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Abstract: This paper investigates a class of location invariant non-positive moment-type estimators of extreme

value index, which is highly flexible due to the tuning parameter involved. Its asymptotic expansions and its

optimal sample fraction in terms of minimal asymptotic mean square error are derived. A small scale Monte Carlo
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itself, perform well compared to the known ones. Finally, the proposed estimators with a bootstrap optimal sample

fraction are applied to an environmental data set.
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1 Introduction

Let X1,n ≤ · · · ≤ Xn,n be the order statistics (o.s.) associated with a random sample Xn := (X1, . . . , Xn) with

underlying distribution function F . Suppose that F belongs to the max-domain of attraction of a non-degenerate

distribution function G, denoted by F ∈ D(Gγ). Then G must be of the type of generalized extreme value distribution

(cf. de Haan and Ferreira (2006))

Gγ(x) = exp
(
−(1 + γx)−1/γ

)
, 1 + γx > 0,

where (1 + γx)−1/γ := e−x if γ = 0. The parameter γ, the so-called extreme value index (EVI), is the primary

parameter of extreme events. It is well-known that F ∈ D(Gγ), γ ∈ R ⇐⇒ U ∈ GRVγ , where U(t) = F←(1−1/t) =

∗Corresponding author. Email: lcx98@swu.edu.cn. The authors would like to thank Zuoxiang Peng and Enkelejd Hashorva for useful

discussions.
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inf{y ∈ R : F (y) ≥ 1 − 1/t} is the tail quantile function of X ∼ F , and GRVα stands for the class of generalized

regularly varying functions at infinity with an index α ∈ R, that is, positive measurable functions g such that

limt→∞(g(tx)−g(t))/a(t) = (xα−1)/α, x > 0 for some auxiliary function a. For an unknown distribution F ∈ D(Gγ)

with γ > 0, the well-known Hill’s estimators are based on the log-excesses over an o.s. Xn−k0,n, which are given by

γ̂H
n (k0) = γ̂H

n (k0;Xn) :=
1

k0

k0∑
i=1

(lnXn−i+1,n − lnXn−k0,n) ,

where k0 = k0(n) is an intermediate integer sequence, i.e., limn→∞ k0 = limn→∞ n/k0 = ∞. For γ ∈ R, Dekkers et

al. (1989) proposed a class of moment estimators as follows:

γ̂M
n (k0) = γ̂M

n (k0;Xn) = γ̂H
n (k0) + γ̂NM

n (k0)

where, with γ̂
(j)
n (k0) = γ̂

(j)
n (k0;Xn) = (1/k0)

∑k0

i=1

(
lnXn−i+1,n − lnXn−k0,n

)j
, j = 1, 2

γ̂NM
n (k0) = γ̂NM

n (k0;Xn) = 1− 1

2

(
1− (γ̂

(1)
n (k0))

2

γ̂
(2)
n (k0)

)−1
,

the so-called negative moment estimators since it is a consistent estimator for γ < 0. Further, Caeiro and Gomes

(2010) studied the following alternative moment-type estimator for γ < 0:

γ̂NM(θ)
n (k0) = γ̂NM(θ)

n (k0;Xn) = γ̂NM
n (k0) + θγ̂H

n (k0), θ ∈ R. (1.1)

This class of estimators is highly flexible due to the tuning parameter θ. Note that the classes of estimators mentioned

above are scale invariant but not location invariant, a property enjoyed by the EVI itself. Therefore, it is sensible

to use the peaks over random threshold (PORT) methodology, introduced first by Fraga Alves (2001), and further

studied by Ling et al. (2007, 2012) respectively for the Hill, moment and Weiss-Hill estimations of location invariant

type. Typically, these estimators are based on a sample of excesses over a random threshold Xn−k,n, k0 ≪ k ≪ n,

that is, it is based on

Xk
n := (Xn,n −Xn−k,n, . . . , Xn−k+1,n −Xn−k,n), (1.2)

corresponding to the PORT sample Xn,q := (Xn,n − Xnq,n, . . . , Xnq+1,n − Xnq,n), nq = [nq] with q = qn :=

[(n− k)/n] → 1 as n → ∞. Other results on PORT EVI-estimation for q ∈ [0, 1) and heavy tail distributions, i.e.,

F ∈ D(Gγ), γ > 0, can be found in Caeiro et al. (2016) for Pareto probability weighted moment estimations, Gomes

and Henriques-Rodrigues (2016) for the mean-of-order-p estimations, and among others.

This paper aims to investigate the PORT-EVI estimation for the unknown distributions F ∈ D(Gγ) with γ ≤ 0.

Typically, we are interested with the following location and scale invariant estimators:

γ̂NM(θ)
n (k0, k) = γ̂NM(θ)

n (k0;X
k
n) = γ̂NM

n (k0, k) + θγ̂H
n (k0, k), θ ∈ R, (1.3)

which have the same functional form of the generalized negative moment estimators in (1.1) but with the original

sample Xn replaced everywhere by the sample of excesses Xk
n in (1.2).
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The asymptotic expansions of the new proposed estimators in (1.3) are given in Theorem 2.2. We see that the

tuning parameter θ affects partially its asymptotic biasness. This fact indicates that (1.3) with suitable choice of

θ, may give a large variety of second-order asymptotically unbiased estimators of EVI, see e.g., Cai et al. (2012), Li

and Peng (2009), Li et al. (2011), Gomes et al. (2013, 2016) for related discussions. Our second result, Theorem 2.4,

gives the optimal sample fraction of (1.3) in the sense of minimal asymptotic mean square error.

Note that the asymptotic properties of the proposed PORT-EVI estimations depend on the unknown second-order

parameter ρ, which restricts to some extent its application. Therefore, we carry out a small scale Monte Carlo

simulation with the tuning parameter θ and the sample fraction k0 chosen by a data-driven/bootstrap method

(cf. Caeiro and Gomes (2010), Gomes et al. (2013)). We compare in Table 1 the finite sample behavior of the

proposed estimator and the other location invariant ones for negative EVI, including the moment estimators in Ling

et al. (2007), the Weiss-Hill estimators in Ling et al. (2012)), and the maximum likelihood and moment estimators

in Hüsler et al. (2016). Finally, we give an application of our findings into a real-life data in environments.

We organize the paper as follows. In Section 2, we display main results. Section 3 is devoted to the application.

The proofs are relegated to Section 4.

2 Main Results

Recall that U(t) = inf{y ∈ R : F (y) ≥ 1 − 1/t} the tail quantile function of X ∼ F . In order to study the

asymptotic distribution of the new PORT-EVI estimations given in (1.3), we need to strengthen the first-order

condition F ∈ D(Gγ) to be of second-order extended regular variation. Namely, suppose that there exist functions

a(·), and A(·) with constant sign at infinity and limt→∞A(t) = 0 such that (cf. de Haan and Ferreira (2006))

lim
t→∞

U(tx)−U(t)

a(t)
− xγ−1

γ

A(t)
=

1

ρ

(
xγ+ρ − 1

γ + ρ
− xγ − 1

γ

)
=: Hγ,ρ(x), x > 0, γ, ρ ≤ 0. (2.1)

The functions a(·) and A(·) are respectively referred to as the first-order and second-order auxiliary function of U .

It is well-known that A ∈ RVρ, i.e., limt→∞A(tx)/A(t) = xρ for all x > 0.

The following lemma, similar to B. 3.42 and B. 3.43 in Lemma B. 3.16 in de Haan and Ferreira (2006), p 398, is

crucial to establish our main results.

Lemma 2.1. Let k = k(n), k0 = k0(k) be two intermediate sequences. If condition (2.1) is satisfied for X ∼ F ,

then the following expansion holds locally uniformly for all x > 0

ln U((n/k0)x)−U(n/k)
U(n/k0)−U(n/k)

ã(n/k, n/k0)
= Dγ(x) +Hγ,ρ(x)A

(
n

k0

)
(1 + o(1))−Hγ,γ(x)ã

(
n

k
,
n

k0

)
(1 + o(1)), n → ∞,

where Dγ(x) = (xγ − 1)/γ and ã(n/k, n/k0) = −γ(k/k0)
γ for γ < 0, and 1/ ln(k/k0) otherwise.

Hereafter, we write d
= and d→ for equality in distribution and convergence in distribution, respectively. All the limits
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are taken as n → ∞ unless otherwise stated. Further, denote with Y ∼ FY (y) = 1− 1/y, y ≥ 1 µj,γ = E
{
(Dγ(Y ))j

}
, νj,γ,ρ = E

{
j(Dγ(Y ))j−1Hγ,ρ(Y )

}
ν̃γ,ρ = (1− γ)(1− 2γ)

(
ν2,γ,ρ

µ2,γ
− 2

ν1,γ,ρ

µ1,γ

)
, σ2

γ = (1−γ)2(1−2γ)(1−γ+6γ2)
(1−3γ)(1−4γ) .

(2.2)

Theorem 2.2. Suppose that condition (2.1) is satisfied for X ∼ F . We have

γ̂NM(θ)
n (k0, k)

d
= γ +

Zk0√
k0

(1 + op(1)) + ν̃γ,ρA

(
n

k0

)
(1 + op(1))

+

(
θ

1− γ
− ν̃γ,γ

) |γ|(k/k0)γ(1 + op(1)), γ < 0,

1/ ln(k/k0)(1 + op(1)), γ = 0,
(2.3)

where Zk0

d→ N(0, σ2
γ) and σ2

γ , ν̃γ,ρ are given by (2.2).

Remark 2.3. We see that the tuning parameter θ plays an important role in adjusting the bias of the estimators.

For instance, we might choose θ to be exactly (1− γ)(ν̃γ,γ − ϑν̃γ,ρ/γ) leading to asymptotically unbiased estimators

provided that the dominated term of the bias is (k/k0)
γ for γ < 0, that is, limn→∞A(n/k0)(k0/k)

γ = ϑ ∈ R.

Generally, if further limn→∞
√
k0(k/k0)

γ = λ ∈ R, then

√
k0(γ̂

NM(θ)
n (k0, k)− γ)

d→ N(µ∗, σ2
γ) with µ∗ = λ

(
ϑν̃γ,ρ − γ

(
θ

1− γ
− ν̃γ,γ

))
.

Note that the optimal choice of the tuning parameter is not in general available since it depends on the unknown

second-order parameter ρ. We consider next the case that A(t) ∼ ctρ, c ̸= 0, ρ < 0 and γ < 0, and establish the

optimal sample fraction k0 = k
(opt)
0 in the sense of minimal asymptotic mean squared error (AMSE) of γ̂NM(θ)

n (k0, k),

i.e.,

k
(opt)
0 = arg mink0

(
σ2
γ

k0
+

(
ν̃γ,ρA

(
n

k0

)
+ γ

(
ν̃γ,γ − θ

1− γ

)(
k

k0

)γ)2
)
, γ < 0.

For simplicity of notation, denote with c̃ = γ (ν̃γ,γ − θ/1− γ)

k
(1)
0 =

(
σ2
γ

−2γ3c̃2

) 2γ
2γ−1

k
2γ

1−2γ and k
(2)
0 =

(
σ2
γ

−2ρc2ν̃2γ,ρ

) 1
1−2ρ

n
2ρ

2ρ−1 . (2.4)

Theorem 2.4. If condition (2.1) is satisfied with A(t) ∼ ctρ, c ̸= 0, ρ < 0 and γ < 0, then the optimal sample

fraction k
(opt)
0 is given as follows.

(a) For γ ≥ ρ, k(opt)0 ∼ k
(1)
0 ;

(b) For γ < ρ, we have

(i) If k ≪ nρ(1−2γ)/(γ(1−2ρ)), then k
(opt)
0 ∼ k

(1)
0 ;

(ii) If k ≫ nρ(1−2γ)/(γ(1−2ρ)), then k
(opt)
0 ∼ k

(2)
0 ;

(iii) If k ∼ Dnρ(1−2γ)/(γ(1−2ρ)) with some D>0, then k
(opt)
0 ∼ D1n

2ρ(2ρ−1) with D1 = D1(γ, ρ,D) the solution of

2

(
c̃

(
D

D1

)γ

+ cν̃γ,ρD
ρ
1

)(
ρcD1+ρ

1 − γc̃D1

(
D

D1

)γ)
= σ2

γ .
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Corollary 2.5. Under the same notation and conditions as in Theorem 2.4. If γ ≥ ρ, or γ < ρ and k ≪

nρ(1−2γ)/(γ(1−2ρ)), then the asymptotic bias of γ̂NM(θ)
n (k0, k) is σγ

/√
−2γk

(1)
0 given that the optimal sample fraction

k0∼ k
(1)
0 . Moreover, setting γ̃

NM(θ)
n (k0, k) = γ̂

NM(θ)
n (k0, k)− σ

γ̂
NM(θ)
n (k0,k)

/√
−2γ̂

NM(θ)
n (k0, k)k0 with k0∼ k

(1)
0 , we

have √
k0(γ̃

NM(θ)
n (k0, k)− γ)

d→ N(0, σ2
γ).

Remark 2.6. Note that the precise optimal choices of θ and k0, given by Remark 2.3 and Theorem 2.4 above,

depend on the unknown second order index ρ involved, which results in certain restrictions of its applications.

3 Applications

In this section, we conduct a small-scale Monte Carlo simulation and a real-life environmental data-set application

of the proposed estimators given by (1.3). We consider the proposed PORT-EVI estimations γ̂
NM(θ)
n (k0, k) with

(θ, k0) replaced by a data-driven/bootstrap estimation (θ̂, k̂∗0) subsequently, with similar methods as those by Gomes

et al. (2013) and Draisma et al. (1999). First, set

θ̂ = θ̂(k1, k2) = arg minθ
∑

k1≤i≤k2

T 2
k,n(i, θ), k1 = [k0.02] + 2, k2 = [k0.98], (3.1)

where Tk,n(i, θ) = γ̂
NM(θ)
n ([i/2], k)− γ̂

NM(θ)
n (i, k). Second, we compute the bootstrap sample fraction k̂∗0 as follows.

Step 1: Generate B independent bootstrap samples (x∗1, . . . , x
∗
n2
) and (x∗1, . . . , x

∗
n2
, . . . , x∗n1

) from the excess sample

xn−i+1,n − xn−k,n, i = 1, . . . , k with n1 = o(k) and n2 = [n2
1/k] + 1;

Step 2: Compute the lth bootstrap observed value t∗nj ,n(i, θ̂, l), i = 2, . . . , nj − 1, j = 1, 2 of Tnj ,n(i, θ̂) based on the

lth bootstrap sample for l = 1, . . . , B;

Step 3: Obtain with MSE∗(i, nj) = B−1
∑B

l=1(t
∗
nj ,n(i, θ̂, l))

2, i = 2, · · · , nj − 1, j = 1, 2

k̂∗T (nj) = arg miniMSE∗(i, nj), j = 1, 2 and ρ̂∗ = ln k̂∗T (n1)
/(

2 ln(k̂∗T (n1)/n1)
)
;

Step 4: Estimate k0 and γ respectively by

k̂∗0 =

[
(1− 2ρ̂

∗
)2/(1−2ρ̂

∗)(k̂∗T (n1))
2

k̂∗T (n2)

]
+ 1 and γ̂∗ = γ̂NM(θ̂)

n (k̂∗0 , k).

We shall compare the following estimations of EVI at its bootstrap sample fraction k̂∗0 with B = 250, k = [np], n1 =

[kp], p ∈ (0, 1): our proposed bootstrap estimation (GNM for short), location invariant negative moment estimation

(NM), moment estimation (M), corresponding to our estimations (1.3) with θ = 0, 1, Weiss-Hill estimation (WH)

given by Ling et al. (2012)

γ̂WH
n (k0, k) = γ̂H

n (k0, k) +
1

ln 2
ln

Xn,n −Xn−m+1,n

Xn,n −Xn−2m+1,n
, m = [(k0 + 1)/2],
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and the maximum likelihood and moment estimations (AML), investigated recently by Hüsler et al. (2016), the

solution of the following equations of (γ, ϑ)
1
k0

∑k0

i=1 ln (1 + ϑ(Xn−i+1,n −Xn−k0,n)) = γ

1
k0

∑k0

i=1 (1 + ϑ(Xn−i+1,n −Xn−k0,n))
−1/γ

= 1/2.

First, we generate a sample of size n = 2000 from the generalized extreme distributed (GEV) parent X ∼ Gγ((x−

µ)/σ) = exp
{
−(1 + γ(x− µ)/σ)−1/γ

}
with (γ, µ, σ) = (−0.5,−1, 1). Figure 1 shows that the θ̂(k1, i) is stable for

moderate i’s since the Tk,n(i, θ) is very close to zero, and the data-driven choice of θ given by (3.1), is equal to

3.19, which makes the estimator γ̂
NM(θ)
n (k0, k) with θ = 3.19 possessing rather wider steady region than those with

θ = 0, 1 and 5. Second, we generate N = 500 random samples of size n = 3000, 3500, 4000, 4500 from GEV(γ, µ, σ)

500 1000 1500 2000

0
2

4
6

8

i

θ = 3.1942

θ(k1, i)

0 500 1000 1500 2000

−3
−2

−1
0

1

k0

θ = 0
θ = 1
θ = 3.19
θ = 5

Figure 1: Graph of (i, θ̂(k1, i)) (left). Estimations γ̂
NM(θ)
n (k0, k) for given k (right). Data is from the generalized

extreme distribution Gγ((x− µ)/σ) with (γ, µ, σ) = (−0.5,−1, 1).

with (γ, µ, σ) = (−0.5,−1, 1). For ith sample, we calculate the data-driven tuning parameter θ̂(i) for the GNM at

the random threshold Xn−k,n with k = [np], and the bootstrap sample fraction k̂i∗0 , and the estimators of EVI at

k̂i∗0 , denoted by γ̂i∗
n , i = 1, . . . , N . We compare these estimators by their bias, the mean squared error (MSE), the

coefficients of variation (CV) of the bootstrap sample fraction k0 and the tuning parameter θ. Specifically,

Bias =
1

N

N∑
i=1

γ̂i∗
n − γ, MSE =

1

N

N∑
i=1

(γ̂i∗
n − γ)2

and

CVk0 =
sd(k0)

k0
with k0 =

1

N

N∑
i=1

k̂i∗0 , sd(k0) =

√√√√ 1

N

N∑
i=1

(k̂i∗0 − k0)2

CVθ =
sd(θ)

θ
with θ =

1

N

N∑
i=1

θ̂(i), sd(θ) =

√√√√ 1

N

N∑
i=1

(θ̂(i) − θ)2.

From Table 1, we conclude that the data-driven choice of θ by (3.1) is rather stable since the average θ is around

1.35, and the simulated CVθ is around 6.95%. Further, with the chosen θ̂ and stable bootstrap sample fraction k̂∗0 ,

our estimators (GNM) have the smallest bias and rather stable sample paths (recall the small value of CVk0 means
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stable bootstrap sample fraction). Finally, the MSE of our estimators is not always the smallest one, which might

be caused by the simulated θ.

n = 3000 NM M GNM WH AML n = 3500 NM M GNM WH AML

Bias×100 −23.62 −8.96 3.82 11.73 10.22 Bias×100 −22.02 −12.33 2.18 10.33 11.02

MSE×100 7.37 1.89 2.61 1.98 6.22 MSE×100 6.37 3.96 3.16 3.18 1.61

CVk0 × 100 45.06 35.08 43.81 52.42 42.82 CVk0 × 100 46.93 42.35 38.22 47.86 43.94

CVθ × 100 − − 6.94 − − CVθ × 100 − − 5.58 − −

θ − − 1.36 − − θ − − 1.13 − −

n = 4000 NM M GNM WH AML n = 4500 NM M GNM WH AML

Bias×100 −19.67 −7.27 4.34 10.43 −10.08 Bias×100 −19.81 −9.90 3.88 9.94 −9.00

MSE×100 5.79 0.96 1.33 1.61 1.78 MSE×100 5.18 3.95 1.84 1.49 3.10

CVk0×100 54.63 32.36 42.94 46.25 54.38 CVk0×100 45.63 40.59 36.88 46.83 50.57

CVθ × 100 − − 8.73 − − CVθ × 100 − − 6.56 − −

θ − − 1.31 − − θ − − 1.45 − −

Table 1: Comparisons of the proposed location invariant estimator GNM with NM, M, WH and AML at bootstrap

sample fraction k̂∗0 by the Bias and MSE of EVI, and the CV of k0 and θ.

Finally, we consider an environmental data set which records the daily average wind speed in Duplin airport during

the period 1961–1978. From Figure 2, we see that our estimator γ̂NM(1.3078)
n (k0, k) with k = [n0.99] possesses rather

more stable sample paths than those for the NM and M estimators. It turns out that the wind data possesses a

Weibull tail. Further, in order to compare the seasonal difference of the wind data, we carry out the bootstrap

algorithm for the sample fraction k0 with k = [n0.99], B = 250, n1 = [k0.99] for the data collected in Spring, Summer,

Autumn, Winter, respectively. Table 2 gives the estimations of θ, k0 and γ involved in our proposed estimations,

and the bootstrap 95% confidence interval (CI) of γ given below (recall σγ in (2.2) and Remark 2.3)

(γ̂∗L, γ̂
∗
U ) = γ̂∗ ± 1.96σγ̂∗

/√
k̂∗0 .

We see that the wind data for Spring and Autumn has lighter tails than those for Winter and Summer.

Period θ̂ k̂∗
0 γ̂∗ (γ̂∗

L, γ̂
∗
U ) Period θ̂ k̂∗

0 γ̂∗ (γ̂∗
L, γ̂

∗
U )

Spring 1.2060 595 −0.1902 (−0.2704,−0.1101) Summer 1.5181 1070 0.0012 (−0.0588, 0.0612)

Autumn 1.3207 969 −0.0993 (−0.1598,−0.0387) Winter 1.3301 570 −0.0307 (−0.1108, 0.0495)

Table 2: Estimations of θ, k0, γ and 95% CI estimation of γ, denoted by (γ̂∗L, γ̂
∗
U ). Data is the daily wind speed

during 1961–1978 in Dublin airport.
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Figure 2: Graph of (i, θ̂(k1, i)) (left). Sample paths of γ̂
NM(θ)
n (k̂∗0 , k) with different θ for the daily average wind

speed collected in 1963–1971 (right). The estimated 95% CI is indicated by the horizontal lines (right).

4 Proofs

Proof of Lemma 2.1 Clearly, it follows from (2.1) that

lim
t→∞

U(tx)− U(t)

a(t)
=

xγ − 1

γ
=: Dγ(x)

holds locally uniformly for all x > 0. Therefore,

ã(n/k, n/k0) :=
a(n/k0)

U(n/k0)− U(n/k)
=

 −γ
(
k0

k

)−γ
(1 + o(1)), γ < 0,

− 1
ln(k0/k)

(1 + o(1)), γ = 0.
(4.1)

Using further the Taylor’s expansion ln(1 + x) = x− x2/2 +O(x3), x → 0, we have

ln

(
U(n/k0x)− U(n/k)

U(n/k0)− U(n/k)

)
= ln

(
1 +

a(n/k0)

U(n/k0)− U(n/k)

(
Dγ(x) +A(n/k0)Hγ,ρ(x)(1 + o(1))

))
= ã(n/k, n/k0)

(
Dγ(x) +A(n/k0)Hγ,ρ(x)(1 + o(1))

)
− 1

2
(ã(n/k, n/k0))

2 (
Dγ(x) +O

(
A(n/k0)

))2 (
1 + o(1)

)
, n → ∞.

Consequently, the desired result follows by noting that Hγ,γ(x) =
(
(xγ − 1)/γ

)2
/2 and the fact that condition (2.1)

holds locally uniformly for all x > 0. 2

Proof of Theorem 2.2 Let Y1,n ≤ Y2,n ≤ · · · ≤ Yn,n denote the increasing order statistics of sample Y1, · · · , Yn

from the parent Y ∼ FY (y) = 1− 1/y, y ≥ 1. Since {Xn−i+1,n}ni=1

d
= {U(Yn−i+1,n)}ni=1, we have

γ̂NM(θ)
n (k0, k)

d
= θγ̂(1)

n (k0, k) +
γ̂
(2)
n (k0, k)− 2(γ̂

(1)
n (k0, k))

2

2(γ̂
(2)
n (k0, k)− (γ̂

(1)
n (k0, k))2)

(4.2)

with

γ̂(j)
n (k0, k) =

1

k0

k0∑
i=1

(
ln

U(Yn−i+1,n)− U(Yn−k,n)

U(Yn−k0,n)− U(Yn−k,n)

)j

, j > 0.

Recalling that νj,γ,ρ and µj,γ are given in (2.2), we verify the following asymptotic expansions

γ̂
(j)
n (k0, k)

(ã(n/k, n/k0))j
d
= µj,γ +

σj,γ√
k0

Z
(j)
k0

(1 + op(1)) + νj,γ,ρA

(
n

k0

)
(1 + op(1))− νj,γ,γ ã

(
n

k
,
n

k0

)
(1 + op(1)), (4.3)
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where, with C the correlation matrix with correlation entry (µj1+j2,γ − µj1,γµj2,γ)
/
σj1,γσj2,γ , σ

2
j,γ = µ2j,γ − µ2

j,γ

(Z
(j1)
k0

, Z
(j2)
k0

)⊤
d→ N2 (0,C) , j1, j2 > 0.

Indeed, it follows from de Haan and Ferreira (2006) that {Yn−i+1,n/Yn−k0,n}
k0

i=1

d
= {Yk0−i+1,k0

}k0

i=1 and

√
k0

(
(k0/n)Yn−k0,n − 1

)
d→ N(0, 1),

√
k
(
(k/n)Yn−k,n − 1

)
d→ N(0, 1).

Thus,
ã(Yn−k,n, Yn−k0,n)

ã
(

n
k ,

n
k0

) = 1 + op(k
−1/2
0 ),

A (Yn−k0,n)

A (n/k0)
= 1 + op(1).

Consequently, it follows from Lemma 2.1 that

γ̂
(j)
n (k0, k)

(ã(n/k, n/k0))j
=

γ̂
(j)
n (k0, k)

(ã(Yn−k,n, Yn−k0,n))
j

(
ã(Yn−k,n, Yn−k0,n)

ã(n/k, n/k0)

)j

=
1

k0

k0∑
i=1

(
Dγ(Yk0−i+1,k0) +Hγ,ρ(Yk0−i+1,k0)A(Yn−k0,n)(1 + op(1))

−Hγ,γ(Yk0−i+1,k0)ã

(
n

k
,
n

k0

)
(1 + op(1))

)j(
1 + op

(
1√
k0

))
=

1

k0

k0∑
i=1

(
Dγ(Yi)

)j
+

1

k0

k0∑
i=1

j (Dγ(Yi))
j−1

Hγ,ρ(Yi)A

(
n

k0

)
(1 + op(1))

− 1

k0

k0∑
i=1

j (Dγ(Yi))
j−1

Hγ,γ(Yi)ã

(
n

k
,
n

k0

)
(1 + op(1)) + op

(
1√
k0

)

= E
{
(Dγ(Y ))

j
}
+

σj,γ√
k0

√
k0

σj,γ

(
1

k0

k0∑
i=1

(Dγ(Yi))
j − E

{
(Dγ(Y ))

j
})

+ op

(
1√
k0

)
+ E

{
j
(
Dγ(Y )

)j−1
Hγ,ρ(Y )

}
A

(
n

k0

)
(1 + op(1))− E

{(
j
(
Dγ(Y )

)j−1
Hγ,γ(Y )

)}
ã

(
n

k
,
n

k0

)
(1 + op(1))

= µj,γ +
σj,γ√
k0

Z
(j)
k0

(1 + op(1)) + νj,γ,ρA

(
n

k0

)
(1 + op(1))− νj,γ,γ ã

(
n

k
,
n

k0

)
(1 + op(1)), j > 0,

which, together with the Cramér–Wold device and the Liapounov’s theorem (cf. Chung (1974), p 200), implies (4.3).

Next, we show that (4.3) implies (2.3). Indeed, since it follows from µj,γ = E
{
(Dγ(Y ))j

}
that

µ1,γ =
1

1− γ
, µ2,γ =

2

(1− γ)(1− 2γ)
, µ2,γ − 2µ2

1,γ = 2γσ2
1,γ , γ ≤ 0,

Setting below cj,γ,ρ = ν2,γ,ρ−2jµ1,γν1,γ,ρ, j = 1, 2, we have by Taylor’s expansion 1/(1+x) = 1−x(1+o(1)), x → 0

γ̂
(2)
n (k0, k)− 2(γ̂

(1)
n (k0, k))

2

2(γ̂
(2)
n (k0, k)− (γ̂

(1)
n (k0, k))2)

=

2γσ2
1,γ +

σ2,γZ
(2)
k0

− 4µ1,γσ1,γZ
(1)
k0√

k0
(1 + op(1)) + c2,γ,ρA

(
n

k0

)
(1 + op(1))− c2,γ,γ ã

(
n

k
,
n

k0

)
(1 + op(1))

2

(
σ2
1,γ +

σ2,γZ
(2)
k0

− 2µ1,γσ1,γZ
(1)
k0√

k0
(1 + op(1)) + c1,γ,ρA

(
n

k0

)
(1 + op(1))− c1,γ,γ ã

(
n

k
,
n

k0

)
(1 + op(1))

)

=

(
γ +

σ2,γZ
(2)
k0

− 4µ1,γσ1,γZ
(1)
k0

2σ2
1,γ

√
k0

(1 + op(1)) +
c2,γ,ρ
2σ2

1,γ

A

(
n

k0

)
(1 + op(1))−

c2,γ,γ
2σ2

1,γ

ã

(
n

k
,
n

k0

)
(1 + op(1))

)

×

(
1−

σ2,γZ
(2)
k0

− 2µ1,γσ1,γZ
(1)
k0

σ2
1,γ

√
k0

(1 + op(1))−
c1,γ,ρ
σ2
1,γ

A

(
n

k0

)
(1 + op(1)) +

c1,γ,γ
σ2
1,γ

ã

(
n

k
,
n

k0

)
(1 + op(1))

)
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= γ +
(1− 2γ)(1− γ)√

k0

(
σ2,γ

µ2,γ
Z

(2)
k0

− 2
σ1,γ

µ1,γ
Z

(1)
k0

)
(1 + op(1)) + ν̃γ,ρA

(
n

k0

)
(1 + op(1))− ν̃γ,γ ã

(
n

k
,
n

k0

)
(1 + op(1))

=: γ +
Zk0√
k0

(1 + op(1)) + ν̃γ,ρA

(
n

k0

)
(1 + op(1))− ν̃γ,γ ã

(
n

k
,
n

k0

)
(1 + op(1)), (4.4)

where, ν̃γ,ρ = (1− 2γ)(1− γ)
(

ν2,γ,ρ

µ2,γ
− 2

ν1,γ,ρ

µ1,γ

)
, and Zk0

d→ N(0, σ2
γ) follows by (4.3) with

σ2
γ = lim

n→∞
Var

{
(1− 2γ)(1− γ)

(
σ2,γ

µ2,γ
Z

(2)
k0

− 2
σ1,γ

µ1,γ
Z

(1)
k0

)}
=

(1− γ)2(1− 2γ)(1− γ + 6γ2)

(1− 3γ)(1− 4γ)
.

Moreover, it follows from (4.3) with j = 1 that

γ̂(1)
n (k0, k) =

1

1− γ
ã

(
n

k
,
n

k0

)
(1 + op(1)),

which together with (4.2) and (4.4) implies (2.3). We complete the proof of Theorem 2.2. 2

Proof of Theorem 2.4 (a) Since limn→∞A(n/k0)(k0/k)
γ = 0 for γ ≥ ρ, we have with c̃ = γ(ν̃γ,γ − θ/(1− γ))

MSE∞(γ̂NM(θ)
n (k0, k)) =

σ2
γ

k0
+ c̃2

(
k

k0

)2γ

.

If k0 ≪ k2γ/(2γ−1), then 1/
√
k0 ≫ (k/k0)

γ , and thus MSE∞(γ̂
NM(θ)
n (k0, k)) = σ2

γ/k0 is a decreasing function of k0.

If k0 ≫ k2γ/(2γ−1), then 1/
√
k0 ≪ (k/k0)

γ , and thus MSE∞(γ̂
NM(θ)
n (k0, k)) = c̃2 (k/k0)

2γ is an increasing function

of k0. Therefore, we choose k0 = O(k2γ/(2γ−1)) in order to balance the bias and variance of γ̂NM(θ)
n (k0, k) and obtain

k
(opt)
0 ∼ k

(1)
0 given by (2.4).

(b) For γ < ρ, we show the three cases that k ≪,≫ nρ(1−2γ)/(γ(1−2ρ)) and k ∼ Dnρ(1−2γ)/(γ(1−2ρ)) for some D > 0

subsequently. For case (i), we have

kγ/(γ−ρ)nρ/(ρ−γ) ≪ kγ/(γ−1/2) ≪ nρ/(ρ−1/2).

Hence, if k0 ≪ kγ/(γ−1/2), then 1/
√
k0 ≫ (k0/k)

−γ , 1/
√
k0 ≫ (k0/n)

−ρ, and thus MSE∞(γ̂
NM(θ)
n (k0, k)) = σ2

γ/k0

is decreasing with respect to k0. On the other hand, if k0 ≫ kγ/(γ−1/2)(≫ kγ/(γ−ρ)nρ/(ρ−γ)), then 1/
√
k0 ≪

(k0/k)
−γ , (k0/n)

−ρ ≪ (k0/k)
−γ , implying MSE∞(γ̂

NM(θ)
n (k0, k)) = c̃2(k0/k)

−2γ which is increasing w.r.t. k0.

Therefore, the optimal k(opt)0 = O(k2γ/(2γ−1)) such that MSE∞(γ̂
NM(θ)
n (k0, k)) = σ2

γ/k0 + c̃2(k0/k)
−2γ reaches its

minimum. Consequently, we have k
(opt)
0 ∼ k

(1)
0 .

For case (ii), note that

nρ/(ρ−1/2) ≪ kγ/(γ−1/2) ≪ kγ/(γ−ρ)nρ/(ρ−γ).

Similar arguments as for case (i) give k
(opt)
0 = O(n2ρ/(2ρ−1)) such that 1/

√
k0 = O((n/k0)

ρ) ≫ ((k/k0)
γ) and

MSE∞(γ̂NM(θ)
n (k0, k)) = σ2

γ/k0 + c2ν̃2γ,ρ(k0/n)
−2ρ

reaches its minimum. Consequently, we have k
(opt)
0 ∼ k

(2)
0 .

For case (iii), note that

kγ/(γ−1/2) ∼ Dγ/(γ−1/2)nρ/(ρ−1/2) ∼ D
γ(1/2−ρ

(γ−1/2)(γ−ρ) kγ/(γ−ρ)nρ/(ρ−γ).
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Similar arguments as for case (i) give k0∼D1n
ρ/(ρ−1/2) such that

MSE∞(γ̂NM(θ)
n (k0, k)) = nρ/(ρ−1/2)

(
σ2
γ

D1
+

(
c̃

(
D

D1

)γ

+ cν̃γ,ρD
ρ
1

)2
)

reaches its minimum. We complete the proof of Theorem 2.4. 2
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