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Abstract. In various applications of heavy-tail modelling, the assumed Pareto behavior is
tempered ultimately in the range of the largest data. In insurance applications, claim pay-
ments are in�uenced by claim management and claims may for instance be subject to a higher
level of inspection at highest damage levels leading to weaker tails than apparent from modal
claims. Generalizing earlier results of Meerschaert et al. [9] and Raschke [11], in this paper we
consider tempering of a Pareto-type distribution with a general Weibull distribution in a peaks-
over-threshold approach. This requires to modulate the tempering parameters as a function of
the chosen threshold. Modelling such a tempering e�ect is important in order to avoid overes-
timation of risk measures such as the Value-at-Risk (V aR) at high quantiles. We use a pseudo
maximum likelihood approach to estimate the model parameters, and consider the estimation
of extreme quantiles. We derive basic asymptotic results for the estimators, give illustrations
with simulation experiments and apply the developed techniques to �re and liability insurance
data, providing insight into the relevance of the tempering component in heavy-tail modelling.

1. Introduction

Probability distributions with power-law tails are extensively used in various �elds of appli-
cations including insurance, �nance, information technology, mining of precious stones and
language studies (see e.g. [10] for a recent overview). In extreme value methodology such appli-
cations are appropriately modelled using the concept of Pareto-type models such that a variable
X of interest satis�es

P(X > x) = x−α`(x),(1)

with α > 0 and some slowly varying function ` satisfying

`(tx)

`(t)
→ 1 as t→∞ for every x > 0.(2)

In addition to the (pure) Pareto distribution, further examples from this model are the Burr,
Fréchet, t and log-gamma distribution (see Beirlant et al. [7, Ch. 2] for an overview). Often the
power-law behaviour does not extend inde�nitely due to some truncation or tapering e�ects.
In Beirlant et al. [4], estimation of truncated tails was developed in a peaks-over-threshold
(POT) approach for Pareto-type tails, and other max-domains of attraction were dealt with
in Beirlant et al. [5]. Inspired by applications in geophysics and �nance, Meerschaert et al.
[9] discussed parameter estimation under exponential tempering of a simple Pareto law with
survival function

P(X > x) = cx−αe−βx,(3)

where α, β > 0 and c > 0 is a scale parameter. In the context of insurance data, Raschke [11]
recently discussed the use of the more general Weibull tempering of a simple power law with
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survival function

P(X > x) = cx−αe−(βx)
τ

,(4)

with c, α, β, τ > 0.

However, typically the power-law behaviour only sets in from some threshold t on, rather than
from the lowest measurements as assumed when using the simple Pareto model. The Pareto-
type model (1) allows for �exible modelling of this behaviour. In this paper we therefore want
to study Weibull tempered Pareto-type distributions with survival function

P(X > x) = x−α`(x)e−(βx)
τ

,(5)

with ` a slowly varying function, α = 1/γ > 0 controlling the power-law tail with extreme value
index γ, and β, τ governing the Weibull tempering.

We illustrate the need for such Weibull tempering of a Pareto-type tail with the Norwegian �re
insurance data set discussed in Beirlant et al. [7], which contains the year of occurrence of the
claim and the claim value (in thousand Krones) from 1972 until 1992, see also Brazauskas and
Kleefeld [13, Sec. 2] for a detailed description of the data. In Figure 1 these data are plotted
by year of occurrence, next to a log-log plot (Pareto QQ-plot)(

− log

(
1− j

n+ 1

)
, logXj,n

)
, j = 1, . . . , n,

where X1,n ≤ X2,n ≤ . . . ≤ Xn,n denote the ordered data from a sample of size n. Strict Pareto
behaviour corresponds to an overall linear log-log plot, but linearity only arises approximately
at the top 5000 observations. Note also the bending at the largest observations in the upper
right corner in the log-log plot. This tapering near the highest observations often occurs with
insurance claim data and typically is due to a stricter claim management policy for the larger
claims. This tapering is also visible when plotting the pseudo maximum likelihood estimator
α̂Hk = 1/Hk,n of α under (1) (cf. bottom plot in Figure 1), where Hk,n denotes the Hill estimator
[8]

(6) Hk,n =
1

k

k∑
j=1

log
Xn−j+1,n

Xn−k,n
.

The latter can be considered as an estimator of the slope in the log-log plot when restricting to
the top k + 1 observations. In that sense, the statistics Hk,n can be considered as derivatives
of the Pareto QQ-plot at the top k observations. Here, the values α̂k exhibit a stable area
for 1000 ≤ k ≤ 5000 which expresses power-law behaviour beyond Xn−100,n, and make a
sharp increase at the smallest k values due to tapering. Following the QQ- and derivative
plot methodology from Chapter 4 in Albrecher et al. [2], one can construct a Weibull QQ-plot
(log(− log(1− j

n+1
)), logXj,n), j = 1, . . . , n, and its derivative plot in order to verify the Weibull

nature of the tempering as proposed in (5). A Weibull tail is observed when a linear behaviour
is apparent in that QQ-plot at some top portion of the data, which can then be con�rmed by a
constant derivative plot in that region. For the present case, Figure 2 shows that the derivative
plot becomes constant on average when logX > 11, corresponding to a linear Weibull pattern
in the QQ-plot at the top observations with vertical coordinate larger than 11.

As a second example, a tapering e�ect is also observed in the Secura Belgian Re data set
from Beirlant et al. [7]. We refer the reader to Beirlant et al. [6, Sec. 1.3.3 & Sec. 6.2] for
further details about the data set. The Pareto QQ-plot in Figure 3 shows a linear pattern on
from logX > 15, but bending is visible near the top 10 observations, leading to higher values



TEMPERED PARETO-TYPE MODELLING USING WEIBULL DISTRIBUTIONS 3

Figure 1. Norwegian Fire claim data: claim sizes as a function of occurrence
time (top left), log-log plot (top right) and α̂Hk estimates with 95% con�dence
interval (bottom).

Figure 2. Norwegian Fire claim data: Weibull QQ-plot (left) and Weibull de-
rivative plot (right).

of α̂Hk at k ≤ 10. The Weibull derivative plot shows an ultimately decreasing behaviour at
the largest 10 observations. This then could lead to truncated Pareto modelling rather than
Weibull tempering of a Pareto-type tail, as discussed in detail in Beirlant et al. [4].

In this paper, we complement the graphical and exploratory analysis of Weibull tempering of
Pareto-type tails as illustrated above with a mathematical analysis of model (5). This can
be considered as an alternative to the truncated Pareto-type distributions X discussed in [4]



4 H. ALBRECHER, J. ARAUJO-ACUNA, AND J. BEIRLANT

Figure 3. Secura Belgian Re claim data: log(Claim sizes) as a function of
the year of occurrence (top left), log-log plot (top right), α̂Hk estimates with
95% con�dence interval (middle), Weibull QQ-plot (bottom left) and Weibull
derivative plot (bottom right).

which were de�ned by X =d Y |Y < T for some high value of T and Y satisfying Pareto-
type behaviour (1). Truncation also leads to tapering and appears for instance in modelling
of earthquake energy levels on the basis of the Gutenberg-Richter law. From the viewpoint of
truncation, model (5) corresponds to X = min(Y,W ) with Y and W independent, Y being
Pareto-type distributed and W Weibull distributed with P(W > x) = e−(βx)

τ
. Such a model

is intended to describe situations where a gradual transit from a power-law decay to an expo-
nentially fast decay is observed as one goes further into the tail. In view of the general nature
of the Pareto-type models (1), this approach will not be able to capture the characteristics
over the whole range of the distribution but focuses rather on the largest observations above
some threshold Xn−k,n. However, if appropriate such tempered tail �ts could be spliced with
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di�erent methods to describe the data below the chosen Xn−k,n, as it was done before to obtain
composed models with a Pareto or generalized Pareto tail �t; see for instance Reynkens et
al. [12] for mixed Erlang compositions with Pareto tails, Brazauskas and Kleefeld [13] for log-
normal and Weibull models spliced with Pareto tail �ts, and Raschke [11] for Pareto-Pareto or
cascade Pareto modelling. Albrecher et al. [3] considered a parsimonious and versatile family
of distributions for the modelling of heavy-tailed risks using the class of matrix Mittag-Le�er
distributions.

In Section 2, we position the tempered Pareto-Weibull model in a POT approach allowing
β → 0 as the threshold t → ∞, and study pseudo maximum likelihood estimation providing
basic asymptotic theory. We also discuss estimation of extreme return levels and return periods.
Proofs of mathematical results are deferred to the Appendix. In Section 3 we provide simulation
results, and in Section 4 we complete the analysis of the Norwegian �re and the Belgian liability
insurance data sets based on the obtained results. Section 5 concludes.

2. Tempered Pareto-type modelling and estimation

Let X = min(Y,W ) with Y and W independent, where Y is Pareto-type distributed following
(1) and

P(W > x) = e−(βx)
τ

for x > 0.

The survival function of X is then given by

P(X > x) := F (x) = x−α`(x)e−(βx)
τ

.

For the POT distribution X
t

∣∣X > t for some threshold t > 0, we obtain for x > 1

F t(x) := P(
X

t
> x|X > t)

=
P(X > tx)

P(X > t)

=
(tx)−α

t−α
`(xt)

`(t)

e−(βxt)
τ

e−(βt)τ

= x−α
`(xt)

`(t)
e−(βt)

τ (xτ−1).

By de�nition `(xt)/`(t) ≈ 1 for large enough thresholds t. We then assume that at some large
values of t, the parameter β is inversely proportional to t, so that a simple Pareto-Weibull
model (4) provides an appropriate �t to the POTs X/t (X > t), at least better than the simple
Pareto �t with distribution function 1−x−α as used in classical extreme value methodology for
Pareto-type tails. In order to formalize the above, one takes the limit for t→∞ which neces-
sarily requires β = βt ↓ 0 as t ↑ ∞. The model considered in this paper is then formally given by

(M) The POT distribution F t satis�es

F t(x)→ Fα,β∞,τ (x) := x−αe−β
τ
∞(xτ−1), as t→∞ for every x > 1,

where

a) (rough tempering) β = βt satis�es βtt → β∞ > 0, corresponding to the situation
where the deviation from the Pareto behavior due to Weibull tempering will be visible
in the data from t on and the approximation of the POT distribution using the limit
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distribution Fα,β∞,τ appears more appropriate than using Fα,0,τ = x−α, the simple
Pareto distribution;

b) (light tempering) β = βt satis�es βtt→ 0, corresponding to

F t(x)→ x−α, x > 1,

in which case the tempering is hardly or not visible in the data above t. It will then be
practically impossible to discriminate light tempering from no tempering.

Given a particular threshold t, the quasi-likelihood procedure consists of �tting the limit
distribution in (M) to the POT data

Xj

t
when Xj > t, j = 1, . . . , n.

We also use the notation λ = βτ∞, so that the limit distribution in (M) is given by

Fα,λ,τ (x) = x−αe−λ (x
τ−1), x > 1.

The log-likelihood is then given by

logL(α, λ, τ) = −(1 + α)
n∑
j=1

log

(
Xj

t

)
1(Xj>t) − λ

n∑
j=1

((
Xj

t

)τ
− 1

)
1(Xj>t)

+
n∑
j=1

log

(
α + λτ

(
Xj

t

)τ)
1(Xj>t).

(7)

In extreme value methodology the choice of a threshold t is an important matter. A common
practice is to select the (k + 1)-largest observation xn−k,n for some k ∈ {4, . . . , n − 1} as the
threshold t, and to plot the resulting estimates as a function of the inverse rank k. Many
authors then suggest to �nd k in a stable portion of these plots, if available. Data driven
choices of k are sometimes available minimizing the asymptotic mean squared error based on
asymptotic results that describe the bias and variance for intermediate k sequences. While an
asymptotic result is presented below in Theorem 2.1, we here present an approach focusing
on the goodness-of-�t of the tempering model to the POT data above the di�erent thresholds
xn−k,n, using a QQ-plot approach. Then, for a given value of τ , one �nds the least-squares line
that minimizes

(8)
(
− log

(
1− F̂k (Vj,k)

)
, α log Vj,k + τβτ∞hτ (Vj,k)

)
, j = 1, . . . , k,

with hτ (x) = (xτ −1)/τ , the POT data Vj,k = Xn−j+1,n/Xn−k,n, j = 1, . . . , k,, and F̂k denoting

the empirical distribution function based on those POTs. Therefore, since F̂k (Vj,k) =
j

k+1
, one

is led to minimize

WLS(Vj,k;αk, δk, τk) :=
k∑
j=1

wj,k

(
1

α
log

k + 1

k − j + 1
− log Vj,k − δhτ (Vj,k)

)2

,(9)

with respect to α and δ = τβτ∞, where {wj,k, j = 1, . . . , k} are appropriate weights. In partic-

ular, if wj,k = 1/ log
(

k+1
k−j+1

)
when δ ↓ 0, i.e. without tempering, we recover the classical Hill

estimator Hk,n.
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Optimization using (9) also leads to an adaptive selection method for choosing k which gives
appropriate estimates for (α, τ, β∞), choosing the k for which the WLS value is minimal:

(10) k̂ = argmin
k

SSk

with

(11) SSk =
k∑
j=1

1

log
(

k+1
k−j+1

) ( 1

α̂Wk
log

(
k + 1

k − j + 1

)
− log Vj,k − δ̂Wk hτ̂Wk (Vj,k)

)2

.

Since for τ → 0 the parameters α and τ become non-identi�able, numerical issues will arise
during the statistical estimation procedure when directly optimizing the likelihood, or when
minimizing (9). However, �xing a value of τ during the calibration procedure reduces numer-
ical instabilities. The optimization procedure Algorithm 1 which is used in the simulations

and cases, leads to weighted least-squares estimates (α̂Wk , β̂
W
∞,k, τ̂

W
k ) and maximum likelihood

estimates (α̂Mk , β̂
M
∞,k, τ̂

M
k ), starting from a grid of m initial τ values τ̃1 < τ̃2 < · · · < τ̃m, m ∈ N.

Algorithm 1 Estimation of (α̂Wk , β̂
W
∞,k, τ̂

W
k ) and (α̂Mk , β̂

M
∞,k, τ̂

M
k )

1: set τ̃1 < τ̃2 < · · · < τ̃m, m ∈ N
2: for k = 1, 2, to n− 1 do
3: for i = 1, 2, to m do
4: Optimization step. Set(

α̂k,τ̃i , δ̂k,τ̃i

)
:= argmin

(α>0,δ>0)

WLS(Vj,k;α, δ, τ̃i)

5: ŴLSk,τ̃i ← WLS(Vj,k; α̂k,τ̃i , δ̂k,τ̃i , τ̃i)

6: λ̂k,τ̃i ← δk,τ̃i/τ̃i

7: l̂ogLk,τ̃i ← logL(Vj,k; α̂k,τ̃i , λ̂k,τ̃i , τ̃i)
8: Set

(α̂Wk , δ̂
W
k , τ̂

W
k ) := argmin

(α̂k,τ̃i ,δ̂k,τ̃i ,τ̃i)

{
ŴLSk,τ̃i ; i = 1, . . . ,m

}
9: β̂W∞,k ←

(
δ̂Wk /τ̃

W
k

)1/τ̃Wk
10: Set

(α̂Mk , λ̂
M
k , τ̂

M
k ) := argmax

(α̂k,τ̃i ,λ̂k,τ̃i ,τ̃i)

{
l̂ogLk,τ̃i ; i = 1, . . . ,m

}
11: β̂M∞,k ← (λ̂Mk )1/τ̃

M
k

12: return (α̂Wk , β̂
W
∞,k, τ̂

W
k ) and (α̂Mk , β̂

M
∞,k, τ̂

M
k ), for k = 1, 2, . . . , n− 1.

In order to estimate return periods of the type 1/P(X > z) for some large outcome level z,
we use the approximation

P(X > tx)

P(X > t)
≈ x−αe−λτhτ (x)

with t large, so that setting tx = z and t = xn−k,n for some k, we obtain the estimators for
P(X > z)

(12) P̂W
z,k =

k + 1

n+ 1

(
z

xn−k,n

)−α̂Wk
exp

(
−λ̂kτ̂Wk hτ̂Wk (z/xn−k,n)

)
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and similarly P̂M
z,k, where P(X > t) = P(X > xn−k,n) is estimated using the empirical propor-

tion (k + 1)/(n+ 1).

The value z = Q̂W
p,k solving the equation

(13)
k + 1

n+ 1

(
z

xn−k,n

)−α̂Wk
exp

(
−λ̂Wk τ̂Wk hτ̂Wk (z/xn−k,n)

)
= p,

and similarly Q̂M
p,k, for a given value p ≤ 1

n
then yields an estimator for an extreme quantile or

return level Q(1 − p), and hence for Value-at-Risk (VaRp) risk measures at extreme quantile
levels 1− p.
We end this section stating the asymptotic distribution of the maximum likelihood estimators
α̂t, λ̂t, τ̂t. The likelihood equations in (α, λ, τ) are given by

n∑
j=1

{
α + λτ

(
Xj

t

)τ}−1
1(Xj>t) =

n∑
j=1

log

(
Xj

t

)
1(Xj>t),

n∑
j=1

(
Xj
t

)τ
α + λτ

(
Xj
t

)τ 1(Xj>t) = n∑
j=1

hτ

(
Xj

t

)
1(Xj>t),

n∑
j=1

(
Xj
t

)τ
log
(
Xj
t

)
α + λτ

(
Xj
t

)τ 1(Xj>t) =
n∑
j=1

(
Xj

t

)τ
log

(
Xj

t

)
1(Xj>t).

We further assume classical second order slow variation

`(ty)

`(t)
= 1 +Dtρhρ(y), with D ∈ R, ρ < 0,(14)

and set θ̂t = (α̂t, λ̂t, τ̂t)
t and θ = (α, λ, τ)t.

Theorem 2.1. Under F (x) = x−α`(x)e−βx
τ
satisfying (M) with β∞ > 0 and ` satisfying (14),

we have as n, t→∞ such that nF (t)→∞ and
√
nF (t)tρ → ν > 0 that

√
nF (t)

(
θ̂t − θ

)
→d N3

(
DνI−1b, I−1

)
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with I ∈ R3×3 symmetric and b ∈ R3×1 and

I1,1 =

∫ ∞
1

u−α−1e−λτhτ (u)

α + λτuτ
du,

I2,2 = τ 2
∫ ∞
1

u2τ−α−1e−λτhτ (u)

α + λτuτ
du,

I3,3 = λ

∫ ∞
1

{
log2(u)− 2 log u

α + λτuτ
+
λuτ (1 + 2τ log u)− ατ(log u)2

(α + λτuτ )2

}
uτ−α−1e−λτhτ (u)(α + λτuτ )du,

I1,2 = τ

∫ ∞
1

uτ−α−1e−λτhτ (u)

α + λτuτ
du,

I1,3 = λ

∫ ∞
1

(1 + τ log u)
uτ−α−1e−λτhτ (u)

α + λτuτ
du,

I2,3 =

∫ ∞
1

{
log u− α(1 + τ log u)

(α + λτuτ )2

}
uτ−α−1e−λτhτ (u)(α + λτuτ )du,

b1 =

∫ ∞
1

(
1

α + λτuτ
− log u

)
u−α−1e−λτhτ (u)[hρ(u)(α + λτuτ )− uρ]du,

b2 =

∫ ∞
1

(
τuτ

α + λτuτ
− τhτ (u)

)
u−α−1e−λτhτ (u)[hρ(u)(α + λτuτ )− uρ]du,

b3 = λ

∫ ∞
1

(
1 + τ log u

α + λτuτ
− log u

)
uτ−α−1e−λτhτ (u)[hρ(u)(α + λτuτ )− uρ]du.

The derivation of this result is postponed to the Appendix.

3. Simulation results

The �nite sample behavior of the estimators (α̂Wk , τ̂
W
k ) and (α̂Mk , τ̂

M
k ) and the resulting tail

probabilities P̂W
z,k, P̂

M
z,k and extreme quantiles Q̂W

p,k, Q̂
M
p,k resulting from Algorithm 1, (12) and

(13) respectively have been studied through an extensive Monte Carlo simulation procedure.
For each setting, 500 runs with sample size n = 500 were performed. The mean and root mean
squared error (RMSE) of the estimators are presented for the following models:

(a) Burr-Weibull(α, ξ, τ, β) model with Burr survival distribution given by

FY (y) = 1−
(
1 + y−ξα

)1/ξ
, y > 0, α > 0, ξ < 0.

Here (14) is satis�ed with ρ = ξα. We used (α, ξ, τ, β) = (2,−1, 1.50, 0.50) and
(2,−1, 0.50, 0.20).

(b) Fréchet-Weibull(α, τ, β) model with the Fréchet distribution function

FY (y) = exp(−y−α), y > 0, α > 0.

Here (14) is satis�ed with ρ = −α. We used (α, τ, β) = (2, 2, 0.50) and (2, 0.50, 0.20).
(c) Pareto-Weibull(α, τ, β) model using the Pareto distribution

FY (y) = y−α, y > 1, α > 0.

Here `(x) = 1. We used (α, τ, β) = (1, 2, 0.20).
(d) In order to study the behaviour of the estimators under Weibull tempering of a heavy

tailed distribution outside the Pareto-type family we simulated from a tempered log-
normal distribution with parameters µ = 0 and σ = 10.



10 H. ALBRECHER, J. ARAUJO-ACUNA, AND J. BEIRLANT

In the plots concerning the estimation of α we also plot the results for the Hill estimator Hk,n,

while in case of the tail quantile estimates Q̂W
p,k and Q̂M

p,k we also provide the results for the

Weissman [14] estimator Q̂H
p,k = Xn−k,n

(
k
np

)1/α̂Hk
. Finally, we also present the boxplots of the

estimates when using the adaptive choice k̂ given in (10) for k. The characteristics for the tail

probability estimators P̂W
z,k, P̂

M
z,k are quite comparable to those of the extreme quantiles, and

are omitted here.

Clearly the results for the MLE results α̂M , τ̂M , and Q̂M
p improve upon the weighted least

squares based results. The results with the adaptive choice k̂ of k are promising, and again
best for the MLE results. In case τ > 1 (see Figures 4, 5, 8, 9, 12, 13, 14 and 15) when the
tempering is quite strong, the results for the proposed methods are clearly improving upon the
classical estimators Hk,n and Q̂H

p,k. Note that in these cases the V aR estimates based on the

MLE parameters taken at the adaptive value k̂ show a rather small bias, even in case of the
log-normal model which is situated outside our Pareto-type model assumption.

In case τ < 1 (see Figures 6, 7, 10 and 11), hence under weaker tempering, the bias and

RMSE results are comparable with the classical estimators. The V aR estimates at k̂ tend to
overestimate the correct value. As will become clear from the case studies in the next section,
the Pareto and tempered Pareto �ts can lead to quite di�erent extreme tail �ts per sample.

We conclude that the use of classical estimators ignoring the tempering e�ect leads to serious
overestimation of the risk measures, while the proposed method provides reasonable V aR esti-
mates especially for larger values of τ > 1. In case of smaller tempering with a heavier Weibull
tail, improvements can be made concerning the adaptive choice of k. Another possibility is to
search for bias reduced estimators as available in the non-tempering literature (see for instance
Chapters 3 and 4 in [6]).

4. Insurance cases

We now apply the presented methods to the Norwegian and the Secura Re Belgian data sets
introduced in Section 1. In addition, we contrast the tail index estimates α̂Wk,n and α̂Mk,n with
the values obtained for the truncated Pareto-type model proposed in Beirlant et al. [4], where
α̂Tk,n is obtained as the solution to

Hk,n =
1

αTk,n
+
R
αTk,n
k,n log(Rk,n)

1−RαTk,n
k,n ,

with Rk,n = Xn−k,n/Xn,n. The latter estimator was �rst proposed in Aban et al. [1] as the
conditional MLE based on the k + 1 (0 ≤ k < n) largest order statistics representing only the
portion of the tail where the truncated Pareto approximation holds, see also [2, Sec 4.2.3].
We then also measure the goodness-of-�t using QQ-plot (8) and the analogous expression for
the truncated model.

For the Norwegian �re insurance data set, we �nd k̂ = 4920 from the plot of SSk from (11) in
Figure 16, where also the di�erent parameter estimates as a function of k can be found. The
log-log plot based on (8) at k = 4920 shows a good tail �t for the tempered Pareto model, in
contrast with the simple Pareto �t which will over�t tail probabilities and quantiles. This can
be seen from Figure 17 where for larger k, the classical Weissman estimates Q̂H

1/(cn),k (c = 1, 2)
lead to much larger estimates than those based on the proposed tempering modelling. Only
when k is really small, i.e. when restricting to the data situated in the bottom curved area of
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the log-log plot, the classical linear Pareto �t is able to provide a reasonable representation
of the most extreme data. Finally, note from the log-log plot in Figure 16 that the truncated
Pareto �t follows the linear Pareto �t except for the two �nal extreme points after which a sharp
deviation is observed up to an estimated �nite truncation point T estimated at T̂k̂ = 1, 211, 106,
when using the estimation method proposed in [4, Sec. 3, Eq. 19].

In order to illustrate the possibility of extending the proposed method in a time-dependent
regression context, we �tted the approach to three-years sliding time windows. The size of the
windows was selected to have at least 300 observations at each point in time. Figure 18 shows
the estimated V aR at 99.5% (top) and 99.9% (bottom) using the tempered Pareto approach

with k̂ selected using the proposed adaptive procedure, next to simple Pareto and truncated
Pareto modelling. We also compare with the observed quantiles obtained using the standard
R function, which estimates the quantiles as weighted averages of consecutive order statistics.
The V aR values based on the tempered Pareto model are situated between the observed and
the Pareto and truncated Pareto �ts, from which one can conclude that the tempered tail be-
haviour observed for the complete data set in the bottom frame in Figure 16 is also present
conditional on a time window, leading to overestimation when using classical methods that
ignore the proposed tempering. It is also worth noticing that the V aR at 99.5% values ex-
hibit an overall decreasing trend with some stable behaviour between 1979 and 1987. Figures
19 and 20 show the respective V aR estimates for all values of k for some selected time windows.

In Figure 21, the respective results are given for the Secura Re Belgium data set. Here the
best tempered Pareto �t is found at k̂ = 147, with the corresponding log-log plot given in the
bottom �gure. Here the tempered Pareto WLS �t closely follows the linear Pareto �t, while the
MLE �t shows too much bending near the largest data. Both the Pareto and WLS tempered
Pareto �t do miss the deviation at the top two data, which however is taken into account
in the truncated Pareto analysis with T̂k̂ = 8, 967, 620 = e16.009. While this deviation can be
considered as statistically non-signi�cant, it makes sense to consider the truncated Pareto �t
here since Belgian car insurance contracts do show explicit upper limits. Another motivation
for a truncated model is that the extreme quantile estimates Q̂M

1/(cn),k̂
hardly change from c = 1

to c = 2, namely around the value e16.

5. Conclusion

In this paper we addressed the �tting of Pareto-type distributions with a tempering component
of Weibull type at large values. We extend earlier results for exponential tempering on strict
Pareto tails, provide a Peaks over Threshold (POT) approach, develop estimation procedures
and provide asymptotic properties of the proposed estimators. Finally, we present a simulation
study and also apply the developed methods to actual insurance data, discussing challenges
in the implementation and how to overcome them. The estimation of V aR values at extreme
quantile levels shows improvements compared to more classical extreme value estimation meth-
ods that ignore the considered tempering e�ect. These improvements are more pronounced
with growing tempering e�ect.
Further research concerning the generalization to a regression context and the use of tempered
Pareto-Weibull models in composed or splicing models, will be taken up in the future.
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7. Appendix: Proof of Theorem 2.1

Using Taylor expansions of the likelihood equations in θ̂t around the correct value θ leads to
the following system of three equations, with θ̃ = (α̃, λ̃, τ̃) situated in between θ̂t and θ:√

nF (t)(α̂t − α)
1

nF (t)

n∑
j=1

1(
α̃ + λ̃τ̃(

Xj
t
)τ̃
)21(Xj>t)

+

√
nF (t)(λ̂t − λ)

1

nF (t)

n∑
j=1

τ̃(
Xj
t
)τ̃(

α̃ + λ̃τ̃(
Xj
t
)τ̃
)21(Xj>t)

+

√
nF (t)(τ̂t − τ)

1

nF (t)

n∑
j=1

λ̃
(
Xj
t
)τ̃ (1 + τ̃ log

Xj
t
)(

α̃ + λ̃τ̃(
Xj
t
)τ̃
)2 1(Xj>t)

=

√
nF (t)

(
1

nF (t)

n∑
j=1

{ 1

α + λτ(
Xj
t
)τ
− log

Xj

t

}
1(Xj>t)

)
(15)

√
nF (t)(α̂t − α)

1

nF (t)

n∑
j=1

τ̃(
Xj
t
)τ̃(

α̃ + λ̃τ̃(
Xj
t
)τ̃
)21(Xj>t)

+

√
nF (t)(λ̂t − λ)

1

nF (t)

n∑
j=1

τ̃ 2(
Xj
t
)2τ̃(

α̃ + λ̃τ̃(
Xj
t
)τ̃
)21(Xj>t)

+

√
nF (t)(τ̂t − τ)

1

nF (t)

n∑
j=1

( α̃(Xj
t
)τ̃ (1 + τ̃ log

Xj
t
)(

α̃ + λ̃τ̃(
Xj
t
)τ̃
)2 − (

Xj

t
)τ̃ log

Xj

t

)
1(Xj>t)

=

√
nF (t)

(
1

nF (t)

n∑
j=1

{ τ(
Xj
t
)τ

α + λτ(
Xj
t
)τ
− (

Xj

t
)τ + 1

}
1(Xj>t)

)
(16)

√
nF (t)(α̂t − α)

1

nF (t)

n∑
j=1

λ̃(
Xj
t
)τ̃ (1 + τ̃ log

Xj
t
)(

α̃ + λ̃τ̃(
Xj
t
)τ̃
)2 1(Xj>t)

+

√
nF (t)(λ̂t − λ)

1

nF (t)

n∑
j=1

( α̃(Xj
t
)τ̃ (1 + τ̃ log

Xj
t
)(

α̃ + λ̃τ̃(
Xj
t
)τ̃
)2 − (

Xj

t
)τ̃ log

Xj

t

)
1(Xj>t)

+

√
nF (t)(τ̂t − τ)

λ̃

nF (t)

n∑
j=1

 λ̃(Xjt )τ̃ (1 + 2τ̃ log
Xj
t
) + α̃τ̃(log

Xj
t
)2(

α̃ + λ̃τ̃(
Xj
t
)τ̃
)2

−
2 log

Xj
t

α̃ + λ̃τ̃(
Xj
t
)τ̃

+ (log
Xj

t
)2

)
(
Xj

t
)τ̃1(Xj>t)

=

√
nF (t)

(
λ

nF (t)

n∑
j=1

{(Xj
t
)τ (1 + τ log

Xj
t
)

α + λτ(
Xj
t
)τ

− (
Xj

t
)τ log

Xj

t

}
1(Xj>t)

)
(17)

The coe�cients of
√
nF (t)(α̂t−α),

√
nF (t)(λ̂t−λ) and

√
nF (t)(τ̂t− τ) on the left hand sides

of (15), (16) and (17) now converge in probability to the corresponding elements of I. For
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instance for

I1,1,n,t(α, λ, τ) :=
1

nF (t)

n∑
j=1

1(
α + λτ(

Xj
t
)τ
)21(Xj>t)

we have

E(I1,1,n,t(α, λ, τ)) = −
∫ ∞
t

1(
α + λτ(x

t
)τ̃
)2dF (x)F (t)

= −
∫ ∞
1

1(
α + λτuτ

)2dF t(u)

→ −
∫ ∞
1

1(
α + λτuτ

)2dFα,λ,τ (u) = I1,1,

as t → ∞ using the consistency of ML estimators and assumption (M). The convergence of

I1,1,n,t(α̃, λ̃, τ̃) to I1,1 then follows from

Var (I1,1,n,t(α, λ, τ)) = O
(
(nF (t))−1

)
and I1,1,n,t(α̃, λ̃, τ̃)− I1,1,n,t(α, λ, τ) = op(1)

as n, t→∞ using the consistency of the ML estimators.

Next the asymptotic normal distribution of the right hand sides of (15)-(17)√
nF (t)

(
1

nF (t)

n∑
j=1

{ 1

α + λτ(
Xj
t
)τ
− log

Xj

t

}
1(Xj>t)

,
1

nF (t)

n∑
j=1

{ τ(
Xj
t
)τ

α + λτ(
Xj
t
)τ
− (

Xj

t
)τ + 1

}
1(Xj>t)

,
λ

nF (t)

n∑
j=1

{(Xj
t
)τ (1 + τ log

Xj
t
)

α + λτ(
Xj
t
)τ

− (
Xj

t
)τ log

Xj

t

}
1(Xj>t)

)
(18)

is derived.
Concerning the �rst component

1

nF (t)
E

(
n∑
j=1

{ 1

α + λτ(
Xj
t
)τ
− log

Xj

t

}
1(Xj>t)

)
= − 1

F (t)

∫ ∞
t

{ 1

α + β∞
x
t

− log
(x
t

)}
dF (x)

= −
∫ ∞
1

{ 1

α + λτuτ
− log u

}
dF t(u),

with F t(u) = P(X/t > u|X > t) = u−α(1 + Dtρhρ(u))e
−λ(uτ−1) using the second order slow

variation condition (14), so that

−dF t(u)

du
= u−α−1e−λ(u

τ−1)(α + λτuτ ) +Dtρ u−α−1e−λ(u
τ−1){hρ(u)[α + λτuτ ]− uρ}.

Using partial integration one easily checks that∫ ∞
1

{ 1

α + λτuτ
− log u

}
u−α−1e−λ(u

τ−1)(α + λτuτ )du = 0,

so that the expected value of the �rst component is given by Dtρ b1, leading to the asymptotic
bias expression of α̂t as given in Theorem 2.1, and similar calculations lead to the bias of λ̂t
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and τ̂t.

So it remains to derive the asymptotic variances and covariances of the vector in (18). The
variance of the �rst component is derived from

1

nF (t)

n∑
j=1

E
{ 1

α + λτ(
Xj
t
)τ
− log

Xj

t

}2

1(Xj>t)

=
1

F (t)
E

({ 1

α + λτ(X
t
)τ
− log

X

t

}2

1(X>t)

)

= −
∫ ∞
1

(
1

(α + λτuτ )2
− 2 log u

α + λτuτ
+ (log u)2

)
dF t(u)

→ −
∫ ∞
1

(
1

(α + λτuτ )2
− 2 log u

α + λτuτ
+ (log u)2

)
du−αe−λ(u

τ−1),

as n, t→∞. Using partial integration one �nds that
∫∞
1
( 2 log u
α+λτuτ

− (log u)2)du−αe−λ(u
τ−1) = 0,

so that the asymptotic variance of the �rst component in (18) equals I1,1. In the same way one
�nds that the asymptotic variance covariance matrix of (18) equals I.

Hence

(19) (I+ op(1))

√
nF (t)(θ̂t − θ) = N3 ((Dν)b, I) + op(1),

from which the result follows.
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Figure 4. Burr-Weibull(2.0,−1.0, 1.5, 0.5). Top: Mean (left) and RMSE (right)
of α̂Wk , α̂Mk and Hk,n as a function of k ; Middle: Mean (left) and RMSE (right)
of τ̂Wk and τ̂Mk as a function of k; Bottom: Boxplots of α̂W

k̂
, α̂M

k̂
, τ̂W

k̂
and τ̂M

k̂
(log-scale). Horizontal dashed lines indicate the real parameters.
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Figure 5. Burr-Weibull(2.0,−1.0, 1.5, 0.5): quantile estimates Q̂W
p,k, Q̂

M
p,k with

p = 1
cn

with c = 1 (top) and c = 2 (middle). Means (left) and RMSE (right) as

a function of k. Bottom line: boxplots of Q̂W
p,k̂
, Q̂M

p,k̂
with c = 1 (left) and c = 2

(right). Horizontal dashed lines indicate the real parameters.
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Figure 6. Burr-Weibull(2.0,−1.0, 0.5, 0.5). Top: Mean (left) and RMSE (right)
of α̂Wk , α̂Mk and Hk,n as a function of k ; Middle: Mean (left) and RMSE (right)
of τ̂Wk and τ̂Mk as a function of k; Bottom: Boxplots of α̂W

k̂
, α̂M

k̂
, τ̂W

k̂
and τ̂M

k̂
(log-scale). Horizontal dashed lines indicate the real parameters.
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Figure 7. Burr-Weibull(2.0,−1.0, 0.5, 0.5): quantile estimates Q̂W
p,k, Q̂

M
p,k with

p = 1
cn

with c = 1 (top) and c = 2 (middle). Means (left) and RMSE (right) as

a function of k. Bottom line: boxplots of Q̂W
p,k̂
, Q̂M

p,k̂
with c = 1 (left) and c = 2

(right). Horizontal dashed lines indicate the real parameters.
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Figure 8. Fréchet-Weibull(2.0, 2.0, 0.2). Top: Mean (left) and RMSE (right) of
α̂Wk , α̂Mk and Hk,n as a function of k ; Middle: Mean (left) and RMSE (right)
of τ̂Wk and τ̂Mk as a function of k; Bottom: Boxplots of α̂W

k̂
, α̂M

k̂
, τ̂W

k̂
and τ̂M

k̂
(log-scale). Horizontal dashed lines indicate the real parameters.
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Figure 9. Frechet-Weibull(2.0, 2.0, 0.2): quantile estimates Q̂W
p,k, Q̂

M
p,k with p =

1
cn

with c = 1 (top) and c = 2 (middle). Means (left) and RMSE (right) as a

function of k. Bottom line: boxplots of Q̂W
p,k̂
, Q̂M

p,k̂
with c = 1 (left) and c = 2

(right). Horizontal dashed lines indicate the real parameters.
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Figure 10. Fréchet-Weibull(2.0, 0.50, 0.5). Top: Mean (left) and RMSE (right)
of α̂Wk , α̂Mk and Hk,n as a function of k ; Middle: Mean (left) and RMSE (right)
of τ̂Wk and τ̂Mk as a function of k; Bottom: Boxplots of α̂W

k̂
, α̂M

k̂
, τ̂W

k̂
and τ̂M

k̂
(log-scale). Horizontal dashed lines indicate the real parameters.
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Figure 11. Fréchet-Weibull(2.0, 0.5, 0.5): quantile estimates Q̂W
p,k, Q̂

M
p,k with p =

1
cn

with c = 1 (top) and c = 2 (middle). Means (left) and RMSE (right) as a

function of k. Bottom line: boxplots of Q̂W
p,k̂
, Q̂M

p,k̂
with c = 1 (left) and c = 2

(right). Horizontal dashed lines indicate the real parameters.
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Figure 12. Pareto-Weibull(1.0, 2.0, 0.2).Top: Mean (left) and RMSE (right) of
α̂Wk , α̂Mk and Hk,n as a function of k ; Middle: Mean (left) and RMSE (right)
of τ̂Wk and τ̂Mk as a function of k; Bottom: Boxplots of α̂W

k̂
, α̂M

k̂
, τ̂W

k̂
and τ̂M

k̂
(log-scale). Horizontal dashed lines indicate the real parameters.
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Figure 13. Pareto-Weibull(1.0, 2.0, 0.2): quantile estimates Q̂W
p,k, Q̂

M
p,k with p =

1
cn

with c = 1 (top) and c = 2 (middle). Means (left) and RMSE (right) as a

function of k. Bottom line: boxplots of Q̂W
p,k̂
, Q̂M

p,k̂
with c = 1 (left) and c = 2

(right). Horizontal dashed lines indicate the real parameters.



26 H. ALBRECHER, J. ARAUJO-ACUNA, AND J. BEIRLANT

Figure 14. log-normal-Weibull(0.0, 100, 1.5, 0.5). Top left: α̂Wk , α̂Mk and Hk,n

mean estimates as a function of k. Middle left: τ̂Wk , τ̂Mk mean estimates as a

function of k. Right: quantile estimates Q̂W
p,k, Q̂

M
p,k with p =

1
cn

with c = 0.2 (top)

and c = 0.4 (middle). Bottom: boxplots of α̂W
k̂
, α̂M

k̂
, τ̂W

k̂
and τ̂M

k̂
(log-scale).

Horizontal dashed lines indicate the real parameters.
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Figure 15. log-normal-Weibull(0.0, 100, 1.5, 0.5): Boxplots of Q̂W
p,k̂
, Q̂M

p,k̂
with

c = 0.2 (left) and c = 0.4 (right). Horizontal dashed lines indicate the real
values.
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Figure 16. Norwegian �re insurance data: Top left: SSk from (11); Top right:

α̂Wk , α̂Mk , Hk,n and α̂
T
k ; Middle left: − log β̂W∞,k, − log β̂M∞,k; Middle right: τ̂Wk , τ̂Mk ;

Bottom: log-log plot with �t obtained from (8) with k = k̂ = 4915 using MLE
and WLS estimates, next to Pareto and truncated Pareto �t.
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Figure 17. Norwegian �re insurance data: Q̂W
p,k, Q̂

M
p,k and Q̂H

p,k quantile esti-
mates with p = 1/n (top) and p = 1/(2n) (bottom).
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Figure 18. Norwegian �re insurance data: log-V aR(99.5%) (top) and log-

V aR(99.5%) (bottom) at k̂ for tempered model (black and blue lines), Pareto
(grey), truncated Pareto (green) and observed values (x). For each time window,

k̂ is displayed at the top margin.
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Figure 19. Norwegian �re insurance data: log V aR(99.5%) for tempered model
(black and blue lines), Pareto (grey) and truncated Pareto (green) for selected
time windows.

Figure 20. Norwegian �re insurance data: log V aR(99.9%) for tempered model
(black and blue lines), Pareto (grey), truncated Pareto (green) for selected time
windows.
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Figure 21. Secura data set: Top left: SSk from (11); Top right: α̂Wk , α̂Mk ,

Hk,n and α̂
T
k ; Middle left: − log β̂W∞,k, − log β̂M∞,k; Middle right: τ̂Wk , τ̂Mk ; Bottom:

log-log plot with �t obtained from (8) with k = k̂ = 147 using MLE and WLS
estimates, next to Pareto and truncated Pareto �t.
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Figure 22. Secura data set : Q̂W
p,k, Q̂

M
p,k and Q̂

H
p,k quantile estimates with p = 1/n

(top) and p = 1/(2n) (bottom).


