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Abstract. The fitness effects of mutations on a given genotype are rarely constant across environments to which this
genotype is more or less adapted, that is, between more or less stressful conditions. This can have important implications,
especially on the evolution of ecological specialization. Stress is thought to increase the variance of mutations’ fitness
effects, their average, or the number of expressed mutations. Although empirical evidence is available for these three
mechanisms, their relative magnitude is poorly understood. In this paper, we propose a simple approach to discriminate
between these mechanisms, using a survey of empirical measures of mutation effects in contrasted environments. This
survey, across various species and environments, shows that stress mainly increases the variance of mutations’ effects
on fitness, with a much more limited impact on their average effect or on the number of expressed mutations. This
pattern is consistent with a simple model in which fitness is a Gaussian function of phenotypes around an environ-
mentally determined optimum. These results suggest that a simple, mathematically tractable landscape model may not
be quantitatively as unrealistic as previously suggested. They also suggest that mutation parameter estimates may be
strongly biased when measured in stressful environments.
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Spontaneous mutation is the ultimate source of variation
and influences the evolutionary fate of a wide range of phe-
nomena (Charlesworth and Charlesworth 1998; Lynch et al.
1999). More specifically, the evolutionary role of mutation
depends on the genomic mutation rate, U, and the distribution
of mutations’ fitness effects, f (s). In principle, U and f (s) may
vary among genotypes within species, among species, and
among environments, which may obscure both the interpre-
tation of empirical measurements and theoretical predictions.
However, we still have little insights into how U and f (s)
may vary in general. In a recent paper (Martin and Lenormand
2006), we showed that f (s) may vary in a predictable way
between more or less complex organisms. In this paper, we
focus on the variation of mutation effects in different envi-
ronments.

Since the work of Kondrashov and Houle (1994), several
studies have documented differences in mutation effects
across various environments for quantitative traits that are
more or less related to fitness (reviewed in Lynch et al. 1999;
Fry and Heinsohn 2002; Lenormand 2002; Chang and Shaw
2003; Hermisson and Wagner 2004; Korona 2004). The im-
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plications of this environment dependence have been debated
in an empirical and theoretical context. First, it might explain
the discrepancies among estimates of mutational parameters
within species, in particular in Drosophila (Kondrashov and
Houle 1994; Garcia-Dorado et al. 1999), and more generally
it has been studied to determine whether laboratory measures
could be extrapolated in nature. Second, the environment-
dependent variation of mutation effects has been debated in
the context of ecological specialization (Fry 1996; Kawecki
et al. 1997). In both cases, environmental variation is often
measured or qualified in terms of more or less stressful con-
ditions, which is also the approach chosen in this article. The
definition of a stressful environment is not straightforward
and varies according to authors and fields. Stressful envi-
ronments can, for example, be defined as environments im-
posing some constraints on metabolism (e.g., desiccation,
high temperature) that can only be coped with at some en-
ergetic cost. However, species adapted to extreme conditions
may have a lower fitness in less extreme conditions (Parsons
1991). Following a widely used definition in studies of mu-
tational effects (Korona 1999; Szafraniec et al. 2001; Kishony
and Leibler 2003), we will consider that an environment is
stressful for a given genotype if it reduces its fitness relative
to that achieved in a benign (reference) environment.

Mutational parameters are in most cases measured using
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mutation accumulation (MA) experiments in which several
sublines are maintained over several generations under min-
imal selection. Per generation differences in the mean (�M)
and variance (�V) of fitness among sublines during the ac-
cumulation can be estimated to infer mutational parameters.
In general,

�M � Us̄ and (1a)
2 2�V � Us̄ [1 � CV(s )], (1b)

where U is the genomic rate of nonneutral mutation, s̄ is the
average fitness effect of single mutations, and CV(s) its co-
efficient of variation (Mukai et al. 1972). This result relies
on only two assumptions: (1) the number of mutation events
per genotype is Poisson distributed (with parameter U); and
(2) the effects of mutations on fitness are additive (epistasis
is neglected). Equations (1a,b) are the basis of the Bateman-
Mukai method of estimation of U and s̄ when CV(s) is ne-
glected (constant mutation effects), but we will use them in
their general formulation above (i.e., without neglecting
CV[s]). The same sublines may be assayed in different en-
vironments, yielding several estimates of �M and �V. From
equations (1a,b), these estimates may vary because U, s̄, and/
or CV(s) differ between environments but there is little agree-
ment on the prevalence of either scenario (Fry and Heinsohn
2002). In the following, we give some details on the biolog-
ical implications of each of the three scenarios.

Intuitively, variation in the genomic mutation rate U be-
tween environments should reflect the fact that some muta-
tions have a detectable fitness effect in some environments
but are neutral in others. This can happen if the mutational
target varies between environments (by mutational target, we
mean the fraction of expressed genes or more generally the
fraction of genes affecting fitness). Note that the list of genes
in this mutational target may vary between environments
while leaving the overall size of the mutational target (and
hence also U) almost constant. However, because we see no
reasons for the mutational target size to be identical in all
environments, environment-dependent expression should in
principle be detected by variation of U between environ-
ments. We will label this hypothesis ‘‘conditional expres-
sion’’ (CE).

Variation in s̄ would reflect that selection intensity differs
in more stressful environments (e.g., as suggested in Kishony
and Leibler 2003). For instance, a given mutation impairing
maltose metabolization may have milder fitness consequenc-
es in a benign environment where several sugars are available
(it may even be neutral in the absence of maltose) than in a
stressful one where maltose is the only source of carbon
available. We will label this hypothesis ‘‘conditional aver-
age’’ (CA).

Finally, variation in CV(s) between environments would
reflect that mutational effects are more or less variable
(among mutations) in stressful environments. Consider, for
instance, a population of bacteria that has adapted in a given
environment for a long period of time (e.g., with glucose as
the carbon source), so that the average phenotype is close to
an optimum on glucose. Most mutations are then likely to
be deleterious in glucose, whereas a mixture of deleterious
and beneficial mutations may be expected in a new environ-

ment (e.g., in maltose). Mutation effects are therefore likely
to be less variable in glucose than in maltose. We will label
this hypothesis ‘‘conditional variance’’ (CV). This hypoth-
esis has been proposed by Fry and Heinsohn (2002) and by
Remold and Lenski (2001) to describe a situation similar to
the example cited above.

In principle these different scenarios may be distinguished
by estimating U, s̄, and CV(s) in different environments.
However, it is difficult to disentangle them from MA data,
because environmental variation may affect both the number
of nonneutral mutations and their fitness effect (Lynch et al.
1999). For instance, Bateman-Mukai estimates of U and s̄,
derived from equations (1a,b),

2 2U � �M /�V � U /[1 � CV(s) ] and (2a)BM

2s̄ � �V /�M � s̄[1 � CV(s) ] (2b)BM

are biased by the variance of mutational effects (i.e., by
CV[s]), which may itself vary across different environments.
Therefore, it is impossible to directly assess whether U or s̄
actually change across environments (Fry and Heinsohn
2002). Maximum-likelihood (Keightley 1994) or minimum
distance (Garcia-Dorado and Marin 1998) methods can par-
tially address this problem. However, with these methods, it
is still difficult to state how much U and CV(s) vary relative
to one another (Keightley 2004), and Bateman-Mukai esti-
mates remain the most widely available in the literature, so
that the empirical issue is still unresolved.

In this paper, we develop a simple approach to discriminate
among CE, CA, and CV hypotheses. We then test these hy-
potheses using a survey of data obtained with MA experi-
ments where mutant fitness was assayed in different envi-
ronments. We focus in particular on environments that are
more or less stressful, that is, in which fitness is reduced
compared to a benign (reference) environment (see above).

After presenting the results of our survey and conclusions
about CE, CA, and CV hypotheses, we explain when to expect
these different scenarios and how the observed patterns can
be interpreted. In particular, we interpret these patterns in
terms of fitness landscape models that allow one to predict
how mutation fitness effects may vary in different environ-
ments.

METHODS

Simple Predictions Based on Bateman-Mukai Estimates

The three extreme hypotheses that either U, s̄, or CV(s)
differ between environments generate distinct and straight-
forward predictions that can be tested with measures of �M
and �V in different environments. Let us consider two en-
vironments (1 and 2) in which �M (�M1 and �M2) and �V
(�V1 and �V2) are measured for a given genotype. Define
the measurable ratios �V � �V1/�V2 and �s � s̄BM1/s̄BM2 (using
the definition of sBM in eq. 2), and the nonmeasurable ratios
�U, �s, and �CV of U, s̄, and 1 � CV(s)2, respectively, in
environment 1 versus 2. Then from equation (1), log(�V) �
log(�U) � 2 log(�S) � log(�CV), and from equation (2), log(�S)
� log(�s) � log(�CV). Therefore, we can predict distinct re-
lationships between log(�V) and log(�S), for each of the ex-
treme scenarios considered, according to which of �U, �s, and
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TABLE 1. Summary of the patterns expected under the three extreme hypothesis; CE, CA and CV (see text). �M and �V refer to the
mutational change in mean and variance of relative fitness, respectively. The � values are ratios of estimates in stressful versus benign
environments: �V for �V and �S for Bateman-Mukai estimates of the average fitness effect of mutations. The predicted relationships are
also illustrated on Figure 1.

Hypothesis Prediction across environments

CE; conditional expression (U varies) �M � �V log(�S) � 0
CA; conditional average (s̄ varies) �M 2 � �V log(�S) � ½ log(�V)
CV; conditional variance (CV[s] varies) �M constant �V varies log(�S) � log(�V)

�CV is assumed to depart from one (expected in the absence
of environment-dependent variation). If only U varies be-
tween environments (CE hypothesis), log(�s) and log(�CV)
should remain negligible relative to log(�U), so that log(�S)
� 0. Similarly, if only s̄ varies between the two environments,
that is, only log(�s) is nonzero, (CA hypothesis), then log(�S)
� log(�s) � ½ log(�V). Finally, if only CV(S) varies between
environments, that is, only log(�CV) is nonzero (CV hypoth-
esis), then log(�S) � log(�CV) � log(�V). With several pairs
of �S and �V estimates (ratios from several pairs of environ-
ments and/or several studies), we can discriminate among the
three hypotheses depending on the slope of the empirical
relationship between log(�S) and log(�V), that is, no rela-
tionship (CE) or a linear relationship with slope ½ (CA) or
1 (CV). These predictions are summarized in Table 1. Of
course, this empirical relationship (if any) may differ from
the three predicted trends (e.g., if U, s̄, and CV[s] all vary
between environments or differently so in different species
or experiments). Therefore, all three extreme hypotheses
could easily be rejected, either by any nonlinear relationship
between log(�S) and log(�V) or by a linear relationship with
a slope that differs from ½ or 1.

Stressful Versus Benign Environments

In experiments measuring mutation fitness effects in two
environments, one can often be considered more stressful
than the other. The most stressful environment is the one in
which the nonmutated initial genotype has the lowest abso-
lute fitness. As above, U, s̄, or CV(s) may differ between
stressful and benign environments. However, these param-
eters may vary in a consistent direction with stress. For in-
stance, it may be argued that U, s̄ or CV(s) should increase
in more stressful environments. To detect such a trend, we
can take the same approach as above but systematically stan-
dardizing our ratios by values in the most benign environ-
ment, if such information is available. Denoting with or with-
out a star the value in the benign or stressful environment,
respectively, we can therefore compute �V � �V/�V*, �M �
�M/�M*, and the corresponding �S � s̄BM/ . In this way,s̄*BM

we can determine whether U, s̄, or CV(s) are systematically
changed in stressful versus benign environments and in which
direction. For the sake of clarity, all ratios will be computed
in this way (i.e., relative to the most benign environment) in
the paper.

Survey of Mutational Genotype-by-Environment
Interactions for Fitness

MA experiments are the most widely used method to gen-
erate a set of mutants from a single isogenic line. The fitness

of these mutants can then be estimated, providing estimates
of �M (the per generation average change in relative fitness
due to mutation) and of �V (the per generation increment in
relative fitness variance due to mutation). In addition, these
moments can be measured for a given set of lines, in different
environmental conditions, providing a measure of the change
of �M and �V in different environments. We surveyed nine
MA experiments (some using mutagenesis) reporting such
variation, most of which are also discussed in Fry and Hein-
sohn (2002). Our survey is summarized in Table 2. When it
was not directly provided, we computed the mutational var-
iance in relative fitness �V as the squared mutational coef-
ficient of variation of the fitness trait measured, that is, the
increase in variance among mutant lines relative to control
lines divided by the mean value of the control. Similarly,
when not directly provided, we computed the average mu-
tational change in relative fitness �M as the difference be-
tween the mean value of the fitness measure among mutants
and the control value, divided by the control value. We con-
sidered that the least stressful environment was the one with
the highest absolute fitness of the nonmutated (control) ge-
notype (reported in Table 2). In some cases, fitness was mea-
sured in competition with a reference strain, in which case
it was not possible to identify the least stressful environment
for the control (as stress also affects the competitor). In these
cases, the benign environment was defined according to the
authors, usually as the ‘‘standard’’ laboratory environment
to which the control line has adapted for generations or, in
some studies, the low-density environment. In most cases,
the original papers provided unambiguously the required in-
formation. However, in some cases, we had to make some
choices or to read some of the data on figures presented in
the papers.

In the study of Fry et al. (1996) on Drosophila melano-
gaster, fitness of the nonmutated genotype is not provided.
We considered the strain used for the competitive assays as
a surrogate for this control genotype. The reproductive out-
put/vial for this strain was read from figures 2A and 2B in
the paper. This strain is not related to the MA lines so that
it is not a proper control, but it was assumed free of mutation,
based on its higher fitness (fig. 2B), and on it having not
undergone MA. It may, however, differ from the exact control
(ancestor of MA lines) in its level of adaptation to some of
environments, which could explain the strong difference ob-
served between MA and ‘‘control’’ mean under low tem-
perature (Fry et al. 1996; Fry and Heinsohn 2002). In any
case, this use of an improper control should only bias �M
estimates (not �V) because this strain was isogenic or nearly
so, and removing the estimates from this study does not affect
any of our conclusions. In the study of Korona (1999) on
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FIG. 1. Effect of stressful conditions on mutational variance in
fitness and Bateman-Mukai estimates of s̄. The log-ratio of �V
estimates (log[�V], x-axis) and of sBM (log[�S], y-axis), the Bateman-
Mukai estimates of s̄, in the stressful versus benign environments
are from Table 2 (with sBM computed from equation 2) for various
species (indicated on the graph). The solid line gives the observed
linear relationship between estimates (excluding the outlier, top of
the graph). Dashed lines give the predicted linear relationships for
each of the three hypotheses (CE, CA, CV, see text) indicated on
the graph.

Saccharomyces cerevisiae, the among-line variance of MA
haploid lines (M lines) was directly read on figure 1 in the
paper, and the variance among control (F) lines was set to
zero (from fig. 1). For diploid strains, the among-line vari-
ances of M/M and F/F strains were read on figure 3 in the
paper. In the study of Xu (2004) on Cryptococcus neoformans,
two environments (37�C and 25�C) were used during the
mutation accumulation itself. We pooled results from all MA
lines (a total of 16 lines). The absolute fitness of the controls,
which was not available in the paper, was provided by the
author. In Fernandez and Lopez-Fanjul (1997), no control
was available and we did not find an alternative control mea-
sure as in Fry et al. (1996), so we only report effects of
mutations on �V computed by neglecting the variance among
control lines. This study is therefore not used in the rela-
tionship between log(�S) and log(�V) (see Fig. 1), but only
to assess the effect of stressful conditions on the sign of
log(�V) (see Fig. 2). Conversely, in Kishony and Leibler
(2003), �V is not given, so that we only report �M. Finally,
in two other studies of mutation effects across environments
(Chang and Shaw 2003; Kavanaugh and Shaw 2005), there
is no clear evidence of any fitness variance induced by mu-
tation, in any environment, so we discarded these studies.

As explained above, to estimate the effect of the environ-
ment on �M and �V we used log-ratio estimates of �M
(log[�M]) and �V (log[�V]) in a given stressful environment
relative to the estimate in the benign environment (denoted
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FIG. 2. Distribution of the relative change in mutational mean and
standard deviation of fitness in stressful versus benign environ-
ments. Mutation effects on mean (�M) and variance (�V) in relative
fitness are given relative to their values in the benign environment
(�M* and �V*). Values on the x-axis refer to the log relative change
in mean log(�M) � log(�M/�M*) (28 estimates) or standard devi-
ation log(��) � ½ log(�V/�V*) (30 estimates). Positive values cor-
respond to an increase in the mean or variance of mutation effects
in stressful conditions. All but one (96%) of the log(�M) estimates
fall within the range (�0.5, 0.5).

TABLE 3. Summary of statistics for the regression in Figure 1.

Model Intercept
95% min
intercept

95% max
intercept

Slope (reduced
major axis) 95% min slope 95% max slope R2

All data �0.16 �0.75 0.11 1.03 0.78 1.37 0.55
All data 0 – – 0.91 0.82 1.06 0.56
Without outlier 0.02 �0.13 0.13 0.86 0.75 1.00 0.88
Without outlier 0 – – 0.87 0.80 0.99 0.88

�M* and �V*, respectively). These measures are therefore
standardized within each study, which allows us to compare
different experiments that may differ in the species used, the
experimental design, the fitness measure, the number of MA
generations (which may even be poorly known, e.g., in mu-
tagenesis or microbe studies), or with regard to specific fea-
tures of the organism studied (e.g., ploidy or genome size
that affect the mutational target size). Note also that the re-
sults in each experiment are based on a single set of lines
having accumulated mutations in a common controlled en-
vironment so that there is no influence of environment-de-
pendent molecular mutation rates (except potentially in Xu
2004).

RESULTS

In Figure 1, we illustrate how log(�S) varies with log(�V)
in the surveyed experiments. We find a clear linear relation-
ship between log(�S) and log(�V). Because both log(�S) and
log(�V) are measured with error, we use the reduced major
axis to measure the slope of the relationship between the two
variables (regression type II; Sokal and Rohlf 1995). Because
there is an obvious outlier, we report the estimated slope with
or without it. In addition, we report the slope assuming or

not a zero intercept. Table 3 summarizes the estimates and
their 95% bootstrap confidence limits. The fitted linear re-
lationships between log(�S) and log(�V) give a good fit to the
data, explaining 55% or 88% of the total variance (with or
without the outlier, respectively), and the estimated slope
ranges between 0.86 and 1.02 (depending on the model). This
slope is not significantly different from one (expected under
the CV hypothesis) except for the model with zero intercept
excluding the outlier for which the slope 95% confidence
interval is (0.80, 0.99). In all cases, the estimated slope is
significantly different from ½ (CA hypothesis) and from zero
(CE hypothesis) (P  0.0001). These results indicate that the
observed pattern is very close to that expected under the CV
hypothesis—the corresponding predicted relationship,
log(�S) � log(�V) explains 82% of the total variance, when
excluding the outlier—with a slope perhaps slightly less than
one, however. This result strongly supports the idea that
changing environments mainly changes the variance of mu-
tation fitness effects (CV hypotheses) rather than their av-
erage effect (CA hypothesis) or their net expression level
over the genome (CE hypothesis). Finally, note that this first
conclusion does not depend on correctly assessing stressful
versus benign environments: the observed relationship
log(�S) � log(�V) is expected even when standardizing with
a nonbenign environment.

To scale the range of variation of the mean and variance
of mutation effects, we considered the standard deviation, �
� �V1/2, and its relative change under stressful conditions:
log(��) � ½ log(�V). Figure 2 shows the distribution of
log(�M) and log(��) in our survey. In the large majority of
experiments (25 of 30 estimates), stressful conditions result
in an increase of the mutational variance (or �) in fitness
(i.e., CV hypothesis with a directional effect of stress): most
log(��) values are positive (two-tailed Wilcoxon signed-rank
test, P  0.0001). On the contrary, log(�M) does not show
the same pattern, increasing in only half of the cases (14 of
28 estimates) and not showing any significant positive or
negative sign (two-tailed Wilcoxon signed-rank test, P �
0.73). Therefore, contrary to their effect on �V, stressful
conditions do not result in a consistent trend toward increased
or decreased �M. Finally, note that the variation of log(�M)
is also smaller than that of log(��) (see Fig. 2), although
means and standard deviations are of the same scale. Ninety-
six percent of log(�M) estimates fall in the range
(�0.5, 0.5) (i.e., all but the outlier mentioned above), whereas
more than 23% (7 of 30) of log(��) estimates fall outside this
range.

INTERPRETATION IN TERMS OF FITNESS LANDSCAPES

Our survey reveals that stressful conditions tend to inflate
the variance in mutational fitness effects, CV(s), while leav-
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ing almost unaffected either U or s̄. This pattern is consistent
across species and experiments. Overall, this result suggests
that the CV hypothesis is the prominent explanation for en-
vironmental variation of mutation fitness effects. The next
step is to interpret this result. When do we expect such a
pattern? Is it compatible with a mutation fitness effect model?
In this section, we briefly present a fitness landscape model
that provides a framework to interpret these empirical pat-
terns.

A Fitness Landscape Model of Mutation Fitness Effects

A straightforward way to evaluate the effect of the envi-
ronment on the distribution of mutation fitness effects f (s),
is to consider fitness landscape models, similar to Fisher’s
(1930) geometric model, whereby the fitness of a given phe-
notype falls off with the phenotypic distance to an optimum
determined by the environment. Assuming a distribution of
mutational effects on phenotypic traits, this approach pro-
vides a natural way to predict f (s) at a given distance from
the phenotypic optimum (Orr 2000; Welch and Waxman
2003). We can model a phenotype as a set of n phenotypic
traits zi represented by a column vector z � {zi}i∈[1,n], with
fitness given by an arbitrary (twice differentiable) fitness
function W(z). Each MA line accumulates mutations causing
a phenotypic displacement dz � {dzi}i∈[1,n] from an initial
phenotype zo. In MA experiments, zo can be thought of as
the phenotype of the strain from which MA lines are derived.
The fitness of this initial phenotype zo is W(zo) and a mutant
line has phenotype zo � dz and fitness W(zo � dz). W is the
absolute fitness but our review focuses on the effect of mu-
tation accumulation on relative fitness w, that is, on the dis-
tribution of the fitness deviation of MA lines relative to the
initial genotype. This deviation for a line with phenotype zo
� dz is dw � [W(zo � dz) � W(zo)]/W(zo), which is the
selection coefficient of the mutant line relative to its wild-
type ancestor. Note that we do not denote it ‘‘s,’’ which refers
to the effect of single mutations, whereas dw may result from
several mutations accumulated in a given line. If the devi-
ations remain small, the effect of dz on relative fitness ap-
proximately equals its effect on absolute log-fitness (ln[W(z)]
denoted ln W(z)), dw � ln(1 � dw) � ln W(zo � dz) �
ln W(zo). Under the same assumption of small deviations, dz
remains small around the initial phenotype zo, so that
ln W(zo � dz) � ln W(zo) can be approximated by a second-
order multivariate Taylor Series around zo, yielding

dw � ln(1 � dw)
n � ln W(z )o� dz� i�zi�1 i

n n 21 � ln W(z )o 2� dz dz � o(dz ). (3)� � i j2 �z �zi�1 j�1 i j

From this equation, we can compute the mean and variance
of dw over mutant line effects dz, which are the quantities
�M and �V, respectively, reported in our survey. From here,
we assume that mutation effects, on phenotypic traits (z), are
unbiased, E(dzi) � 0. This appears to be the most parsimo-
nious assumption, as there is no clear trend expected or ob-
served for the effect of mutations on, for example, morpho-

logical traits (for further discussion, see Martin and Lenor-
mand 2006). Note that we make no assumption on the effect
of mutation on fitness, the latter being derived from the mod-
el, not assumed. Then, keeping only terms up to the second
order in dz, equation (3) yields

n n 21 � ln W(z )o 2�M � E(dz dz ) � o[E(dz )] (4a)� � i j2 �z �zi�1 j�1 i j

n n � ln W(z ) � ln W(z )o o�V � E(dz dz )� � i j�z �zi�1 j�1 i j

2� o[E(dz )]. (4b)

This approximation shows that both the average and variance
of the relative fitness of MA lines can be decomposed into
two parts reflecting the genotype-phenotype relationship
(E[dzidzj]), and the phenotype-(log)fitness relationship (de-
rivatives of ln W[z] at phenotype zo).

The terms E(dzidzj) are the variances and covariances of
the effects of mutation accumulation on the underlying phe-
notypic traits, because E(dzi) � E(dzj) � 0. They quantify
globally how and how much mutation accumulation affects
the phenotype distribution among MA lines. They absorb the
mutation rate and the way in which mutations have a phe-
notypic effect, in a given environment (patterns of expression
and pleiotropy). Equation (4) shows that the mean and var-
iance of mutation effects are both proportional to E(dzidzj):
both �M and �V scale with the amount of phenotypic change
produced by mutation accumulation.

ln W(z) describes how phenotypic changes (dzi) translate
into relative fitness changes (dw) in a given environment.
First, from equation (4), the average relative fitness effect of
mutations depends on the local curvature of the log-fitness
function, �2ln W(z)/�zi�zj. Indeed, symmetrical variation in
dz can only translate into a bias in dw if the phenotype-fitness
relationship ln W(z) is nonlinear. Second, the mutational var-
iance in relative fitness (�V) is proportional to the product
of first derivatives of ln W(z) taken at zo. This result is in-
tuitively simple: variance in the underlying phenotypic traits
(zi) transforms into variance in fitness according to the local
slope of the fitness function (to � ln W[z]/�zi) irrespective of
its sign (hence the square).

For example, if the log-fitness is concave around zo, that
is, �2ln W(z)/�zi�zj  0, then mutations are deleterious on
average (�M  0, see eq. 4), and the variance �V increases
with the distance to the optimum �zo�. Indeed, the absolute
slope of ln W (�� ln W[z]/�zi �) increases as the initial phe-
notype zo gets away from the optimum. This argument is
illustrated on Figure 3 for the case of a quadratic log-fitness
function. Note that concavity or convexity is defined locally
in the range of phenotypes produced by mutations and in the
environment where fitness is measured. The landscape may
be rugged at a finer scale (i.e., with changing concavity), for
instance, at the level of DNA sequences. However, we focus
here on the fitness function measured at the scale of newly
arising phenotypic variation. Note also that, from equation
(4), there should be no variance in fitness at the optimum
(where all � ln W/�zi are zero). However, this conclusion only
arises from our approximation in o(dz2). When all the first
order derivatives are zero, the higher order terms (O[dz3],
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FIG. 3. Effect of stress on the mean and variance of s with a
quadratic fitness function. A fitness landscape for a single pheno-
typic trait z is represented with a Gaussian fitness function (qua-
dratic log-fitness function) ln W(z) � �z2. Mutations cause a phe-
notypic variation around the initial phenotype (x-axis). In gray, the
initial phenotype is close to the optimum (zo � 0 benign environ-
ment); in black, the initial phenotype is maladapted to the envi-
ronment (zo � 0, stressful environment). The resulting mean s̄ and
variance V(s) of mutation fitness effects are represented in each
case on the y-axis.

O[dz4], etc.) become leading order terms in �V, so that there
still is some mutational variance in fitness at the optimum.

Overall and to summarize, �M is proportional to the cur-
vature of ln W(z) at zo, whereas �V is proportional to the
square of the slope of ln W(z) at zo, and both �M and �V
are proportional to the mutational variance accumulated on
the underlying phenotypic traits (hence to U). We now in-
terpret the effect of the environment in this landscape ap-
proximation.

Fitness Effects in Different Environments in a Fitness
Landscape Model

Let us first consider that the main effect of the environment
is to affect the genotype-phenotype relationship, the
E(dzidzj). Such an effect may be expected when some phe-
notypic traits are plastic, so that the same mutation has dif-
ferent phenotypic effects depending on the environment; then
the (co)variances of mutation effects on phenotypic traits,
E(dzidzj), may be environment dependent. In this case, from
equation (4) the variations of �M and �V across environments
should be proportional, that is, both proportional to the en-
vironmentally determined variation of E(dzidzj). Quite logi-
cally, this corresponds to the expected pattern under the CE
hypothesis (see Table 1), which assumes that only U is af-
fected by the environment. Such variation of U may therefore
reflect environmental variation of the proportion of expressed
mutations or of their effect variance on the underlying traits
(zi).

However, different environments may also correspond to
different optima for the phenotypic traits zi. If we assume
that the environment only alters the optimum and not the
fitness function ln W(z) around this optimum, then different
environments equivalently correspond to different positions

of the initial phenotype zo. In particular, and following our
definition, stressful and benign environments correspond to
situations where the initial phenotype is at a small or large
distance from the optimum, respectively. As the mean �M
and variance �V of mutant relative fitnesses depend on the
first and second derivatives of ln W at zo, the way in which
�M and �V vary with the environment gives us information
on the way the derivatives of ln W vary with zo. This in turn
gives us information on the type of log-fitness function
ln W(z). Therefore, different log-fitness functions correspond
to distinct predictions regarding the relationship between �M
and �V across environments, or equivalently between log(�S)
and log(�V). Just as environmental effects on the genotype-
phenotype relationship correspond to variation of U (CE hy-
pothesis), variation of the distance to the optimum corre-
sponds to variation of s̄ and var(s) (CE and CV hypotheses,
respectively).

We illustrate the above argument in Figure 4, showing the
influence of the distance to the optimum on the mean (s̄, Fig.
4a) and variance (var[s], Fig. 4b) of single mutation fitness
effects, for various log-fitness functions. Specifically, we
consider that ln W is a power function (of order k) of the
distance to the optimum on each trait, that is, a linear com-
bination of �zi�k, which provides an easy way to consider
different shapes for ln W by varying a single parameter (k)
and reduces to the Gaussian case with k � 2. The distance
to the optimum is defined as the log-fitness of a genotype
lying at the optimum (Wmax) relative to that of the initial
genotype W(zo): so � log[Wmax/W(zo)] (Martin and Lenor-
mand 2006). We also allow the direction of zo (for a given
so) to vary randomly across environments, as well as the
coefficients of each of the �zi�k, with the constraint that their
sum remains constant across traits zi. Consequently, the var-
iance among points (for a given so), mainly reflects that all
directions in the phenotypic landscape are not equivalent
(each point represents a particular direction zo, with different
coefficients of each of the �zi�k). Figure 4a shows that varying
the shape of the log-fitness function (i.e., varying the param-
eter k) strongly affects the change in s̄ with the distance to
the optimum (with so). In all these examples, as ln W is
concave, mutations are deleterious on average (s̄  0) and
the variance of their effect increases with so, as predicted by
equation (4). In the particular case k � 2, which corresponds
to a Gaussian W(z), s̄ does not change with so because
ln W(z) is quadratic and therefore has a constant second de-
rivative.

Interpreting the Empirical Patterns

Our survey revealed that mutations are always deleterious
on average in all environments and that stressful conditions
tend to inflate the variance in mutational fitness effects, that
is, CV(s) or equivalently var(s), while leaving almost unaf-
fected either U or s̄. This corresponds to the CV hypothesis.
Under our landscape model, this pattern would be expected
if E(dzidzj) does not change in different environments and
with a globally quadratic ln W(z), that is a Gaussian function
W(z) with a constant width across environments and with an
environment-dependent optimum. With this specific model:
(1) U is constant in different environments because E(dzidzj)
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FIG. 4. Variation of s̄ and var(s) with the fitness distance to the optimum (so) with diffrent fitness functions. The fitness functions are
of the form W(z) � exp(�½ �zi �k�i), where k � 1, 1.5, 2, 2.5 or 3, as indicated on the graph. The parameter k indicates whethern�i�1
the fitness function has a wider (k � 2) or narrower (k  2) plateau around the optimum compared to a Gaussian fitness function (k �
2). Several steps are needed to obtain one dot on the figure. First, two random variance covariance matrices S and M of size n � 50
are drawn and scaled such that if k � 2, E(ln[1 � s]) � s̄ would be �0.05. The eigenvalues of the product S·M give the �i in the
expression of W(z). Then the n trait values of the initial phenotype (zo) are drawn randomly, giving its fitness distance to the optimum
so � log[Wmax/W(zo)] where Wmax � W(0) � 1. Then 1000 mutants are drawn around this initial phenotype (i.e., 1000 deviation vectors
dz � {dzi}i∈[1,n], where the dzi are drawn into independent Gaussians N[0, 1]). The relative fitness of each mutation is computed as s(dz)
� W(zo � dz)/W(zo) � 1, and used to compute the mean s̄ and variance var(s) of s among mutants. Increasing the number of traits (n)
does not change qualitatively the outcome but magnifies the differences among different fitness functions (not shown).

is constant, (2) var(s) increases in more stressful environ-
ments because ln W(z) is concave; and (3) s̄ is negative and
constant because ln W(z) is concave with constant second
derivatives (see Fig. 4, k � 2).

A continuum of log-fitness functions ln W(z) would predict
a continuum of relationships between log(�S) and log(�V).
Figure 5 illustrates this by showing the different relationships
between log(�S) and log(�V) simulated for various types of

log-fitness functions (i.e., different k values). Figure 5 shows
that the relationships between log(�S) and log(�V) differs
strongly whether k � 1, 1.5, or 2 but that it is more difficult
to discriminate among higher k values (k � 2, 2.5, or 3). The
relationship obtained from our survey log(�S) � 0.87 log(�V),
is close to the CV hypothesis log(�S) � log(�V) (correspond-
ing to k � 2). It is very different from the relationship ex-
pected for k values lower than 2. However, it may be con-
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FIG. 5. Variation of log(�S) against log(�V) with different fitness functions. We use the same simulations as in Figure 4 (with the same
gray-level code for each k value). Log(�) ratios are computed relative to the case so � 0. The dashed line corresponds to log(�S) �
log(�V) (CV hypothesis).

sistent with k values slightly larger than 2 (e.g., maybe k �
2.5) because it is more difficult to distinguish among larger
values of k, at least in very stressful conditions (i.e., away
from the origin on Fig. 5). However, it is important to keep
in mind that the number of mutations sampled in a typical
MA experiment is not very large, which introduces an ad-
ditional source of noise in the patterns that can be observed.
Figure 6 illustrates the expected relationship between log(�S)
and log(�V) for a Gaussian fitness function (k � 2), when
only 40 mutations are sampled around the initial phenotype
(instead of 1000 in Figs. 4, 5). It shows that there is consid-
erable uncertainty in the precise relationship between log(�S)
and log(�V) and that this uncertainty is much larger in very
stressful conditions (i.e., away from the origin on the figure).
Overall, given these various sources of uncertainty and given
the uncertainty of the empirical estimates themselves, we
believe that it is not justifiable to make a very precise state-
ment about W(z). However, the observation that the main
effect of stress is to increase CV(s) with relatively little effect
on U and s̄ suggest that a landscape model with a constant
E(dzidzj) and a Gaussian fitness function would be consistent
with the data available.

DISCUSSION

The two main findings of this study are that stressful con-
ditions tend to inflate var(s) while leaving almost unaffected
either U or s̄ and that this pattern is consistent with a simple
Gaussian fitness landscape (quadratic log-fitness). In such
landscape model: (1) the fitness function is Gaussian (or near-
ly so) around an optimum that is determined by each envi-
ronment; (2) the parameters of this Gaussian fitness function
around each optimum are little affected by the environment;
and (3) the mutational variances and covariances on phe-

notypic traits do not vary much across environments. Con-
ditions (1) and (2) ensure that only var(s) and not s̄ changes
across environments, and condition (3) ensures that U does
not change with the environment. We now discuss the plau-
sibility of this interpretation and to what extent our findings
are consistent with less restrictive assumptions.

Plausibility of the Fitness Landscape Model Proposed

It may seem surprising that a simplified fitness landscape
model explains well empirical patterns across different spe-
cies and environments. In the following section, we discuss
the realism of some of the assumptions underlying this model,
in particular, the existence of a single optimum and the con-
stancy of parameters across environments. There are several
lines of evidence indicating that simple fitness landscape
models (or equivalently stabilizing selection models on many
traits) may be more realistic than sometimes claimed. First,
the idea that an environmental change determines a new phe-
notypic optimum is supported by the long-term dynamics of
experimental adaptation to new environments. In both mi-
crobes (reviewed in Elena and Lenski 2003) and Drosophila
(Gilligan and Frankham 2003), fitness typically plateaus in
the long run, suggesting an approach to a new optimum.
Second, the distribution of mutation fitness effects is gamma-
like in many species, which is consistent with the predictions
of an approximately Gaussian fitness landscape model (Mar-
tin and Lenormand 2006). Third, an increase in the proportion
of beneficial mutations under stressful conditions as predicted
by fitness landscape models has been documented in Esch-
erichia coli (Remold and Lenski 2001, 2004). Fourth, there
is ample evidence for stabilizing selection on various traits
(Kingsolver et al. 2001; Hereford et al. 2004) or landscape-
like relationships between enzymatic activities and fitness
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FIG. 6. Variation of log(�S) against log(�V) for a Gaussian fitness function (k � 2). This figure illustrates the same type of simulations
as in Figures 4 and 5, except that for each point only 40 mutants are drawn around the initial phenotype (instead of 1000). Log(�) ratios
are computed relative to the case so � 0. This figure illustrates that drawing a small number of mutations around the initial phenotypes,
which is typical of most mutation accumulation experiments, results in a large uncertainty in the expected relationship between log(�S)
and log(�V). The large dark dots represent the observed values surveyed in Table 2. The dashed line corresponds to the observed
relationship log(�S) � 0.87 log(�V) (see Table 3, without outlier, intercept � 0).

(Dykhuizen and Hartl 1983; Dean et al. 1986, 1988; Dykhu-
izen et al. 1987; Dykhuizen and Dean 1990).

Overall, the idea that adaptation may be modeled by some
simple Gaussian or quadratic fitness function around an en-
vironment-dependant optimum seems not so unrealistic, al-
though it would have been difficult to predict that a Gaussian
fitness function assumption would quantitatively match the
data so closely. However, to explain the empirical pattern,
it is also necessary to assume that mutational and selective
covariances on phenotypic traits remain constant across en-
vironments (conditions (2) and (3) above). This seems quite
unrealistic, as we know that different genes are expressed in
different environments and that a given trait may be strongly
or weakly selected depending on the environment (i.e., the
width of the Gaussian, not only its maximum, may change
with the environment). First, it is possible that only a small
portion of the genome has environment-dependent expres-
sion. Microarray studies in microorganisms suggest that only
about 1% of the genome is activated or repressed in many
specific stress responses (Wright 2004). However, this ob-
servation does not rule out that mutations phenotypic effects
(if not expression) may strongly depend on the environment.
Nevertheless, conditions (2) and (3) may be less restrictive
than they seem. The only requirement is in fact that the net
effect of the environment on all traits remains approximately
constant, not that selective and mutational parameters on each
of them be invariant. This is much less restrictive, particularly
when considering a large number of traits. With the Gaussian

fitness landscape model, W(z) can be fully specified with a
covariance matrix of selection intensity S (which is the mul-
tivariate measure of width of the fitness function). As a con-
sequence, the distribution of mutation fitness effects f (s) in
a given environment depends on this matrix S, on the mu-
tational covariance matrix M describing the (co)variance of
all traits by mutation (the E[dzidzj] in eq. 4), and on the
optimal values for each trait. More specifically, f (s) depends
on the distribution of the eigenvalues of the matrix S·M, on
the number of traits and the distance to the optimum (Martin
and Lenormand 2006). Conditions (2) and (3) are therefore
overly restrictive. The empirical pattern that we observe
would be consistent with different S and M matrices in dif-
ferent environments as long as the distribution of S·M ei-
genvalues and the number of traits stay approximately con-
stant across environments. This condition would be met as-
ymptotically (i.e., with many traits) if elements of S corre-
spond to random draws in a distribution, which is arbitrary
but identical in all environments, with the same requirement
for M (Martin and Lenormand 2006). This argument, which
stems from random matrix theory (Bai 1999), indicates that
random variation of S (width of the fitness function) and M
(mutational variance) across environments (in addition to a
change in the optimum) may be undistinguishable from ex-
actly constant S and M as far as mutations’ fitness effects
are concerned. This fact was illustrated in Figures 4 and 5,
where we allowed for such random variation of mutational
and selective parameters, and found robust relationships be-
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tween s̄, var(s), and the fitness distance to the optimum (so).
In any case, although a Gaussian fitness landscape model
does not fully describe the relationship between phenotype,
fitness, and the environment, it may nonetheless be a suffi-
ciently robust simplification as it captures empirical patterns
surveyed in this paper. As such, it may be a useful and rea-
sonably accurate model for mutation fitness effects.

However, a Gaussian fitness landscape model does not ac-
count for all the data. For instance, in our survey (see Table
2; Figs. 1, 5), a minority of experiments found that �V was
lower in more stressful conditions (instead of higher in a
Gaussian fitness landscape). In many cases, the difference is
not large and may be simply accounted for by measurement
error on the relative fitness of the mutant lines or the low
number of mutations sampled among the mutant lines. It is
also possible that the stressful and benign environments were
ill-attributed in some cases (i.e., when no stress measure was
provided; see Table 2). However, it is also possible that these
measures genuinely reflect that �V is sometimes lower in
more stressful conditions. It is possible to theoretically expect
these results with a fitness function with a narrower plateau
around the optimum than the Gaussian (k  2, see Fig. 5),
although the data available do not globally support this pos-
sibility. Of course, it is also possible that the fitness function
differs among species and environment, which could then
easily account for these observations. In fact, the observation
that most data could be interpreted with a single landscape
model is the most intriguing result emerging from our survey.
However, it seems quite likely that there is variation, even
if it is modest, in the shape of the landscape among species
and environments, and more data are clearly needed to settle
this issue.

In line with this discussion, it is worth mentioning the
mutation accumulation of Burch and Chao (2004) on RNA
bacteriophage �6. In this experiment, the authors measure
�M and �V using more- or less-adapted initial genotypes in
a single environment, instead of the same initial genotype in
different environments as in our survey. This type of exper-
iment can be interpreted in a similar way as experiments
involving different environments (the variation in the dis-
tance to the optimum [so] is given by the fitness of distinct
initial genotypes in a single environment, instead of distinct
environments determining the fitness of a single line). Con-
trary to the main result of our survey, they found that sBM

decreased with increasing maladaptation of the initial ge-
notype (so). Just as in the present review, �S and �V can be
computed from their MA data (not shown), and their mutual
relationship across initial genotypes (instead of across en-
vironments) can be obtained. This relationship is more con-
sistent with a linear log-fitness function (k � 1), than with
the quadratic function (k � 2) suggested by our survey. As
far as this interpretation is correct, the discrepancy between
the effects of maladaptation generated by environmental
change versus mutation accumulation suggests that a com-
parison between the two types of experiments would deserve
further investigation. Overall, the fact that the fitness function
compatible with these data on �6 may be quite different from
what we found in our survey also indicate that the shape of
fitness functions may differ across species (viruses may show
a particular pattern compared to ‘‘higher’’ species), although

further experiments are needed in both higher organisms and
microbes to assess the generality of this conclusion. The
framework we propose in this paper may also be useful for
this purpose.

Increased Var(s) under Stressful Conditions

Our results suggest that stressful conditions (at least those
considered in our survey) mainly increase the variance of
deleterious mutation fitness effects and have a modest influ-
ence (if any) on their average effect (CA hypothesis) or on
their total level of expression (CE hypothesis). The finding
that stressful conditions tend to increase mutational variance
is of course not totally new. For instance, Hermisson and
Wagner (2004) proposed a general mechanism for the in-
crease in mutational variance on a quantitative trait (not nec-
essarily fitness related) after an environmental change. How-
ever, they focused on hidden standing genetic variation,
whereas our study focuses on newly arisen mutational effect,
and on their fitness consequence only. An increase in �V
under stress has also been mentioned previously by several
authors (reviewed in Fry and Heinsohn 2002), although with-
out testing between the possible causes of this increase. Our
results are also consistent with Remold and Lenski (2001),
who showed that the variance in fitness among lines carrying
a single mutation increased in stressful conditions, whereas
the average deleterious effect remained unchanged (but �V
and �M estimates are not given in that article). Moreover,
Remold and Lenski (2004) also studied the fitness effect of
single mutations across five genetic backgrounds and in two
environments. Among the 18 mutations studied, some were
conditionally neutral (sensu Kawecki et al. 1997), but only
on specific genetic backgrounds. However, many mutations
(7 of 18) were simply neutral in both environments (uncon-
ditionally neutral). Together, although based on a limited
amount of studies, these results suggest that stressful con-
ditions do increase the variance of mutation fitness effects,
but not necessarily (and maybe rarely) because of an increase
in the expression of deleterious mutations. There are many
examples of genes being activated in response to stress (e.g.,
oxidative, temperature, or osmotic stresses), both in the yeast
(Toone and Jones 1998) and in mammals (Sonna et al. 2002).
Mutations on these genes should indeed be neutral in benign
environments, but stress responses are also known to down-
regulate some other genes (e.g., in the response to oxidative
stress; Morel and Barouki 1999). Other stresses may result
in the switch to a new resource utilization pathway. In both
situations, different genes are being either up- or downreg-
ulated and the net outcome thus may not necessarily be an
increase in the total number of expressed mutations in stress-
ful conditions.

Conditional Neutrality, Genotype-by-Environment
Interactions, and Ecological Specialization

Differences in mutation effects across environments are a
necessary ingredient for the evolution of ecological special-
ization (Futuyma and Moreno 1988). Ecological specializa-
tion or local adaptation may occur if the direction of selection
changes for an allele between environments (antagonistic
pleiotropy). It may also occur if the intensity of selection
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FIG. 7. Mutational genotype 
 environment interactions for fitness in a fitness landscape model. The figure represents a phenotypic
space with two phenotypic traits (z1 and z2) with two different optima in two distinct environments (O1 and O2). Mutations on a given
initial phenotype (black dot) in a given environment may be deleterious (�), neutral (0), or advantageous (�), depending on whether it
brings the phenotype away from or closer to the corresponding optimum (O1 or O2). The joint effect of a mutation in both environments
depends on the position of the mutant in the phenotypic plan. Each colored area represents a zone in which all mutations have the same
qualitative joint effect, encoded as the effect in one environment/effect in the other one. See text for details.

against deleterious mutations at several loci covaries nega-
tively between environments (Fry et al. 1996; Whitlock
1996). The first scenario requires the existence of a trade-off
and the occurrence of mutations that are beneficial in at least
some environments, whereas the second scenario works best
when mutations are neutral in one environment but delete-
rious in another (i.e., under conditional neutrality Kawecki
et al. 1997) and accords with the common view that most
mutations are deleterious. Many empirical studies document
the evolution of ecological specialists in constant environ-
ments or of locally adapted genotypes in heterogeneous en-
vironments (reviewed in Kassen 2002; Lenormand 2002), and
the prevalence of conditional neutrality versus antagonistic
pleiotropy has been much debated in this context (cost of
specialization: Cooper and Lenski 2000; MacLean et al.
2004). There is evidence for the different types of mutation
presented above. In particular, conditionally neutral genetic
variation at quantitative trait loci (some of which is revealed
by stressful conditions) has been documented in several ex-
periments (reviewed in Hermisson and Wagner 2004). How-
ever, some other quantitative trait loci with significant fitness
effects may show less environment dependence, and evidence
for conditional neutrality on traits with very limited impact
on fitness (e.g., bristle number) is not evidence for conditional
neutrality for fitness. There is also evidence for antagonistic
pleiotropy (Cooper and Lenski 2000; Gazave et al. 2001;
MacLean et al. 2004). However, the relative frequency of

these different types of mutations is not clearly documented
apart from a recent study (Remold and Lenski 2004).

If simple fitness landscape models are a reasonably ac-
curate approximation, as our results suggest, they could pro-
vide a rationale to predict the proportion and impact of each
of the above type of mutation. Indeed, genotype 
 environ-
ment interactions for mutation fitness effects are inherent to
a fitness landscape model in which different environments
are characterized by different optimal values for the under-
lying traits. Figure 7 sketches the different types of mutation
fitness effects (relative to an initial phenotype zo) that may
occur in a simple two-traits landscape with two different
optima, O1 and O2, determined by two contrasted environ-
ments. First, a given mutation dz may increase the phenotypic
distance from both O1 and O2 if the phenotype zo � dz lies
in the white area of Figure 7. Such a mutation would be
deleterious in both environments (�/� area), although this
deleterious effect may be more severe in one of them. Second,
a given mutation may increase the distance from only one of
the two optima. Such a mutation would be conditionally neu-
tral or deleterious (�/0 area). Third, a mutation may not
significantly change the distance from either optimum and
be neutral (0/0 area). Fourth, a mutation may decrease the
distance from only one of the optima and be conditionally
neutral or beneficial (0/� area). Fifth, a mutation may de-
crease the distance from one optimum but increase the dis-
tance from the other. Such a mutation would be antagonistic
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pleiotropic (�/� area). Finally, a mutation may decrease the
distance from both optima and be unconditionally beneficial
(�/� area). The proportion of these different types of mu-
tation depends on the relative position of the optima and the
initial phenotype and may be predictable in a given landscape
and for a given fitness effect threshold defining a neutral
mutation.

The evolution of specialization mainly relies on �/0 mu-
tations (conditional neutrality) and �/� mutations (antago-
nistic pleiotropy). Our results suggest that whether the en-
vironment is stressful or not does not change the total number
of expressed deleterious alleles (i.e., of conditionally neutral
mutations). However, this does not rule out the potential for
ecological specialization by conditional neutrality (sensu
Kawecki et al. 1997), as different deleterious mutations may
be expressed in different environments, even if their total
number remains roughly constant across environments. In
any case, our survey is mainly concerned with uncondition-
ally deleterious �/� mutations and is not directly relevant
to these other contexts, but we note that fitness landscape
models may be useful to quantitatively predict the relative
prevalence of conditional neutrality and antagonistic plei-
otropy.

Implications for the Estimation of Mutational Parameters

Finally, and perhaps more importantly, our results suggest
that stressful conditions tend to increase the coefficient of
variation of mutation fitness effects, CV(s). This effect could
lead to strong underestimation of the mutation rate by the
Bateman-Mukai method when fitness is assayed in stressful
conditions, sometimes by up to two orders of magnitude.
Therefore, it seems a priori wisest to rely on U estimates
based on fitness assays in an environment to which the control
genotype is well adapted. Fortunately, most estimates have
been done in this context. Considering that U does not vary
much across environments compared to CV(s) may also be
useful when analyzing MA data across environments using
maximum likelihood (Keightley 1994; Vassilieva et al. 2000)
or minimum distance (Garcia-Dorado and Marin 1998). In
any case, a significant change in U versus CV(s) across en-
vironments can be tested with these methods to further in-
vestigate the results of the present study.
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