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Abstract6

Mechanical waves, which are commonly employed for the non-invasive characterization of fluid-7

saturated porous media, tend to induce pore-scale fluid pressure gradients. The corresponding8

fluid pressure relaxation process is commonly referred to as squirt flow and the associated viscous9

dissipation can significantly affect the waves’ amplitudes and velocities. This, in turn, implies that10

corresponding measurements contain key information about flow-related properties of the probed11

medium. In many natural and applied scenarios, pore fluids are effectively non-Newtonian, for12

which squirt flow processes have, as of yet, not been analysed. In this work, we present a numerical13

approach to model the attenuation and modulus dispersion of compressional waves due to squirt14

flow in porous media saturated by Maxwell-type non-Newtonian fluids. In particular, we explore15

the effective response of a medium comprising an elastic background with interconnected cracks16

saturated with a Maxwell-type non-Newtonian fluid. Our results show that wave signatures strongly17

depend on the Deborah number, defined as the relationship between the classic Newtonian squirt18

flow characteristic frequency and the intrinsic relaxation frequency of the non-Newtonian Maxwell19

fluid. With larger Deborah numbers, attenuation increases and its maximum is shifted towards20

higher frequencies. Although the effective plane wave modulus of the probed medium generally21

increases with increasing Deborah numbers, it may, however, also decrease within a restricted22

region of the frequency spectrum.23

I. INTRODUCTION24

Mechanical waves are commonly employed for the non-invasive characterization of fluid-25

saturated biological [1], geological [2], and engineered [3] materials. In this context, the26

probed media are commonly conceptualized as a solid matrix comprising an interconnected27

void/pore space, which is occupied by a fluid phase [4]. In general, pore fluids are assumed28

to be Newtonian, implying that their viscosity η is a shear-stress and frequency-independent29

parameter. However, for a wide range of practical applications and natural scenarios, flu-30

ids present an effective non-Newtonian behavior [e.g., 5]. For example, fluids employed in31

hydraulic fracturing and/or drilling operations in porous geological formations are charac-32

terized by comprising large concentrations of polymers, surfactants, and/or colloids, which33
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result in non-Newtonian properties [e.g., 6, 7]. As of yet, there is a lack of comprehension34

of the characteristic signatures of mechanical waves traveling in porous media saturated by35

non-Newtonian fluids.36

Biot’s theory of poroelasticity is arguably the most widely used formulation to study wave37

propagation in porous media saturated by Newtonian fluids [8, 9]. Within the framework38

of this theory, relative motion of the viscous pore fluid with respect to the pore walls can39

occur in response of a passing wave which, in turn, experiences amplitude loss and phase40

velocity dispersion due to viscous energy dissipation. Due to this inherent relation between41

wave characteristics and fluid flow properties, there is significant interest in understanding42

the physical mechanisms behind the attenuation and dispersion of mechanical waves, which43

may provide information about the hydraulic properties of the explored media, such as the44

permeability [e.g., 10].45

There are two main fluid-related dissipation mechanisms that can take place in mono-46

saturated porous media: (i) global flow [e.g., 8, 9] and (ii) squirt flow [e.g., 11]. Global flow47

takes place when the solid frame is accelerated by a passing wave, thus inducing relative48

fluid displacements with respect to the pore walls. This mechanism is driven by inertial49

forces and, in the context of geophysical characterization of consolidated geological forma-50

tions, tends to become relevant at frequencies that are much higher than those typically51

employed in seismic exploration [e.g. 12]. On the other hand, squirt flow prevails in porous52

media with locally contrasting compressibilities, such as, for example, interconnected cracks53

embedded in an otherwise intact matrix, whose characteristic sizes are much smaller than54

the prevailing wavelengths (i.e., microscopic-mesoscopic scale). Notably, squirt flow effects55

prevail at much lower frequencies than those of global flow and, thus, may be an important56

source of energy dissipation in the seismic and sonic frequency band [e.g., 13, 14]. The above57

described dissipation mechanisms have been studied extensively for porous media saturated58

with Newtonian fluids (see Müller et al. [10] for a comprehensive review). However, further59

research is needed in order to understand how these important dissipation mechanisms are60

affected by the presence of non-Newtonian pore fluids.61

Previous efforts to explore the effects of non-Newtonian fluids on the wave signatures of62

porous media were mainly focused on global flow. Del Rio et al. [15] studied the effects of63

an oscillating non-Newtonian fluid on a capillary tube to explore the corresponding effects64

on the dynamic permeability. For this purpose, the non-Newtonian viscosity behavior was65
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modeled using a linearly viscoelastic Maxwell-type model. Tsiklauri and Beresnev [6, 16]66

connected this model to Biot’s poroelasticity theory [9] to study global flow dissipation67

experienced by rotational and dilatational elastic waves, conceptualizing the pore space as68

a bundle of capillary tubes. These authors demonstrated that the non-Newtonian behavior69

of the fluid can significantly affect the wave signatures. More recently, the approach of70

Tsiklauri and Beresnev [6] was used to study Rayleigh wave signatures [17] and guided71

waves generated in a fluid-filled borehole [18] in porous media saturated with Maxwell-type72

non-Newtonian fluids. As opposed to global flow effects, which were addressed in the works73

mentioned above, the effects of squirt flow in porous media saturated by non-Newtonian74

fluids do, however, remain largely unexplored.75

Here, we study squirt flow effects on compressional wave attenuation and dispersion in76

porous media saturated by a linearly viscoelastic Maxwell-type non-Newtonian fluid. We77

provide a procedure to include the effects of such a non-Newtonian Maxwell fluid on the78

squirt flow modeling approach proposed by Quintal et al. [19], which permits to analyze79

the associated compressional wave signatures for fluid viscosities with different intrinsic80

relaxation characteristics. To illustrate these effects, we consider a simple model of a porous81

medium, whose representative elementary volume (REV) consists of two orthogonal and82

intersecting cracks saturated with a non-Newtonian linear Maxwell fluid embedded in an83

elastic impervious background.84

II. THEORY85

In the following, we describe a set of equations that permit us to compute squirt flow ef-86

fects on the compressional wave signatures of porous media for a known pore space topology.87

For this, we introduce the method of Quintal et al. [19], which considers that the embedding88

frame is an elastic solid hosting cracks/pores saturated with a Newtonian fluid. Then, we89

present a simple procedure to include non-Newtonian behavior in the corresponding formu-90

lation.91
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A. Governing equations for squirt flow with a Newtonian pore fluid92

Let us consider a porous medium whose matrix is an isotropic elastic linear solid hosting93

a pore space that is saturated by a viscous and compressible Newtonian fluid. Let us assume94

that this medium is deformed by a passing compressional wave characterized by presenting95

smalls strains (∼ 10−6) and a wavelength that is large compared with the characteristic pore96

size. Furthermore, we assume that the flow within the pores is such that viscous forces dom-97

inate over inertial forces [20]. Note that this latter assumption is fulfilled provided that the98

prevailing frequencies are much smaller than the so-called Biot’s frequency, which is associ-99

ated with the onset of global flow dissipation. In this context, the linearized and quasi-static100

coupled Lamé-Navier and Navier-Stokes (LNS) equations can be employed to derive the ef-101

fective frequency-dependent bulk and shear moduli of the system [19]. The corresponding102

set of equations, which is detailed below, consists of the conservation of momentum and a103

generalized constitutive equation.104

The conservation of momentum is given by105

∇ · σ = 0, (1)106

where σ denotes the total stress tensor. As the considered medium comprises both solid and107

fluid domains, it is possible to discriminate between a solid and a fluid contribution within108

the total stress tensor [19]109

σ = ϕσs + (1− ϕ)σf , (2)110

where ϕ is a spatially variable parameter, which is equal to 1 and 0 in the solid and fluid111

domains, respectively. The total stress tensor can be divided into a bulk (volumetric) and a112

deviatoric (shear) part113

σ = −pI + s, (3)114

with p denoting the pressure or hydrostatic stress, I the identity, and s the so-called excess115

stress tensor. Note that Eq. (3) is valid both for the fluid and solid domains.116

On the other hand, the strain tensor for both the solid and the fluid corresponds to117

ε = 1
2

(
∇u+∇uT

)
, with u denoting the displacement vector and T the transpose. ε can118

also be divided into a bulk and a deviatoric part119

ε =
tr[ε]

3
I + ε, (4)120
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where ε is the deviatoric strain.121

The matrix and the fluid present an elastic response under bulk deformation and the122

corresponding constitutive equations are given by123

− p = Kβtr[ε], with β = s, f, (5)124

where Ks and Kf denote the bulk moduli of the solid and fluid, respectively. However, the125

stress-strain relationship for shear deformation differs in the solid and fluid domains. For126

the solid, it is given by127

ss = 2µsε, (6)128

where µs is the shear modulus of the solid matrix. Conversely, the stress-strain relationship129

for the fluid, in the space-frequency domain, is given by130

sf = 2η0iωε, (7)131

with η0 the shear viscosity of the Newtonian fluid, i the imaginary unity, and ω the angular132

frequency. The generalized constitutive equation is thus given by133

σ = ϕ (2µsε+Kstr[ε]I) + (ϕ− 1) (2η0iωε+Kf tr[ε]I) . (8)134

Eqs. (1) and (8) can be used to describe the mechanical response of a porous medium135

comprising solid and fluid domains. At the boundaries between these domains, complex-136

valued solid and fluid displacements u(x, ω) are considered to be continuous and are thus137

naturally coupled. For further details regarding the finite-element procedure used to solve138

the corresponding equations we refer to the work of Quintal et al. [19]. It is important to139

remark here that, due to the capacity of the viscous Newtonian fluid to flow within the pores140

in response to a macroscopic deformation, the effective elastic moduli of the medium are141

complex-valued and frequency-dependent which, in turn, results in attenuation and modulus142

dispersion of compressional waves, as further explained in subsection II D.143

B. Non-Newtonian Maxwell fluid with shear relaxation144

Experimental evidence shows that several non-Newtonian fluids, such as some surfactant145

solutions, exhibit the rheological behavior of a linear Maxwell fluid [e.g., 21, 22]. In the146

6



space-frequency domain, the relationship between the excess stress tensor s and the shear147

rate iωε for a linear Maxwell fluid responds to [e.g., 5]148

sf + τmiωs
f = 2η0iωε, (9)149

sf = 2ηmiωε, (10)150

where τm is the relaxation time of the corresponding fluid and ηm = η0/(1 + τmiω) is the151

frequency-dependent and complex-valued viscosity. We define ωm = 2π/τm as the char-152

acteristic angular frequency of the intrinsic relaxation of the fluid and, thus, ηm responds153

to154

ηm(ω) =
1

(1 + 2πi ω
ωm

)
η0. (11)155

The Newtonian regime (Eq. 7) prevails when the fluid has enough time to relax during a156

wave cycle, that is,157

lim
ω/ωm→0

sf = lim
ω/ωm→0

2η0iω

(1 + 2πiω/ωm)
ε, (12)158

= 2η0iωε, (13)159

(14)160

On the other hand, the elastic regime (Eq. 6) prevails when the angular frequency ω of the161

traveling wave is such that ωm << ω162

lim
ω/ωm→∞

sf = lim
ω/ωm→∞

2η0iω

(1 + 2πiω/ωm)
ε, (15)163

= lim
ω/ωm→∞

2η0ωm

2π (ωm/i2πω + 1)
ε, (16)164

=
2η0ωm

2π
ε, (17)165

=
2η0
τm

ε, (18)166

= 2µfε, (19)167

with µf = η0
τm

denoting the shear modulus of the fluid. Consequently, a direct replacement168

of η0 for ηm in Eq. (8) permits to obtain the constitutive equation for a saturating fluid169

presenting Maxwell-type non-Newtonian shear behavior.170

C. Deborah number171

Squirt flow occurs in response to a fluid pressure diffusion process whose characteristic172

time, when the medium is saturated with a Newtonian fluid, can be defined as τc = 2π/ωc,173
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with ωc being the corresponding Newtonian squirt flow characteristic frequency. When174

considering a Maxwell-type non-Newtonian pore fluid, the interrelationship between squirt175

flow and the intrinsic shear relaxation of the fluid is a key aspect determining the effective176

response of the medium. Following previous works [6, 15, 16], we define the so-called Deborah177

number χ of the system, which is determined here as the ratio between the relaxation time of178

squirt flow with Newtonian fluids τc and the intrinsic relaxation time of the non-Newtonian179

Maxwell fluid τm, that is,180

χ =
τc
τm

=
ωm

ωc

. (20)181

The Deborah number χ determines the pore fluid flow regime. Beyond a certain critical182

value χ∗, the fluid’s intrinsic relaxation occurs faster than fluid pressure diffusion and, thus,183

the fluid behaves as Newtonian during squirt flow. Conversely, for χ < χ∗ the fluid exhibits184

non-Newtonian viscoelastic behavior during the fluid pressure diffusion process. In this185

context, it is important to note that Eq. (11) can be expressed as a function of the Deborah186

number187

ηm =
χωc

(χωc + 2πiω)
η0. (21)188

D. Dispersion and attenuation of compressional waves189

To estimate the compressional wave attenuation and plane wave modulus dispersion,190

we solve Eqs. (1) and (8) using suitable boundary conditions in a rectangular REV of the191

porous medium of interest. The boundary conditions can be conceptualized as an oscillatory192

relaxation test, which emulates the effects of a vertically traveling compressional wavefield193

(Figs. 1a and 1b). Recall that we are under the assumption that the prevailing wavelengths194

λ are much larger than the REV side-length L (λ >> L). The corresponding test consists in195

applying a harmonic downward-oriented displacement homogeneously at the upper boundary196

of the REV. The displacements in the vertical and horizontal directions at the bottom and197

along the lateral boundaries of the model, respectively, are set to zero (Fig. 1c) [e.g 23, 24].198

The upscaled elastic properties of the porous medium saturated with a mobile fluid phase199

are complex-valued and frequency dependent and, thus, the medium can be regarded as200

an effective homogeneous viscoelastic solid. Consequently, we can calculate the effective201

attenuation and dispersion using volume averages of the frequency-dependent stress and202

strain fields [e.g., 23, 25]. In this context, the complex-valued and frequency-dependent203

8



plane wave modulus H, associated with a compressional wave propagating in the vertical204

direction x3, can be approximated by205

H(ω) =
〈σ33(ω)〉
〈ε33(ω)〉

, (22)206

where 〈·〉 denotes the volume average of the corresponding parameters. The attenuation207

experienced by the wave in such a medium, expressed as the inverse of the quality factor, is208

given by [e.g., 26]209

1

Qp(ω)
=

�{H(ω)}
�{H(ω)}

, (23)210

where � and � denote the real and imaginary parts, respectively. This approach to compute211

attenuation and modulus dispersion of compressional waves due to squirt flow has previously212

been validated and verified [e.g., 19, 24, 27].213

III. RESULTS214

A. Squirt flow effects in a cracked medium215

Following Quintal et al. [19], we consider the scenario of a 2D medium whose REV is216

a square of side-length L comprising two interconnected orthogonal cracks embedded in217

an elastic homogeneous background (Fig. 1). The cracks constitute the pore space and are218

characterized by a length lf and aperture hf , such that the aspect ratio is given by α = hf/lf219

[19]. In the following, we take α = 3.6× 10−3. The side-length of the REV is such that the220

porosity of the system is φ = 2hf lf/L
2 = 0.35%. As long as the geometrical configuration,221

α, and φ are maintained, and the underlying assumptions are valid, the physical process is222

completely scalable.223224

When a compressional wave propagates vertically through the cracked medium (Fig.225

1a), it compresses the horizontal cracks, thus increasing the fluid pressure within them,226

while leaving the fluid pressure in vertical cracks essentially unperturbed. The thus induced227

fluid pressure gradients arising between the horizontal and the vertical cracks relax through228

viscous fluid flow. For sufficiently small frequencies, the medium is in a relaxed state, that229

is, the pressure gradients have time to relax in a half-wave-cycle. In this regime, viscous230

dissipation is virtually null and the medium presents its lowest stiffness. Conversely, for231

sufficiently high frequencies, fluid pressure does not have enough time to equilibrate in a232
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L lf

-Δu eiωt

a) b)

c)λ

FIG. 1. Schematic illustration of: (a) the probed porous medium; (b) an REV of such medium,

which contains a set of interconnected orthogonal cracks; and (c) the oscillatory relaxation test

employed to obtain the frequency-dependent overall stress and strain of the medium. Note that the

side-length L of the REV is considered to be much smaller than the prevailing wavelengths λ.

half-wave-cycle and, thus, the medium presents its highest stiffness and viscous flow and233

dissipation are negligible. Interestingly, for intermediate frequencies, significant fluid flow234

occurs and, thus, traveling waves can be largely affected by squirt flow.235

We study the compressional wave attenuation by analyzing the inverse quality factor236

Q−1
p for different Deborah numbers χ (Fig. 2). Note that, in Fig. 2, the values of the237

quality factor are normalized with respect to the maximum attenuation associated with the238

Newtonian scenario, that is,239

Qp(ω, χ) =
Qp(ω, χ)

Qp(ωc,∞)
. (24)240

This characteristic, combined with a normalized frequency ω/ωc, renders the results inde-241

pendent of Ks, Kf , and η0. We observe that when χ is sufficiently high (χ ≥ 104), the242

attenuation curve follows that of a squirt flow process in the presence of a Newtonian fluid.243

However, with decreasing χ-values, the non-Newtonian behavior of the fluid becomes more244

pronounced. As a result, attenuation decreases and the frequency associated with the peak245

attenuation ωmax is shifted towards lower values (Fig. 2). Interestingly, when the non-246
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FIG. 2. Normalized inverse quality factor Q
−1
p as a function of the normalized frequency ω/ωc for

the model shown in Fig. 1. We illustrate the results considering a Newtonian pore fluid (blue line

with circles) and Maxwell-type non-Newtonian fluids for different Deborah numbers (colored solid

lines). Dashed black lines denote the high-frequency asymptotic behavior of the Newtonian and

non-Newtonian fluids.

Newtonian behavior of the fluid becomes dominant, the high-frequency asymptotic behavior247

of the attenuation changes from ∼ 1/
√
ω, which is the typical asymptote of squirt flow for248

Newtonian fluids [13], to ∼ 1/ω. This is an interesting characteristic that may permit, in249

well constrained scenarios, to discern whether the saturating fluid presents a Newtonian or250

non-Newtonian characteristics from wave arrival observations.251

As a consequence of the squirt flow process, the real part of the plane wave modulus252

H increases, evidencing a stiffening effect with increasing frequencies. This characteristic253

is illustrated in Fig. 3, which shows the real part of the plane wave modulus normalized254

respect to its low-frequency Newtonian counterpart255

�{H(ω, χ)} =
�{H(ω, χ)}
�{H(0,∞)}

. (25)256

We note that dispersion is more pronounced for high values of the Deborah number χ,257

emulating the Newtonian behavior (Fig. 3). With decreasing values of χ, the dispersion258

decreases, as does the inflection of the dispersion curve moves towards lower frequencies.259

This is expected, as the inflection in the dispersion curve is associated with the frequency260
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FIG. 3. Real part of the normalized effective bulk modulus �{H} as a function of the normalized

frequency ω/ωc for the model illustrated in Fig. 1. We illustrate the results considering a Newtonian

pore fluid (blue line with circles) and non-Newtonian fluids with different Deborah numbers (colored

solid lines).

corresponding to the attenuation peak ωmax, which also moves towards lower frequencies261

for decreasing values of χ (Fig. 2). It is interesting to observe that, even though �{H}262

generally increases with χ, this is not true across the entire frequency band. In a narrow263

frequency range near the inflection of the dispersion curve, smaller χ-values are associated264

with slightly higher �{H} values, which, in turn, could result in higher compressional wave265

velocities.266267

B. Deborah number and peak frequency268

The frequency associated with the maximum attenuation ωmax changes with the Deborah269

number χ (Fig. 2). In the classic squirt flow mechanism for porous/cracked media saturated270

with Newtonian fluids, the peak frequency, which, in this case, is given by ωc, fulfills [e.g.,271

28, 29]272

ωc ∝
Ks

η0
α3. (26)273
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This implies that the peak frequency depends on the geometrical characteristics of the fluid-274

filled pore space. In the particular case studied here, ωmax depends on the aspect ratio275

of the cracks α. Further knowledge regarding the relationship between ωmax and χ may276

permit to discern variations in the compressional wave signatures related to the presence of277

non-Newtonian fluids from those associated with changes the crack aspect ratio.278

The relationship between ωmax and χ is displayed in Fig. 4 (black circles). This relation-279

ship is retrieved by computing the attenuation curves as functions of frequency for several280

χ values, including those illustrated in Fig. 2, and selecting the maxima of the correspond-281

ing curves. This is done following the approach described in Section II. We find that the282

relationship between ωmax and χ can be approximated by the following empirical formula283

ωmax

ωc

�
(
1 +

2π

χ

)−1

, (27)284

which is illustrated in Fig. 4 using red dashed lines.285
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FIG. 4. Relationship between the normalized maximum frequency ωmax/ωc and the Deborah num-286

ber χ. We compare the values obtained from the numerical estimations (black circles) and the287

analytical approximation given by Eq. (27) (red dashed line).288
289

290
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IV. DISCUSSION291

We have explored squirt flow on attenuation and plane wave modulus dispersion of me-292

chanical waves in presence of Maxwell-type non-Newtonian pore fluids using an approach293

based on continuum mechanics. To this end, we consider small strains, wavelengths which294

are much larger than the pore scale, and Poiseuille-type flow. These assumptions have been295

proven to be valid and pertinent to model squirt flow effects in a great variety of scenarios296

in earth sciences, where cracks/pores range from µm- to mm-scale. However, some of the297

assumptions may be inadequate for very small pores (i.e., molecule scale). For instance,298

in nanometer-scale pores, the molecules of certain fluids can present a non-zero tangential299

velocity at the solid-fluid interface, thus rendering the no-slip condition invalid [e.g., 30].300

Several aspects of the mechanical response of rocks saturated by linear Maxwell-type301

fluids were analyzed by Tsiklauri and Beresnev [6, 16]. These authors explored the effects302

of non-Newtonian viscoelastic fluids on wave attenuation and dispersion due to global flow,303

that is, when inertial forces prevail over viscous forces. The results of these studies are304

therefore complemented by our work, which focuses on corresponding squirt flow effects.305

It is important to remark here that our analysis is based on viscoelastic Maxwell fluids306

with stress relaxation, which are a pertinent representation of some polymeric liquids [e.g.,307

5]. However, an extension of the corresponding results to non-Newtonian fluids in general308

(i.e., colloidal suspensions and/or polymeric fluids) is not straightforward. In this sense,309

alternative non-Newtonian fluid behaviors, such as, shear thinning, shear thickening, and310

viscoplastic fluids, would require different modelling approaches and upscaling techniques.311

V. CONCLUSIONS312

We have presented an approach that permits to include non-Newtonian behavior of313

Maxwell-type fluids into the viscous dissipation mechanism associated with squirt flow.314

Our results show that the resulting attenuation and modulus dispersion strongly depend315

on the Deborah number, which is a measure of the relaxation time of the Maxwell-type316

fluids with regard to that of the the Newtonian squirt flow process. For increasing Debo-317

rah numbers, that is, for non-Newtonian fluids with relatively fast Maxwell-type relaxation,318

the compressional wave attenuation tends to increase and its peak frequency moves towards319
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higher frequencies. Interestingly, the non-Newtonian behavior of pore fluids affects the high-320

frequency asymptote of the attenuation curves, which becomes inversely proportional to the321

angular frequency. This characteristic is important as, under well-controlled conditions,322

it might help to discern whether the medium is effectively saturated by a non-Newtonian323

fluid based on wave arrival observations. We also note that the plane wave modulus of the324

medium increases with the Deborah number. However, the plane wave modulus may also325

decrease within a restricted frequency range around the inflection of the dispersion curve for326

increasing Deborah numbers. Within this frequency range, the velocity of the compressional327

waves could therefore increase in response to the displacement of a Newtonian pore fluid328

by a non-Newtonian phase. Finally, we show that a non-linear relationship exists between329

the Deborah number and the frequency of the maximum attenuation. The results of this330

study fundamentally improve our understanding of the squirt flow attenuation mechanism in331

porous media saturated by non-Newtonian fluids and, thus, provide the basis for advancing332

corresponding detection and interpretation techniques for a wide range of applications.333
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