at (400 m, −50 m) in the horizontal and vertical coordinates, respec-
tively (Figure 5a), and 100 receivers are placed at 10 m from the
surface, spanning from 50 to 750 m along a horizontal line.
We consider the solution computed with SEM p5-2h as the refer-

ence solution. For this SEM method, a wavelength is sampled by
43.2 DOF nodes. This value is obtained by applying the for-
mula suggested by Komatitsch et al. (2005): ðpþ 1Þc∕ðfo2hÞ.

Figure 2. Seismogram errors for the SEM simulations as a function of time step size for different mesh sizes. Results for p3 at (a) near and
(b) far receivers. Results for p5 at (c) near and (d) far receivers. Errors calculated using equation 16.
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Moreover, this sampling is the same as for the SEM solution in the
homogeneous case with p5-4h, which presented the smallest error
(order of 10−4). We also compute a second solution with p5-4h. The
time step size for these SEM examples is found by decreasing the
reference time step Δtr in a geometric manner: 0.5nΔtr, with n be-
longing to the positive integers, until the solution converges.

For the GFEM cases, we perform simulations with q3, q5, and
q7. We set the wavenumber k equal to 0.28m−1, which corresponds
to the wavenumber at the top low-layer velocity. Moreover, we ap-
ply a local nonconforming mesh refinement at the top low-velocity
layer to improve the efficiency of the GFEM simulations. Specifi-
cally, we refine the mesh of this layer to 2hr, whereas for the rest of

Figure 3. Seismogram errors for the GFEM simulations as a function of the time step size for different mesh sizes. Results for q3 at (a) near and
(b) far receivers, for q5 at (c) near and (d) far receivers, and for q7 at (e) near and (f) far receivers. Errors calculated using equation 16.
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the domain, the mesh size is kept at 4hr. Figure 5b shows an exam-
ple of a nonconforming mesh that is two times coarser than the one
used for the GFEM simulations. For the given mesh size of 2hr at
the top low-velocity layer, one wavelength in this layer is sampled
by 86.4 DOF nodes and 115.2 DOF nodes for q5 and q7, respec-
tively. Observe that this computation has been obtained by modi-
fying the formula from Komatitsch et al. (2005): 2ðqþ 1Þc∕ðfo2h).
Moreover, note that these samplings correspond to the GFEM solu-
tions in the homogeneous case with the fewest errors (order of
10−4), obtained with q5-4h and q7-4h, respectively. However, to
obtain a similar level of accuracy with q3, an additional mesh refine-
ment is required.
Figure 6 reports SEM and GFEM seismograms as well as their

difference with respect to the reference seismogram. Notice that
differences are of the order of 10−4 and for practical terms they
overlay each other. Figure 7a reports the number of DOF for
SEM and GFEMmethods. Figure 7b shows seismogram errors with
respect to the total CPU for a simulation time of 0.65 s. The error for
each method is calculated following equation 16, meaning that it is
the maximum of the L2 error over the set of the receiver seis-
mograms. Notice that for almost all solutions this error is less than
10−4 except for methods q3-4h/2hwith 1Δtr and 0.5Δtr. Regarding

the CPU time, the two fastest simulations presenting seimogram
errors smaller than 10−4 correspond to the methods q5-4h/2h-1t
and q7-4h/2h-1t.

Model with topography

This model is similar to the previous one except that it presents a
topographic relief as shown in Figure 8. The source and receiver
locations are the same as in the previous model. The reference solu-
tion is computed with SEM p5-2h in a mesh as shown in Figure 9a.
For this case, the top layer presents a mesh size of 2 hr and the rest
of the domain presents a mesh size of 4 hr. At the top low-velocity
layer, a wavelength is sampled by 43.2 DOF nodes. Moreover, we
use a time step size of 0.25 Δtr, which is obtained in the same way
as in the previous case. We also find an additional SEM solution
with p3 and GFEM solutions with q5 and q7 in a mesh that is
two times coarser than the mesh used for the reference solution ex-
cept around the topographic boundary where it has the same size
(Figure 9b). This is done to avoid errors that may come from
the mismatch with the topographic boundary. Notice that we do
not present an additional SEM solution with p5 because we found
that it has a stricter CFL condition than for the reference solution.
We do not present a GFEM solution with q3 either because the mesh
used for the additional solutions is too coarse to obtain results with
errors in the order of 10−4. For the SEM solution with p3, one wave-
length at the top low-velocity layer is sampled by 28.8 and 14.4
DOF nodes in mesh sizes of 2 hr and 4 hr, respectively. For the
GFEM examples, one wavelength at the top low-velocity layer is
sampled by 86.4 and 43.2 DOF nodes for q5 and by 115.2 and

Figure 4. (a) CPU times for different computational tasks and DOF
per time step for the best SEM and GFEM solutions. (b) Mean error
of the far and near receiver seismograms with respect to CPU time
for 0.12 s of simulation.

Figure 5. (a) Model with top low-velocity layer and low-velocity
inclusion. The source is depicted by a yellow star, and the array of
receivers is denoted by a dotted line. (b) Nonconforming mesh ex-
ample with size 4 hr for the top low-velocity layer and 8 hr for the
rest of the domain.
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57.6 DOF nodes for q7, respectively. Furthermore, the GFEM plane
waves include the highest wavenumber of the wavefield (0.28 m−1).
Figure 10 shows the seismograms obtained with SEM and GFEM

methods, as well as their difference with respect to the reference
seismogram. Figure 11a presents the DOF per time step for SEM
and GFEM simulations. Figure 11b shows the seismogram errors
with respect to total CPU time for a simulation time of 0.65 s.
The error for each method is calculated following equation 16,
meaning that it is the maximum of the L2 error over the set of
the receiver seismograms. Notice that, for the GFEM simulation
with q7, errors become smaller as the time step size is reduced;

a similar behavior is observed for q5, but for this case the smallest
time step size (1 Δtr) does not further reduce the error. GFEM sim-
ulations with time step size of 2Δtr present errors and CPU times
similar to the additional SEM simulation (error = 3.2 × 10−4; CPU
time = 29.8 × 103 s). Specifically, the GFEM simulation with q7
shows a smaller error (2.0 × 10−4) but slightly higher CPU time
(30.9 × 103 s), whereas the GFEM simulation with q5 shows a

Figure 6. SEM and GFEM seismograms and their difference with
respect to the reference seismogram. Evaluations performed for
receivers at (a) 156, (b) 403.5, and (c) 580 m in the horizontal co-
ordinates.

Figure 7. (a) DOF per time step for the SEM and GFEM solutions.
(b) Seismogram errors with respect to CPU time for 0.65 s of sim-
ulation for the SEM and GFEM examples. Errors calculated using
equation 16. The CPU time for the SEM reference solution is
906 × 103s.

Figure 8. Similar model as in Figure 5 but including topography.
The source is depicted by a yellow star, and the array of receivers is
denoted by a dotted line.
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higher error (4.1 × 10−4) but with a faster simulation time
(21.5 × 103 s). GFEM simulations with a coarser time step size
(4Δtr) have even higher errors (approximately 8.0 × 10−4), but they
present much faster CPU times than the additional SEM solution.

DISCUSSION

We have performed a comparison of accuracy and efficiency be-
tween GFEM and SEM for the case of the acoustic wave propaga-
tion. We used SEM as the reference method because it is the
preferred method for wave simulation due to its high accuracy
and efficiency. Nonetheless, numerical results from this work sug-
gest that GFEM can be a flexible alternative to SEM, while provid-
ing a comparable accuracy and efficiency. This is particularly true
when unstructured fine meshes are needed to conform to compli-
cated boundaries; hence, the exponential convergence of SEM can-
not be exploited. Moreover, GFEMmay be preferable to SEMwhen
local nonconforming refinement is performed in certain areas of the
domain to increase the solution accuracy. In this case, the use of
such meshes produces nondiagonal mass matrices, removing the
main feature that leads to the choice of SEM.
The first example allowed the evaluation of the convergence

properties of GFEM and SEM by comparing the L2 error of the
seismograms. The first interesting observation is that, for SEM, re-
finements of the temporal grid do not reduce the error (Figure 2).
Assuming that, as for other time-dependent equations (Karaa,
2011), the error can be bounded by the sum of spatial and temporal

discretization components, this suggests that the spatial component
of the error dominates over the temporal one. Hence, the time step
size provided by the CFL condition is already optimal. However,
the time step size of GFEM is not constrained by the CFL condition.
In this case, we observe that refinements of the temporal grid reduce
the error (Figure 3), especially when the spatial mesh becomes finer.
GFEM results from the first example provide an initial insight

into the appropriate mesh size and number of plane waves needed
to attain a certain level of accuracy. According to Figure 4b, the best
results in terms of accuracy and CPU cost correspond to GFEM

Figure 9. (a) Unstructured mesh used to obtain the SEM reference
solution. (b) Mesh two times coarser than the reference mesh ex-
cept in the areas close to the boundary in which the grid sizes are
the same. This mesh is used to find additional SEM and GFEM
solutions.

Figure 10. SEM and GFEM seismograms and their difference
with respect to the reference seismogram. Evaluations performed
for receivers at (a) 156, (b) 403.5, and (c) 580 m in the horizontal
coordinates.
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solutions with q5-4h-2t, q7-4h-4t, and q7-8h-2t. For these solu-
tions, the DOF nodes per wavelength are 86.4, 115.2, and 57.6,
correspondingly, and we used these sampling values as a guideline
for the two following examples. Regarding the selection of the time
step size, given that for the GFEM simulations we have used non-
conforming mesh refinement around the source, with a minimum
mesh size of Δhr, then the maximum time step size permitted
by the CFL condition would be Δtr ¼ 8.7 × 10−4 s. If we take this
value as a reference, then, for instance, the time step sizes of 2 Δtr
and 4Δtr used for the GFEM solutions (Figure 4b) are equivalent to
0.23Δtr and 0.46Δtr, respectively.
The two other examples show meshing techniques that enable

GFEM to reach a desired level of accuracy in a cost-effective
way. In the second example, we apply a nonconforming mesh re-
finement in the top low-velocity layer, which allows us to obtain
results comparable to SEM in terms of accuracy and efficiency (Fig-
ure 7b) without adding excessive cost as in the case of a uniform
mesh. In the third example, we use an unstructured mesh, which is
fine close to the topographic boundary and coarser on the rest of the
medium. In this case, we found that for SEM with p5 the numerical
solution diverged for the same time step size used for the reference
solution (0.25 Δtr). This is because mesh distortion makes the CFL
condition stricter in SEM implementations (Komatitsch et al.,

2005). In contrast, GFEM is not affected by this constraint, provid-
ing GFEM with more flexibility in this regard.
GFEM can present comparable efficiency to SEM as a conse-

quence of the combined effect of its speed to solve for a single time
step (see, for instance, in Figure 4a, examples q5-4h and q7-8h) and
of its flexibility to use larger time step sizes. This is a direct con-
sequence of the use of an unconditionally stable time integration
scheme with a constant time step that allows the LU factorization
of the system matrix to be performed upfront the time loop. Espe-
cially for long simulation times, this feature outweighs the initial
costly factorization rendering the method cost effective. However,
if nonuniform time steps are used, the efficiency degrades; never-
theless, parallel implementations of the solvers are available (Ames-
toy et al., 2000). Another important observation is that for the
GFEM seismograms presented there is not visible dispersion de-
spite of the use of a low-order polynomial. This is also corroborated
by the error estimations presented, which, for specific GFEM sim-
ulations, are of the same order as SEM.
GFEM has some shortcomings as well. In this aspect, we note

that the quadrature rule used for the assembly of the matrices is
not exact because GFEM incorporates sinusoidal functions whose
frequencies depend on the wavenumber. As a consequence, higher
order quadrature rules would be needed for larger wavenumbers. In
our numerical examples, we used a Gauss-Legendre quadrature rule
of order four. Nonetheless, for the sake of testing its accuracy, in the
first example we also performed simulations with a Gauss-Legendre
quadrature rule of order 10 and, when comparing the corresponding
results, the differences were on the order of 10−7. Another issue is
that stiffness and mass matrices in the global system of equations
may be singular due to the linear dependency of the additional basis
functions (Strouboulis et al., 2000). In the simulations, we used the
frontal direct solver UMFPACK (Davis, 2004) and we did not en-
counter any problem related to singularity or ill-conditioning of the
stiffness matrix. However, if the issue arises for problems with
larger DOF, matrix regularization algorithms can be incorporated
(Strouboulis et al., 2000; Ham and Bathe, 2012).

CONCLUSION

We have applied GFEM, coupled with a Newmark time integra-
tion scheme, for the simulation of the acoustic wave propagation for
relevant models in exploration seismology that include low-velocity
features, complex geometric boundaries, and a topographic free
surface. This approach has been systematically compared with a
standard one based on SEM and an explicit second-order time in-
tegration scheme, in terms of accuracy and efficiency. Numerical
results show that the GFEM-based approach can achieve similar
accuracy and efficiency as the SEM-based one. This is particularly
true for cases with nonsmooth data and/or domains with compli-
cated boundaries or inclusions, in which the high accuracy of
SEM cannot be exploited.
GFEM improves the accuracy of standard FEM by adding enrich-

ment functions. For the presented simulations, GFEM produces
numerical solutions that do not have the dispersion error typical
of low-order FEM. This is possible because plane-wave enrichment
functions mimic the shape of the wavefront together with its wave-
number, thus allowing the use of coarser meshes.
The GFEM implementations can attain an acceptable efficiency

because they combine local mesh refinement, nonconforming or un-
structured, when needed, together with an unconditionally stable

Figure 11. (a) DOF per time step for the SEM and GFEM simu-
lations. (b) Seismogram errors with respect to CPU time for 0.65 s
of simulation for the SEM and GFEM examples. Errors calculated
using equation 16. The CPU time for the SEM reference solution is
429 × 103s.
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time integration scheme with constant time step size. In particular,
this time integration strategy enables the use of coarser time step
sizes than the ones used in SEM. Moreover, the use of a constant
time step size greatly reduces the cost of matrix inversion at each
time step because it allows the expensive factorization operation to
be performed outside of the time loop. These features also render
GFEM a flexible alternative to SEM, especially when CFL con-
straints become severe for SEM simulations.
The proposed approach opens new research avenues in the field

of the discretization methods of the acoustic wave equation. An a
priori error estimate has to be developed for the presented method
and, more generally, for GFEM coupled with different time integra-
tion schemes. In particular, it would be interesting to study if the
enrichment functions improve the convergence only with respect to
the mesh size or also with respect to the time step size. Moreover,
detailed investigations have to be performed to understand how the
CFL condition is modified for the GFEM. Finally, such an approach
has to be extended to 3D cases and to the elastic wave equation.
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