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Summary 27 

1. In this study, we compare two community modelling approaches to determine their ability 28 

to predict the taxonomic, functional and phylogenetic properties of plant assemblages along a 29 

broad elevation gradient and at a fine resolution. The first method is the standard stacking 30 

individual species distribution modelling (SSDM) approach, which applies a simple 31 

environmental filter to predict species assemblages. The second method couples the SSDM 32 

and macroecological modelling (MEM - SSDM-MEM) approaches to impose a limit on the 33 

number of species co-occurring at each site. Because the detection of diversity patterns can be 34 

influenced by different levels of phylogenetic or functional trees, we also examine whether 35 

performing our analyses from broad to more exact structures in the trees influences the 36 

performance of the two modelling approaches when calculating diversity indices. 37 

2. We found that coupling the SSDM with the MEM improves the overall predictions for the 38 

three diversity facets compared with those of the SSDM alone. The accuracy of the SSDM 39 

predictions for the diversity indices varied greatly along the elevation gradient, and when 40 

considering broad to more exact structure in the functional and phylogenetic trees, the SSDM-41 

MEM predictions were more stable.  42 

3. SSDM-MEM moderately but significantly improved the prediction of taxonomic diversity, 43 

which was mainly driven by the corrected number of predicted species. The performance of 44 

both modelling frameworks increased when predicting the functional and phylogenetic 45 

diversity indices. In particular, fair predictions of the taxonomic composition by SSDM-MEM 46 

led to increasingly accurate predictions of the functional and phylogenetic indices, suggesting 47 

that the compositional errors were associated with species that were functionally or 48 

phylogenetically close to the correct ones; however, this did not always hold for the SSDM 49 

predictions. 50 
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4. Synthesis. In this study, we tested the use of a recently published approach that couples 51 

species distribution and macroecological models to provide the first predictions of the 52 

distribution of multiple facets of plant diversity: taxonomic, functional and phylogenetic. 53 

Moderate but significant improvements were obtained; thus, our results open promising 54 

avenues for improving our ability to predict the different facets of biodiversity in space and 55 

time across broad environmental gradients when functional and phylogenetic information is 56 

available. 57 

 58 

 59 

 60 
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Introduction 66 

Significant research efforts are allocated to assessing and modelling the impact of global 67 

changes on biodiversity over a wide range of scales and for different ecosystems and taxa 68 

(Bellard et al. 2012). An integrative assessment requires the simultaneous investigation of the 69 

multiple facets of biodiversity: taxonomic, functional and phylogenetic (Thuiller et al. 2015). 70 

The most frequently considered element of biodiversity is the taxonomic facet, which is 71 

associated with species richness and composition and requires the counting and identification 72 

of species that co-occur in a given unit area (alpha diversity; e.g., Ferrier & Guisan 2006; 73 

White & Kerr 2006; Mateo et al. 2012). The capacity to model functional and phylogenetic 74 

diversity has been explored more recently and is an important area of research (Dubuis et al. 75 

2013; Ndiribe et al. 2014; Rosauer et al. 2014; Chalmandrier et al. 2015b; Thuiller et al. 76 

2015; Jarzyna & Jetz 2016). Phylogenetic diversity is a measure that accounts for 77 

phylogenetic relationships among taxa, and it facilitates investigations into the impacts of 78 

evolutionary history in the assemblage of communities (Faith 1992; Webb et al., 2002). 79 

Finally, functional diversity represents the variance of species functional traits within a given 80 

assemblage (sensu Violle et al. 2007) and may provide insights into the processes that shape 81 

local assemblages (Lavorel & Garnier 2002; McGill et al. 2006).  82 

Biodiversity patterns can be predicted via modelling approaches of varying complexity and 83 

different emphases on the processes that generate community structure (e.g., Webb et al. 84 

2010; Mokany et al. 2011; Fernandes et al. 2013, see D’Amen et al. 2015c for a review). A 85 

standard approach to obtaining compositional information is to reconstruct communities by 86 

stacking individual species predictions obtained from species distribution models (stacked 87 

species distribution models, SSDMs, Pineda & Lobo, 2009; Mateo et al. 2012). This strategy 88 

is based on the assumption that communities originate from the coincidental assemblage of 89 

individualistic ecological responses of species. Because individual species distribution models 90 
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(SDMs) mainly use abiotic environmental data to perform inferences regarding species range 91 

limits and habitat suitability (Franklin 1995; Guisan & Zimmermann 2000; Elith & Leathwick 92 

2009), the derived SSDMs can account for the effect of environmental drivers in the 93 

community predictions but may not include the effects of historical factors, biotic interactions 94 

and dispersal limitations (Thuiller et al. 2013). These models show varying abilities in 95 

predicting observed species richness patterns or assemblage compositions, but for certain 96 

groups they have a tendency to over-predict the number of species in a community (e.g., 97 

Guisan & Rahbek 2011; Pineda & Lobo 2012; Calabrese et al. 2014; but see D’Amen, 98 

Pradervand & Guisan 2015b and Mateo et al. 2016).  99 

Recently, the novel community modelling framework SESAM has been proposed to 100 

reconstruct species assemblages by integrating the different drivers of the assembly process, 101 

including species pool definitions, habitat filtering, macroecological constraints and 102 

ecological assembly rules (Guisan & Rahbek 2011). To date, the SESAM framework has 103 

been mostly implemented by applying the habitat filter through stacking simple static SDMs 104 

and constraining predictions for different assemblage properties via coupling with 105 

macroecological models (MEMs) (e.g., as species richness or functional limits) (D’Amen et 106 

al. 2015a). A key question in such SESAM implementation is related to the species that 107 

should be selected from the pool of species predicted by the SSDM to produce the MEM 108 

prediction. One possible solution is to rank species by their SSDM-predicted probability at 109 

each site and retain only the highest probability species in the final assemblage prediction 110 

until the MEM prediction is reached (“probability ranking” rule, PRR, D’Amen et al. 2015a). 111 

This approach can be considered a putative ecological assembly rule if the probability of 112 

presence at each site can be assumed to be a good proxy for species competitive strength at 113 

that site. Because our implementation only represents a part of SESAM, in the following 114 

sections we will refer to it as SSDM-MEM.  115 
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The SSDM-MEM approach has been shown to improve upon the SSDM approach by limiting 116 

species richness over-predictions (D’Amen et al. 2015a). However, although many studies 117 

have compared different approaches to predicting the taxonomic component of biodiversity 118 

(see D’Amen et al. 2015a), no such comparisons have been performed for the functional and 119 

phylogenetic facets. In particular, SSDM-MEM has never been tested for the prediction of 120 

these components (D’Amen, Pradervand & Guisan 2015b). Here, we compare the two 121 

community-modelling approaches - simple SSDM and SSDM-MEM - to determine their 122 

ability to predict the three main facets of biodiversity: taxonomic, functional, and 123 

phylogenetic. We use fine-resolution data of plant communities along an elevation gradient 124 

and utilize a simplified concept of “community”, which we define as taxonomic assemblages 125 

of species inhabiting the same plot. We also calculate and predict diversity indices for these 126 

three components because they are important aggregated measures in ecology and 127 

conservation biology (Corbelli et al. 2015; Jarzyna & Jetz 2016).  128 

First, we test whether the performance of SSDMs can be improved by implementing the 129 

SSDM-MEM approach. We expect taxonomic diversity to be predicted more accurately by 130 

using SSDM-MEM because this method makes it possible to limit richness over-predictions 131 

(D’Amen et al. 2015c). Functional diversity is directly linked to the response of species to the 132 

environment (Thuiller et al. 2015); thus, we can expect here simple SSDMs that account for 133 

the abiotic environmental drivers in the species sorting to show sufficient/good performances. 134 

Conversely, we expect that phylogenetic diversity will be predicted with less accuracy than 135 

functional diversity because it is likely to be influenced by additional processes, such as 136 

evolutionary history, which are not considered here (Mouquet et al. 2012; Münkemüller et al. 137 

2015). 138 

Second, we test whether differences in the predictive performance of the two community 139 

modelling approaches can be detected along the elevation gradient. Elevation gradients 140 
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include variations in several environmental factors (e.g., temperature, precipitation, 141 

topography, and soil) that directly influence the presence of organisms. Therefore, these 142 

gradients are useful for testing general hypotheses regarding the main drivers that shape 143 

diversity patterns (e.g., Callaway et al. 2002; Michalet et al. 2014) and testing community-144 

modelling approaches (e.g., Dubuis et al. 2011, Mateo et al. 2012).  145 

Finally, recent reports have indicated that the detection of diversity patterns can be influenced 146 

by the different levels of the phylogenetic or functional tree when calculating functional or 147 

phylogenetic indices (i.e., the “similarity effect” in Chalmandrier et al. 2015b). In fact, 148 

community drivers can be applied differently across descendant clades (Vamosi et al. 2009). 149 

Habitat filtering is primarily used when considering the assembly of distantly related lineages, 150 

whereas biotic interactions have been shown to be more important for retrieving phylogenetic 151 

and functional structures at the tips of the tree, i.e., among closely related taxa (Crisp et al. 152 

2009; Ndiribe et al. 2013). Based on such evidence, we also test how assigning greater weight 153 

to ancient or recent divergences in the functional and phylogenetic trees influences the 154 

performance of the two modelling approaches in predicting diversity indices (Chalmandrier et 155 

al. 2015b). 156 

 157 

Materials and Methods 158 

Species, traits, and phylogenetic data 159 

The study area covers approximately 700 km2 of a mountain region located in the Western 160 

Swiss Alps, and it is characterized by a large elevation gradient ranging from 375 m to 3210 161 

m a.s.l. (Appendix S1 in Supporting Information). Exhaustive floristic inventories consisted 162 

of a set of 613 plots of 4 m2 ranging from 700 to 3000 m a.s.l., and they were distributed 163 

within the study area according to a stratified-random sampling design to evenly cover the 164 



9 
 

range of habitat conditions (Hirzel & Guisan 2002). We did not consider the low elevation 165 

band (lower than 700 m a.s.l.) to avoid areas of intense human pressure. The presence of plant 166 

species in this dataset was used for to calibrate the SDM and MEM. An additional set of 298 167 

plots representing the validation sites was surveyed using methods that were identical to those 168 

applied to the training dataset. The validation sites were previously shown to be spatially 169 

independent from the training sites and valid for model evaluation by calculating the spatial 170 

correlation of the SSDM residuals between the calibration and the evaluation datasets based 171 

on neighbourhood graphs and Moran’s I coefficient (Pottier et al. 2013). A total of 241 172 

vascular plant species were recorded. We considered 175 species that presented more than 30 173 

occurrences and showed a low and quite uniform prevalence in the study area, with 70% of 174 

the species having a prevalence ≤ 0.1 and 84% having a prevalence ≤ 0.2 (species list is 175 

available in Appendix S2). No significant relationship was observed between the prevalence 176 

and elevation. To build a functional tree, we also field-sampled two uncorrelated plant traits 177 

associated with the performance of plant species during the persistence phase of their life 178 

cycle (Westoby et al. 1998): vegetative height (VH in mm) and specific leaf area (SLA in 179 

mm2 mg-1) (see Dubuis et al. 2013, for details on the measurements in the field). Vegetative 180 

height is a stature trait associated with the plants’ ability to compete for light, and specific leaf 181 

area is related to the plants’ ability to capture, use, and release resources to their environment, 182 

thereby providing a good estimate of the position of the species along the leaf economic 183 

spectrum. Each trait was log-transformed to conform to normality and scaled between 0 and 184 

1. We then constructed a functional tree by calculating all of the pairwise dissimilarities 185 

(Gower's distances) between observations in the data set (function daisy {cluster} in R). A 186 

phylogenetic tree for these species is available in Ndiribe et al. (2013). 187 

Biodiversity modelling: taxonomic component 188 

We modelled species richness and composition using two community modelling approaches.  189 
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1) SSDM: individual species distribution models were fitted with climatic and 190 

topographic predictors calculated from data recorded by the Swiss network of meteorological 191 

stations and obtained from a digital elevation model at 25 m resolution. We selected five 192 

abiotic topoclimatic variables that previous studies reported to be relevant predictors of the 193 

distribution of plant species in this mountain environment (Dubuis et al. 2011): growing 194 

degree days (above 0 °C), moisture index throughout the growing season (difference between 195 

precipitation and potential evapotranspiration), solar radiation sum for the entire year, slope 196 

(in degrees), and topography (indicating the ridges and valleys). We used three modelling 197 

techniques: a generalized linear model (GLM), generalized additive model (GAM), and 198 

generalized boosted model (GBM). We created a weighted average ensemble model of the 199 

three techniques for each species and used weights from the internal cross-validation with the 200 

true skill statistic (TSS, Allouche, Tsoar & Kadmon 2006) evaluation metrics. All of the 201 

models and the ensemble were tested for their predictive ability on the evaluation dataset 202 

using both the area under the curve (AUC) of a receiver operating characteristic (ROC) plot 203 

(Swets 1988) and the TSS metric. The potential species distributions obtained for the 175 204 

species were binarized (presence/absence) using two threshold approaches: i) the threshold 205 

corresponding to equal values of sensitivity and specificity (Liu et al. 2005); and ii) the 206 

threshold maximizing the TSS. The binary models were stacked to predict the assemblage 207 

richness and composition in the evaluation plots (SSDM predictions). We fitted all of the 208 

models in R (2.14.1) using the biomod package (Thuiller et al., 2009). 209 

2) SSDM-MEM: for this approach, we began with the ensemble predictions for the 210 

SDMs that define the potential pool of species by abiotic (i.e., topoclimatic) drivers 211 

considering the same set of 175 species. We defined macroecological drivers (MEM) by 212 

modelling the observed species richness with the same environmental predictors and 213 

techniques used for the SDMs and establishing a Poisson distribution (MEM). This model 214 
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differs slightly from the one fitted by Dubuis et al. (2011) due to a smaller subset of species 215 

and different predictors being used in our model. We further applied the ensemble forecasting 216 

approach (as described above) to obtain a final richness prediction. We then coupled the raw 217 

ensemble predictions from the SSDMs and the richness predictions by applying the 218 

“probability ranking” rule (PRR) (D’Amen et al. 2015c). Using this procedure for each site, 219 

we selected a number of species equal to the MEM richness predictions based on the 220 

decreasing probability of presence calculated by the SDMs, thereby obtaining the binary 221 

compositional predictions.  222 

Biodiversity modelling: functional and phylogenetic components 223 

We used the SSDM and SSDM-MEM predictions of assemblage composition to reconstruct 224 

the functional and phylogenetic diversity facets of communities. The functional and 225 

phylogenetic diversity patterns in the evaluation dataset were estimated based on the observed 226 

and predicted assemblages. In addition, the functional and phylogenetic diversity indices were 227 

calculated using the approach proposed by Chalmandrier et al. (2015a), which builds on a 228 

multiplicative decomposition framework (Pavoine, Love & Bonsall 2009; Chao, Chiu & Jost 229 

2010; Leinster & Cobbold 2012) and allows for variation in the dominance of species in the 230 

assemblage (importance assigned to dominant vs. rare species) and the similarity effect 231 

(effects of considering different scales in the tree from broad to more exact structures – see 232 

the Introduction). However, because our analyses were not based on abundance data, we fixed 233 

the first parameter in the analyses. We included and measured the strength of the similarity 234 

effect in the analyses of the diversity indices by applying the δ transformation (Pagel 1997) to 235 

the functional and phylogenetic trees. The parameter δ scales the overall path lengths in the 236 

tree, such as the distance from the root to the species as well as the shared path lengths. We 237 

considered nine δ values (0.01, 0.05, 0.1, 0.5, 1, 2.5, 5, 7.5, and 10) to assign higher 238 

importance to ancient branches or recent divergences by distorting the trees. Specifically, a 239 



12 
 

tree that is “stretched” (i.e., distorted by the δ transformation) close to its roots assigns more 240 

weight to large distances, whereas a tree stretched close to its tips assigns more weight to 241 

small distances. This investigation involved nine estimations of the functional and 242 

phylogenetic diversity patterns in the observed data and the SSDM and SSDM-MEM 243 

predictions.  244 

Evaluation 245 

We calculated the taxonomic, functional and phylogenetic dissimilarities between the 246 

predictions by the SSDM and SSDM-MEM approaches and the evaluation data (Sørensen 247 

dissimilarity index). We also disentangled the two components of the Sørensen dissimilarity 248 

index, richness difference and species replacement, between the observed and predicted 249 

communities using the betapart R package (Baselga & Orme 2012; Legendre 2014). For 250 

taxonomic diversity, we calculated both the sensitivity (the proportion of species correctly 251 

predicted as present among the species observed as present) and specificity (the proportion of 252 

species correctly predicted as absent among the species observed as absent). Finally, we 253 

evaluated the performance of the SSDM and SSDM-MEM approaches in predicting the 254 

species richness and the functional and phylogenetic diversity indices by calculating i) 255 

Spearman's correlation (we use the non-parametric test because the variables are not normally 256 

distributed), ii) the root mean square error (RMSE, Potts & Elith 2006), and iii) the average 257 

error (AVE, Potts & Elith 2006): 258 

 259 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 260 

 261 
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𝐴𝐴𝐴𝐴𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 262 

 263 

These formulas are based on the sample size (n) and the discrepancy between the observed 264 

(yi) and predicted (𝑦𝑦𝑖𝑖) values.  265 

 266 

To explore variations in the predictive accuracy along the elevation gradient, all of the above 267 

statistics were also calculated by grouping the evaluation plots within 500 m wide elevation 268 

bands. Correlations for different bands were compared based on Z scores by applying Fisher’s 269 

transformation (Fisher 1921). Finally, the same statistics were calculated for each value of the 270 

parameter δ to test the similarity effect in the predictions of functional and phylogenetic 271 

diversity indices. 272 

 273 

Results 274 

Accuracy of taxonomic predictions 275 

Species distribution models for most species had an AUC value higher than 0.7; therefore, 276 

they can be considered useful for predictions. In particular, the mean and standard deviation 277 

of the AUC scores for the different techniques were GAM: 0.803 ± 0.078; GLM: 0.799 ± 278 

0.077; and GBM: 0.783 ± 0.081 (see Appendix S2 for the evaluation statistics for all species 279 

by both AUC and TSS). The MEM prediction showed a fair correlation value between the 280 

observed and predicted values of the species richness in the evaluation dataset (ρ = 0.529, 281 

Spearman’s rank correlation test), and the species richness error was centred on zero 282 

(Appendix S3). The SSDM based on the two threshold approaches produced similar results (ρ 283 

= 0.504 and 0.507 Spearman rank correlation tests); thus, we have only presented the results 284 
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derived from binarization using the AUC statistic. Compositional predictions from the SSDM 285 

achieved higher sensitivity scores than the SSDM-MEM, whereas the opposite was observed 286 

for specificity (Appendix S4). In other words, the SSDM was better for predicting the 287 

presence of a species, whereas the SSDM-MEM was better for predicting the absence of a 288 

species. The SSDM-MEM predictions of community composition produced a moderate but 289 

significant decrease in the Sørensen dissimilarity index compared with the SSDM predictions 290 

(t-test p < 0.001) for the entire elevational gradient (Appendix S5). The RMSE for the 291 

richness component of taxonomic diversity was higher with the SSDM than the SSDM-MEM 292 

(28.52 and 8.72, respectively). Moreover, the average error (AVE) was low for the SSDM-293 

MEM (1.09) but high for the SSDM (-23.94), thereby confirming the high overestimation of 294 

the number of species in the latter approach without the MEM constraint.  295 

 296 

Accuracy of functional and phylogenetic index predictions and the similarity effect 297 

According to the Sørensen dissimilarity index, the SSDM-MEM significantly increased the 298 

predictive capacity of the SSDM for the phylogenetic facet (mean of Sørensen dissimilarity 299 

index: SSDM-MEM = 0.27, SSDM = 0.35; Wilcoxon signed rank test, p < 0.001) (Fig. 1 and 300 

Appendix S5). The two components of Sørensen’s dissimilarity index showed similar patterns 301 

for all of the biodiversity facets and indicated that the SSDM-MEM framework provided 302 

significantly improved predictions compared with the SSDM for the richness component but 303 

worse predictions for species replacements in communities (Fig. 1 and Appendix S5). The 304 

difference in the prediction errors of functional and phylogenetic diversity showed that the 305 

former was better predicted than the latter by both modelling approaches (Wilcoxon test, p < 306 

0.001) (Fig. 2, Appendix S6). The functional and phylogenetic diversity predictions derived 307 

from the SSDM-MEM framework out-performed those derived from the SSDM. In fact, the 308 

SSDM-MEM predictions obtained a lower average RMSE (functional index: mean RMSE for 309 
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SSDM-MEM = 2.68 and for SSDM = 6.88, phylogenetic index: mean RMSE for SSDM-310 

MEM = 3.48 and for SSDM = 9.30). According to the AVE, the predictions derived from the 311 

SSDM-MEM accurately retrieved both the functional and phylogenetic diversity indices, 312 

whereas the predictions derived from the SSDM produced greater errors, which were more 313 

pronounced in the phylogenetic component (functional index: mean AVE for SSDM-MEM = 314 

0.41 and for S-SDM = -5.76, phylogenetic index: mean AVE for SSDM-MEM = 0.02 and for 315 

S-SDM = -7.81) (Fig. 2). Considering the similarity effect, assigning more weight to ancient 316 

divergences (δ ≤ 0.01) lowered the differences in the errors between the SSDM-MEM and 317 

SSDM for functional and phylogenetic diversity. Both the RMSE and AVE increased for a 318 

medium to strong similarity effect, although the increase was more pronounced for the SSDM 319 

predictions than for the SSDM-MEM predictions (Fig. 2; Appendix S6). 320 

Accuracy of predictions along the elevation gradient 321 

Overall, the SSDM-MEM predictions were better than the SSDM predictions across the 322 

elevation gradient for the dissimilarity and (especially) the richness difference index, as 323 

expected. For the SSDM-MEM predictions, the Sørensen dissimilarity index and its 324 

components increased with elevation except for the richness difference component of 325 

taxonomic diversity, which was low and constant across the whole gradient (Fig. 1). This 326 

trend was not observed for the SSDM predictions (Fig. 1). Nevertheless, we observed the 327 

reverse pattern for the species replacement component when considering taxonomic diversity 328 

(Fig. 1). For the taxonomic component of the Sørensen dissimilarity index, the accuracy 329 

improvement produced by the SSDM-MEM was not evenly distributed across the elevation 330 

gradient. The SSDM-MEM produced a 20% improvement in performance over the SSDM in 331 

the low elevation bands (up to 1500 m); however, this improving trend decreased as the 332 

elevation increased to 2500 m and was no longer noticeable at higher elevations (Fig. 1). The 333 

improvement produced by the SSDM-MEM for the taxonomic component considering the 334 
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richness difference index was high and ranged from 65% at lower elevations to 50% at higher 335 

elevations.  336 

The SSDM-MEM approach was better at reproducing species patterns along elevations for the 337 

species richness and functional and phylogenetic diversity indices and presented the lowest 338 

deviations from the observed values (Appendix S7). Comparing the accuracy across elevation 339 

bands, the predictions for diversity indices in the 2000-2500 m band showed significantly 340 

higher ρ correlation coefficients than the other elevation bands based on both modelling 341 

approaches and all levels of the similarity effect (all δ values for the tree transformations) 342 

(Fig. 3). The RMSE and AVE values were not significantly dissimilar across the elevation 343 

bands for the SSDM-MEM predictions of the functional and phylogenetic diversity indices 344 

(Fig. 3). However, the SSDM prediction errors varied for moderate to high similarity effects, 345 

with the highest error in the 1500-2000 m band and a decreasing error trend observed from 346 

low to high elevations (Fig. 3). 347 

 348 

Discussion 349 

This study is the first to compare different modelling approaches to predict the spatial patterns 350 

of multiple biodiversity facets. Our results show that the SSDM coupled with the MEM 351 

(SSDM-MEM) can moderately but significantly improve the predictions of the taxonomic, 352 

functional, and phylogenetic diversity of plant assemblages. Moreover, the accuracy of the 353 

SSDM predictions for the diversity indices varied greatly along the elevation gradient and for 354 

different intensities of the similarity effect, whereas the SSDM-MEM predictions were more 355 

stable. The predictive improvements observed via the application of the SSDM-MEM were 356 

likely related to the implementation of the following two steps: 1) the correction of species 357 

overestimations produced by the SSDM by imposing a limit on the number of species in each 358 

site, which produced a cascade effect on the quality of the derived functional and 359 
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phylogenetic indices; and 2) the application of the “probability ranking” rule to sort the 360 

species that can co-occur at the studied site (D’Amen et al. 2015c). 361 

As expected, the species composition was the most difficult diversity component to predict 362 

(Thuiller et al. 2015). Considering the direct dissimilarity in the comparison between the 363 

observed and predicted assemblages, the SSDM-MEM improved the richness difference 364 

component of the Sørensen index, which we used as a measure of the capacity of the model to 365 

predict the number of species correctly (Baselga 2010; Legendre 2014). Thus, the improved 366 

predictions of the taxonomic component by the SSDM-MEM were likely driven by the 367 

corrected number of species predicted and the removal of the least probable species. 368 

However, this removal likely also produced a degree of degradation of the species 369 

replacement component, i.e., the capacity of the model to correctly predict the species present 370 

in the observed community (see Baselga 2010). These results are consistent with our findings 371 

regarding the sensitivity and specificity indices in the compositional predictions, with the 372 

SSDM-MEM improving the specificity but producing worse scores for the sensitivity index. 373 

Overall, the balance between the improved accuracy of the richness difference and the 374 

decreased accuracy of the species replacement indicates that the SSDM-MEM approach can 375 

produce a moderate improvement in the SSDM predictions but not for all of the components.  376 

The results reported above suggest that in our study, certain species were not correctly 377 

removed by the probability ranking rule (PPR) when attempting to control for SSDM 378 

overprediction. The PPR has been assumed to represent a putative ecological assembly rule 379 

that translates competitive strength as a function of environmental suitability, meaning that 380 

species will be more competitive in their most favourable habitats (D’Amen et al. 2015a). 381 

Species with the highest probability of occurrence are expected to be better adapted to the 382 

environmental conditions of the site, thereby leading to higher competitive ability. A more 383 

methodological justification of the PPR performance is that by removing the species with the 384 
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lowest probability of occurring at a site, the species with the highest probability of being 385 

overpredicted by the SSDMs are also removed. A potential problem with the PPR as currently 386 

implemented is that it may depend on the species prevalence in the study area. The most 387 

frequent species are likely to have higher a probability of occurrence than the least frequent 388 

species (pers. obs.), which may in turn affect the ranking of the species and produce 389 

communities that are always composed of the most common species, although good 390 

evaluation scores are still obtained. This bias should be analysed in future studies by testing 391 

whether and how rescaling the probability outputs from the SSDM-MEM to correct for 392 

prevalence (e.g., via changing the weighting of the presences and absences) might improve 393 

the predictions. Alternative rules that also consider historical or anthropogenic factors could 394 

be implemented in further developments of the SSDM-MEM framework to improve the 395 

species selections from the abiotic species pool (SSDM) to match the richness predictions by 396 

the MEM.  397 

Upon “aggregating” the diversity components to estimate the functional and phylogenetic 398 

diversity indices, the performance of the models is increased, which is likely because these 399 

indices can be predicted equally well for different sets of species with similar functional or 400 

phylogenetic characteristics. However, in such cases, the taxonomic diversity component 401 

would lose prediction accuracy. The SSDM-MEM predictions of the species composition led 402 

to accurate predictions of the functional and phylogenetic indices, suggesting that the species 403 

selected incorrectly in the final community composition were at least functionally or 404 

phylogenetically close to the correct ones, although this was not always true for the SSDM 405 

predictions. The similarity effect (Chalmandrier et al. 2015b) exerted a substantial impact on 406 

the detection of patterns in the functional and phylogenetic diversity indices in our plant 407 

communities. The prediction errors varied with the weight assigned to large vs. small species 408 

similarities when calculating diversity indices, with a much stronger variation in accuracy 409 
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observed for the SSDM compared with the SSDM-MEM. In particular, the predictions for the 410 

phylogenetic and functional diversity indices were more accurate for a weak similarity effect. 411 

The error in the SSDM predictions increased in proportion as the strength of the similarity 412 

effect increased. This result can be interpreted as related to the increasing importance of biotic 413 

interactions vs. environmental abiotic filtering when the assembly of increasingly closely 414 

related lineages is considered (Ndiribe et al. 2013). Because the SSDM primarily accounts for 415 

the effect of abiotic drivers in shaping the community structure, it performs better when 416 

greater emphasis is placed on large species similarities. Conversely, the SSDM-MEM 417 

framework could predict recent and profound node structures of the communities, meaning 418 

that it shows good performance when a greater emphasis is placed on large or small species 419 

similarities. This result is likely because of the SSDM-MEM framework’s ability to set a 420 

macroecological constraint on community richness. The SSDM produces considerable errors 421 

when predicting phylogenetically closely related species, which may indicate that the latent 422 

underlying mechanisms related to the phylogenetic community structure may not have been 423 

considered in the modelling approach. 424 

The SSDM-MEM framework was the best technique for reproducing the observed diversity 425 

patterns along elevation. A varying degree of prediction errors in species richness along 426 

elevation has been previously reported for the SSDM. This variation was mainly caused by 427 

the differences in the degree of overprediction along this gradient (Pottier et al. 2013). 428 

However, we observed a different trend when considering the Sørensen dissimilarity index. 429 

The SSDM-MEM index predictions showed an overall tendency towards lower accuracy with 430 

increasing elevation, especially for the functional component. This trend was not noticeable 431 

for the SSDM predictions.  432 

According to the stress gradient hypothesis (Normand et al. 2009), the influence of the 433 

environmental filter and biotic interactions is expected to vary with elevation. Biotic 434 
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interactions should be more intense or frequent under low-stress conditions (i.e., middle to 435 

lower elevations), whereas the effect of the environment should be more important under 436 

high-stress conditions (i.e., higher elevations; Bertness & Callaway 1994; Brooker & 437 

Callaghan 1998; Pottier et al. 2013). The performance of the SSDMs in our study system 438 

conformed to balance between the two assembly drivers, with improved performance at 439 

higher elevations because of the stronger relationship between the species distribution and the 440 

environment (Pottier et al. 2013). The decreased performance at middle elevation sites may 441 

have been caused by the increased importance of biotic interactions at these sites compared 442 

with the performance at higher elevation sites because the sites are generally more productive 443 

at middle elevations; therefore, species interactions may occur more frequently and result in 444 

the exclusion of certain of species. An alternative explanation for this result might be the 445 

disequilibrium between the species distribution data and the topoclimatic data. Under mild 446 

climatic conditions, other factors mediated by human-related (e.g., grazing or agricultural 447 

fertilization) or stochastic processes may play a more prominent role in determining the 448 

composition of the extant communities.  449 

The reverse trend was observed for the SSDM-MEM predictions when considering the results 450 

of the Sørensen dissimilarity index. We found that the SSDM-MEM had a lower performance 451 

in predicting plant diversity at high elevations, where the most important community driver is 452 

the environment alone. This reduction in performance was especially evident in the SSDM-453 

MEM predictions of functional diversity, which is the diversity facet that is expected to be 454 

most strongly influenced by the environment. However, we may have also obtained different 455 

values for the maximum species richness for each elevation band. The plots with the lowest 456 

richness were located at high elevations, which might have caused the increased performance 457 

of the SSDM in this band. This behaviour was not observed for the SSDM-MEM, thereby 458 

supporting its more stable performance, even at different richness values. However, this 459 
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potential bias does not affect the comparison of the modelling methods within each elevation 460 

band. 461 

The patterns described above for the functional and phylogenetic diversity indices were only 462 

observed when considering moderately to more closely related lineages (i.e., for a medium to 463 

strong similarity effect), and stronger differences in performance were proportional to the 464 

strength of the similarity effect. However, with low similarity effects, the prediction error was 465 

more constant along elevation. An explanation for this result may be that an environmental 466 

filter is the main assembly driver for distantly related lineages across the entire elevation 467 

gradient, which also enables the SSDM approach to retrieve community patterns at middle 468 

elevations.  469 

Certain peculiar characteristics of the studied system and approaches could have influenced 470 

the results. We focused on a simplified taxonomic assemblage of grassland species, and 471 

including more complex communities, such as those with prey-predator interactions, would 472 

have required a much more complex modelling strategy. Moreover, we analysed communities 473 

at a very fine spatial resolution. Biotic interactions are expected to have greater importance at 474 

this resolution (Pearson & Dawson 2003), which may in turn cause a stronger over-prediction 475 

by the SSDMs. The accuracy of taxonomic predictions should thus improve toward lower 476 

spatial resolutions for this approach (Thuiller et al. 2015). The influence of scale on the 477 

SSDM-MEM should be assessed in future studies, specifically to ascertain whether the 478 

benefits of this approach can be observed at different resolutions and extents. In addition, the 479 

SSDM-MEM method can be improved by including more dynamic (e.g., Keith et al. 2008) 480 

and/or mechanistic SDMs (e.g., Kearney & Porter 2009) when the data required to fit the 481 

models are available for all species (Guisan & Rahbek 2011). Finally, concerning the SSDM 482 

performance, it was shown elsewhere that the threshold selection may strongly influence the 483 

reliability of the predicted richness and composition (Benito et al 2013). In this paper, we 484 
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presented the results from two thresholding methods, but we had also calculated a large range 485 

of other species-specific thresholds, none of which affected our results (unpubl. data). 486 

Biodiversity integrates biotic components from genes to ecosystems. Therefore, measuring 487 

such a broad concept represents a great challenge (Purvis & Hector, 2000). Here, our goal was 488 

to test the capacity of a novel community modelling approach to predict three key facets of 489 

biodiversity - taxonomic, functional and phylogenetic - at the alpha diversity level. The 490 

approach to coupling SSDMs with richness predictions through a simple probability ranking 491 

rule produced a moderate but significant improvement over the most common and simpler 492 

approach of stacking individual species predictions. This result opens promising avenues 493 

towards improving biodiversity predictions in space and time and across broad environmental 494 

gradients using functional and phylogenetic information. However, future studies on the 495 

SSDM-MEM approach could further be expanded to test additional components of 496 

biodiversity. For example, when considering broader regions than our study area, the 497 

collective diversity may be better determined by differences between regional species pools 498 

(Guisan & Rahbek 2011) and by the turnover in biological composition between locations 499 

(i.e., beta diversity) than by the site-level diversity (i.e. alpha diversity). Measuring beta 500 

diversity could therefore be a critical complement to the alpha measures performed here. 501 

Certain modelling approaches have already been developed to predict this component as an 502 

emergent property of biodiversity (e.g., Ferrier et al. 2007), but often at the expense of 503 

information on species identities at the local level. Recent frameworks have been proposed 504 

that combine different levels of modelling to predict both alpha and beta diversities. For 505 

instance the dyamicFOAM framework (Mokani et al. 2011) combines correlative richness 506 

(alpha-diversity) models and models of compositional turnover (beta-diversity) to generate 507 

compositional data for meta-communities and gamma –diversity. A comparison of the 508 

performance of the SSDM-MEM method with such beta-diversity-level approaches represents 509 
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an interesting research perspective for improving spatial modelling research and conservation 510 

applications. 511 

 512 

  513 
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Figure 1: Mean values for the Sørensen dissimilarity index and its two components (Sørensen 729 

richness difference and Sørensen species replacement) calculated for the predictions of 730 

taxonomic (TD), functional (FD), and phylogenetic (PD) diversity from the SSDM and 731 

SSDM-MEM models for each elevation band.  732 
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Figure 2: Variation of the average error (AVE) for the SSDM and SSDM-MEM predictions 735 

for the functional and phylogenetic diversity indices for different intensities of the similarity 736 

effect (different values of the δ parameter transform the functional and phylogenetic trees: 737 

values closer to 0 indicate that a greater importance is assigned to ancient branches, whereas 738 

values closer to 10 indicate that the transformation assigns more weight to recent 739 

divergences).  740 
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Figure 3: Evaluation statistics (root mean square error, RMSE; and average error, 746 

AVE) across elevation bands for the functional diversity index and all similarity δ values, 747 

derived from the SSDM and SSDM-MEM predictions. 748 

 749 
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