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Summary

Numerous links between genetic variants and phenotypes are known and genome-wide as-

sociation studies dramatically increased the number of genetic variants associated with traits

during the last decade. However, how changes in the DNA perturb the molecular mechanisms

and impact on the phenotype of an organism remains elusive. Studies suggest that many trait-

associated variants are in the non-coding region of the genome and probably act through reg-

ulation of gene expression. During my thesis I investigated how genetic variants affect gene

expression through gene regulatory mechanisms. The first chapter was a collaborative project

with a pharmaceutical company, where we investigated genome-wide copy number variation

(CNVs) among Cynomolgus monkeys (Macaca fascicularis) used in pharmaceutical studies, and

associated them to changes in gene expression. We found substantial copy number variation

and identified CNVs linked to tissue-specific expression changes of proximal genes. The sec-

ond and third chapters focus on genetic variation in humans and its effects on gene regulatory

mechanisms and gene expression. The second chapter studies two human trios, where the al-

lelic effects of genetic variation on genome-wide gene expression, protein-DNA binding and

chromatin modifications were investigated. We found abundant allele specific activity across

all measured molecular phenotypes and show extended coordinated behavior among them.

In the third chapter, we investigated the impact of genetic variation on these phenotypes in

47 unrelated individuals. We found that chromatin phenotypes are organized into local vari-

able modules, often linked to genetic variation and gene expression. Our results suggest that

chromatin variation emerges as a result of perturbations of cis-regulatory elements by genetic

variants, leading to gene expression changes. The work of this thesis provides novel insights

into how genetic variation impacts gene expression by perturbing regulatory mechanisms.

4



Résumé

De nombreux liens entre variations génétiques et phénotypes sont connus. Les études d’as-

sociation pangénomique ont considérablement permis d’augmenter le nombre de variations

génétiques associées à des phénotypes au cours de la dernière décennie. Cependant, compren-

dre comment ces changements perturbent les mécanismes moléculaires et affectent le phénotype

d’un organisme nous échappe encore. Des études suggèrent que de nombreuses variations,

associées à des phénotypes, sont situées dans les régions non codantes du génome et sont

susceptibles d’agir en modifiant la régulation d’expression des gènes. Au cours de ma thèse,

j’ai étudié comment les variations génétiques affectent les niveaux d’expression des gènes en

perturbant les mécanismes de régulation de leur expression. Le travail présenté dans le pre-

mier chapitre est un projet en collaboration avec une société pharmaceutique. Nous avons

étudié les variations en nombre de copies (CNV) présentes chez le macaque crabier (Macaca

fascicularis) qui est utilisé dans les études pharmaceutiques, et nous les avons associées avec

des changements d’expression des gènes. Nous avons découvert qu’il existe une variabilité

substantielle du nombre de copies et nous avons identifié des CNVs liées aux changements

d’expression des gènes situés dans leur voisinage. Ces associations sont présentes ou absentes

de manière spécifique dans certains tissus. Les deuxième et troisième chapitres se concentrent

sur les variations génétiques dans les populations humaines et leurs effets sur les mécanismes

de régulation des gènes et leur expression. Le premier se penche sur deux trios humains, père,

mère, enfant, au sein duquel nous avons étudié les effets alléliques des variations génétiques

sur l’expression des gènes, les liaisons protéine-ADN et les modifications de la chromatine.

Nous avons découvert que l’activité spécifique des allèles est abondante abonde dans tous ces

phénotypes moléculaires et nous avons démontré que ces derniers ont un comportement co-

ordonné entre eux. Dans le second, nous avons examiné l’impact des variations génétiques de

ces phénotypes moléculaires chez 47 individus, sans lien de parenté. Nous avons observé que

les phénotypes de la chromatine sont organisés en modules locaux, qui sont liés aux variations

génétiques et à l’expression des gènes. Nos résultats suggèrent que la variabilité de la chro-

matine est due à des variations génétiques qui perturbent des éléments cis-régulateurs, et peut

conduire à des changements dans l’expression des gènes. Le travail présenté dans cette thèse

fournit de nouvelles pistes pour comprendre l’impact des différentes variations génétiques sur

l?expression des gènes à travers les mécanismes de régulation.
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Introduction

Variation in biology

One of the definitions of life is its ability to adapt and evolve over time [113]. As a result of

this, living systems show a tremendous amount variation, even though core genetic, cell bio-

logical, and developmental processes are largely conserved [114]. Variation in biology is found

from the molecules of a cell, between individuals of a population to ecosystems. For centuries

this tremendous display of variation fascinated naturalists and people such as Carl Linnaeus

(1707 - 1778) spent their lives defining and cataloguing different species and taxa. However,

the reason for this variability was unknown until scientists proposed the theory of evolution

by natural selection during the 1850s. The most popular piece of work obviously being Charles

Darwins ”On the Origin of Species” published in 1859. This new theory unified the source and

effects of variation, where differences among individuals would become the basis for adapta-

tion through natural selection, leading to more diversity and eventually to the generation of

new species [115]. One of the key criteria of this theory is that much of this variation must

be heritable. No agreed on model of inheritance existed at that time [116], and even Darwin

stated in the first chapter of ”On the Origin of Species” that ”The laws governing inheritance

are quite unknown.” [115]. Only after experiments on the inheritance of traits, scientists such

as Gregor Mendel (1822 - 1884) discovered the laws of inheritance. Even though the underly-

ing biochemical mechanisms remained unknown, this knowledge laid the foundation for the

science of genetics.

Genetic variation

Thanks to the discovery of the DNA double helix in 1953 by Watson and Crick [117] we now

have very good knowledge about how genetic information is encoded and transmitted from

one generation to another. Also we have a much more profound understanding of the nature

of genetic differences between organisms. Different types of chemical mutations within DNA

molecules can occur, creating de novo variation within the genetic code and evolutionary forces
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act on this variation, shaping the observe diversity between organisms [118]. Mutations can oc-

cur at any size, ranging from point mutations affecting single nucleotides, over insertions or

deletions (indels) and microsatellites affecting several nucleotides to large structural variants

(SV) such as duplications and deletions (Copy Number Variants, CNVs), inversions or translo-

cations affecting large chunks of the genome [119, 120, 1]. Novel genetic variation is constantly

generated by random mutations within the genome at specific mutation rates. Reported esti-

mates of the mutation rate for point mutations in humans range from 1-3 x 10-8 per base pair

per generation [121] and each person is estimated to carry on average ⇠60 de novo point mu-

tations that occured in the germline of their parents [122]. Estimated mutation rates for other

types of variants are reported to be around 2.94 indels (120 bp) and 0.16 SVs (>20 bp) per gen-

eration [123].

Various evolutionary forces constantly act on a populations genetic variation. Positive selec-

tion promotes beneficial variants, balancing selection maintains variation of specific alleles and

purifying selection removes deleterious variation from the gene pool. Additionally to these di-

rected forces, random genetic drift adds stochastic fluctuation of allele frequencies [118]. Posi-

tive selection on a molecular level gained a lot of attention during recent decades, however its

importance in shaping the observed genetic variability is questioned [124]. Given the random

nature of mutations beneficial mutations are expected to be rare, while strongly deleterious

mutations are likely to be removed from the population by purifying selection. Therefore most

existing variation is expected to have very little to no effect on an individuals evolutionary

fitness (neutral variation) [125] and being driven rather by random genetic drift than directed

selection [126].

Despite this expectation, a small fraction of the genetic variation might still have functional im-

plications for its carrier. Given the complexity of genomes, it is intuitive that random mutations

can act through a variety of functional elements [122]. Probably the most classic mechanism is

via a direct physical change of the protein sequence encoded by a gene. This can for instance

be achieved if a point mutation occurs within the coding sequence of a gene and leads to a non-

synonymous substitution, meaning its nucleotide change is crucial to the resulting amino acid

sequence. Alternatively, mutations can lead to a stop codon and prematurely terminate the

protein translation, or insertions and deletions can induce a frame shift during protein transla-

tion. Because of their potential easily change or destroy a proteins function, the effects of such

mutations can be very strong. Many of such mutations were found to be associated with vari-

ous diseases. A classical example is cystic fibrosis, where mutations in the CFTR gene alter the

resulting proteins function and lead to severe symptoms in multiple tissues [127]. Thanks to
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extensive sequencing of the human exome, various diseases, such as developmental disorders

were linked to specific mutations within the coding sequence of genes [128].

Because of the severity of such mutations, protein-coding sequences are usually depleted of

mutations and more conserved across individuals and species than non-coding regions[129].

Much of the genetic variation lies therefore in the non-coding regions of the genome [130],

where its potential implications are much harder to understand. Especially during recent years,

genome-wide association studies associated phenotypic changes with genetic variants in non-

coding regions, and it was concluded that their effects are most likely regulatory [71]. Rather

than changing the sequence of a gene, these variants affect the expression level of a gene and

therefore act through changing the stoichiometry within cells. One of the most popular exam-

ples is probably the widely spread lactose persistence in humans, where mutations upstream

of the lactase-phlorizin hydrolase gene (LCT) were associated with continued expression of lac-

tase during adulthood [131]. Further studies revealed signatures of positive selection for these

variants in European-derived populations [132], making it a prime example of molecular evo-

lution and how genetic variants can have an effect on gene expression regulation and affect an

individuals phenotype. Genetic variation was associated with gene expression changes across

many species and is likely to be a major driver of phenotypic variation [133, 134], disease [130]

and evolution [114, 72].

From genomics to systems genetics

Systematic, genome-wide analysis of genetic and gene expression variation became feasible

when the human genome was sequenced and the first array based high throughput methods

appeared. This allowed assessing genetic and transcriptomic variation systematically through-

out the genome and across many samples. Large efforts were made to catalogue genetic vari-

ation [48, 135] among humans, providing powerful resources to geneticists. Today, genome-

wide association studies (GWAS) are able to associate phenotypes with genomic variation in

thousands of individuals, leading to an impressive catalog of such associations[136]. Many

of these associations are of medical relevance and genetic components for many common dis-

eases were identified [137–140], explaining typically 10%30% of the traits heritability [137].

Also genetic bases for traits such as drug-efficacy were discovered, having potentially promis-

ing implications for personalized medicine [141, 142]. However, given their limitation of being

statistical associations, they do not provide much functional explanation of the underlying

molecular mechanisms. Many trait-associated variants detected in GWAS are found in non-

coding regions of the genome, suggesting that their effects are most likely regulatory [71].
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Novel genome-wide techniques such as chromatin immunoprecipitation (ChIP) and RNA se-

quencing allowed systematic investigation of regulatory mechanisms and their effects on gene

expression. Projects like ENCODE, which aims at cataloguing all functional elements in the

human genome [49], pioneered the way into the new era of functional genomics. Rather than

investigating static properties of the genome such as the DNA sequence, this field focuses on

the dynamic aspects genomics, mainly gene regulation and expression. Numerous examples

of expression quantitative loci (eQTLs), where the expression level of a gene is associated with

specific genetic variants, were reported [143, 144, 2]. Structural variants, such as CNVs, affect

whole segments of the genome and therefore can have big effects on gene regulatory elements.

Many cases of CNVs being associated with gene expression changes were reported for both

diseases [145, 3] and regulatory variation in natural populations [4, 5]. Using gene expression

levels as an intermediate phenotype between the genome and the organism, this approach al-

lows a more profound understanding of the functional implications of genetic variation [146].

Another field in modern life science that focuses on dynamic aspects and interactions is sys-

tems biology, which aims at understanding biology by focusing on properties arising from the

interaction of the systems component rather than the characteristics of isolated parts [147, 148].

Driven by the ever-increasing capabilities of quantitative molecular data and novel computa-

tional, statistical and mathematical analyses, systems biology became more relevant than ever.

Quickly its potential for genomics was recognized and implementations of systems biology ap-

proaches were proposed to unravel the genomes function [149, 150]. This led to a field known

as systems genetics, which takes advantage of integrating multiple quantitative molecular phe-

notypes, such as gene and protein expression, DNA-protein binding or metabolite levels, using

a wide range of statistical methods. [151].

Following this philosophy, studies used quantitative, genome-wide molecular data to bridge

the gap between genetic variation and gene expression regulation. Specific chromatin signa-

tures, such as DNA-protein binding or histone modifications, have been linked to functional

elements in the genome, illustrating their role in gene regulation [49]. Recent studies showed

extensive genetic control of such signatures [50–52], highlighting their importance in under-

standing how genetic variants perturb molecular mechanisms and impact an individuals phe-

notype. Towards this goal, extensive integration of data on multiple molecular layers from

different cell types and species in combination with sophisticated analytical methods will be

crucial.

11



The work of this thesis

The goal of this thesis was to extend the knowledge of how genetic variation impacts on an or-

ganisms phenotype through perturbing gene expression regulation. This was done in three dif-

ferent projects, each of them investigating different aspects. The first project focuses on CNVs

in Cynomolgus monkeys and their association with tissue specific gene expression levels. This

project was carried out as collaboration with the pharmaceutical company Roche, where our

role was to analyze the experimental data provided by them. This is to our knowledge the first

study, which specifically investigates CNVs in this species and their potential implication for

the animals.

The second and third projects were also collaborative efforts, but this time involving academic

research groups. Both projects were focused the impact of genetic variation on gene expression

changes through perturbation of gene regulatory elements. We generated genome-wide data

on gene expression levels, protein-DNA binding events and histone modifications known to be

linked to gene expression regulation. Using different computational analysis, we mapped ex-

tensive genetic effects on all measured molecular phenotypes. Our results suggest that genetic

variants are likely to act through regulatory elements such as transcription factor binding sites,

leading to a subsequent change in chromatin landscape and gene expression levels.

12



Chapter 1

Copy number variation in Cynomolgus

monkeys linked to tissue specific gene

expression

1.1 Preface

This first chapter focuses on CNVs and their tissue specific effects on gene expression levels

in Cynomolgus monkeys (Macaca fascicularis) used in pharmaceutical studies. This study was

conducted as a collaboration with the pharmaceutical company Roche, in which they provided

the experimental data and we were in charge of the data analysis. The analytical results and

text presented in this chapter are my contribution to this project. We assessed genome-wide

copy number variation among 24 individuals using array comparative genome hybridization

(aCGH) data combined with a customized analytical pipeline. Detected CNVs were then asso-

ciated with gene expression levels of five different tissues (heart, kidney, liver, lung and spleen)

obtained from gene expression array experiments in a cis-eQTL analysis framework. We find

substantial copy number variation among the studied individuals, which is associated to tis-

sue specific changes in gene expression levels. Of note is, that some of the CNVs are associated

with expression changes of multiple genes within genomic regions.

1.2 Introduction

Copy number variations (CNVs) are genetic differences in the normal population displayed as

microscopically invisible deletions or amplifications of stretches of genomic DNA ranging from

1 kilobase up to the megabase scale [1]. CNVs are commonly found in the genomes of humans
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[6], primates [7], rodent [5], or even flies like Drosophila melanogaster [8]. In humans, more

than 2.3 million different CNVs mapping to ⇠200000 genomic regions have so far been iden-

tified [9]. They significantly contribute to genetic variation, covering more nucleotide content

per genome than single nucleotide polymorphisms (e.g. approximately 0.8% of the length of

the human genome differs between two human individuals) [10]. Furthermore CNVs exhibit

a higher per-locus mutation rate than SNPs [11]. Since CNVs can reside in genomic regions

harboring genes they can alter gene dosage, disrupt coding sequences or modify the level and

timing of gene expression for genes within the CNV [12, 13] and on its flanks [3–5, 14–16].

These effects of CNVs are difficult to understand and not necessarily predictable, but relevant

for many diseases [17–21] and pharmacological responses like in the case of CYP2D6 CNVs

[22].

Cynomolgus monkeys (Macaca fascicularis) are well-established translational models for biomed-

ical research and drug testing. These non-human primates are one of the closest animal model

to humans with high genetic similarity (⇠93% in nucleotide sequence identity), similar ana-

tomies, and very similar physiologies [23–25]. These animals offer great promise as models

for many aspects of human health and disease. Cynomolgus monkeys are outbred species,

caught in the wild in many different places of peninsular Southeast Asia, the Philippines, and

Mauritius, and used to found and continuously refresh breeding programs [25, 26]. They ex-

hibit substantial levels of genetic variation which can affect the outcome and interpretation of

biomedical studies [27–29]. Understanding of the contribution of this variation to phenotypes

is lagging behind in Cynomolgus monkeys compared to the knowledge about human genetic

and genomic variation [25]. Genome-wide catalogs of single nucleotide polymorphisms (SNPs)

start to emerge for Cynomolgus monkeys with more and more genome sequencing projects

published [23, 30–33]. However, information on structural variants, such as CNVs, is not avail-

able for Cynomolgus monkeys despite their prominent role in phenotypic variation. In this

study, we assess for the first time genome-wide copy number variation among Cynomolgus

monkeys from cohorts used in pharmaceutical studies using a custom 4.2 million probes CGH

array. To investigate the potential functional implications of the detected copy number vari-

ation, we used a Cynomolgus monkey specific gene expression microarray to associate CNV

genotypes with expression changes of proximal genes using a cis expression quantitative trait

loci (cis-eQTL) mapping approach.
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1.3 Material and Methods

1.3.1 Animal samples

All tissue samples used in this study were taken from untreated animals of GLP drug-safety

studies in accordance with current animal welfare standards. Tissue samples (heart, kidney,

liver, lung, spleen) for CGH and expression analysis were obtained from Cynomolgus monkey

breeding centers located in the Philippines (4 females and 4 males), in Vietnam (2 males, 2

females), in China (4 females, originating from Southeast Asia), or in Mauritius (4 females and

4 males) (Figure 1.1A). Blood samples for CGH analysis were taken originated from individuals

obtained from centers located in Mauritius (25 males). Details (gender, weight, age, origin) of

all animals and their suppliers are on record and were part of the data submitted to public

databases.

1.3.2 NimbleGen Gene Expression Analysis

Cynomolgus monkey tissues were homogenized in tubes prefilled with 1.4 mm ceramic beads

and QiaGen’s lysis reagent RLT using a FastPrep-24 instrument (MP Biomedicals, Solon, OH,

USA). Total RNA from lysates was extracted using the RNeasy Mini kit combined with DNase

treatment on a solid support (Qiagen Inc., Valencia, CA, USA). RNA quality assessment and

quantification was performed using microfluidic chip analysis on an Agilent 2100 bioanalyzer

(Agilent Technologies Inc., Santa Clara, CA, USA). On a Biomek FXp workstation (Beckman

Coulter Inc., Brea, CA, USA), 10 ng of total RNA was used to prepare cDNA with the Nu-

Gen Ovation Pico WTA System V2 (NuGEN Technologies, Inc., SanCarlos, CA, USA), followed

Cy3 labeling of cDNA with the Roche NimbleGen One Color DNA Labeling Kit. NimbleGen

12x135K gene expression microarrays were hybridized with 4 µg of Cy3-labeled cDNA for 16

h at 42�C and were washed and dried according to the manufacturer’s instruction. Microarray

data was collected by confocal scanning using the Roche NimbleGen MS200 Microarray scan-

ner at 2 µm pixel resolution (Roche NimbleGen, Inc., Madison, WI, USA). NimbleGen probe

intensities were subjected to Robust Multi-Array Analysis (RMA) with background correction

and quantile normalization as implemented in the NimbleScan Software, version 2.6 (Roche

NimbleGen, Inc., Madison, WI). Averaged gene-level signal intensities were summarized into

gene calls and log2 transformed.
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1.3.3 Comparative Genomic Hybridization Arrays

Cynomolgus monkey spleen tissues were homogenized in tubes prefilled with 1.4 mm ceramic

beads and QiaGen’s lysis reagent ALT using a FastPrep-24 instrument (MP Biomedicals, Solon,

OH, USA) and then incubated with Proteinase K at 55�C for 1 h followed by RNAse A treat-

ment at 25�C for 2 min (Qiagen Inc., Valencia, CA). Cynomolgus monkey blood specimens

(200 µl) were incubated at 70�C for 10 min in QiaGen’s lysis reagent ALT with Proteinase K

and RNAse A. Genomic DNA from lysates was extracted using the QIAamp Mini kit (Qia-

gen Inc., Valencia, CA, USA). Assessment of unfragmented, high molecular weight DNA and

quantification was performed using microfluidic chip analysis on an Agilent 2100 bioanalyzer

(Agilent Technologies Inc., Santa Clara, CA, USA).0.5 µg of DNA from one animal tissue at a

time and 0.5 µg of reference DNA - pooled DNA from blood specimens of 25 male Cynomol-

gus monkeys - were used for labeling by an isothermal Klenow fill-in reaction with either Cy3

or Cy5 random nonamer primer using the Roche NimbleGen Dual color labeling kit (Roche

NimbleGen, Inc., Madison, WI). Labeling hybridization controls were spiked-in as quality con-

trols for copy number variation detection (Roche NimbleGen, Inc., Madison, WI). NimbleGen

4.2M CGH microarrays were hybridized with 34 µg of Cy3- and 34 µg of Cy5-labeled DNA for

72 h at 42�C. After hybridization, microarrays were washed and dried according to the man-

ufacturer’s instruction, whereat 150 mM 1,3,5-Triaza-7 phospha-adamantane was included in

the last washing step to avoid interference of ozone with the Cy5 dye during drying and scan-

ning. Microarray data was collected by confocal scanning using the Roche NimbleGen MS200

Microarray Scanner at 2 µm pixel resolution (Roche NimbleGen, Inc., Madison, WI, USA).

1.3.4 aCGH normalization

aCGH probe intensities were subjected to LOESS spatial correction, background correction, and

q-spline normalization as implemented in the NimbleGen DEVA software, version 1.2 (Roche

NimbleGen, Inc., Madison, WI). The data was then additionally normalized for probe GC-

content following [10]. To estimate the effect of probe GC-content on the measured log2 ratios,

linear models were fitted for each array according to following formula:

log2(Ri) = a + b1GCi + b2GC2
i + ei (1.1)

Where log2(Ri) is the measured log2-ratio of an aCGH probe i, a the intercept, GCi the probes

GC content and ei a random error. The estimated effect of the probe GC-content was then sub-

tracted from the measured log2-ratios (i.e. residualized). Furthermore the data was normalized

for wave artifacts along chromosomes as described by [34]. This was done by fitting a local re-
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gression (LOESS) model for each chromosome and array separately to estimate the effect of

chromosomal position on the measured log2-ratios:

log2(Ri) = g(posi) + ei (1.2)

Where g is the local regression function, posi denotes the position of the probe i on the chro-

mosome and ei a random error. Because the fraction of the data used in each local window

(neighborhood) during model fitting is a crucial parameter, the normalization was performed

across different fractions. The best was then selected based on signal-to-noise ratio (SNR) im-

provements before and after normalization using a CNV test set. The test set consisted of

CNVs called based on the probe GC-content normalized data using all three callers with stan-

dard settings and the results were processed in the same way as the final CNV calls (see: 1.3.5).

Only CNVs detected in at least 2 individuals were retained for more confident CNV calls. For

each individual, the signal-to-noise ratio of each aCGH probe in each CNV of the test set was

calculated in the following way:

SNRi =
|log2(Ri)|

sCi
(1.3)

SNRi denotes the signal-to-noise ratio of a given probe i, and sCi the standard deviation of all

probes on the same chromosome as probe i. The average SNR of all CNV probes per CGH array

was used as metric to evaluate the normalization performance. To visualize and to assess the

quality of the normalized data, principal component analysis (PCA) and hierarchical clustering

of the euclidean distance between log2-ratios of samples were used.

1.3.5 CNV calling

CNV calling was performed 3 inherently different approaches to mitigate method specific er-

rors: R-GADA [35] was used with the following parameters: alpha=0.2, T=4.5, minseglen=5.

DNAcopy [36] was used with minseglen=5, undosd=3, undoprune=0.05 and data smoothing

was applied prior to CNV calling. CopyMap [37] was used with r=20, T=4, m=5, a=2.1, P=0.001.

Further for R-GADA and DNAcopy z-scores were calculated for all CNV calls based on the

mean log2-ratio of the CNV, and only CNVs with z-scores >1.5 or <-1.5 retained. For CNVs

called by CopyMap a carrier probability of at least 0.8 was required. The three obtained CNV

calling profiles per individual were then merged and only CNVs called by at least two methods

were kept, and loci with conflicting copy number states were removed. These resulting profiles

were then further merged between individuals to obtain CNV regions that could be genotyped

across individuals. In cases where an individual carried more than one CNV in a CNV region,

the locus was marked as a complex locus and removed from subsequent steps. Additionally

17



CNV loci located on the X chromosome or within array probe gaps larger than 500 kb +/- 250

kb (e.g. centromeres) were removed. To avoid potential calling mistakes the median log2-ratio

of each CNV was used as genotype rather than the discrete copy number state provided by

the CNV calling methods. PCA was again used to visualize and evaluate the inferred CNV

genotypes.

1.3.6 eQTL analysis

To assess the potential functional impact of copy number variants, we associated the inferred

CNV genotypes with the expression level of proximal genes in each of the five tissues by using

a cis expression quantitative trait loci (cis-eQTL) approach. No complex CNV loci were used

for that purpose and in order to avoid outlier driven results only CNVs called in at least two

individuals were retained. The expression level of each gene was tested for associations with

CNVs within 1Mb of its transcription start site (TSS) using following linear model:

Eit = a + b1Ci + b2Git + b3Ai + eit (1.4)

Where Eit is the measured expression level of gene E in tissue t for the ith individual, Ci is the

genotype of a proximal CNV C for the ith individual and eit a random error. To account for non-

genetic systematic variation between samples, the loadings of the first principal component for

individual i for both the expression levels of all genes the same tissue (Git) and the genotypes

of all CNVs (Ai) were added as covariates. An adapted version of the fastQTL software [38]

was used to test all possible associations using this model. Correction for multiple testing

was carried out in two steps, where first local permutations were applied to correct for multi-

ple variants per gene [38] and then the false discovery rate (FDR) (qvalue R-package, Storey J.,

2015) was calculated per tissue to account for multiple tested genes. Only eQTLs below an FDR

of 10% (qvalue <0.1) were considered as significant. To further investigate the impact of CNVs

on the gene expression landscape, genes within the regions of detected eQTLs were investi-

gated for further associations with the eQTL CNV. The expression levels of all genes within

1Mb from the TSS of an eQTL gene were tested for an association with the eQTL CNV with

the same linear model as used for eQTL mapping. Bonferroni correction was calculated for all

tested associations per region and association with a corrected p-value <0.05 were considered

significant.
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1.4 Results

1.4.1 NimbleGen Gene Expression Analysis

After RMA normalization gene expression data of each array were identically distributed, with

identical median and standard deviation (Figure A.1). PCA generally did not reveal much

separation of the gene expression data according to sample origin or array scan day (Figure

A.2). Hierarchical clustering on the other hand revealed some limited clustering according to

origin (Figure A.3).

1.4.2 aCGH normalization

The GC-content normalization estimated the proportion of the variance explained by the aCGH

probe GC-content range from 0.0009 and 0.1501 depending on the array (R-squared, mean=0.065,

SD=0.045, Table A.1). For the wave artifacts normalization, a fraction of 4000 probes per model

fitting step resulted in the largest median SNR improvement (1.1%) and was therefore chosen

(Figure A.4, Table A.2). When plotting the loadings of the first and second principal com-

ponent and color-coding them according to sample origin and array scan date, the samples

clustered mostly according to their origin (Figure A.5A). No strong clustering based on thee

array scan date was observed expect for the two samples sI01776 F and s7828C M, which both

were separated from the other samples (Figure A.5B). The same separation was observed by hi-

erarchal clustering of the aCGH data, where samples generally were grouped by geographical

origin, except for three including sI01776 F and s7828C M (Figure A.6). Therefore the samples

sI01776 F and s7828C M were defined as outliers and excluded from all following analyses.

1.4.3 CNV calling

The combination of the three CNV calling methods reported between 1,364 and 6,598 (mean=

3,116, SD=1,356) CNVs per individual with on average slightly more duplications (1,692) than

deletions (1,424) (Figure 1.1B, Table A.3). These CNV calls led to a total of 17599 CNV regions

after filtering, with only 292 regions excluded because they were classified as complex loci.

Visualization of the first and second principle component of a PCA based on these CNV calls

revealed a clear separation of sample sC30659 M (Figure A.7). This individual also showed a

large number of deletion CNV calls (Figure 1.1B, Table A.3), resulting in an excess of deletions

in the inferred CNV regions (Figure A.8). Based on these results, sC30659 M was also defined

as outlier and removed from the data set, reducing the number of CNV regions to 15,183. The

length of these loci ranged from 2.3 to 692.9 kb, with a median length of 8.35 kb (SD=15.1
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kb) (Figure 1.1C) and in total, these CNV regions covered ⇠4% (⇠127 Mb) of the autosomal

Cynomolgus monkey genome (Table A.4). 58% of CNV regions were detected in only 1 popu-

lation, however 83% of them were restricted to one individual. 19% of CNV regions were found

in two, 11% in three and 12% in all four populations (Figure 1.1D). PCA and hierarchical clus-

tering based on the median log2-ratio of the resulting CNV regions showed clear separation of

the samples by geographical origin (Figures 1.1E&F).

1.4.4 eQTL analysis

A total of 7,266 non-complex CNV loci with a minimal allele count of 2 were associated with

the expression levels of 18,280 genes measured in all five tissues. The eQTL mapping reported

30 cis-eQTLs across all five tissues, ranging from one to eight cis-eQTLs per tissue (Figure

1.2A, Table A.5). Generally, eQTL genes showed lower average gene expression levels than

the tissue average (Figure 1.2B), however this difference was only significant in heart eQTLs

(Wilcoxen rank sum test, p = 0.015). The strongest associations were generally observed with

CNVs in close distance of the TSS (Figure 1.2C), and the highest density of associations was ob-

served around 200 kb upstream of the TSS (Figure 1.2D). Further investigation of associations

within eQTL regions revealed a total of 10 additional associations in eight out of the 29 non-

overlapping eQTL regions. Within these eight regions, on average 12.8% of genes were also as-

sociated with the eQTL CNV and all associations showed the same directionality as the eQTL.

Among the most significant associations we found a group of olfactory receptor (OR) genes

(OR4K17, OR5M9) on chromosome 7 and 14 as well as the ATP-binding cassette transporter 4

(ABCB4) on chromosome 3, also known as multidrug resistance protein 3 (MDR3) (Table A.5).

In close proximity to the OR genes on chromosome 7 we detected a duplication event associ-

ated with expression changes of ORK17 in kidney and in lung and ORK14 in kidney (Figures

1.3A&B, A.9). Further investigation of this eQTL region revealed additional associations with

ORK13 in lung and OR4L1 in both kidney and lung. For ABCB4 we detected a deletion ⇠480

kb upstream associated with increased transporter expression in lung (Figures 1.3C, A.10).
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Figure 1.1: CNV genotypes. A Geographic origin of the four natural populations, from where

the tested cynomolgus monkeys were caught. B Number of duplications and deletions de-

tected per individuals by combining the three CNV calling approaches. C Size distribution

of the inferred CNV regions across 21 individuals (n=15,183). D Number of CNV regions de-

tected among and across the four different populations. E Loadings of the first and second

principal component based on a PCA performed on the log2- ratio genotypes of all CNV re-

gions (n=15,183) in the 21 individuals. F Hierachical clustering of the log2- ratio genotypes of

all CNV regions (n=15,183) in the 21 individuals.
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Figure 1.2: eQTLs. A Number of detected cis-eQTL per tissue under 10% false discovery rate

(FDR). B Average expression levels of eQTL genes in each tissue versus the average expression

level of all genes in the respective tissue. C Nominal p-value of all detected cis-eQTL as a

function of the distance to the transcription start site (TSS) of the eQTL CNV to its associated

gene. D Density of detected cis-eQTLs as a function of the distance to the transcription start

site (TSS) of the eQTL CNV to its associated gene.
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Figure 1.3: eQTL loci. A eQTL region on chromosome 7 containing olfactory receptor cis-

eQTLs in both kidney (orange) and lung (blue). The red box highlights the CNV locus, which

shows duplication events associated with gene expression changes of proximal olfactory recep-

tor genes. Triangles indicate an association reported from the genome-wide cis-eQTL mapping,

while stars indicate additional associations revealed by the eQTL region analysis. B eQTL as-

sociations for the three detected olfactory receptor cis-eQTLs on chromosome 7 in kidney and

lung. CNV genotype represents the median log2-ratio of aCGH probes within the CNV. C eQTL

association of ABCB4 with a close by deletion on chromosome 3 in lung.
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1.5 Discussion

Using a microarray based CNV detection approach combining careful data normalization and

three different CNV calling methods, we are able to assess copy number variation in Cynomol-

gus monkeys originating from different natural populations. According to our knowledge, this

is the first study to investigate natural copy number variation in this species. We predomi-

nately find small CNVs among our individuals with a median length of 8.35 kb (SD=15.1 kb),

which is by far smaller than the median gene locus size of 46.7 kb in Cynomolgus monkeys.

This finding is in line with current research [39], which suggests that individuals from normal,

healthy populations carry mostly short CNVs. In humans, short CNVs are more frequently

generated de novo than large CNVs (>500 kb) [40], which indicates that they do not underlie

strong purifying selection in contrast to potential deleterious large CNVs. This also highlights

the importance of a meticulous CNV calling approach when using aCGH data, since we op-

erate close to the resolution limit of the array with many CNVs only encompassing 5 array

probes. Genotyping an individual for a defined CNV region is a difficult task, because it re-

quires discretization of the continuous log2-ratio spectrum. We solve this problem by using the

median log2-ratio of all probes within a CNV of an individual as its genotype, which avoids

the problem of having to make a discrete statement about the copy number.

We are confident that our CNV genotypes represent true copy number variation, which is un-

derlined by the clustering of the CNV genotypes by genetic background of our individuals

(Figure 1.1F). As expected the island populations of Mauritius and the Philippines are clearly

separated, while the separation between the Southeast Asian and Vietnamese main land pop-

ulations is less pronounced. This is in line with the fact that these two populations share geo-

graphically adjacent biotops [25]. Additionally, individuals labeled as Southeast Asian might

come from geographically less separated populations in Vietnam, Cambodia or Laos. Interest-

ingly, the majority (83%) of population specific CNV regions were only detected in one indi-

vidual, indicating that much of the population specific CNV loci are found at low frequency

within the respective populations. Our findings indicate that one might face very different

genetic backgrounds in animal experiments, depending on the population origin of the test

animals.

However, even though we find extensive copy number variation among our samples, only a

relatively small number of CNV loci are associated with gene expression level changes. This

suggests that most copy number variation, similar to single nucleotide variants, have no effect

on or link to gene expression regulation. However, given our small sample size of 21 individ-

uals used for the cis-eQTL mapping, our statistical power is relatively low for genome-wide
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testing, which might also partially explain the low number of detected eQTLs. When look-

ing at the association strength of our eQTLs, it becomes evident that the strongest associations

are detected with variants close to their targets TSS (Figure 1.2C), which is in line with previ-

ous research [2, 4, 41]. This suggests, that for CNVs similar as for SNPs large-effect variants

affect cis-regulatory elements in the immediate intergenic regions [2]. As expected we detect

most significant associations close to the TSS (Figure 1.2D), maybe not because of the absence

of more distal associations, but because these large-effect variants close to the TSS are easier

to detect. Generally eQTL genes seem to show lower expression levels than the average gene

expression level of the respective tissue, even though this difference is significant only in heart.

This indicates that the expression of genes, which are required to be expressed at high level in

a given tissue, is more tightly regulated. On one hand, this might be because purifying selec-

tion removes detrimental regulatory variants for these genes. On the other hand, buffering of

genetic effects within the regulatory networks might be the case and the transcriptional ma-

chinery might compensate genetic effects if needed. When investigating the eQTL regions for

additional associations, we discover additional genes for which the expression level is linked

to CNV genotypes. These associations however do not pass a genome-wide correction for mul-

tiple testing, suggesting that indeed we would probably detect more cis-eQTLs with a larger

sample size. Furthermore, these results also show that CNVs are regularly associated to the

expression level of multiple genes within a genomic region. This might be because CNVs en-

compassing several kb potentially have a strong effect on regulatory elements and can easily

affect multiple regulatory elements. Therefore, this finding could also be caused by other vari-

ants linked to the CNV and the resulting haplotype dependent associations.

One particularly interesting eQTL region is located on chromosome 7, where a duplication

event located in proximity of a group of olfactory receptor (OR) genes affecting expression

changes of OR4K13 and ORK17 in kidney and ORK17 in lung (Figure 1.3A&B). Although ol-

factory receptors are typically not expected to be expressed in internal organs, a recent study

gave examples of such receptors to be expressed in organs involved in metabolic processes

[42]. The validity of our findings is strengthened by the fact that we detect one of these as-

sociations in two independent tissues. Considering the expression level change of these OR

genes from a very low level to a level close to the average global gene expression in duplication

carriers led us to the hypothesis, that a copy number change in a cis-regulatory element might

be responsible for activating gene transcription at this locus. When investigating this partic-

ular eQTL region for further associations, we detect additional associations of the CNV with

OR4L1 in kidney and OR4L1, OR4K2 and OR4K13 in lung. This serves as a prime example of
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a CNV being linked to expression changes of multiple genes. Interestingly, additional CNVs

were detected within this region (Figure 1.3A). A ⇠50 kb CNV comprising both the OR4N5

and OR4K17 genes was detected, but was not associated to gene expression changes. Given

the moderate change in the aCGH log2-ratio, it is possible that this CNV represents an am-

plification change in an array of copies, as such a change would lead to a weaker signal than

expected from a classical duplication or deletion event. OR genes are well known to be highly

variable in copy number among humans [43] and multiple genes have been reported to exist in

high copy numbers [44]. Additionally, a deletion upstream of OR4L1 was detected in Mauritian

individuals (Figure 1.3A), which at first seems to be in linkage with the duplication associated

with gene expression changes. However, it is absent from one Filipino individual showing ele-

vated expression levels of the OR genes, which excludes an association of this CNV with gene

expression. Even though this is based on only one data point, it demonstrates the potential of

breaking up the linkage between variants by including individuals from different populations.

Interestingly, this genomic region was previously identified to be the origin of a chromosomal

fission in the hominoid lineage, giving rise to the human chromosomes 14 and 15 [45, 46]. We

show copy number and gene expression polymorphisms in the ancestral form, maybe linked

to the genomic instability leading to the fission event.

Among our eQTLs, we also find ABCB4, which is known to act as tumor suppressor once

overexpressed in lung cancer [47], and was shown to be regulated by epigenetic silencing. A

deletion ⇠480 kb upstream of this gene was linked to its expression, where it might disrupt

such epigenetic silencing of ABCB4 and thus increase its expression (Figure 1.3C). Whether

any of our detected associations are of physiological relevance in pharmaceutical studies re-

mains unclear, however we find a link between CNVs and gene expression levels in organs

such as the kidney, which plays a major role in drug excretion.

In summary, we detect substantial copy number variation in Cynomolgus monkey populations

used in pharmaceutical studies, leading to a diverse and variable genetic background in such

studies. We report several associations of CNVs with the expression levels of proximal genes.

In some cases multiple genes within the same region are linked to the same CNV. Of note is a

genomic region, which harbors several olfactory receptor genes showing an association with

a close-by duplication event in both kidney and lung. Even though the physiological conse-

quences remain unclear, our data suggests that CNVs shape the tissue transcriptomes of vitally

important organs.
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Chapter 2

Coordinated allelic variation across

molecular phenotypes

2.1 Preface

Recent advances in genome-wide profiling of transcription factor (TF) binding and chromatin

state have identified specific chromatin signatures related to various classes of functional el-

ements in different cell types. However, their genetic basis and degree of variability across

individuals remain largely unknown. We studied genome-wide enrichment profiles of tran-

scription factor binding, chromatin marks, and different measures of transcription in lym-

phoblastoid cell lines from two human trios and eight unrelated samples. We quantified inter-

individual variability in these phenotypes to understand both DNA sequence dependent and

independent variation on DNA binding and transcription, chromatin state, and their interplay

in an allele-specific framework. We find that different organizational layers of the genome

show abundant allelic effects and strong allelic coordination between layers, with the genetic

control of this coordination acting primarily through transcription factor binding.

This project in this chapter was carried out as a collaboration among four academic groups from

Lausanne (Prof. Reymond, Prof. Deplancke, Prof. Hernandez) and Geneva (Prof. Dermitza-

kis). My contribution was in the analysis of the data, especially in ChIP-seq and RNA-seq data

analysis, putative enhancer inference and how the different molecular phenotypes co-vary at

functionally important elements of the genome. This study was published in the peer-reviewed

journal Science in November 2013 [53].
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Molecular phenotypes at functional elements

In order to assess the behavior of the measured molecular phenotypes at genomic regions

linked to gene expression regulation, I defined promoter and putative enhancer loci. Promoter

regions were defined as a 2.5 kb window centered on the transcription start sites of protein-

coding and linc-RNA genes (n=13,720). Putative enhancers were created based on DNaseI

hypersensitivity sites available for the trios [51]. DNAseI hypersensitivity sites were merged

and sites outside exons and promoter regions of known transcripts were considered as putative

enhancer sites. ChIP, mRNA and nascent transcription (GRO-seq) reads were then quantified

within these promoter and putative enhancer sites and read counts were normalized across

assays by calculating z-scores of the log10 transformed read counts. Based on these quan-

tifications, spearman’s rank correlation coefficients (r) were then calculated for each marker

combination. We observe a clearly coordinated behavior among all our phenotypes at pro-

moters of protein-coding and linc-RNA genes (Figure 2.1A). Most molecular phenotypes were

positively correlated with each other except for H3K27me3, which was negatively correlated

with the other phenotypes. This indicates the repressive function of H3K27me3, while the other

molecular phenotypes are known to be associated with active transcription. Similar, yet weaker

behavior was also found for putative enhancer sites. These results highlight the coordinated

activity of chromatin phenotypes, transcription and gene expression at functionally relevant

elements in the genome and suggest common functional implications.

Molecular phenotypes and gene expression regulation

Next, I investigated how the measured molecular phenotypes are linked to gene expression

levels. The obtained ChIP-seq and Gro-seq read quantifications for promoter regions were nor-

malized to 10,000,000 total mapped reads in each experiment and the promoters were grouped

into percentiles according to the expression level of their genes. For each percentile the average

RNA-seq quantification value and the number of ChIP-seq and GRO-seq reads were calcu-

lated for each marker. Obtained values for every percentile were plotted on a log10 scale. As

expected we observed that all phenotypes except H3K27me3 were positively correlated with

gene expression levels (Figure 2.1C). Our findings show that the measured chromatin pheno-

types within promoter regions are linked to the expression levels of the associated gene. This

suggests that these chromatin phenotypes are likely to be involved in the regulation of gene

expression at these loci.
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Figure 2.1: Molecular phenotypes and gene expression. A,B Genome-wide properties of the

probed molecular phenotypes. Correlation of molecular marks at promoters (transcription start

sites +/- 2.5 kb) for protein-coding and linc-RNA genes A and putative enhancers defined by

DNaseI hypersensitivity sites B. Plotted values are Spearman correlation coefficients based on

z-score transformed read densities for ChIP, mRNA and nascent transcription (GRO-seq) as-

says. C Relationship between gene expression (mRNA-seq) and genomic signals at promoters

(transcription start site +/- 2.5 kb) of protein-coding and linc-RNA genes. Genes were grouped

into percentiles according to their expression level and the average expression level and read

density is shown for each percentile.
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2.2 Abstract

DNA sequence variation has been associated with quantitative changes in molecular pheno-

types such as gene expression, but its impact on chromatin states is poorly characterized. To

understand the interplay between chromatin and genetic control of gene regulation we quan-

tified allelic variability in transcription factor binding, histone modifications, and gene expres-

sion within humans. We found abundant allelic specificity in chromatin and extensive local,

short-, and long-range allelic coordination among the studied molecular phenotypes. We ob-

served genetic influence on most of these phenotypes, with histone modifications exhibiting

strong context-dependent behavior. Our results implicate transcription factors as primary me-

diators of sequence-specific regulation of gene expression programs, with histone modifica-

tions frequently reflecting the primary regulatory event.

2.3 Main text

Functional genomic elements have been linked to specific chromatin signatures in different cell

types [49], illustrating control of transcriptional processes through multiple layers of genome

organization. While allele-specific gene expression is widespread [54], it has been difficult

to pinpoint the upstream cis-regulatory variants and how they affect chromatin states. We

performed chromatin immunoprecipitation (ChIP) of five histone post-translational modifica-

tions (hPTMs) (H3K4me1, H3K4me3, H3K27ac, H3K27me3, and H4K20me1), three transcrip-

tion factors (TFs) (TFIIB, PU.1, and MYC), and the second largest RNA polymerase II subunit

RPB2 [POLR2B] in lymphoblastoid cell lines (LCLs) (Figure B.1) in two parent-offspring trios

[48]. A subset of the ChIP assays was also performed in eight additional unrelated individ-

uals. We further profiled one of the trios with global run-on sequencing (GRO-seq), which

measures nascent transcription at all transcribed regions (Figure B.2), and examined available

DNaseI-seq and CTCF ChIP-seq data [51]. All 14 individuals were additionally profiled for

messenger-RNA (mRNA) expression (supplementary information). Clustering of the molec-

ular phenotypes along promoters and enhancers was consistent with published reports [49]

(Figures B.3 - B.5).

We identified sites of allele-specific (AS) TF binding, hPTM, and transcription for all assays

(supplementary information), ranging from 11-12% for TFs [51, 55] to 6-30% for hPTMs at het-

erozygous sites accessible for the analysis (median across all individuals) (Figure 2.2A, Figure
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B.6). Notably, in the two trios, fewer AS effects were observed in mRNA (mRNA-seq, 5%) than

in nascent transcripts (GRO-seq, 27-28%) (supplementary information), likely reflecting post-

transcriptional modifications.

Multiple heterozygous SNPs overlapping regions of TF activity showed high consistency in

allelic direction within individuals (Figure 2.2B, Figure B.7A, B.7B). AS consistency in nascent

transcription and histone modifications was high up to several kb and decreased with dis-

tance (logistic regression, P <0.05, Figure B.7C). Strongest AS effects were enriched at pro-

moters, while the allelic signals of marks of enhancer activity (PU.1, H3K4me1, H3K27ac) or

heterochromatin (H3K27me3) showed a more dispersed distribution (Figure B.8). We also an-

alyzed all accessible heterozygous SNPs overlapping known eQTLs from the 1000 genomes

phase1 populations (supplementary information) [56] and observed an enrichment of allelic

bias at eQTLs compared to non-eQTLs for TFs (P=0.016, Mann-Whitney U test) but not for

hPTMs (Figure B.9), suggesting that a TF binding change is often causal to the gene expression

change.

Linking hPTM signatures with specific DNA sequence features has proven difficult [57], but

for sequence-specific TFs it is possible to assess whether the observed AS effects are due to

motif-disrupting variants (Figure B.10). Categorization of significant AS binding sites, with re-

spect to predicted TF motifs, revealed three classes of binding SNPs (B-SNPs): B-SNPs located

either within (class I) or adjacent (class II) to predicted PU.1 and MYC consensus TF motifs, or

B-SNPs in motif-devoid peaks (class III). Class I sites were enriched for B-SNPs compared to

the other two classes (Figure B.11A, B.11B for PU.1, Figure B.12A, B.12B for MYC), suggesting

that SNP-mediated disruption of the TF motif is likely causal to the observed AS binding ac-

tivity. However, most TF AS binding events (70%, PU.1; 97%, MYC) appear triggered through

TF consensus motif-independent mechanisms (Figure B.11A, B.12A) [52, 55]. For example, al-

lelic binding cooperativity tests (supplementary information) revealed four additional motifs

(NFKB1, POU2F2, PRDM1, STAT2), located proximal to the PU.1-bound site, which show co-

variance with AS PU.1 binding activity (FDR=5%; Figure 2.3A, Figure B.13) and collectively

explain another 7.5% of AS PU.1 binding activity.

Despite a strong correlation between motif score differences and AS binding (Figure B.11C,

B.12C; >90% expected direction), we observed that the majority of motif disrupting SNPs do

not show significant allelic effects (Figure B.11A, B.12A). Therefore, we tested whether homo-

typic TF motifs (i.e., multiple motifs for the same TF) located within PU.1-bound regions might

buffer the effects of motif-disrupting SNPs (supplementary information) [58, 59] and found that

TF-bound regions with homotypic motifs exhibit fewer allelic effects (41% vs 25%; P = 0.0087,

Mann-Whitney U test). In addition, the impact of SNPs on TF motifs scales with the likelihood
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to observe significant AS effects (Figure 2.3B, Figure B.12D), but this trend is not significant if

a second, unaffected homotypic TF motif is located nearby (Figure 2.3B, Figure B.11D). These

results suggest that homotypic motif clusters buffer the effect of genetic variation over several

similar binding sites.

Next, we investigated the genetic component of allele-specific chromatin and binding signals

and (i) compared direction of allelic bias at shared significant AS sites across ten unrelated in-

dividuals (Figure 2.4A) and (ii) tested for transmission of allelic effects from parents to children

(Figure 2.4B, Figure B.17) [51]. Allelic directions at shared significant AS sites in the unrelated

individuals were significantly correlated (P <0.05, Spearman correlation, Figure B.16A), with

mRNA showing the highest degree of consistency in allelic directions between individuals fol-

lowed by TF binding and histone modification, respectively (Figure 2.4A, B.14 - B.16). We

observed evidence of significant parental transmission with all three regulatory TFs (r = 0.44-

0.75, P <= 0.02, Spearman correlation; Figure 2.4C, Figure B.17), consistent with their strong

sequence-dependence (4, 6). For hPTMs, evidence of transmission was detected for the active

histone marks H3K4me1, H3K4me3, and H3K27ac (r = 0.12-0.21; P <= 0.02), but their level of

transmission was lower than for TFs. Transmission signal for mRNA levels and nascent tran-

scription was significant and comparable to TFs (r = 0.46 and 0.50; P = 0.0008 and P = 1.3e-07,

respectively). We observed only weak transmission for POLR2B (Figure B.17), possibly due

to the distinct activity states of the polymerase [60]. We determined the genetic control of the

transmission signal of histone marks at known expression [56] and DNaseI sensitivity quan-

titative trait loci [50] (eQTLs and dsQTLs, respectively), since the former are enriched within

TF binding sites [50]. Transmission of the active marks H3K4me1, H3K4me3, and H3K27ac

was stronger near eQTLs and dsQTLs (r = 0.31-0.57) than genomewide (Figure 2.4D, Figure

B.20), suggesting that the transmission behavior of the overall chromatin state depends on the

properties of the underlying sequence. Collectively, these findings indicate coordinated and

genetically driven changes between TF binding and histone modifications, and suggest that

TFs are the primary determinants of regulatory interactions [61–63].

To further assess the extent of allelic coordination (AC) between distinct genomic regulatory

layers, we calculated the correlation between AS effects across pairs of molecular phenotypes

(Figure B.21). We observed that each testable phenotype exhibits significant correlation in al-

lelic ratios with one or multiple phenotypes (Spearman’s correlation; P <0.05). The majority of

AC events reflect relationships between distinct regulatory layers that have also been observed

quantitatively (e.g. POLR2B/H3K4me3 at promoters [64, 65]; GRO-seq/H3K4me1/H3K27ac

at putative enhancers [66]) (Figure 2.5A, Figure B.21). These results support a strong allelic (i.e.

local) interconnectivity between regulatory and general TFs, histone modifications, and tran-
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scription.

Expression QTLs (eQTLs) are often located distal to their target genes [67], indicating that al-

lelic signals within regulatory layers might extend over short- and long distance. We examined

Haplotypic Coordination (HC), defined as long-range coordination in allelic direction on the

same chromosome, of AS effects at non-overlapping heterozygous sites (supplementary in-

formation) (Figure 2.5B, Figure B.21), and found that every TF and histone mark exhibits HC

with one or more regulatory layer(s) around genes and their flanking regions (Figure B.21;

Spearman’s correlation P <0.05). The degree of coordination varied between regulatory layers

ranging from -0.24 (GRO-seq/CTCF; P = 0.03) to 0.64 (MYC/mRNA; P = 2.9e-08). The ma-

jority (>90%) of significant HC events were positive, i.e., the allelic bias co-occurred on the

same haplotype (Figure 2.5B, Figure B.21). For 25% of assay pairs tested, the strength of HC

was significantly correlated with the genomic distance between SNP pairs (logistic regression,

P <0.05; OR = 0.19-2.2) (Figure B.22). For example, the enhancer-associated histone marks

H3K4me1 and H3K27ac showed allelic consistency up to 200 kb with the TF PU.1. Thus, a

single or few variant(s) likely trigger long-distance allelic effects over many of the regulatory

layers acting on a genomic region.

In summary, we observed abundant allele-specific activity across all regulatory layers. Parental

transmission of the allelic effects suggests that DNA sequence variation affecting transcription,

TF binding and histone modifications are largely transmitted from parents to children, with

allelic histone effects showing more sensitivity to context-dependent effects compared to TFs.

Coordinated allelic and haplotypic behavior at different functional elements of the genome

suggest that TF binding, histone modifications, and transcription operate within the same al-

lelic framework. This is consistent with the fact that a few TFs can induce cellular reprogram-

ming and massive changes in the chromatin landscape [68], and that the maintenance of a

transcription-permissive environment and transcriptional memory are independent of histone

modifications [69]. Both histone modifications and TF binding are under genetic control, but

histone modifications are more prone to stochastic, possibly transient effects and likely reflect

[70], rather than define, coordinated regulatory interactions.
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Figure 2.2: Allele-specific (AS) activity within transcriptional and chromatin layers. A Pro-

portion of accessible heterozygous SNP sites showing significant AS activity (median across all

individuals, n=3-14). B Consistency of allelic effects within genomic regions of TF binding and

histone modification. Bars represent the proportion of peaks with a consistent allelic direction

at two or more SNP sites.
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Figure 2.4: Genetic component of allele-specific (AS) transcriptional and chromatin activity.

A Distribution of pairwise correlation coefficients of significant AS sites between all unrelated

CEU individuals (n=10) for each molecular phenotype. Correlation of the reference allele ratio

is calculated at shared significant AS SNP sites using Spearman rank correlation. B-D Correla-

tion of the paternal allele ratio of the child and that inferred from the parents at SNP sites where

parents are opposite homozygotes and the child has a significant allelic effect. B Examples of

transmitted PU.1 and H3K27ac SNP sites. C Genome-wide transmission results. GRO-seq

signal was analyzed separately for each strand (filled and empty points, forward and reverse

strand, respectively; P-value represents combined data). D Transmission results of H3K4me1

and H3K27ac near DNase I sensitivity QTLs (+/- 1 kb window around the dsQTL).
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Chapter 3

Population variation and genetic

control of modular chromatin

architecture in humans

3.1 Preface

To further decipher how genetic variation impacts gene expression and the chromatin land-

scape, we conducted a follow-up study where we investigated genetic variation, gene ex-

pression, DNA-binding and chromatin modifications among 54 unrelated individuals. We

observed that the chromatin landscape is locally organized into chromatin modules (VCMs),

which vary in their activity across individuals and are often correlated with gene expression

levels of proximal genes. Both VCM activity and gene expression levels were found to be as-

sociated with genetic variation within their genomic region. The findings of this project were

published in the peer-reviewed journal Cell in August 2015 [73]. Together with the two first

authors, I was involved in the analysis of the data. My contribution to this article was to in-

vestigate the transmission of the genetic effects across molecular phenotypes using a Bayesian

network approach.

Chromatin - gene expression models

I first sought to unravel in which order genetic variation perturbs the molecular layers. More

precisely, I wanted to test three biologically relevant hypotheses: 1) That genetic variation im-

pacts gene expression through changing chromatin activity, 2) that genetic variants change

gene expression levels and chromatin activity follows this change and 3) that both chromatin

activity and gene expression levels are affected by genetic variants independently (Figure 3.1A).
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To this end we deviced a bayesian network approach to compute the probability of these three

statistical models given our observed data. For each locus where a chromatin module was

found to be associated with expression levels of a proximal gene and at least one genetic vari-

ant was reported to be associated with one of them, a ”triplet graph” was constructed. The

three nodes of this graph consisted of the genotypes of the genetic variant (V), the chromatin

activity summarized by the 1st principle component of the activities of all chromatin pheno-

types within the module (C) and the expression levels of the gene (G). For each triplet graph

we then scored each of the three following models using the log-likelihood.

P(V, C, G) = P(V)P(C|V)P(G|C) (3.1)

P(V, C, G) = P(V)P(G|V)P(C|G) (3.2)

P(V, C, G) = P(V)P(G|V)P(C|V) (3.3)

Applying Bayes’ theorem we then calculated the posterior probability of each model us-

ing an uninformative prior. A decision was made whenever one model exceeded a probabil-

ity of 0.9 at a given locus (n=232, 72% of all loci). We observed that in 78% of our loci, the

most probable model was that genetic variants impact gene expression through changing the

chromatin state, while only in 18% chromatin activity was suggested to be the result of gene

expression changes. The independent model was inferred in only around 4% of all cases (Fig-

ure 3.1B). These results suggest that the impact of genetic variation is very locus and context

specific, since all inferred models are considered high confidence calls (posterior probability

>0.9). However, in most of the cases genetic variants seem to affect regulatory elements such

as enhancers, which lead to a change in chromatin activity upon activation and subsequently

change gene expression. In 18% of cases, genetic variants might affect regulatory elements,

such as promoter linked elements, which directly impact gene expression and chromatin ac-

tivity changes as a result of this gene expression change. When comparing the composition of

the chromatin modules at these loci, we do not observe considerable differences between loci

under different causal models (Figure 3.1C). This suggests that the regulatory mechanisms do

not differ between loci, but that their behavior rather depends on which elements are affected

by genetic variants.

PU.1 binding motif disruption

To further investigate how genetic variants can affect regulatory elements and lead to changes

in the chromatin landscape, we used data on PU.1 binding motif disruption and its downstream
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effects. We scanned all cases where PU.1 activity was correlated with the activity of other

chromatin phenotypes. Whenever a genetic variant was found to be associated to the activity

of both, we constructed again a triplet graph consisting of the genotypes (V), PU.1 activity (P)

and the activity of the PU.1 associated chromatin phenotype (A). Using the same bayesian

network approach we defined the most probable of the following models.

P(V, P, A) = P(V)P(P|V)P(A|P) (3.4)

P(V, P, A) = P(V)P(A|V)P(P|A) (3.5)

P(V, P, A) = P(V)P(P|V)P(A|V) (3.6)

We then compared cases where the genetic variant disrupted the PU.1 binding motif ver-

sus cases where the genetic variant was located outside the PU.1 motif. For PU.1 associations

with both H3K27ac and H3K4me1, both well known enhancer marks, we observed PU.1 bind-

ing motif disruption. For H3K27ac we observed a strong tendency that if the genetic variant

disrupts the PU.1 binding site, the variant was likely to affect H3K27ac through PU.1 bind-

ing (Figure 3.1D). For H3K4me1 we observed the same trend but weaker, suggesting a tighter

coupling between PU.1 and H3K27ac activity than PU.1 and H3K4me1 activity. These results

serve as an example of how genetic variants can impact regulatory mechanisms which leads

to changes in chromatin landscape activity and potentially to downstream changes in gene

expression.
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Figure 3.1: Chromatin causality models. A Graphical representation of the three tested models

to decipher the causal order of the genetic effects at variable chromatin module (VCM) loci. B

Proportion of most probable models inferred at each VCM locus. A minimal probability of

0.9 was required to make a decisive call, leading to a total of 232 loci, where a most likely

model was inferred. C Composition of VCMs under the different inferred models. Shown is

the average proportion of peaks per VCM for each individual assays. n All = 232, n 1) = 182,

n 2) = 42, n 3) = 9. D Results of PU.1 motif disruption analysis for PU.1 peaks associated with

H3K27ac or H3K4me1 activity. Top bar of each plot (*) shows the proportion of the most likely

model in case of PU.1 motif disruption by the genetic variant, while the bottom bar shows the

proportion of the most likely model for cases where the genetic variant did not disrupt the PU.1

binding motif.
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3.2 Abstract

Chromatin state variation at gene regulatory elements is abundant across individuals, yet we

understand little about the genetic basis of this variability. Here, we profiled several his-

tone modifications, the transcription factor (TF) PU.1, RNA polymerase II, and gene expres-

sion in lymphoblastoid cell lines from 47 whole-genome sequenced individuals. We observed

that distinct cis-regulatory elements exhibit coordinated chromatin variation across individu-

als in the form of variable chromatin modules (VCMs) at sub-Mb scale. VCMs were associated

with thousands of genes and preferentially cluster within chromosomal contact domains. We

mapped strong proximal and weak, yet more ubiquitous, distal-acting chromatin quantitative

trait loci (cQTL) that frequently explain this variation. cQTLs were associated with molecular

activity at clusters of cis-regulatory elements and mapped preferentially within TF-bound re-

gions. We propose that local, sequence-independent chromatin variation emerges as a result

of genetic perturbations in cooperative interactions between cis-regulatory elements that are

located within the same genomic domain.

3.3 Introduction

Understanding the genetic contribution and molecular paths towards complex traits is one of

the key outstanding challenges in biology. Genome-wide studies revealed that most common

disease-associated genetic variants fall into gene regulatory sequences [71, 74–76] and affect

transcriptional programs in disease-implicated cell types [67, 77]. Evolutionary studies have

further uncovered several instances of gene regulatory changes that are causally implicated

in complex phenotypes [72]. These changes are thought to originate mostly from variation in

TF-DNA interactions, which are well known to mediate the spatiotemporal control of gene

expression programs [78]. Understanding the extent of, and the mechanisms underlying, TF

DNA binding variation is therefore key to elucidate the molecular determinants of complex

phenotypes. Small-scale population- and family-based studies have shown that 5 to 25% of TF-

DNA binding events exhibit intra- and inter-individual binding variation [52, 53, 55, 79, 80].

These studies, as well as those examining TF-DNA binding divergence among mammalian

species (reviewed in Villar et al. [81]) showed that only a minority of this variation could be

attributed to genetic differences within TF-bound sequences.

So far, few mechanisms have been proposed to clarify this phenomenon, and these are mostly
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centered on changes in either the local DNA structure or in collaborative interactions between

co-bound TFs at cis-regulatory elements [53, 82–85]. Recently, others and we have observed that

several chromatin state components exhibit a strong degree of coordinated allelic variation that

extends over several thousands of base pairs [53, 80]. This observation suggests that variation

in TF-DNA binding might be conditioned on the state of other cis-regulatory elements, but a

general description of this effect has so far been hampered due to sparseness of allelic markers.

Here, we measured ChIP-seq-based, population-level histone modification (HM) and TF en-

richment patterns. Specifically, we mapped the regulatory TF PU.1, the second largest subunit

of RNA polymerase II [RPB2], and three well-studied HMs often observed at enhancers and

promoters (H3K4me1, H3K4me3, and H3K27ac) in lymphoblastoid cell lines (LCLs) derived

from 47 unrelated European individuals whose genomes were sequenced in the frame of the

1000 Genomes Project [48]. In addition, we also profiled gene expression using mRNA se-

quencing in 46 LCLs. Our results provide unique insights into the mechanisms underlying

variation in molecular activity at cis-regulatory elements, revealing that most of this variation

results from alterations in the modular organization of the human genome.

3.4 Results

3.4.1 Population-level variation in molecular activity at cis-regulatory elements

To assess the extent of quantitative coordination in inter-individual chromatin variation at pu-

tative cis-regulatory elements, we performed an association analysis between molecular phe-

notypes, with ”molecular phenotype” being here defined as the normalized and covariate-

corrected read depth of a histone-modified and TF-bound region, respectively. Specifically, we

estimated the correlation levels between all TF-TF, HM-HM, and TF-HM combinations in 1

Mb cis windows (Figure 3.2A). We tested a total of 29 million associations between any two

molecular phenotypes and estimated for each association pair the enrichment of low P val-

ues using p1 statistics [86]. Estimates of p1 ranged from 2.5% for PU.1-H3K4me3 to 11% for

H3K4me1-H3K27ac (Figure C.1A), indicating extensive quantitative coordination in molecular

activity levels between/at cis-regulatory elements. Moreover, molecular coordination decayed

quickly with increasing genomic distance and was 20-fold more enriched between proximal

cis-regulatory elements (<10 kb) than between any two cis-regulatory elements that were sep-

arated by 500 kb or more (Figure C.1B).

Overall, we detected 79,411 statistically significant, mostly positive (>99%) associations (at

genome-wide correction) across all molecular association tests (Pearson rmean=0.70, FDR 0.1%)
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(Figures 3.2B&C and C.1C&D), involving on average 20% of all studied molecular regions (Fig-

ure C.1E). The histone mark H3K27ac exhibited the highest number and proportion of signifi-

cant associations with other phenotypes (Figure C.1E-F), suggesting that this molecular pheno-

type is most sensitive to coordinated chromatin state perturbations. As expected, the TFs PU.1

and RPB2 were preferentially associated with enhancer- (H3K27ac / H3K4me1 for PU.1) and

promoter-marking HMs (H3K27ac / H3K4me3 for RPB2), respectively (Figure C.1G). Except

for RPB2-H3K4me3, the majority of all molecular associations were identified between non-

overlapping cis-regulatory elements (Figure C.2A), which exhibit a log-normal distance distri-

bution that preferentially centered around 45 kb (95%-CI: 7-308 kb) (Figures 3.2D and C.2B).

The molecular association strength between covariable cis-regulatory elements decayed signif-

icantly with increasing distance (r=-0.19, P<2.2e-16, Figure C.2C). Overall, 25% of all molecular

associations were found between promoters and enhancers (>5 kb from TSS), 25% within or

between promoters, and 50% within or between putative enhancers (Figure 3.2E). These results

suggest extensive molecular coupling between cis-regulatory elements and a strong degree of

chromatin variation at enhancer-like regions.

The previous results suggest that chromatin state variation might reflect high-order genomic

interactions. Using simple graph-based methods we could map individual molecular associa-

tions into 14,559 distinct ”Variable Chromatin Modules (VCMs)” that are composed of 25,417

distinct cis-regulatory elements (see Figures 3.2B&C and C.3A-C for examples). The median

size of a single VCM was 4.2 kb and all VCMs together covered 5% (161 Mb) of the human

genome. Although only 25% of VCMs were composed of multiple cis-regulatory elements

(Figure C.3D), these ”multi-VCMs” captured the vast majority (78%) of molecular associations

(Figure C.3E), were more likely to contain promoter- and enhancer-marking chromatin marks

(Figure C.3F), and covered more DNA sequence (median size: 70 kb; Figure C.3G).

The majority of VCMs (56%) were exclusively composed of enhancer-marking signals (i.e.

H3K4me1-PU.1, H3K4me1-H3K27ac, and H3K4me1-H3K27ac-PU.1) (Figure 3.3A), indicating

that putative enhancers constitute the largest fraction of the variable epigenome in a single hu-

man population, which is consistent with comparative epigenomic studies across mammalian

species [81].

To examine the extent of molecular coordination within VCMs, we tested whether the activity

state of a VCM can be represented by a single quantitative phenotype, rather than by individual

molecular phenotypes that define a VCM. We applied principal component (PC) analysis and

extracted the first and second PC for each VCM (Figure 3.3B). We found that the first PC already

explains on average 79% of the variability that is observed between molecular phenotypes of

the same VCM (Figure 3.3C), suggesting that molecular activity is strongly coordinated within
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VCMs.

This high degree of molecular coordination within VCMs implies a higher order chromatin

organization, consistent with the now well-accepted notion that mammalian genomes are spa-

tially arranged in distinct chromosomal contact domains [87, 88]. To test this hypothesis, we

analyzed published, high-resolution, and genome-wide chromatin conformation data from a

human lymphoblastoid cell line [88] and found that cis-regulatory elements with coordinated

chromatin state variation were more preferentially embedded within the same chromosomal

contact domain (odds ratio=14.9, P=2.2e-16, logistic regression) (Figure 3.3D; see Figure 3.2A

and C.1H-I for examples). We also observed that cis-regulatory elements of the same VCM

exhibited more frequently allelic chromatin biases along the same haplotype (OR=1.3, P=4.9e-

5, logistic regression), further indicating that VCM define a regulatory unit. Moreover, anal-

ysis of genome-wide TF-DNA binding data of the architectural proteins CTCF and cohesin

(RAD21/SMC3) [89] revealed a significant enrichment at cis-regulatory elements that partic-

ipate in long-range (>300 - 500 kb) molecular associations (Figure C.2D-F). Together, these

results support our hypothesis that VCMs represent a fine-grained, modular architecture of the

variable human epigenome.

Next, we aimed to elucidate mechanisms that may be responsible for the emergence of VCMs.

Here, we hypothesized that modular chromatin state dynamics may not only be driven by

short-range cooperative TF-TF interactions, as shown earlier [53, 79, 84, 90], but also by inter-

actions that act over long genomic distances and across cis-regulatory elements. To test this

hypothesis, we investigated whether particular TF-TF pairs exhibited preferential enrichments

at pairs of cis-regulatory elements that are part of the same VCM using experimentally de-

fined TF-DNA binding data [49]. This analysis revealed 204 putative cooperative TF-TF pairs

that are preferentially enriched at VCM-defined cis-regulatory elements (OR=1.1-3.2; P<0.05

after Bonferroni correction; Fisher’s exact test) (Figure 3.3E). For example, NFKB emerged as

the most cooperative TF among all tested factors and was preferentially associated with well

known immunity-associated TFs (e.g., STAT3, BCL11A, BATF, and PU.1). Thus, our results

suggest that modular chromatin dynamics occur within spatially organized domains of the

genome and are likely in part mediated by long-range cooperative interactions between TFs

that determine the molecular identity of a lymphoblastoid cell [91].

3.4.2 Chromatin variation reflects inter-individual variation in gene expression

To assess the functional impact of inter-individual chromatin state variation, we analyzed as-

sociations in cis between molecular phenotypes at cis-regulatory elements and gene expression
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(TSS +/- 1 Mb). This analysis resulted in significant associations for 4,568 (22%) genes at a

FDR of 0.1% (Figure C.3H and see Figures 3.4A and C.3I&J for examples). The vast majority

(99%) of chromatin-gene associations were positive (i.e. higher gene expression levels corre-

lated with stronger chromatin signals) (Figure C.3K), explained about half of the variation in

gene expression (Figure C.3L), and correlated independently with multiple molecular events

at cis-regulatory elements. Two thirds of all gene-associated cis-regulatory elements mapped

outside of promoters (TSS +/- 2.5 kb) and thus likely pinpoint to putative enhancer-gene in-

teractions (Figure 3.4B&C). We further measured allelic expression effects within individuals

and observed that, consistent with coordinated allelic chromatin signals, that they are more

concordant with allelic chromatin states at gene-associated regions than at random regions

(OR=1.9, P=2e-10, logistic regression). Together, these results provide genome-wide evidence

that population-level variation in chromatin states has functional consequences and that it is a

potential approach to identify the gene targets of putative cis-regulatory elements.

We also observed that VCM states (as defined by the first PC) were associated with 3,580 genes

in cis (TSS +/- 1 Mb; FDR 0.1%). This analysis has further allowed us to uncover that only 5% of

”enhancer VCMs” (H3K27ac-H3K4me1-PU.1) varied along with nearby genes, despite repre-

senting the most abundant class of VCMs. In strong contrast, variable promoter (H3K27ac-

H3K4me3-RPB2) and promoter-enhancer (H3K27ac-H3K4me3-H3K4me1-RPB2-PU.1) VCMs

correlated with gene expression in up to 80% of the cases (Figure 3.4D). Moreover, 23% of all

gene-associated VCMs correlated with the expression levels of multiple genes (Figure C.3M),

suggesting that these VCMs contain cis-regulatory elements that are potentially shared across

genes. We also found that VCMs with several cis-regulatory elements were more likely to re-

flect variable gene expression (Spearman’s r=0.91, P=1.8e-8) (Figure 3.4E), suggesting that both

the type (promoter/enhancer), and the number of variable cis-regulatory elements are key de-

terminants underlying the transcriptional state change of a gene.

We next assessed whether VCMs were located nearby specific sets of genes and found that

VCMs embedding several cis-regulatory elements were highly enriched in immunity-related

processes and pathways (Table C.2A&B), consistent with the biological nature of lymphoblas-

toid cells. Functional analysis of chromatin-associated genes further supported a strong enrich-

ment of VCMs in immunity-related processes (Table C.2C).

3.4.3 Genetic control of chromatin state and gene expression variation

To identify potential mechanisms that explain variation in TF-DNA binding, HMs, VCM states,

and gene expression, we mapped quantitative trait loci (QTLs) for all studied molecular phe-
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notypes independently in a 500 kb cis-window around the center of a candidate cis-regulatory

element (or TSS). We detected between 315 to 1,432 significant chromatin QTLs (cQTLs, i.e.,

tfQTLs and hmQTLs) and eQTLs at 10% FDR. This corresponds to 1.1% (H3K4me1) to 2.9%

(mRNA) of the studied regions and explained around 40% of their variability (Figures 3.5 and

C.4). Of note, the number of discovered QTLs significantly increased upon reduction of the cis-

window size, yet at the expense of excluding distal effects (Figure C.4A-C). Indels and struc-

tural variants were significantly enriched among cQTLs (Figure C.5A), consistent with previous

studies [52, 92]. We further used allele-specific analysis to validate cQTLs on a genome-wide

scale [56]. We observed more significant allelic chromatin biases at cQTLs as compared to

control sites (Figure 3.5C) and higher proportions of allelic chromatin biases at strong cQTLs

(Figure 3.5D), thus supporting our cQTL inference. In addition, we mapped 1,173 vcmQTLs

(8.1%) using the first PC as a quantitative trait (comprising 4,187 individual molecular pheno-

types) and, surprisingly, none using the second PC despite observing a small enrichment of

low P values (Figure C.4G). This suggests that the first VCM state captures the primary genetic

contributions towards VCM activity. Overall, we found that all molecular phenotypes and in

particular VCMs are affected by common genetic variants, supporting the hypothesis that a

substantial proportion of coordinated chromatin state variation is driven by cis-acting genetic

variation.

We further assessed the genomic location of cQTLs by measuring their distance relative to TF-

targeted and histone modified regions. We found that the resulting distances exhibit bimodal

log-normal distributions with the first mode centering very close to the mid-point of TF-bound

sites (medians between 10-40 bp) and relatively close to the mid-point of HM regions (medi-

ans between 230-300 bp) and the second mode being located distally from its respective target

region (medians between 20-30 kb) (Figure 3.5A). In contrast, when we tested the distance rel-

ative to the closest TSS (Figure C.5B), the log-normal bimodal signal completely disappeared,

suggesting that the first mode derives from cQTLs falling within their respectively TF or HM-

enriched target regions (Figure C.5C&D).

Although the proximally mapping cQTLs exhibited significantly stronger effect sizes than cQTLs

located outside of their target elements (Figure 3.5B), they constituted only a minority (25%) of

all cQTLs. For example, we found that only 33% of PU.1 QTLs mapped inside PU.1-bound

regions, demonstrating that TF binding is strongly influenced by distal genetic effects. This

complexity indicates that, like gene expression, sequence-specific TF-DNA binding can be con-

sidered as a complex trait, similar to other molecular and organismal traits. Moreover, we

found that distally-acting cQTLs exhibited distances that matched the extent of coordination

within VCMs, further supporting interactions across regions in the genome. These observa-
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tions suggest a dual mode of action for cQTLs: strong cQTLs directly perturbing the proximal

interactions that form the local chromatin signal and, more abundant, yet weaker cis-acting

cQTLs exerting their effects over large distances (up to hundreds of kilobases). The latter pro-

cess is likely involving several intermediate molecular processes that operate within the same

VCM.

Given the high degree of quantitative coordination between chromatin state components of

the same VCM, we assessed whether distinct molecular phenotypes were affected by the same

cQTL. We estimated that half of all cQTLs are shared between two chromatin phenotypes,

revealing a strong genetic basis for coordinated chromatin state variation across individuals

(Figure 3.6A). In addition, we found that cQTL-eQTL sharing ranged from a relatively mod-

erate (24% of PU.1 QTLs were also eQTLs) to a very high (73% of H3K4me3 QTLs were also

eQTLs) degree (Figure 3.6A). These results demonstrate that only a small proportion of geneti-

cally variable TF-DNA binding events actually lead to measurable changes in gene expression,

in line with recent TF knock-down studies carried out in LCLs [93]. They also suggest that

promoter QTLs show very high specificity for genetic gene perturbations. The latter observa-

tion is consistent with the enrichment of complex trait-associated variants in cell type-specific

H3K4me3 regions [94].

We further characterized the width and the depth of the QTL signal path by estimating the

number of distinct molecular marks and phenotypes that were affected by the same cQTL and

eQTL. We observed that the majority of QTLs affect several molecular marks (75%) (Figures

3.6B and C.6A) and molecular phenotypes of the same and/or different type (80%) (Figures

3.6C and C.6B). Instances of QTLs for which we did not identify cross talk between distinct

molecular marks were of significantly lower effect sizes (Figure C.6C). In contrast, 99% of

vcmQTLs were associated with multiple molecular marks and phenotypes, suggesting that

they capture the deepest and widest range of genetic associations across all studied epigenomic

components. Taken together, these results demonstrate that the majority of cQTLs perturb sev-

eral chromatin state components at the same or across distinct cis-regulatory elements.

We next set out to identify which component is more likely to initiate the genetically induced

molecular cascade. To do so, we estimated the enrichment of each QTL class being located

within particular functional elements with the underlying reasoning that QTLs that overlap a

functional element should initially affect that element first before their effect extends towards

non-overlapping elements that belong to the same VCM. We found a clear enrichment signal

in TF-bound regions for all types of QTLs. For instance, H3K27ac and H3K4me1 QTLs were

seven times more likely to be located within PU.1-bound regions than expected by chance and

vcmQTLs were nine times more enriched within PU.1-bound regions (Figure 3.6D). We inde-
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pendently validated this observation by testing for enrichment of QTLs in open chromatin re-

gions and experimentally defined TF-bound regions (Figure C.6D&E). We found that vcmQTLs

demonstrated the strongest enrichment at regions that were bound by PU.1, BATF, BCL11A,

NFKB, MEF2A, and IRF4 (Figure C.6E), consistent with our observations that these TFs are

specifically enriched at variable cis-regulatory elements (Figure 3.3E). Moreover, cQTLs that fell

within TF-bound regions exhibited stronger effect sizes than those falling outside such regions

(Figure C.6F), and we observed stronger enrichment of allelic biases at tfQTLs as compared to

hmQTLs for each studied molecular mark (Figure 3.6E).

We next investigated the impact of TF motif disruption and its downstream effects onto other

molecular phenotypes using Bayesian network modeling. We assessed all molecular associa-

tions that involve PU.1 and considered cases separately whereby PU.1 QTL variants disrupted

a PU.1 binding site. We observed that PU.1-DNA binding variation was more likely to be

causal to variation in H3K27ac and H3K4me1 signals in cases where the PU.1 motif was dis-

rupted as compared to cases where the PU.1 QTL mapped elsewhere in the genome (Figure

C.6G). Thus, these results indicate that sequence-specific TF-DNA interactions are an impor-

tant driving force behind inter-individual chromatin state variation.

The previous sections demonstrated that genetic perturbation of few molecular phenotypes can

be causal to changes in downstream molecular phenotypes, thus providing a potential expla-

nation as to why most variation in chromatin state is likely independent of proximal sequence

changes. VCMs provide the conceptual framework to test the hypothesis of few molecular

phenotypes causing collateral changes to chromatin states across cis-regulatory elements. We

therefore performed association analysis of vcmQTL variants with every molecular phenotype

of the corresponding VCM and observed strong association signals with individual molecu-

lar phenotypes (Figure 3.7A&B). Moreover, we observed that the average QTL strength for

individual molecular phenotypes scales significantly with the strength of vcmQTLs (r=0.91,

P<2.2e-16), yet, one order of magnitude weaker (Figure C.6H). The latter observation suggests

one or more of the following possibilities: (i) higher-order chromatin states are more reflective

of genetic perturbations than individual molecular phenotypes; (ii) VCMs exhibit a genetically

defined structure with few causal effects driving downstream molecular cascades; or (iii) VCMs

constitute more accurate phenotype estimates, since the correlation structure represented as a

PC is devoid of experimental and environmental noise independent of which molecular phe-

notype used.

To explore these possibilities, we contrasted the association strength of the same vcmQTL vari-

ant with VCM states and individual molecular events (Figure 3.7C). We further used the molec-

ular association structure that defines VCMs to obtain a hierarchy of molecular interactions: (1)
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entry phenotypes that exhibit the strongest association with vcmQTLs, (2) direct (1st degree)

molecular phenotypes that are defined as being directly associated with the entry phenotype,

and (3) indirect (2nd degree) molecular interactions that are associated with the entry pheno-

type via intermediate molecular associations. These analyses revealed that VCM entry pheno-

types exhibit a similar association strength with vcmQTL variants as VCMs themselves, further

supporting our observation that a single molecular phenotype can act as a seed for collateral

changes within the respective VCM (Figure 3.7C, black boxplot). Interestingly, simulations

demonstrated that PU.1 is most likely to act as an entry phenotype among our probed molecu-

lar marks (Figure C.6I). Consistent with a hierarchical view, we observed that the remaining

molecular phenotypes are on average more weakly associated with vcmQTL variants than

the overall VCM state and VCM entry phenotypes (Figure 3.7C, blue and orange boxplots).

More specifically, 1st degree (direct) molecular phenotypes were more strongly associated with

vcmQTL variants than 2nd degree (indirect) phenotypes.

We subsequently studied genetic variants that affect chromatin modules (vcmQTLs) and gene

expression (eQTL) to obtain a global view of the cis-regulatory information flow. Bayesian

modeling indicates that genetic variants affected gene expression levels through modulation

of chromatin activity in 78% of the cases (Figure 3.7D), thus illustrating that genetic perturba-

tion of chromatin states at cis-regulatory elements is in most cases causal to changes in gene

expression. Finally, we found that all types of cQTLs are enriched in known complex disease

susceptibility variants, especially in immune system disease variants (Figure 3.7E), providing

direct functional genetic evidence that non-coding disease susceptibility variants exert their

effects through perturbation of gene regulatory regions.
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Figure 3.2: Genome-wide associations among molecular phenotypes. A Inter-individual co-

association between the read depth at H3K27ac and H3K4me1 ChIP-seq peaks on chromosome

21 (26,000,000-28,000,000). The pairwise association strength (Pearson’s P-value) is color-coded

and ranges from blue (P=1) to red (P<1e-10). Chromosomal contact domains [88] are shown

with black boxes. See Figure C.6H for molecular associations in this region based on other

marks. B Significant associations between molecular phenotypes in a 1 Mb window on chr21
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(27,000,000-28,000,000). Circles indicate variable (filled) or non-variable (open) enrichment of

molecular marks (i.e. ChIP-seq peaks or gene expression). Lines connecting filled circles rep-

resent significant associations between molecular phenotypes (FDR 0.1%). C Selected individ-

uals with either low (NA06986 and NA11992) or high (NA06985 and NA12489) enrichment of

molecular marks around the APP gene locus. D Distance distribution between coordinated

molecular phenotypes. E Annotation of cis-regulatory elements with coordinated enrichment

of molecular marks into putative enhancers (E) and promoters (P). See also Figures C.1, C.2,

and C.3.
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Figure 3.3: Variable chromatin modules (VCMs). A Molecular phenotype composition of

VCMs. Bars (top) indicate the percentage of VCMs with specific combinations of molecular

phenotypes (bottom). Inlet shows the percentage of VCMs with a specific molecular pheno-

type. B Coordination of molecular activity within VCMs. The heat map illustrates for 47 in-

dividuals (rows) the normalized signal of molecular marks (columns) that belong to the VCM

spanning the APP gene locus (as shown in Figure 3.2B-C). Right column, the first principal

component summarizes the majority (71%) of molecular variation within this VCM. C Percent-

age of molecular variation within VCMs that is explained by the first and second principal

components. VCMs were divided according to the number of non-coding regions (domains).

VCMs with >= 20 domains were grouped. D Enrichment of covariable cis-regulatory elements

within chromosomal contact domains [88]. Red, covariable cis-regulatory elements; blue, ran-

dom pairs of cis-regulatory elements. The probability indicates whether two covariable cis-

regulatory elements are embedded within the same contact domain as opposed to two distinct

contact domains. E Co-associations of TF pairs at non-overlapping, covariable cis-regulatory

elements. Positive and negative odds ratios indicate significant enrichment/depletion of TF

pairs (P<0.05 after Bonferroni correction). See also Figures C.2 and C.3.
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regulatory elements on chr21 (26,000,000-28,000,000). The pairwise association strength (Pear-

son’s P-value) is color-coded and ranges from blue (P=1) to red (P<1e-10) (legend, see Figure

3.2A). Chromosomal contact domains [88] are shown with black boxes. B Distance distribu-
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side and outside their target regions. C-D, Allele-specific (AS) signals at cQTLs. C AS effect

strength (-log10 binomial P-value) at heterozygous QTL (blue) and non-QTL variants (red). D

Estimated frequency of AS effects (using p1 statistics) at heterozygous variants as a function of

cQTL strength (-log10 P value). For example, 83% of the heterozygous variants exhibit AS sig-

nals in PU.1-binding when considering genetic variants that are associated with PU.1-binding

variation at P <10e-6. See also Figures C.4 and C.5.
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Figure 3.6: Sharing of genetic associations between TF DNA binding, HMs, and gene ex-

pression. A Estimation of QTLs that are shared between molecular marks. For example, 81%

of H3K4me3 QTLs are also associated with H3K27ac marks. B-C Collateral impact of genetic

variation on chromatin architecture and gene expression. B Percentage of tf-, hm-, and eQTLs

being associated with multiple distinct molecular marks, i.e., DNA binding (PU.1, RPB2), HM

levels (H3K4me1, H3K4me3, H3K27ac), and gene expression. For example, 75% of QTLs affect

multiple marks. C Percentage of tf-, hm-, and eQTLs being associated with multiple molecular

phenotypes (i.e. TF-binding, HM levels, and gene expression). For example, 7.5% of all QTLs

affect >10 molecular phenotypes. D Enrichment of QTLs within active cis-regulatory elements.

For example, vcmQTL variants map nine times more likely into PU.1-bound regions than ex-

pected by chance. E Estimation of allelic effect frequency (using p1 statistics) at heterozygous

QTL variants. For example, AS effects at H3K27ac sites are 2.2-fold more likely at PU.1 QTL

variants as compared to all variants. See also Figures C.5 and C.6.
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Figure 3.7: Propagation of genetic signals through molecular phenotypes. A Distribution

of -log10-transformed association P-values for vcmQTL variants and VCM-defining molecular

phenotypes. B-C Genetic variation exhibits direct and indirect effects on chromatin architec-

ture. B Significant association between the SNP rs6537048 and the state of VCM vcm10018

(chr4:142,224,793-142,570,395) upstream of IL15. See Figure C.1I for molecular associations in

this region based on all marks. Boxplot show the PCA-derived vcm10018 activity level split by

genotype of the SNP rs6537048. Molecular marks within vcm10018 are themselves associated

with rs6537048. Molecular association structure is shown together with rs6537048 genotype-

averaged TF DNA binding and HM signals. Nodes define individual marks for specific molec-

ular phenotypes (i.e., TF binding and HM) and grey lines significant associations between these

molecular marks. C VCM associations are contrasted against the association strength of the

same vcmQTL variant with individual molecular phenotypes (i.e. TF DNA binding and HM).

The molecular association structure within VCMs is used to define three layers of molecular

events (entry, 1st degree, and 2nd degree, see Main Text). Box plots show the ratio of genetic

association strength between VCMs and the average of individual molecular phenotypes (i.e.,

log10PVCM/PTF/HM). D Inference of causal relationships between VCM state and gene expres-
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sion using Bayesian causality modeling. The frequency of the most likely model is shown. E

Enrichment of cQTLs and eQTLs in complex disease susceptibility variants by trait class. See

also Figure C.6.
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3.5 Discussion

Our analyses uncovered extensive coordination in chromatin variation at and between cis-

regulatory elements in a human population, revealing the existence of genomic compartments

in the form of variable chromatin modules (VCMs). VCMs suggest a higher-order modular

organization of gene regulation in the human genome, which is supported by the observa-

tion that VCMs are strongly enriched within chromosomal contact domains [88]. Interestingly,

immunity-related genes are specifically associated with VCMs, consistent with the biological

nature of LCLs. This finding implies that the resolution of topologically associated domains

(TADs) that were so far detected [87, 88, 95] may extend to the level of individual genes (or sets

of co-regulated genes), consistent with the observation of micro-topologies at the sub-Mb scale

around key developmental genes in mouse embryonic stem cells [96]. Our data further suggest

that population-level chromatin profiling might be an efficient strategy to assess putative chro-

matin interactions at high spatial resolution, complementing other molecular techniques aimed

at mapping chromatin interactions [97], transcription-coupled chromatin remodeling events

[98], TF-DNA binding-induced spreading of histone marks [99], and enhancer/promoter-gene

interactions, respectively.

VCMs also provide a rational framework for explaining why regulatory events can vary inde-

pendent of proximal sequence changes in molecular terms [52, 53, 55, 79, 80, 100]. Chromatin

activity at cis-regulatory elements can be influenced by distally acting genetic variants of vari-

able effect size, as we strongly suggest in this study for all analyzed molecular phenotypes. In

addition, we found that the activity level of each VCM can be captured by a single quantitative

phenotype, which suggests that molecular processes within each VCM (i.e. histone-mark depo-

sition and TF binding) are subject to highly penetrant causal events. Our study provides strong

support for the hypothesis that these events correspond in large part to genetic perturbations

of TF-DNA interactions. This is based on the fact that vcmQTLs are (i) strongly enriched within

TF-occupied regions, (ii) simultaneously perturb several layers of chromatin structure, and (iii)

are in the majority of cases causal to the observed changes in gene expression. From this, a

model emerges in which the perturbation of a single or a few TF-DNA interactions can act as a

seed for coordinated, collateral regulatory changes within a respective VCM. We hypothesize

that these changes are in large part mediated by long-range TF-TF cooperativity events given

our observation that specific pairs of lineage-determining, signal-dependent, and architectural

factors [89, 91, 101] are significantly enriched at VCM elements.
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Interestingly, whereas ”promoter VCMs” correlated frequently with gene expression, we found

that only few ”enhancer VCMs” were linked to nearby genes and only one quarter of PU.1 or

H3K4me1 QTLs were shared with eQTLs. This finding may imply either (i) that abundant en-

hancer variation is of such small effect on target gene expression as to be undetectable given

the sample size of this study, or (ii) that the affected enhancers are primed to conditionally

regulate gene expression (for example in response to specific stimuli) [78, 102, 103]. Alterna-

tively, these sequences may be subject to spurious regulatory activity, which would explain the

findings that (i) only a minority of genetically variable TF-binding events result in differential

gene expression (this work), (ii) a large portion of TF-DNA binding events have no functional

consequence [93, 104], and (iii) TF binding sites tend to experience rapid turn-over [81, 105].

Another complementary interpretation involves the model of dose-dependent gene activation

in which several TF binding sites in multiple elements cumulatively contribute to gene expres-

sion [106]. Under this model, loss of TF-DNA binding at one binding site would have little to

no discernible functional consequence as long as the other implicated TF binding sites remain

intact. This would in turn be consistent with our observation that VCMs involving multiple

cis-regulatory elements were far more likely to correlate with gene expression variation than

VCMs involving only one element.

Our present work on the discovery of molecular associations and cQTLs for key chromatin or-

ganization components in a human population sample provides unique insights and a novel

framework for studying the molecular mechanisms underlying variable transcriptional pro-

grams between individuals.

3.6 Methods

3.6.1 Study samples

ChIP-seq and RNA-seq data were produced from lymphoblastoid cell lines (LCLs) of 54 sam-

ples from the [48]. All individuals were of European origin (Utah residents with ancestry from

northern and western Europe and abbreviated as CEU). After excluding samples due to sus-

pected swaps, contamination (see Supplementary Information C.3.4), or incomplete data avail-

ability (sample failed for a subset of assays) our final dataset consisted of 47 individuals for all

ChIP assays and 46 individuals for gene expression measurements (Table C.1 for basic sample

information).
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3.6.2 ChIP-seq and mRNA-seq experiments

All sequencing assays (ChIP and mRNA) were produced from a single growth of LCLs and cell

culture and cell fixation was performed as previously described [53]. The ChIPs for H3K27ac,

H3K4me1, H3k4me3, PU.1 and RNA polymerase II (RPB2) were performed as described in the

Supplementary Information C.1.1-C.1.3. RNA extraction was done following the procedure

described in Supplementary Information C.2.1. Library preparation and sequencing done for

ChIP and mRNA are described in detail in Supplementary Information C.1.4 and C.2.2, re-

spectively. Short-read alignment for ChIP-seq and RNA-seq was performed using BWA 0.5.9

[107] against the hg19 build of the human reference genome supplemented with the Epstein-

Barr virus (EBV) sequence. All sequencing data management was done using Samtools [108]

(Supplementary Information C.1.5 and C.2.3). Summary of mapping statistics is provided in

Table C.1B. All BAM files for this study have been submitted to the ArrayExpress Archive

(http://www.ebi.ac.uk/arrayexpress/). The accession numbers are: E-MTAB-3656 (mRNA-

seq data) and E-MTAB-3657 (ChIP-seq data).

3.6.3 From ChIP-seq experiments to molecular phenotypes

ChIP-seq peak calling was not directly performed in the current set of samples to avoid the

issue of fuzzy peak boundaries. Instead, we used an independently derived peak set for each

assay that is based on six 1000 Genomes Project Pilot individuals [53]. Quantifications for all

peak-sample pairs were obtained by counting overlapping reads using HOMER [101], which

resulted in a quantification matrix of size #samples x #peaks per assay (Supplementary Infor-

mation C.1.6). Peak quantifications were scaled to adjust for differences in total library size and

corrected for batch effects using PEER [109]. We empirically determined the optimal number

of K PEER factors to be removed by finding the K leading to the highest number of discovered

QTLs (Supplementary Information C.1.7).

3.6.4 From mRNA-seq experiments to molecular phenotypes

mRNA-seq data was quantified per sample based on GENCODE v15 (08/2012) gene anno-

tations [110], resulting in a quantification matrix of size #samples x #genes. All genes with

five samples (>10%) or more without any overlapping reads were removed and the remaining

quantifications were scaled (10M reads) and corrected for batch effects (PEER K=15) (Supple-

mentary Information C.2.4-C.2.5).
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3.6.5 Genotype information

Genotypes for the 47 samples were obtained from two sources: (1) 34 with genome-wide

sequence data from 1000 Genomes Phase1 v3 and (2) 13 other CEU samples with Illumina

Omni2.5 genotype data. Both were merged by imputing untyped sequence variants into Il-

lumina Omni2.5 data using IMPUTE2 [111]. Subsequently, all variants with minor allele fre-

quency below 5% were removed. See Lappalainen et al. (2013) [56] for additional details on

genotype processing.

3.6.6 Analytical methods for molecular phenotype-phenotype associations

Mapping molecular associations

To map associations between pairs of peaks, we proceeded as follows for each of the 15 possible

unordered pairs of distinct molecular phenotypes. We measured inter-individual Pearson cor-

relation and its significance (P-value) between quantifications of every possible pair of peaks

within 1 Mb distance of each other. Then, we corrected for multiple-testing by controlling for a

0.1% false discovery rate using the R/qvalue package (Dabney A & Storey JD. qvalue: Q-value

estimation for false discovery rate control. R package). Percentages (i.e. p1 estimates) of truly

associated pairs were also estimated as a by product (Supplementary Information C.3.1).

Building VCMs

We used graph theory to build VCMs and assumed that peaks are nodes and significant peak

associations edges. Any two peaks belong to the same VCM as soon as there is a path (i.e. a

sequence of edges) that links them together otherwise they belong to two distinct VCMs. Based

on this, we implemented an iterative algorithm that assigns peaks to VCMs. Then, VCM state

activity levels were obtained using principal component analysis (PCA) on quantifications of

all peaks that belong to a VCM (Supplementary Information C.3.2).

Functional annotation of VCMs

We used the online service GREAT v2.0.2 to predict over-represented pathways and biological

processes for VCM domains. Functional annotation of VCM-associated genes was performed

using the online service ConsensusPathDB-human using the over-representation analysis mod-

ule and gene ontology categories (BP level 2) (Supplementary Information C.3.9).
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Enrichment in contact domains

We used high-resolution chromosomal contact domains for LCLs from Rao et al. (2014) [88]

to estimate how more likely associated peak pairs occur within the same contact domain as

compared to non-associated ones. To do so, we used logistic regression with within/between

contact domains as the binary response, the association status (significant or not) as explana-

tory variable, and the peak-to-peak distance as a covariate (Supplementary Information C.3.11).

TFs co-occurrence at VCM elements. We used the Fisher exact test to estimate enrichments of

ENCODE TF-TF pairs at non-overlapping VCM elements (Supplementary Information C.3.13).

3.6.7 Analytical methods for quantitative trait loci (QTL)

Mapping QTLs

We mapped cis-acting QTLs by performing linear regressions between peak or gene quantifi-

cations and genotypes at all variant sites within 250 kb (cis-window around the gene TSS or the

peak center). Then, we stored the best association for each peak/gene as a putative QTL and

corrected (1) for multiple variants and (2) multiple peaks/genes being tested genome-wide. We

used permutations and false discovery rate to correct for (1) and (2), respectively. In addition,

we repeated this analysis multiple times with various cis-window sizes in order to determine

the size providing the best trade-off between discovery power and distal effect capture (Fig-

ure C.4A-C; Supplementary Information C.3.3). This analysis has been performed using the

software package FastQTL (http://fastqtl.sourceforge.net/).

Estimating proportion of shared QTLs

To see if a QTL for assay A1 is replicated in assay A2, we first found a A2 peak that matches the

A1 peak by minimizing the distance between both and then we looked at the nominal P-value

of association between the QTL and the matched A2 peak. By repeating this for all A1 QTLs, we

can then estimate the proportion that is shared with A2 using the p1 statistic (Supplementary

Information C.3.5).

Detecting multiple effects of QTLs

To map out the peaks affected by a QTL, we measured association between the QTL and all fea-

tures across all assays located within 250 kb, then divide the resulting P-values by the number

of tested features (Bonferroni correction) and finally report as hits, associations with a P-value

below the 0.05 threshold (Supplementary Information C.3.6).
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Enrichment of QTLs within functional annotations

To measure how more likely than by chance a set of QTLs is located within a particular an-

notation, we developed an approach that corrects for the fact that QTLs and annotations are

not uniformly distributed along the genome; the goal being to get more robust enrichment esti-

mates. This method basically aims to find a null set of QTLs with some properties (e.g. distance

to associated peak/gene) that match the original set (Supplementary Information C.3.7).

Enrichment of QTLs with GWAS hits

To measure how the QTL sets are enriched for GWAS hits, we used the NHGRI GWAS Catalog

(Dec 8, 2014), generated 1,000 null sets of QTLs with matching properties (distance to associated

peak/gene and MAF), and tested how often these null QTL sets overlap the GWAS hits as

compared to the original QTL set. Note that two variants are assumed to overlap as soon as

they are in high LD (Supplementary Information C.3.10).

QTL causality modeling

When a QTL is associated with two peaks (or genes), we inferred the most likely signal trans-

mission path (i.e. the causal chain of events) through the two affected molecular phenotypes

using Bayesian network modeling: we enumerate the three possible models (QTL =>A1 =>A2,

QTL =>A2 =>A1 and QTL =>A1/QTL =>A2), estimate their respective likelihood, and assign

the most likely model to each triplet (Supplementary Information C.3.8).

3.6.8 Analytical methods for allele-specific effects (ASE)

Mapping ASE

This was only performed on samples with sequence data (n = 34/47, Experimental Procedure

5) at heterozygous SNPs. Deviation from equilibrium (i.e. 50-50%) was characterized using

binomial tests, accounting for multiple major sources of technical bias, such as reference allele

mapping bias, clonal reads and non-unique mappability of reads as described previously [53,

56, 112] (Supplementary Information C.3.4). ASE analysis was also used as a QC step to identify

putative sample swaps or contaminations.

Haplotypic ASE coordination

We looked at ASE measured at phased heterozygous SNPs falling within VCM peaks and as-

sessed if the signal was consistent with the haplotype phase. In practice, we use logistic regres-
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sion with concordance in allelic direction as response variable, association status (VCM/null)

as explanatory variable and distance between peaks as covariates (Supplementary information

C.3.12).
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Conclusion

The three chapters presented in this thesis provide significant new insights into the extent of

genetic variation and its link and potential implication for gene expression regulation. Each of

the three chapters approaches the topic from a different angle, each providing unique views on

the functional consequences of genetic variation in natural populations. In the first project we

specifically looked at the extent of copy number variation in Cynomolgus monkey and used

gene expression changes to assess their potential implications for the organism. Even though

this species is very widely used in biomedical and pharmaceutical research, the extent of ge-

netic variation and especially copy number variation within these animals has not been studied

extensively so far. We find considerable copy number variation among the sampled individu-

als, which comes not unexpected, because unlike inbred laboratory mice strains, Cynomolgus

monkeys used in pharmaceutical research are regularly captured in wild population across the

world. In line with other studies [39], we discover predominately small variants of a few kilo-

bases length as expected in healthy individuals from natural populations. The detected copy

number variation clearly separates our individuals according to populations. This indicates a

diverse genetic background in pharmaceutical studies when using Cynomolgus monkeys orig-

inating from different populations. Our results show that part of this variation is linked gene

expression changes in vitally important tissues. Multiple copy number polymorphisms and as-

sociated gene expression changes within a cluster of olfactory receptor genes on chromosome

7 demonstrate intraspecific functional variation in a region well known for genomic rearrange-

ments [45, 46, 152].

The physiological consequences of our findings remain unclear, but this study represents an im-

portant first step towards a better understanding of the biological differences among Cynomol-

gus monkeys used in pharmaceutical research. There is great interest in this from both an eco-

nomical ethical perspective. Secondary effects because of unknown reasons usually lead to a

stop of the development of the drug in question and therefore big financial loss. Better bio-

logical knowledge of the used test species can prevent this and has the potential to refine and

reduce animal tests in pharmaceutical research. Moreover, this would also reduce unnecessary
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suffering of animals. The other two projects presented in this thesis approach the question of

genetic effects on gene expression in humans, a very extensively studied species. This has the

big advantage that we can incorporate much already present data and knowledge. Many stud-

ies concerning genetic variation and gene expression have been already performed with much

greater sample size [56, 153]. The novelty of our projects comes from the integration of dif-

ferent additional molecular phenotypes to further investigate to molecular mechanisms linked

to gene expression changes. Even though many studies focused on protein-DNA binding and

chromatin modifications, the effect of genetic variation on these processes and the potential im-

plications for gene regulation were not studied extensively before. In the project presented in

chapter two, we investigated the behavior of chromatin phenotypes and gene expression and

the implications of genetics by exploiting the family structure of the two trios. We observed that

the molecular phenotypes are correlated in their activity in functionally annotated regions such

as gene promoters and putative enhancers. Furthermore we showed extensive allele specific

activity and allelic coordination among the studied molecular phenotypes. In the follow-up

project presented in chapter three, we extended the previous study to specifically investigate

the local coordination between chromatin components and their link to gene expression regula-

tion in the context of genetic variation. We showed, that chromatin components are organized

in local, variable modules, which are strongly enriched in chromosomal contact domains. The

measured activity of these chromatin modules co-varies across individuals and numerous ge-

netic associations were detected for single chromatin markers, chromatin modules and gene ex-

pression levels. By applying a Bayesian network approach, we could shed light onto the causal

sequence of regulatory changes. We suggest that changes in the chromatin activity landscape

via perturbation of regulatory elements by genetic variants are a likely mechanism underlying

gene expression changes associated to genetic variation. The logical next step will now be to

identify theses cis-regulatory elements and to assess their downstream causal effects.

Obviously our statistical approaches violate one of the key assumptions in causality inference,

namely that all potential candidate variables must be sampled. Even though we surely cannot

infer mechanistic causality between molecular components, we are confident that our results

allow us to make statements about the sequence of observed events. A special case is PU.1

motif disruption, which allows us to make strong functional assumptions that the observed

change in PU.1 activity is caused by disruption of the binding motif by genetic variants. This

provides a prime example of how genetic variants can perturb regulatory elements leading

to changes in chromatin activity and potential downstream changes in gene expression. The

extent and importance of this mechanism on a genome-wide level, including binding sites of

other transcription factors, remains uncertain, but our findings are in line with other studies
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which suggest perturbation of chromatin activity and gene expression regulation by genetic

variants through transcription factor binding sites [52, 79, 154].

For all three presented projects, follow-up studies are a logical conclusion to further investigate

the molecular mechanisms perturbed by genetic variants. However, this could be achieved in

several ways. On one hand, one could add more breadth by sampling more individuals and

increasing statistical power to discover additional associations and eventually explain more of

the observed variability. On the other hand, one could add more depth by including additional

functional assays and experiments to test specific hypotheses suggested by our results. To

make the research truly conclusive, further integration of different molecular phenotypes rep-

resentative of regulatory mechanisms in combination with computational methods will enable

to pinpoint candidate molecular processes perturbed by genetic variants. This will provide

new insight into causal links and generate hypotheses, which can be experimentally tested. In

some cases such as transcription factor binding motif disruption this is rather straight-forward,

however to establish causal links between downstream regulatory elements such as cofactor

binding and histone modification will be much more challenging. These problems can only be

solved by a strong interplay between computational and experimental research needed, where

computational results generate new hypotheses that can be tested experimentally in a precise

and conclusive manner. Such a hypothesis driven approach is central to the idea of systems

biology, but is not easy to realize in modern genetics. Classical systems biology problems often

deal with relatively small molecular networks, with much information on the individual com-

ponents (e.g [155]). However, in genomic studies as presented here, we are often confronted

with a multitude of candidate causal links, with little knowledge about their connection and

behavior. Novel computational tools will be required to mine the massive genomic data and to

identify relevant elements and interactions and to turn correlation based results into meaning-

ful models of causality. Of course experimental technologies, which allow efficient testing of

generated hypotheses in reasonable time will be crucial as well. Many classical experimental

techniques such as for instance mouse or zebra fish models are not suited to test the huge num-

ber of genetic associations generated by todays technology. High-throughput functional assays

such as for example high-throughput yeast one-hybrid (Y1H) and techniques from synthetic bi-

ology to assess specific regulatory hypotheses seem very promising. Once this tight interplay

between computational and experimental biology is achieved, we will be able to realize sys-

tems genetics and to investigate the genomes function in a true systems biology approach.

In summary, the results presented in this thesis significantly extend the knowledge about the

implications of genetic variation associated with gene expression. We provide novel insights

into the extent of copy number variation and its link to gene expression levels in Cynomolgus
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monkeys, a key species in pharmaceutical research. Furthermore, we demonstrate how genetic

variation, chromatin components and gene expression regulation are connected in humans and

enlightened their interplay. Our results suggest that changes in chromatin activity are linked to

changes in gene expression regulation, and that perturbations of regulatory elements by genetic

variants are a likely cause. Overall, even though many new questions arose and many remain

open, this work significantly contributed to the advancement in understanding the functional

impact of genetic variation on gene expression.
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Figure A.1: Gene expression data. Distribution of gene expression data in all tissues for all

samples used for eQTL mapping after RMA and quantile normalization.
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Figure A.2: Gene expression PCA. Loadings of the first and second principal component based

on PCA preformed on gene expression data from all individuals used for eQTL mapping in all

tissues separately. Color-coded for either sample origin or gender.
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Figure A.3: Gene expression clustering. Hierarchical clustering of gene expression data from

all individuals used for eQTL mapping in all tissues.
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Figure A.4: Wave artifact normalizations SNR. Average signal-to-noise ratio (SNR) per sample

for aCGH probes within CNVs called from probe GC- content normalized aCGH data across

all tested LOESS fraction values.
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Figure A.5: Normalized aCGH data PCA. Loadings of the first and second principal compo-

nent based on PCA performed with normalized aCGH data for all 24 samples. Color-coded for

either sample origin A or aCGH scan data B.
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Figure A.7: Initial CNV regions PCA. Loadings of the first and second principal component

based on PCA performed with CNV region (n=17,599) genotypes based on CNV calling with

22 samples. Color-coded for either sample origin A or aCGH scan data B.

93



s1
10

1_
M

s1
20

1_
M

s2
00

1_
M

s2
54

29
_M

s2
54

38
_M

s2
54

73
_F

s2
54

76
_F

s2
55

94
_M

s2
55

95
_M

s2
56

40
_F

s2
58

51
_F

s5
10

1_
F

s5
20

1_
F

sC
22

57
9_

F
sC

26
72

7_
F

sC
27

23
9_

M
sC

30
65

9_
M

sC
30

68
7_

M
sC

30
71

1_
F

sI
01

77
8_

F
sI

01
78

5_
F

sI
01

78
6_

F

N
um

be
r o

f C
N

Vs

0

1000

2000

3000

4000

5000

6000

Duplications
Deletions

Figure A.8: Initial CNV regions. Number of deletion and duplications detected per individual

for CNV regions (n=17,599) obtained from CNV calling with 22 samples.

Table A.1: GC-content R-squared. R-squared values obtained from linear models used to nor-

malize for aCGH probe GC-content.

! 4!

Table S1: GC-content R-squared R-squared values obtained from linear 
models used to normalize for aCGH probe GC-content. 
 
Sample' R2'
sI01776_F) 0.0009)
s7828C_F) 0.0056 
s25595_M) 0.0486 
s25429_M) 0.0234 
s25438_M) 0.1198 
sC30659_M) 0.1501 
sC30687_M) 0.127 
sC27239_M) 0.1306 
sC30711_F) 0.0516 
s1101_M) 0.0446 
s25851_F) 0.04 
sC26727_F) 0.0324 
sI01786_F) 0.011 
s2001_M) 0.0208 
s1201_M) 0.0807 
s5101_F) 0.1425 
s5201_F) 0.0202 
s25594_M) 0.1246 
s25476_F) 0.0681 
s25640_F) 0.093 
s25473_F) 0.0558 
sC22579_F) 0.0454 
sI01778_F) 0.0512 
sI01785_F) 0.0708 
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Figure A.9: OR4K17 eQTL CNV. Profiles of a CNV locus on chromosome 7 associated with

expression changes of the OR4K17 and OR4K13 genes. CNV signals in comparison to a refer-

ence standard are displayed as log2-ratio along genomic positions of chromosome 7 (grey dots).

Green or red bar intensity denotes higher, respectively lower median log2-ratio of probes within

the CNV.
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Figure A.10: ABCB4 eQTL CNV. Profiles of a CNV locus on chromosome 7 associated with

expression changes of the ABCB4 gene. CNV signals in comparison to a reference standard are

displayed as log2-ratio along genomic positions of chromosome 3 (grey dots). Green or red bar

intensity denotes higher, respectively lower median log2-ratio of probes within the CNV.
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Table A.2: Wave artifact normalizations SNR. Median average signal-to- noise ratio (SNR) per

sample for aCGH probes within CNVs called from probe GC-content normalized aCGH data

across all tested LOESS fraction values.

! 5!

 
Figure S4: Wave artifact normalizations SNR Average signal-to-noise ratio 
(SNR) per sample for aCGH probes within CNVs called from probe GC-
content normalized aCGH data across all tested LOESS fraction values.  
 
 
 
Table S2: Wave artifact normalizations SNR: Median average signal-to-
noise ratio (SNR) per sample for aCGH probes within CNVs called from probe 
GC-content normalized aCGH data across all tested LOESS fraction values. 
 
Normalization' Median'SNR'
Probe)GC9content)only) 1.4921)
5000)probes) 1.5084)
4500)probes) 1.5082)
4000)probes) 1.5089)
3500)probes) 1.5087)
3000)probes) 1.5083)
2500)probes) 1.5082)
2000)probes) 1.5083)
1500)probes) 1.5078)
1000)probes) 1.5061)
500)probes) 1.5018)
100)probes) 1.4577)
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Table A.3: Number of detected CNVs. Number of CNVs detected per individual by the three

CNV calling methods prior to merging of individual CNV profiles calls into CNV regions

across indivudals (n=22 samples).

! 7!

Table S3: Number of detected CNVs:  Number of CNVs detected per 
individual by the three CNV calling methods prior to merging of individual CNV 
profiles calls into CNV regions across indivudals. N=22 samples. 
 
Sample' Duplications' Deletions' Total'CNVs'
s1101_M) 725) 1099) 1824)
s1201_M) 440) 1378) 1818)
s2001_M) 340) 1170) 1510)
s25429_M) 3205) 687) 3892)
s25438_M) 2385) 741) 3126)
s25473_F) 463) 1700) 2163)
s25476_F) 2316) 1232) 3548)
s25594_M) 3242) 911) 4153)
s25595_M) 3020) 719) 3739)
s25640_F) 2264) 1158) 3422)
s25851_F) 1311) 1170) 2481)
s5101_F) 291) 2563) 2854)
s5201_F) 2612) 1185) 3797)
sC22579_F) 1128) 1402) 2530)
sC26727_F) 1826) 1015) 2841)
sC27239_M) 438) 1151) 1589)
sC30659_M) 309) 6289) 6598)
sC30687_M) 237) 1127) 1364)
sC30711_F) 404) 1038) 1442)
sI01778_F) 4262) 1321) 5583)
sI01785_F) 3649) 1327) 4976)
sI01786_F) 2361) 948) 3309)

 
  

97



Table A.4: CNV regions per chromosome. Number of CNV regions per chromosome, average

and total CNV region length, and the percentage of the chromosome covered by these CNV

regions.

Table S2: CNVRs per chromosome Number of CNVRs per chromosome, 
average and total CNVR length, and the percentage of the chromosome 
covered by CNVRs. 
 

chromosome' #cnvs'
avg'length'
(kb)'

total'length'
(kb)'

chromosome'length'
(kb)'

cnv'of'chromosome'
(%)'

chr1& 1364& 8.2& 11180.1& 229594.24& 4.87&
chr10& 677& 8.02& 5427.16& 95118.95& 5.71&
chr11& 725& 8.23& 5969.6& 135088.5& 4.42&
chr12& 498& 7.68& 3823.91& 106987.73& 3.57&
chr13& 827& 8.85& 7317.67& 138727.24& 5.27&
chr14& 734& 8.43& 6188.49& 134024.31& 4.62&
chr15& 642& 8.77& 5631.26& 110686.22& 5.09&
chr16& 607& 9.48& 5755.54& 78971.47& 7.29&
chr17& 508& 7.8& 3963.91& 94759.12& 4.18&
chr18& 380& 7.79& 2958.9& 73889.72& 4&
chr19& 556& 9.8& 5448.26& 65320.79& 8.34&
chr2& 934& 7.22& 6747.72& 190805.71& 3.54&
chr20& 532& 7.76& 4126.15& 88198.65& 4.68&
chr3& 1048& 9.74& 10209.26& 197221.78& 5.18&
chr4& 871& 7.71& 6719.41& 168762.93& 3.98&
chr5& 918& 7.37& 6769.15& 183220.12& 3.69&
chr6& 888& 7.95& 7059.39& 179267.54& 3.94&
chr7& 924& 9.04& 8355.83& 170755.6& 4.89&
chr8& 794& 8.21& 6521.4& 148375.95& 4.4&
chr9& 756& 8.74& 6606.99& 133871.8& 4.94&
total& 15183& 8.35& 126780.1& 2879306.38& 4.4&
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Table A.5: eQTL mapping results. All detected cis-eQTL associations across all tissues are

listed. Nominal pvalue denotes the uncorrected p-value obtained by the linear model, while

beta pvalue is the adjusted p-value based on the permutation approach by fastQTL. Qvalue is

the FDR corrected beta pvalue.

Table S3: eQTL mapping results All detected cis-eQTL associations across 
all tissues are listed. Nominal pvalue denotes the uncorrected p-value 
obtained by the linear model, while beta pvalue is the beta approximated 
permutation value obtained by fastQTL. Qvalue is the FDR corrected beta 
pvalue. 
  

tissue' gene_id'
variants'
tested' cnv'id'

dist'to'
tss'

nominal'
pvalue' slope'

beta'
pvalue' qvalue'

heart& LONP1_004793& 9& chr19_4887102& ?643606& 3.57E?06& 1.07803& 3.29E?05& 0.084325692&

heart& TMPRSS11E_014058& 3& chr5_61060708& ?219549& 4.76E?06& ?1.00537& 1.32E?05& 0.084325692&

heart& HOPX_139212& 6& chr5_73528649& 330121& 8.09E?06& ?1.09411& 4.00E?05& 0.084325692&

heart& MAGEL2_019066& 7& chr7_3747972& 853506& 4.45E?06& ?2.34604& 3.39E?05& 0.084325692&

heart& ODF1_024410& 6& chr8_105576105& 56991& 8.70E?06& ?3.64781& 4.01E?05& 0.084325692&

heart& UGT1A6_205862& 5& chr12_98452925& 409599& 2.00E?06& ?0.844312& 8.71E?06& 0.084325692&

heart& EHF_001206615& 5& chr14_37953807& 254455& 1.05E?05& 2.29301& 2.01E?05& 0.084325692&

kidney& SGCB_000232& 3& chr5_77742231& ?149540& 1.50E?05& 0.691414& 3.65E?05& 0.071298371&

kidney& OR4K17_001004715& 10& chr7_82729888& ?159990& 3.56E?07& 4.04066& 3.25E?06& 0.037883836&

kidney& OR4K13_001004714& 10& chr7_82729888& ?249535& 2.33E?06& 2.80169& 1.98E?05& 0.05148385&

kidney& CIDEB_014430& 9& chr7_87700639& 0& 4.63E?07& 2.78957& 4.85E?06& 0.037883836&

kidney& LOXL2_002318& 6& chr8_22711203& ?808830& 2.34E?06& 4.37133& 1.30E?05& 0.046057843&

kidney& C1orf190_001013615& 7& chr1_49881978& 595869& 9.51E?07& 1.04337& 1.44E?05& 0.046057843&

kidney& FAIM3_001142473& 7& chr1_164824826& 415685& 3.71E?06& 5.8479& 2.53E?05& 0.056392257&

kidney& GLIPR1_006851& 3& chr11_73293567& 462506& 5.65E?06& ?0.955227& 1.47E?05& 0.046057843&

liver& GULP1_016315& 2& chr12_52614781& 335252& 5.38E?06& ?0.805831& 4.25E?06& 0.073700789&

lung& ABCB4_018850& 2& chr3_129690245& ?487889& 7.18E?06& ?1.11717& 2.69E?06& 0.018352659&

lung& CNTNAP2_014141& 4& chr3_183849127& ?337085& 2.96E?05& ?4.70647& 3.50E?05& 0.069867639&

lung& KIF25_005355& 4& chr4_165210711& ?829498& 8.65E?06& ?5.01417& 3.58E?05& 0.069867639&

lung& KLKB1_000892& 6& chr5_179457643& ?1783& 3.00E?06& ?2.82696& 1.63E?05& 0.050384526&

lung& OR4K17_001004715& 10& chr7_82729888& ?159990& 2.33E?09& 2.29118& 4.42E?08& 0.000604078&

lung& RABGAP1L_001243763& 5& chr1_205287055& ?348596& 2.41E?06& 0.248153& 9.82E?06& 0.044740414&

lung& ASPHD2_020437& 2& chr10_70197859& ?261915& 1.05E?05& ?3.11456& 1.84E?05& 0.050384526&

spleen& BMPER_133468& 1& chr3_93158281& 781027& 4.23E?06& ?3.55373& 4.39E?06& 0.02528205&

spleen& KLKB1_000892& 6& chr5_179457643& ?1783& 6.54E?07& ?2.41492& 3.41E?06& 0.02528205&

spleen& PLCB2_004573& 8& chr7_18400455& ?400166& 4.86E?06& 1.78734& 3.18E?05& 0.090040778&

spleen& GSR_001195104& 3& chr8_31487899& 490152& 1.20E?05& 1.25321& 3.44E?05& 0.090040778&

spleen& C11orf85_001037225& 18& chr14_8575524& ?956573& 1.03E?06& ?4.26057& 2.25E?05& 0.090040778&

spleen& OR5M9_001004743& 7& chr14_16700413& ?6666& 2.61E?08& ?2.76906& 3.98E?08& 0.000688069&

spleen& SPATA19_174927& 9& chr14_132762123& ?122283& 4.26E?06& ?0.708787& 3.65E?05& 0.090040778&
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Appendix B

Coordinated allelic variation across

molecular phenotypes

B.1 Laboratory methods

B.1.1 Study sample

The lymphoblastoid cells lines (LCLs) used for the present study are a subset of those analyzed

in the pilot phase of the 1000 Genomes project [48]. They encompass cells from two trios com-

posed of father, mother and daughter, as well as eight unrelated individuals. The first trio and

the unrelated samples are Utah residents from European ancestry (referred to as CEU), while

the members of the second trio are Yoruban from Ibadan, Nigeria (YRI). The complete list of

samples and related information is provided in Figure B.23.

B.1.2 Cell culture and fixation

For the majority of samples, all three sequencing assays (ChIP, RNA, small-RNA) were pro-

duced from a single growth of LCLs. GRO-seq was produced from a different batch of cells.

Frozen cells were thawed and transferred to T25 flasks containing 15 ml of RPMI 1640 medium

(Lonza, Vervier, Belgium) with 10% fetal calf serum (FCS). Cells were transferred to TubeSpin

Bioreactor 50 tubes (TPP, Trasadingen, Switzerland) at a density of 0.3 x 106 cells/ml in 5 ml

of same medium containing 10% FCS and 0.1% Pluronic F-68 (Sigma-Aldrich, St. Louis, MO,

USA). The cultures were agitated at a shaking speed of 180 rpm in an ISF-4-W incubator shaker

(Khner Shaker, Birsfelden, Switzerland) with 5% CO2 and 85% humidity. When the cell den-

sity reached 2-3 x 106 cells/ml, the culture was diluted to 0.3 x 106 cells/ml and transferred

to a 250-ml glass bottle (Schott Glass, Mainz, Germany) with the cap open by one quarter of a

turn. The culture was agitated at 110 rpm in an ISF-4-W incubator shaker with 5% CO2 but no
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humidity as described [156]. Eventually, the cells were scaled-up serially in 500-ml, 1-L, and

5-L glass bottles filled to a maximum of 40% of the nominal volume. For cell fixation, 2-L cul-

tures at a density of 0.8-0.9 x 106 cells/ml in 5-L bottles were mounted on a shaker and agitated

at 70 rpm at room temperature. Formaldehyde (Sigma-Aldrich) was slowly added to a final

concentration of 0.8% and agitation was continued for 7 min. The fixation was quenched by

addition of 2.5 M glycine (Rectolab, Servion, Switzerland) to a final concentration of 0.125 M,

and the culture was agitated as before for 5 min. The cells were collected by centrifugation at

2000 rpm for 5 min at 4�C and then washed 4 times with cold PBS. The last centrifugation step

was performed in 50-ml centrifuge tubes, each containing 50 x 106 cells. The final cell pellets

were flash frozen in liquid nitrogen and stored at -80�C.

B.1.3 Chromatin immunoprecipitations (ChIP)

RNA polymerase II (POLR2B) and TFIIB

ChIPs were carried out as previously described [157] with a few modifications. Chromatin ex-

tracted from 5 x 107 cross-linked cells was sonicated to an average size of 200-700 bp. Sheared

chromatin was then immunoprecipitated with 7 µg per 107 cells of an anti-Rpb2 antibody

(sc-67318, Santa Cruz Biotechnology) or 7.5 µl per 107 cells of an anti-TFIIB antibody (rabbit

CS396), described in [158]). Immunoprecipitated material was recovered with 2 mg per 107

cells of pre-blocked protein-A beads (17-0780-01, GE Healthcare) and washed twice with dial-

ysis buffer, three times with IP wash buffer (see [157] for buffer compositions). After reversal

of crosslinking and DNA purification, 10 ng of ChIP DNA was used for ChIP-seq libraries

preparation.

PU.1, MYC, and H3K4me1

Cells were lysed in nuclei extraction buffer (50 mM HEPES-NaOH pH 7.5, 140 mM NaCl, 1 mM

EDTA pH 8.0, 10% glycerol, 0.5% NP-40, 0.25% TritonX-100) supplemented with a protease in-

hibitor tablet (Roche) and phosphatase inhibitors (5 mM NaF, 1 mM b-glycerol phosphate and

1 mM sodium orthovanadate) for 10 min at 4�C on a shaker. The isolated nuclei were then

washed using washing buffer (200mM NaCl, 1 mM EDTA pH 8.0, 0.5 mM EGTA pH 8.0, 10

mM Tris-HCl pH 8.0) supplemented with protease and phosphatase inhibitors at RT for 10

min. Washed nuclei were resuspended in sonication buffer (1 mM EDTA pH 8.0, 0.5 mM EGTA

pH 8.0, 10 mM Tris-HCl pH 8.0 and 1% TritonX-100) containing protease and phosphatase in-

hibitors and the chromatin was fragmented using a Bioruptor sonicator (Diagenode) for 80

min using high amplitude and 30s ON & 30s OFF cycles to obtain 200-500 bp-sized fragments.
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The fragmented chromatin was then centrifuged at 17,000xg for 5 min and clear supernatant

was diluted with ChIP dilution buffer (1 mM EDTA pH 8.0, 10 mM Tris-HCl pH 8.0 and 1%

TritonX-100 containing protease and phosphatase inhibitors) to get chromatin equivalent to 10

X 106 cells for each IP. All IPs were performed in duplicates. BSA and ssDNA (Salmon Sperm

DNA)-preblocked protein-A sepharose (80 µl/IP) beads were added to the samples and incu-

bated for 2h to remove non-specifically binding chromatin. To the supernatant, 5 µg/IP rabbit

polyclonal anti-Myc antibody (Santa Cruz, Cat no: Sc- 764) was added to immunoprecipitate

the chromatin complex at 4�C overnight. After incubation, 50 µl blocked protein-A sepharose

beads were added to each sample and incubated for 90 min at 4�C to pull down the respective

antibody-chromatin complexes. The beads were then washed four times with low salt wash

buffer (20 mM Tris-Cl pH 8.0, 150 mM NaCl, 2 mM EDTA pH 8.0, 0.1% SDS, 1% TritonX-100)

followed by two washes with high salt wash buffer (20 mM Tris-Cl pH 8.0, 500 mM NaCl, 2

mM EDTA pH 8.0, 0.1% SDS, 1% TritonX-100), lithium chloride wash buffer (10 mM Tris-Cl pH

8.0, 0.25 M LiCl, 1 mM EDTA pH 8.0, 1% NP-40, 1% sodium deoxycholate) and Tris- EDTA (TE)

buffer (10 mM Tris-Cl pH 8.0, 1 mM EDTA pH 8.0). The c-Myc-bound chromatin complexes

were eluted from beads for 30 min using 200 µl of elution buffer (100 mM sodium bicarbonate

and 1% SDS in milliQ water). The chromatin was then reverse-crosslinked at 65�C overnight

after adding 8µl of 5 M NaCl. The DNA was then purified from the reverse-crosslinked chro-

matin by proteinase-K and RNase digestion followed by purification using Qiagen DNA pu-

rification columns. The purified DNA was eluted in 30µl of Qiagen elution buffer. PU.1 and

H3K4me1 ChIPs were performed with slight modifications in the protocol described above. We

used 1% SDS instead of TritonX-100 in sonication buffer to increase the stringency of chromatin

pull-down by the respective antibodies (PU.1 antibody from Santa Cruz, Cat no: 22805X and

H3K4me1 from Abcam, Cat no: ab-8895) and the sonication was performed for 60 min instead

of 80 min.

H3K4me3, H3K27me3, H3K27ac, and H4K20me1

ChIP was carried out largely as suggested in [159], with modifications made to automatize the

procedure. Briefly, cells were lysed by addition of cell lysis buffer, then nuclei were washed

and subsequently lysed using nuclei lysis buffer. Chromatin was sheared with Covaris S220

sonicator (Covaris Inc., MA, USA). Sonication efficiency was assessed by running a sample

of de-crosslinked DNA on a 1.5% agarose gel. Fragmented chromatin was diluted 10 fold

(5 fold in case of H3K27ac IP) in ChIP dilution buffer and immunoprecipitated using anti-

bodies against H3K4me3 (Millipore 17-614; lot #JBC1793805), H3K27me3 (Millipore 17-622;
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lot #DAM1731568), H3K27ac (Abcam ab4729; lot #GR71158) H4K20me1 (Abcam ab9051; lot

#GR10999). The immunoprecipitation assays were performed on Diagenode SX-8G IP-Star

Compact automated system using Auto Histone ChIP-seq kit (Diagenode s.a., Belgium). The

minimum of 2 IPs of 106 cells (2x106 in case of H3K27ac) per cell line was used. Replicates

were pooled following RNase A and proteinase K treatments. DNA was purified with Qiagen

DNA purification kit (Qiagen N.V., Netherlands). DNA concentration was measured using

Qubit apparatus (Life Technologies, CA, USA). Before proceeding with library preparation for

sequencing, enrichment of the precipitated DNA was assessed by quantitative PCR. Of note

automatization of the procedure to reach the necessary throughput required by this project did

not significantly modify the results. Paralleled chromatin IP of 107 cells performed manually

using Dynabeads magnetic beads (Life Technologies, CA, USA) to collect chromatin-antibody

complexes showed concordant results. For example 88% of the nucleotides significantly en-

riched for H3K4me3 and H3K27me3 marks in the automated protocol were also identified as

enriched by manual immunoprecipitation. Details of the comparisons between results obtained

by the automated and the manual protocol are presented in Figure B.24.

B.1.4 ChIP-seq library preparation and sequencing

Trios

ChIP libraries were prepared for sequencing with the Illumina ChIP-seq sample preparation

kit according to manufacturer’s instructions. Sample concentration was re- measured prior

to library preparation. The starting amount of ChIP DNA ranged from 6 ng to 10.5 ng per

sample. The number of PCR cycles to amplify the libraries was either 18 (POLR2B) or 17 (all

other assays). Library quality and average fragment size was confirmed with Bioanalyzer DNA

analysis chips (25-1000 bp, Agilent). Sequencing was performed with one sample per lane on

the Genome Analyzer IIx or on the HiSeq2000 (read length 36 bp, single-end), except H3K27ac,

which was indexed (see below) and sequenced as pools of three per HiSeq lane.

Unrelated individuals

ChIP libraries were prepared with the TruSeq DNA sample prep kit (Illumina) and AD001-

AD0012 indexing adapters set according to the manufacturer’s recommendations. The starting

amount of ChIP DNA used for library preparation ranged from 2.5 ng to 10.5 ng per sample. Li-

brary quality and average fragment size was confirmed with Bioanalyzer DNA analysis chips

(25-1000 bp, Agilent). TruSeq libraries were subsequently multiplexed on Illumina HiSeq2000

lanes (three or four per lane for POLR2B and H3K27me3 assays and all other assays, respec-
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tively) (read length 36 bp, single-end). H3K4me1 libraries were sequenced twice in order to

improve the coverage.

B.1.5 RNA extraction

Total RNA was extracted from cell pellets using the standard Trizol protocol (Invitrogen). RNA

concentration was measured with the Qubit system (Invitrogen) and the quality of the samples

confirmed with Agilent 2100 Bioanalyzer RNA 6000 Nano and small RNA (6-150 nt) analysis

chips. All included RNA samples had a RNA integrity number (RIN) of 9.8 or more.

B.1.6 RNA-seq library preparation and sequencing

Libraries for RNA-seq were prepared with the Illumina TruSeq RNA sample preparation kit,

according to manufacturer’s instructions. 500 ng of total RNA was used for each library. Briefly,

poly-A RNA is selected using poly-T oligo-attached magnetic beads, the RNA is cleaved, and

converted to cDNA with first strand synthesis. After RNA digestion and second DNA strand

synthesis, the fragments are end repaired and ligated to the adapters containing specific primer

indexes. Finally, the cDNA libraries are amplified by PCR. Trio samples were sequenced as a

single pool of six, whereas the eight additional unrelated samples were sequenced as part of

pools with 12 libraries on the HiSeq (read length 49 bp, paired-end).

B.1.7 GRO-seq

We assayed the nascent transcriptome of LCLs from the three CEU trio individuals with Global

Run-On Sequencing (GRO-seq) as previously described [60]. Nuclei were isolated and nu-

cleotides washed off at 4�C, leaving RNA polymerases engaged in transcription bound to DNA.

5M nuclei per sample were then used for letting the polymerases run-on for ⇠100 nts using Br-

UTP, aP32-labeled CTP for tracking the nascent RNA through the experiment and sarkosyl for

blocking new transcription initiation events. RNA was isolated and hydrolyzed. Subsequently,

the nascent RNA was pulled down with agarose beads carrying antibodies for Br-UTP. 5’ and

3’ adapters were then ligated to nascent RNA, fulfilling another round of immuno-enrichment

after each step. Finally, the nascent RNA library was converted to cDNA, PCR amplified and

purified, yielding 2 libraries per sample. Given the way they were purified from the agarose

gel, one library is of longer insert size (hereon termed ”long”) than the other (hereon termed

”short”). Libraries were sequenced with Illumina HiSeq2000 (read length 49 bp, paired-end)

once (short libraries) or twice (long libraries), the three samples pooled in one lane.
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B.2 Data Preprocessing and Quality Control

B.2.1 Genetic variation data

DNA variation data for the study sample was obtained from the 1000 Genomes project [48].

Genomic coordinates for the trios (data link 1, see below) were lifted over from b36 to hg19

genomic build using tools available in the GATK package [160, 161]. For the eight unrelated

individuals, we used variants from the 1000 Genomes release 20100804 (data link 2), as some

individuals used in the present study were not available in the phase 1 release. The number of

variants available for each individual included in this study is provided in Figure B.23. Only

SNP variants were used. We additionally used population- based variation data from the 1000

Genomes phase1 samples (data link 3) for quality control purposes in the allele-specific analy-

ses (see Section B.3.2).

Variant data downloads:

1. ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot data/release/2010 07/trio/snps

2. ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20100804

3. ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521

B.2.2 Pre-processing and mapping of raw sequence data

RNA-seq and in house performed ChIP-seq

RNA-seq and ChIP-seq sequence reads (paired-end 49 bp and single-end 36 bp, respectively)

were mapped against the standard hg19 build of the human reference genome [162] with BWA

[163] using default parameters. We did not map to personalized reference genomes because

reliable indel calls were not available for the reference construction for the given individuals at

the time of study. We kept only uniquely mapping reads with a mapping quality (MAPQ) score

of >= 10. For paired-end data we additionally required the reads to be properly paired in map-

ping. Samtools [108] was used for general data processing throughout the project. Summary

of mapping statistics for each assay are provided in Tables B.1, B.2 and Figure B.25.

CTCF ChIP-seq and DNaseI hypersensitivity

Data for CTCF and DNaseI hypersensitivity for the two trios were obtained from a previous

study [51]. For CTCF we obtained raw sequenced reads, which were mapped and processed

the same way as the other ChIP-seq assays. Biological replicates were merged after mapping.
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DNaseI data were obtained as original peak calls that were merged across biological replicates

and samples into a metasample (see Section B.2.4).

B.2.3 Quantification of transcriptome data

RNA-seq

RNA-seq data was quantified based on Gencode v8 (03/2011) exon annotations [164]. In order

to quantify exons in a non-redundant way, we created a set of merged exons from all protein

coding and linc-RNA transcripts and merging any overlapping exons into new composite ex-

ons. We then counted the number of reads mapping to each exon, with each individual read

from a pair contributing to the count.

GRO-seq

GRO-seq reads were trimmed to 39 bp due to abundant presence of adapter sequences and

mapped to the genome with BWA [163]. Only read 1 was used for further analyses given that

read 2 would be overlapping read 1 in many cases. Uniquely mapped reads with MAPQ >=

10 were then merged from the different sequenced libraries originating from the same sample,

yielding a mean of 36.6 million reads per sample. Gene-based correlation of reads between

any two samples was 0.96 (Spearman rank correlation). Final GRO-seq reads were overlapped

with a selection of functional genomic features as defined in the Gencode v8 annotation [164]

(Figure B.2). Namely, the following elements were queried: (a) genes (protein coding and linc-

RNA genes only), (b) exons (merged exons from the genes used, correct strand required for

overlap), (c) introns (anything not defined as exons within genes, correct strand required for

overlap), and (d) putative enhancer elements (as defined in Section B.3.1). We additionally

quantified antisense (within genes but on the opposite strand) and divergent (1kb upstream

of TSS and opposite strand from the gene, excluding gene regions, correct strand required for

overlap) transcription. Reads not falling into any of the mentioned categories were grouped as

”other”.

B.2.4 Quantification of ChIP-seq data

B.2.5 ChIP-seq peak calling

To call peaks from ChIP-seq data we merged final mapped reads (MAPQ>=10) from the six

trio individuals into a metasample, excluding reads with identical start positions (i.e. duplicate

reads). Two different peak calling algorithms were used depending on the specific properties
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of each assayed chromatin mark. Transcription factor-like peaks (MYC, PU.1, TFIIB, CTCF and

POLR2B) as well as concise histone modification peaks (H3K4me1, H3K4me3, and H3K27ac)

were called using HOMER [101] with the following parameters (MYC, PU.1, TFIIB, CTCF,

POLR2B: -factor; H3K4me1, H3K4me3, H3K27ac: -region -size 1000 -minDist 2500). All TF-like

peak calls were subsequently extended to the expected fragment length of 200 bp. Broad his-

tone modifications domains (H3K27me3 and H4K20me1) were called using HMM-based RSEG

[165]. Default settings were used with a maximum of 20 iterations for the training of the Hid-

den Markov Model. Deadzone correction was applied using the deadzone file for 36 bp reads

and hg19 provided on the distributers webpage (http://smithlab.usc.edu/histone/rseg/).

POLR2B ChIP-seq data were analyzed with both algorithms to capture the full scope of the

RNA pol II-binding properties, i.e. promoter-associated narrow peaks versus broad domains

covering the gene bodies (subsequently referred to as ”narrow” and ”broad”, respectively).

We included only chromosomal peaks, i.e. mapping to chromosomes 1-22, X or Y) and fil-

tered away all peaks overlapping with know collapsed repeat regions [166] or genomic regions

”blacklisted” by the ENCODE project (see Section B.3.2) [49], as both types of regions can cause

bias in read mapping and subsequent peak calling. Peak calls are summarized in Figure B.26

and B.27 and pairwise overlap of peak calls among all assays are shown in Figure B.28.

B.3 Analytical Methods

B.3.1 Distribution of assays around the TSS of different classes of genes

TSS selection and transcriptional activity

We first sought to define a set of quantifiable transcription start sites which we could reliably

associate with specific exons and, therefore, accurately determine levels of the associated tran-

script. TSSs were defined as the 5’ start of the first exon of each transcript annotated in Gencode

version 8 [164]. TSSs were merged if belonging to the same gene and less than 100 bp apart from

each other. For genes with only one TSS, or several but only one active TSS defined by overlap

with RNA polymerase II peaks, this TSS was selected. In both cases the transcriptional activity

for these TSSs was defined as RNA-seq reads mapping to all exons assigned to transcripts start-

ing at this TSS. In cases of genes with several active TSSs, only the most 5’ TSS was selected to

avoid confounding effects by other active transcripts. The transcriptional activity was defined

by reads mapping to all exons that could be uniquely assigned to transcripts starting at this

TSS. For loci with no active TSS, the one linked to the longest open reading frame was selected,

and its expression was defined by RNA-seq reads mapping to exons uniquely assigned to that
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TSS. All RNA-seq quantifications were normalized to reads per 100,000 bp.

Definition of putative enhancer elements

DNaseI hypersensitivity, a proxy for open chromatin structure, has been shown to define reg-

ulatory regions of the genome, including enhancer elements. Thus, we constructed two sets

of putative regulatory elements (i.e. enhancers) by filtering the DNaseI hypersensitivity meta-

peaks [51] either for i) all annotated transcripts extending 2.5 kb upstream (intergenic enhancers

only; type I), or ii) all exons, with 5’ exons of each transcripts extending 2.5 kb upstream (allow-

ing putative intronic enhancers; type II). Type II enhancers were used throughout the paper, if

not mentioned otherwise.

Marker quantification

ChIP-seq, RNA-seq and GRO-seq reads were counted within a 5 kb window centered on ev-

ery quantifiable TSS (Gencode v8 annotation; nTSS=13,720), separately for protein- coding

(nTSS=13,034) and linc-RNA (nTSS=686) genes. Putative enhancer loci were quantified in a

similar manner within the defined enhancer site. Loci with no mapped reads were excluded

from the following analyses.

Correlation heatmaps

For the correlation among markers at the TSS, read counts were normalized across assays by

calculating z-scores of log10 transformed read counts within the 5 kb window centered on ev-

ery TSS. Spearman’s correlation coefficients were calculated for each marker combination. Pu-

tative enhancer loci were analyzed the same way. Clustering and heatmap was created using

heatmap.2 for R (version 2.13) with hierarchical clustering based on Euclidean distance.

Gene expression versus marker binding

The obtained ChIP-seq marker quantifications for the TSSs were normalized to 10,000,000 to-

tal mapped reads in each experiment and the loci were grouped into percentiles according

to their transcriptional activity. For each percentile the average RNA-seq quantification value

and the number of ChIP-seq reads were calculated for each marker. Obtained values for every

percentile were plotted on log10 scale.
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B.3.2 Allele-specific analysis

General description

Allele-specific (AS) analysis was based on binomial testing of allelic ratios over heterozygous

SNP sites of each individual. The analysis was limited to SNPs due to the lack of high qual-

ity indel calls for the individuals studied. We required both alleles to be observed in the data

and included only SNP sites located within trio metasample peaks. Extensive filtering steps

were taken to eliminate sources of bias in the analysis. We excluded sites overlapping with i)

collapsed repeat regions [166], i.e. sequences that are present in a single copy in the reference

genome, but which are present in multiple copies in reality (n=30,671), ii) ENCODE-defined

blacklisted genomic regions (tracks 1-2, see below; merged total regions n=1,378; ChIP-seq

data only), and iii) regions of general non-unique alignability given the read length of each

assay (tracks 3-5, see below). Taking advantage of phased genotype data, we finally applied

two additional simulation- based filtering steps to further exclude individual SNP sites suscep-

tible to (i) mapping bias due to local haplotype effects (Section B.3.2) and (ii) low complexity

library artifacts, which can lead to false positive allele-specific calls (Section B.3.2). A minimum

coverage of 10-20 reads per site was required, depending on the sequencing depth of the assay

in question. In all analyses, we used a minimum mapping and base quality threshold of 10.

GRO-seq data was analyzed in a strand-specific manner, splitting the original reads per strand.

An overview of the AS analysis pipeline is shown in Figure B.29.

ENCODE mapability track downloads:

1. http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability

Tracks used:

1. wgEncodeDacMapabilityConsensusExcludable.bed

2. wgEncodeDukeMapabilityRegionsExcludable.bed

3. wgEncodeCrgMapabilityAlign36mer.wig

4. wgEncodeCrgMapabilityAlign40mer.wig

5. wgEncodeCrgMapabilityAlign50mer.wig

Correction for reference allele mapping bias

To correct for bias caused by the preferential mapping of reads carrying the reference allele we

calculated the estimated bias across all heterozygous sites with i) MAPQ >= 10, ii) sequencing
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base quality >= 10, iii) both alleles seen in sequence data, and iv) minimum coverage of eight

reads per site. The estimates were calculated separately for each mapping quality bin and SNP

allele combination (minimum 200 sites required for each category; if less, global estimate was

used for that category) after down-sampling reads of sites in the top 25th coverage percentile

in order to avoid the highest covered sites having a disproportionally large effect on the ratios.

These matched estimates were then used as the expected ratios in the binomial test (instead of

using 50-50) for each tested SNP.

Simulations to identify SNP sites susceptible to mapping artifacts

Two complementary strategies were adopted to identify and filter away SNP sites showing

evidence of biased mapping of reads that might cause false allele-specific signals.

Personalized simulations We constructed all possible reads spanning both haplotypes in a

sliding window of +/- respective read length (36 bp, 39 bp, 49 bp) around each phased het-

erozygous SNP site, separately for all six trio individuals. If other SNPs overlapped with this

window, they were included in the simulated reads. We mapped the entire set of simulated

reads back to the hg19 reference genome with the same parameters as the actual data and

collected mapping statistics for each SNP site to identify those where a significant proportion

(>5%) of the possible reads map incorrectly or not at all (Figure B.30). The obtained list of

SNPs susceptible to mapping bias was used to filter the results of the AS analysis of the trio

individuals.

Population-based simulations The same simulations were performed using all phased SNP

and indel variants from 1000 Genomes phase1 (release 20110521, see Section B.2.3) data with

a minor allele frequency >0.01 in either the European (EUR) or African (AFR) population. In-

stead of constructing all reads for the two haplotypes present in a single individual, all hap-

lotypes present in the population were constructed. The obtained list of biased SNP sites was

used to filter the results of the AS analysis of the eight unrelated CEU individuals. We addi-

tionally excluded all putative AS sites from the trio and unrelated individuals that were within

a read length of an indel showing biased mapping in the population-based simulations (Figure

B.30). This allowed us to account for indel effects indirectly, despite the lack of indel calls of

the individuals in question.
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Filtering of low complexity sites for allele-specific analysis

We devised a pipeline for heterozygous SNPs within each individual in order to identify and

remove sites that show an enrichment of clonal reads around the SNP position in ChIP-seq

and GRO-seq experiments. Clonal reads can lead to confounding effects during allele-specific

analysis. Briefly, we employed two filtering steps in which we discarded biased SNPs. First, we

removed SNPs independent of coverage that were covered by reads with less than five unique

alignment start sites, and second SNPs, which showed an enrichment in clonal reads based on

library-specific simulations (P <0.05). A stepwise histogram of AS ratios after each filtering

step described in Section B.3.2 is presented in Figure B.31. See http://updepla1srv1.epfl.

ch/waszaks/absfilter for more information.

eQTL overlap

All heterozygous SNP sites accessible for AS analysis were analyzed for overlap with known

eQTL loci from the 1000 Genomes phase1 populations [56]. We compared the overlap with

eQTL SNPs and non-eQTL SNPs matched for minor allele frequency and distance from the

nearest TSS separately for TF assays (PU.1, TFIIB, MYC, CTCF) and hPTMs (H3K4me1, H3K4me3,

H3K27ac, H4K20me1, and H3K27me3). eQTLs from the EUR and AFR populations were an-

alyzed separately. Mann-Whitney U test between the allele ratios for eQTLs and null SNPs

(EUR: n=6243 and n=7256; YRI: n=2045 and n=7248, respectively) was used to evaluate whether

a significant bias in the allele ratios could be observed between the two groups of target sites

(eQTL/null) and assays (TFs/hPTMs) (Figure B.9).

B.3.3 Parental transmission of allelic effects

Transmission per SNP site

Parental transmission of allelic effects was analyzed as described by McDaniell et al. [51].

Transmission was first analyzed at autosomal SNP sites where the child has a significant AS ef-

fect and the parents were homozygous for opposite alleles of this SNP. Standard AS QC criteria

were applied to the child data (see Section B.3.2). For the parental reads, a MAPQ >= 10 was

required but no minimum read coverage at the SNP site was applied. We calculated the ratio

of reads covering each allele (maternal and paternal) in the parents and compared the paternal

allele ratio of the parents to the paternal allele ratio in the child with Spearman rank correlation.

A global scaling based on library size differences (i.e. number of usable reads) was applied to

the read counts. The parental libraries were scaled to the child’s library separately for each as-
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say. This analysis (referred to as standard transmission) was then extended to SNP sites where

the child has a significant AS signal but one parent is homozygous and the other heterozygous

(referred to as extension 1) (Figure B.17). We included only parental heterozygous sites which

were accessible for the AS analysis (i.e. fulfilled quality and coverage requirements for AS

analysis) in order to have reliable read counts for each of the two alleles also in the parent(s).

Analysis was performed genome-wide as well as at specific functional elements of the genome,

namely promoters (Figure B.19) and putative enhancer elements (as defined in Section B.3.1)

(Figure B.18), as well as known eQTLs [56] (see Section B.3.2) (Figure B.20) and dsQTLs [50]

(n=8896) (Figure 2.4C, Figure B.20) (+/- 1000bp window around each QTL).

The allele ratios in each scenario were calculated as follows:

Standard transmission:

! "+!

12. Parental transmission of allelic effects 

12.1 Transmission per SNP site 
Parental transmission of allelic effects was analyzed as described by McDaniell et al. (4). 
Transmission was first analyzed at autosomal SNP sites where the child has a significant 
AS effect and the parents were homozygous for opposite alleles of this SNP. Standard AS 
QC criteria were applied to the child data (see Section 11). For the parental reads, a 
MAPQ >= 10 was required but no minimum read coverage at the SNP site was applied. 
We calculated the ratio of reads covering each allele (maternal and paternal) in the 
parents and compared the paternal allele ratio of the parents to the paternal allele ratio in 
the child with Spearman rank correlation. A global scaling based on library size 
differences (i.e. number of usable reads) was applied to the read counts. The parental 
libraries were scaled to the child’s library separately for each assay. This analysis 
(referred to as standard transmission) was then extended to SNP sites where the child has 
a significant AS signal but one parent is homozygous and the other heterozygous 
(referred to as extension 1) (fig. S17). We included only parental heterozygous sites 
which were accessible for the AS analysis (i.e. fulfilled quality and coverage 
requirements for AS analysis) in order to have reliable read counts for each of the two 
alleles also in the parent(s). Analysis was performed genome-wide as well as at specific 
functional elements of the genome, namely promoters (fig. S19) and putative enhancer 
elements (as defined in Section 10.2) (fig. S18), as well as known eQTLs (7) (see 
Section 11.5) (fig. S20) and dsQTLs (13) (n=8896) (Fig. 3C, fig. S20) (+/- 1000bp 
window around each QTL). 

The allele ratios in each scenario were calculated as follows: 

Standard transmission 

 
CHILD = A / (A + C) 
PARENTS = AA / (AA + CC) 

Extension 1: One parent homozygous, one heterozygous 

CHILD  = REF / (REF + NONREF)     [father = HOM REF]  
 = NONREF / (REF + NONREF)     [father = HOM NONREF] 
 = NONREF / (REF + NONREF)     [mother = HOM REF] 
 = REF / (REF + NONREF)     [mother = HOM NONREF] 

PARENTS = 0.5 * HOM_REF / (0.5 * HOM_REF + HET_NONREF) [father = HOM REF] 
 = 0.5 * HOM_NONREF / (0.5 * HOM_NONREF + HET_ REF) [father = HOM NONREF] 
 = HET_NONREF / (0.5 * HOM_REF + HET_NONREF) [father = HET; mother = HOM REF] 
 = HET_REF / (0.5 * HOM_NONREF + HET_REF)  [father = HET; mother = HOM NONREF] 

 

Extension 1: One parent homozygous, one heterozygous:

! "+!

12. Parental transmission of allelic effects 

12.1 Transmission per SNP site 
Parental transmission of allelic effects was analyzed as described by McDaniell et al. (4). 
Transmission was first analyzed at autosomal SNP sites where the child has a significant 
AS effect and the parents were homozygous for opposite alleles of this SNP. Standard AS 
QC criteria were applied to the child data (see Section 11). For the parental reads, a 
MAPQ >= 10 was required but no minimum read coverage at the SNP site was applied. 
We calculated the ratio of reads covering each allele (maternal and paternal) in the 
parents and compared the paternal allele ratio of the parents to the paternal allele ratio in 
the child with Spearman rank correlation. A global scaling based on library size 
differences (i.e. number of usable reads) was applied to the read counts. The parental 
libraries were scaled to the child’s library separately for each assay. This analysis 
(referred to as standard transmission) was then extended to SNP sites where the child has 
a significant AS signal but one parent is homozygous and the other heterozygous 
(referred to as extension 1) (fig. S17). We included only parental heterozygous sites 
which were accessible for the AS analysis (i.e. fulfilled quality and coverage 
requirements for AS analysis) in order to have reliable read counts for each of the two 
alleles also in the parent(s). Analysis was performed genome-wide as well as at specific 
functional elements of the genome, namely promoters (fig. S19) and putative enhancer 
elements (as defined in Section 10.2) (fig. S18), as well as known eQTLs (7) (see 
Section 11.5) (fig. S20) and dsQTLs (13) (n=8896) (Fig. 3C, fig. S20) (+/- 1000bp 
window around each QTL). 

The allele ratios in each scenario were calculated as follows: 

Standard transmission 

 
CHILD = A / (A + C) 
PARENTS = AA / (AA + CC) 

Extension 1: One parent homozygous, one heterozygous 

CHILD  = REF / (REF + NONREF)     [father = HOM REF]  
 = NONREF / (REF + NONREF)     [father = HOM NONREF] 
 = NONREF / (REF + NONREF)     [mother = HOM REF] 
 = REF / (REF + NONREF)     [mother = HOM NONREF] 

PARENTS = 0.5 * HOM_REF / (0.5 * HOM_REF + HET_NONREF) [father = HOM REF] 
 = 0.5 * HOM_NONREF / (0.5 * HOM_NONREF + HET_ REF) [father = HOM NONREF] 
 = HET_NONREF / (0.5 * HOM_REF + HET_NONREF) [father = HET; mother = HOM REF] 
 = HET_REF / (0.5 * HOM_NONREF + HET_REF)  [father = HET; mother = HOM NONREF] 

 

Transmission per haplotype

For chromatin marks we additionally tested parental transmission of allelic effects at sites

where the child has a significant AS effect and the parents are homozygous for opposite al-

leles of the entire haplotype surrounding the target SNP in order to better capture long- range

effects. No requirement for homozygosity was applied to the actual target SNP in the parents.

To construct the parental haplotypes we used common SNPs with a minor allele frequency of

5% or greater in the 1000 Genomes phase1 EUR or AFR populations (for CEU and YRI trios,

respectively). Windows of 5, 10, and 20 kb around the child SNP site were tested. Comparison

of allele ratios was done as in the per site transmission test (as described in Section B.3.3). No
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significant improvement of the transmission signal compared to the standard per site analysis

was discovered.

B.3.4 Transcription factor binding motif analysis

De novo motif identification

We performed de novo motif search on sequences around PU.1 and MYC peak maxima (+/-

100bp) using the software package MEME. We restricted the identification of de novo motifs to

1000 peaks with highest tag counts as identified by HOMER. We run MEME with the following

settings: zero or one motif occurrence per peak (-zoops), maximum 10 de novo motifs (-nmotifs

10), minimum and maximum motif size 5 and 20 bp (-minw 5, -maxw 20), respectively, and we

used the setting to perform the de novo search on the given and reverse complement strand

(-revcomp). The highest scoring de novo motif PWMs were compared against the known PU.1

and MYC PWMs deposited in TRANSFAC or JASPAR using the online version of the motif

comparison software TOMTOM (http://meme.sdsc.edu/). To check for motif overlap with

common indels, we used a set of indel calls from the 1000 Genomes Project phase1 release [167]

with a minor allele frequency >0.01 in either the European or African population. For this

comparison, we used only peaks with a significant ASB signal not disrupting the motif (class

II B- SNPs) and applied a window of +/- 50 bp around the motif. Of such PU.1 peaks, 1.5%

overlap with common indels. Motifs in these peaks might be affected by indels, although the

direct impact of rare indels on TF binding remains to be assessed.

Haplotype-specific motif analysis

We scanned within each individual the paternal and maternal haplotype for the occurrence of

a PU.1 and MYC motif instance among all PU.1 and MYC peaks, which were tested for allele-

specific effects, respectively. We used the ENCODE data-derived PU.1 and MYC PWMs for the

motif scan [168]. Further, we used the phase information from the 1000 Genomes Project in case

multiple SNPs were present within peaks, and discarded peaks if phase information was absent

for one or multiple SNPs. Motif occurence was predicted using the software FIMO (part of the

MEME package) and the default p-value threshold (P = 1e-4). In case a motif was predicted on

only one haplotype, we performed another round of motif search with a soft p-value threshold

of 0.1 in order to obtain the motif occurrence p-value for the alternative haplotype. In rare cases

we observed that motif predictions overlapped and we decided to discard these sites to avoid

ambiguity in later analysis.
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Allele-binding cooperativity analysis

We tested for allele-binding cooperativity using the CEU and YRI trio PU.1 ChIP-seq data and

the CEU trio MYC ChIP-seq data, respectively. We obtained 79 unique motifs, derived from

457 ChIP-seq data sets and 119 human TFs [168], and performed for each motif a haplotype-

specific motif search within all ASB-significant PU.1 and MYC peaks. We restricted the motif

search to 100 bp around the peak maxima. For each motif instance we calculated the difference

between the paternal and maternal motif occurrence � log10 p-value. We considered only motif

instances that caused a difference in motif score between the paternal and maternal haplotype

(= polymorphic motifs). We combined data from all individuals and focused on 35 out of 79

motifs with at least five polymorphic motif instances. For each motif, we calculated Pearson

correlations between differential motif scores and paternal TF binding ratios independently

and applied Benjamini & Hochberg p-value adjustment to correct for multiple hypothesis test-

ing (p.adjust function implemented in R). All TF motif analyses (Section B.3.4) were performed

only in the trio samples.

B.3.5 Analyses of allelic consistency

Between unrelated individuals

Genome-wide consistency of the allelic ratios was analyzed between all pairs of unrelated CEU

individuals (n=10) for heterozygous SNP sites with a significant AS effect (P <= 0.01) in i)

both individuals (Figure 2.4A, Figure B.16), and ii) at least one of the two individuals (union

of significant sites) (Figure B.14). Correlation of the reference allele ratios at these loci was

calculated with Spearman correlation separately for each assay available for all 10 individuals.

We also looked at the consistency separately in the trio parents (CEU and YRI) in order to

include assays with data only from the trios. Both within and across trios comparisons were

considered (Figure B.15). Examples are given in Figure B.16.

Across peaks within individuals and assays

In the evaluation of the consistency of AS effects within ChIP-seq peaks we took into account

only peaks with at least two overlapping SNPs with a significant AS effect (P <= 0.01). A peak

was considered consistent if all of the significant SNPs within that peak had a paternal ratio

greater or smaller than 0.5. To summarize the peak consistency for each trio we considered

the sum of the consistent peaks in each sample of the trio and divided by the sum of all the

evaluated peaks for that trio (Figure 2.2B, Figure B.7). For assays with a variable peak length,
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we also tested how the consistency of the AS effects within the peak is affected by distance, i.e.

peak length (Figure B.7).

Between different assays (AC and HC)

Allelic coordination (AC) and haplotypic coordination (HC) between all different pairs of as-

says were calculated using heterozygous SNP sites with a significant allele-specific signal in

two assays. We define AC as a coordinated AS signal at the exact same SNP in two different

assays, whereas in HC we compare the AS signal at two different SNP sites in two different as-

says within a given genomic window (Figure B.21). The following windows were analyzed for

AC and HC: i) TSSs, as defined in Section B.3.1, ii) putative enhancer loci, allowing for intronic

loci, as defined in Section B.3.1, and iii) the general vicinity of gene regions (protein coding and

linc-RNA gene annotations from Gencode v8, +/- 50 kb upstream and downstream). For each

window, we constructed all possible pairs of SNPs between all pairs of assays with available

AS sites and correlated the paternal allele ratio for all comparisons using Spearman rank corre-

lation. SNP pairs contributing to multiple windows per region (for e.g. to multiple overlapping

TSSs) were included only once. Only significantly correlated comparisons with a minimum of

20 pairs genome-wide were considered (P <0.05). We pooled the constructed SNP pairs across

individuals, but analyzed the two trios and the eight unrelated individuals separately. To ana-

lyze if the degree of haplotypic coordination within and across assays correlates with genomic

distance between the SNP pair, the correlation of genomic distance (log transformed absolute

bp distance between the two SNPs) and the binary allelic consistency status (allelic ratio >0.5 or

<0.5 in both SNPs = consistent, otherwise inconsistent) was analyzed using logistic regression.

This analysis was performed only around gene regions (+/-50 kb).
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Figure B.1: Overview of the dataset generated and used in this study. Read density tracks from

the trio metasamples are shown around the Tle3 gene locus. The y-axis scaling has been chosen

for visualization purposes only. Track intensities are therefore not comparable among assays.
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Figure B.2: Number A and B percentage of GRO-seq reads overlapping with genomic features

based on Gencode v8 annotations. Categories: exons (requiring strandedness for overlap), in-

trons (any region which is not an exon within genes, strandedness required), antisense (any

region within genes in the opposite strand), divergent (1 kb upstream of TSSs and opposite

strand of gene; minus any area that overlaps genes, requiring strandedness), enhancer (puta-

tive enhancers based on DNaseI hypersensitivity data, including intronic regions), enhancer-

NonGenic (putative enhancers not overlapping genes), other (none of the above categories;

may include pseudogenes or other transcripts not annotated as protein-coding or linc-RNA).

Figure S2. Number (A) and (B) percentage of GRO-seq reads overlapping with genomic features 
based on Gencode v8 annotations (5). Categories: exons (requiring strandedness for overlap), 
introns (any region which is not an exon within genes, strandedness required), antisense (any 
region within genes in the opposite strand), divergent (1 kb upstream of TSSs and opposite strand 
of gene; minus any area that overlaps genes, requiring strandedness), enhancer (putative 
enhancers based on DNaseI hypersensitivity data, including intronic regions), enhancerNonGenic 
(putative enhancers not overlapping genes), other (none of the above categories; may include 
pseudogenes or other transcripts not annotated as protein-coding or linc-RNA). 
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Figure B.3: Relationship between gene expression (mRNA-seq) and genomic signals at pro-

moters (transcription start site +/- 2.5 kb) of protein-coding and linc-RNA genes. Genes were

grouped into percentiles according to their expression level and the average expression level

and read density is shown for each percentile.
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Figure B.4: ChIP fragment and GRO-seq read densities near transcription start sites of quantifi-

able protein-coding and linc-RNA genes.
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Figure B.5: Genome-wide properties of the probed molecular phenotypes. Correlation of

molecular marks at promoters (transcription start sites +/- 2.5 kb) of protein-coding and linc-

RNA genes A and putative enhancers defined by DNaseI hypersensitivity sites B based on the

trio metasample peaks. Plotted values are Spearman correlation coefficients based on z-score

transformed read densities for ChIP, mRNA and nascent transcription (GRO-seq) assays.

Figure B.6: Summary of allele-specific (AS) effects discovered for each assay in the three sets

of samples (CEU trio, YRI trio, unrelated eight CEU individuals). Accessible sites refer to het-

erozygous SNP sites that fulfill the general quality requirements of the AS analysis, whereas

AS sites refer to significant AS effects detected. Numbers represent the mean of the samples in

question. Ordering of assays by decreasing AS proportion in the CEU trio.

Figure S6. Summary of allele-specific (AS) effects discovered for each assay in the three sets of samples (CEU trio, YRI trio, unrelated eight 
CEU individuals). Accessible sites refer to heterozygous SNP sites that fulfill the general quality requirements of the AS analysis, whereas AS 
sites refer to significant AS effects detected. Numbers represent the mean of the samples in question. Ordering of assays by decreasing AS 
proportion in the CEU trio. 

 CEU trio YRI trio Unrelated eight individuals (CEU) 
ASSAY Accessible AS sites Proportion AS Accessible AS sites Proportion AS Accessible AS sites Proportion AS 
H3K27me3 301 186 0.62 2911 957 0.33 22 3 0.16 
POL2RB-narrow 1514 568 0.38 2630 935 0.36 2348 167 0.07 
POL2RB-broad 7172 2371 0.33 12064 3497 0.29 9254 525 0.06 
GRO-fwd 2689 754 0.28 NA NA NA NA NA NA 
GRO-rev 2492 705 0.28 NA NA NA NA NA NA 
MYC 1005 147 0.15 115 5 0.04 NA NA NA 
PU.1 1510 160 0.11 917 83 0.09 930 154 0.17 
CTCF 3315 335 0.1 4226 415 0.1 NA NA NA 
H3K27ac 20381 1868 0.09 20600 2852 0.14 17545 1639 0.09 
H4K20me1 426 36 0.08 359 34 0.1 NA NA NA 
H3K4me1 15209 1103 0.07 30541 4486 0.15 179001 3417 0.19 
RNA-seq 4963 258 0.05 7869 456 0.06 4061 190 0.05 
TFIIB 249 12 0.05 75 7 0.09 136 19 0.14 
H3K4me3 5194 197 0.04 8389 420 0.05 7594 1177 0.16 
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Figure B.7: Consistency of allele-specific (AS) effects within molecular phenotypes. A Consis-

tency of AS effects within ChIP-seq peaks in the two trios and eight unrelated individuals. Data

pooled across individuals. All peaks with at least two significant AS sites (P<=0.01) tested for

the consistency of the allelic ratios. B,C Consistency of allele-specific (AS) effects over distance.

B The consistency of the paternal allele ratio for significant (P<=0.01) AS sites within peaks

is plotted against the quartile of peak length. Data pooled from the two trios per assay. As-

says with fixed peak size are not included. The decrease in consistency as the domain length

increases suggests that broad peaks may be more complex than their single peak definition

implies. C Probability of allelic consistency between two AS sites within transcriptional and

histone mark assays given the genomic distance between the SNPs. All pairs of SNPs within

the regulatory landscape around gene regions (+/- 50 kb) were considered. Only assays show-

ing significant correlation (logistic regression P <0.05) with distance are shown.

Figure S7. Consistency of allele-specific (AS) effects within molecular phenotypes. (A) 
Consistency of AS effects within ChIP-seq peaks in the two trios and eight unrelated individuals. 
Data pooled across individuals. All peaks with at least two significant AS sites (P<=0.01) tested 
for the consistency of the allelic ratios. (B,C) Consistency of allele-specific (AS) effects over 
distance. (B) The consistency of the paternal allele ratio for significant (P<=0.01) AS sites within 
peaks is plotted against the quartile of peak length. Data pooled from the two trios per assay. 
Assays with fixed peak size are not included. The decrease in consistency as the domain length 
increases suggests that broad peaks may be more complex than their single peak definition 
implies. (C) Probability of allelic consistency between two AS sites within transcriptional and 
histone mark assays given the genomic distance between the SNPs. All pairs of SNPs within the 
regulatory landscape around gene regions (+/- 50 kb) were considered. Only assays showing 
significant correlation (logistic regression P < 0.05) with distance are shown.! 
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Table B.1: Sequencing statistics for all assays (ChIP-seq and RNA-seq) in the trio samplesTable S1a: Sequencing statistics for all assays (ChIP-seq and RNA-seq) in the trio samples

Sample Population Sex Assay Antibody Machine Total reads Usable reads (MAPQ>=10) Proportion of usable reads
12878 CEU F H3K27ac Abcam ab4729 HiSeq2000 70359451 62324767 0.89
12891 CEU M H3K27ac Abcam ab4729 HiSeq2000 69108226 61426566 0.89
12892 CEU F H3K27ac Abcam ab4729 HiSeq2000 43053435 35948291 0.83
19238 YRI F H3K27ac Abcam ab4729 HiSeq2000 65470863 58583367 0.89
19239 YRI M H3K27ac Abcam ab4729 HiSeq2000 44989382 38537159 0.86
19240 YRI F H3K27ac Abcam ab4729 HiSeq2000 55112705 46932699 0.85
12878 CEU F H3K27me3 Millipore 17-622 HiSeq2000 172250298 106184985 0.62
12891 CEU M H3K27me3 Millipore 17-622 HiSeq2000 192263464 132431573 0.69
12892 CEU F H3K27me3 Millipore 17-622 HiSeq2000 217077781 113168651 0.52
19238 YRI F H3K27me3 Millipore 17-622 HiSeq2000 176973882 109249688 0.62
19239 YRI M H3K27me3 Millipore 17-622 HiSeq2000 159910142 103260822 0.65
19240 YRI F H3K27me3 Millipore 17-622 HiSeq2000 178851100 114117313 0.64
12878 CEU F H3K4me1 Abcam ab8895 HiSeq2000 238094924 199080946 0.84
12891 CEU M H3K4me1 Abcam ab8895 HiSeq2000 288209714 145366322 0.50
12892 CEU F H3K4me1 Abcam ab8895 HiSeq2000 292385011 118041373 0.40
19238 YRI F H3K4me1 Abcam ab8895 HiSeq2000 241109952 183615927 0.76
19239 YRI M H3K4me1 Abcam ab8895 HiSeq2000 235039807 185429357 0.79
19240 YRI F H3K4me1 Abcam ab8895 HiSeq2000 243792885 178829565 0.73
12878 CEU F H3K4me3 Millipore 17-614 GAII 38726870 24014808 0.62
12891 CEU M H3K4me3 Millipore 17-614 GAII 34841621 24698213 0.71
12892 CEU F H3K4me3 Millipore 17-614 GAII 40855708 28134136 0.69
19238 YRI F H3K4me3 Millipore 17-614 GAII 43293287 29959829 0.69
19239 YRI M H3K4me3 Millipore 17-614 GAII 42334884 31859790 0.75
19240 YRI F H3K4me3 Millipore 17-614 GAII 40548507 28168933 0.69
12878 CEU F H4K20me1 Abcam ab9051 GAII 39127290 26947519 0.69
12891 CEU M H4K20me1 Abcam ab9051 GAII 35353436 22113206 0.63
12892 CEU F H4K20me1 Abcam ab9051 GAII 29626106 19058044 0.64
19238 YRI F H4K20me1 Abcam ab9051 GAII 32263490 17900033 0.55
19239 YRI M H4K20me1 Abcam ab9051 GAII 33817709 20826482 0.62
19240 YRI F H4K20me1 Abcam ab9051 GAII 32541522 20029453 0.62
12878 CEU F MYC Santa Cruz sc-764 HiSeq2000 184723869 135594208 0.73
12891 CEU M MYC Santa Cruz sc-764 HiSeq2000 198511126 148086735 0.75
12892 CEU F MYC Santa Cruz sc-764 HiSeq2000 193600103 148881581 0.77
19238 YRI F MYC Santa Cruz sc-764 GAII 50756699 30109398 0.59
19239 YRI M MYC Santa Cruz sc-764 GAII 43367433 29083069 0.67
19240 YRI F MYC Santa Cruz sc-764 GAII 47055403 32494416 0.69
12878 CEU F RNA polymerase II (RPB2 subunit) Santa Cruz sc-67318 (POLR2B) HiSeq2000 178619999 127143929 0.71
12891 CEU M RNA polymerase II (RPB2 subunit) Santa Cruz sc-67318 (POLR2B) HiSeq2000 219047965 157243417 0.72
12892 CEU F RNA polymerase II (RPB2 subunit) Santa Cruz sc-67318 (POLR2B) HiSeq2000 240620717 179623084 0.75
19238 YRI F RNA polymerase II (RPB2 subunit) Santa Cruz sc-67318 (POLR2B) HiSeq2000 252527744 184041222 0.73
19239 YRI M RNA polymerase II (RPB2 subunit) Santa Cruz sc-67318 (POLR2B) HiSeq2000 235003947 174024139 0.74
19240 YRI F RNA polymerase II (RPB2 subunit) Santa Cruz sc-67318 (POLR2B) HiSeq2000 235656031 175312668 0.74
12878 CEU F PU.1 Santa Cruz sc-22805 GAII 45267160 32823189 0.73
12891 CEU M PU.1 Santa Cruz sc-22805 GAII 48394603 32906877 0.68
12892 CEU F PU.1 Santa Cruz sc-22805 GAII 48478749 34670209 0.72
19238 YRI F PU.1 Santa Cruz sc-22805 GAII 47955221 31216271 0.65
19239 YRI M PU.1 Santa Cruz sc-22805 GAII 45283181 30253430 0.67
19240 YRI F PU.1 Santa Cruz sc-22805 GAII 50289589 34103449 0.68
12878 CEU F TFIIB rabbit CS396* GAII 43250933 31111075 0.72
12891 CEU M TFIIB rabbit CS396* GAII 41341562 29937287 0.72
12892 CEU F TFIIB rabbit CS396* GAII 41859901 29976049 0.72
19238 YRI F TFIIB rabbit CS396* GAII 34146893 23302508 0.68
19239 YRI M TFIIB rabbit CS396* GAII 37190334 24966491 0.67
19240 YRI F TFIIB rabbit CS396* GAII 37680245 25954074 0.69
12878 CEU F CTCF Millipore 07-729** GAII 46021263 25977690 0.56
12891 CEU M CTCF Millipore 07-729** GAII 30244488 22854831 0.76
12892 CEU F CTCF Millipore 07-729** GAII 44885150 34535784 0.77
19238 YRI F CTCF Millipore 07-729** GAII 32377472 26150702 0.81
19239 YRI M CTCF Millipore 07-729** GAII 26628402 20306107 0.76
19240 YRI F CTCF Millipore 07-729** GAII 33399839 26516763 0.79
12878 CEU F RNA-seq NA HiSeq2000 37558398 24142888 0.643
12891 CEU M RNA-seq NA HiSeq2000 33455610 21651820 0.647
12892 CEU F RNA-seq NA HiSeq2000 40134722 25524620 0.636
19238 YRI F RNA-seq NA HiSeq2000 43166926 27595249 0.639
19239 YRI M RNA-seq NA HiSeq2000 37622042 23961104 0.637
19240 YRI F RNA-seq NA HiSeq2000 48889864 31420641 0.643

* See Schramm et al. 2000 for details.
** Data produced by McDaniell et al. 2010
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Table B.2: Sequencing statistics for all assays (ChIP-seq and RNA-seq) in the eight unrelated

individuals.Table S1b: Sequencing statistics for all assays (ChIP-seq and RNA-seq) in the eight unrelated individuals.

Sample Population Sex Assay Antibody Total reads Usable reads (MAPQ>=10) Proportion of usable reads
11830 CEU F RNA polymerase II (RPB2 subunit) Santa Cruz sc-67318 (POLR2B) 90274607 69375140 0.77
11831 CEU M RNA polymerase II (RPB2 subunit) Santa Cruz sc-67318 (POLR2B) 74449496 56297515 0.76
11840 CEU F RNA polymerase II (RPB2 subunit) Santa Cruz sc-67318 (POLR2B) 76235942 57469901 0.75
11881 CEU M RNA polymerase II (RPB2 subunit) Santa Cruz sc-67318 (POLR2B) 62384167 48330942 0.78
11894 CEU F RNA polymerase II (RPB2 subunit) Santa Cruz sc-67318 (POLR2B) 58461111 47037691 0.81
12043 CEU M RNA polymerase II (RPB2 subunit) Santa Cruz sc-67318 (POLR2B) 64792841 44664006 0.69
12776 CEU F RNA polymerase II (RPB2 subunit) Santa Cruz sc-67318 (POLR2B) 64591102 39909878 0.62
12813 CEU F RNA polymerase II (RPB2 subunit) Santa Cruz sc-67318 (POLR2B) 91975825 59932875 0.65
11830 CEU F TFIIB rabbit CS396* 47140228 35635483 0.76
11831 CEU M TFIIB rabbit CS396* 52000647 24007661 0.46
11840 CEU F TFIIB rabbit CS396* 51698503 34471644 0.67
11881 CEU M TFIIB rabbit CS396* 43830419 33954992 0.78
11894 CEU F TFIIB rabbit CS396* 69784956 48965638 0.70
12043 CEU M TFIIB rabbit CS396* 42641208 31461390 0.74
12776 CEU F TFIIB rabbit CS396* 48553552 36844244 0.76
12813 CEU F TFIIB rabbit CS396* 50931075 38214596 0.75
11830 CEU F H3K27me3 Millipore 17-622 46438781 32852149 0.71
11831 CEU M H3K27me3 Millipore 17-622 57232570 32471588 0.57
11840 CEU F H3K27me3 Millipore 17-622 NA NA NA
11881 CEU M H3K27me3 Millipore 17-622 44670196 32443401 0.73
11894 CEU F H3K27me3 Millipore 17-622 56936419 30236924 0.53
12043 CEU M H3K27me3 Millipore 17-622 80945483 62434159 0.77
12776 CEU F H3K27me3 Millipore 17-622 75971667 59266493 0.78
12813 CEU F H3K27me3 Millipore 17-622 61877423 42302148 0.68
11830 CEU F H3K4me1 Abcam ab8895 161172573 128142508 0.80
11831 CEU M H3K4me1 Abcam ab8895 167212603 132761272 0.79
11840 CEU F H3K4me1 Abcam ab8895 177891799 139884277 0.79
11881 CEU M H3K4me1 Abcam ab8895 184522820 143159940 0.78
11894 CEU F H3K4me1 Abcam ab8895 145483060 117182105 0.81
12043 CEU M H3K4me1 Abcam ab8895 159590525 130881735 0.82
12776 CEU F H3K4me1 Abcam ab8895 149312151 121306615 0.81
12813 CEU F H3K4me1 Abcam ab8895 234604760 178669798 0.76
11830 CEU F H3K4me3 Millipore 17-614 58094045 46238912 0.80
11831 CEU M H3K4me3 Millipore 17-614 57455187 46252256 0.81
11840 CEU F H3K4me3 Millipore 17-614 74779896 59262845 0.79
11881 CEU M H3K4me3 Millipore 17-614 50453122 42122669 0.84
11894 CEU F H3K4me3 Millipore 17-614 75298221 62099764 0.83
12043 CEU M H3K4me3 Millipore 17-614 46299638 39486039 0.85
12776 CEU F H3K4me3 Millipore 17-614 73488265 60374223 0.82
12813 CEU F H3K4me3 Millipore 17-614 39792419 33345787 0.84
11830 CEU F PU.1 Santa Cruz sc-22805 53432856 16097627 0.30
11831 CEU M PU.1 Santa Cruz sc-22805 58703083 22347410 0.38
11840 CEU F PU.1 Santa Cruz sc-22805 43980556 32357862 0.74
11881 CEU M PU.1 Santa Cruz sc-22805 60927758 46474872 0.76
11894 CEU F PU.1 Santa Cruz sc-22805 66361339 48088769 0.73
12043 CEU M PU.1 Santa Cruz sc-22805 55867108 43040806 0.77
12776 CEU F PU.1 Santa Cruz sc-22805 67022786 46230170 0.69
12813 CEU F PU.1 Santa Cruz sc-22805 51062972 36225771 0.71
11830 CEU F H3K27ac Abcam ab4729 59740687 52701922 0.88
11831 CEU M H3K27ac Abcam ab4729 48785055 40724424 0.84
11840 CEU F H3K27ac Abcam ab4729 63439157 52502660 0.83
11881 CEU M H3K27ac Abcam ab4729 52619082 44519445 0.85
11894 CEU F H3K27ac Abcam ab4729 54954122 46111359 0.84
12043 CEU M H3K27ac Abcam ab4729 60157660 52354331 0.87
12776 CEU F H3K27ac Abcam ab4729 60930972 51858110 0.85
12813 CEU F H3K27ac Abcam ab4729 73452846 62992939 0.86
11830 CEU F RNA-seq NA 35203512 21054217 0.60
11831 CEU M RNA-seq NA 31872450 20253224 0.64
11840 CEU F RNA-seq NA 38674322 19803844 0.51
11881 CEU M RNA-seq NA 29541316 18842529 0.64
11894 CEU F RNA-seq NA 28380900 17952424 0.63
12043 CEU M RNA-seq NA 34284620 21200758 0.62
12776 CEU F RNA-seq NA 40541082 25202817 0.62
12813 CEU F RNA-seq NA 26419600 16889023 0.64

* See Schramm et al. 2000 for details.
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Table B.3: Filtering of low complexity sites for allele-specific analysis in the CEU and YRI trios.!"#$%&'(")&Filtering of low complexity sites for allele-specific analysis in the CEU and YRI trios.
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12878 CTCF 3983 3683 92.5%
12891 CTCF 3247 2812 86.6%
12892 CTCF 3999 3448 86.2%
19238 CTCF 4854 4236 87.3%
19239 CTCF 4095 3737 91.3%
19240 CTCF 5334 4701 88.1%
12878 H3K27ac 27344 25165 92.0%
12891 H3K27ac 27251 24387 89.5%
12892 H3K27ac 15860 11587 73.1%
19238 H3K27ac 31058 22376 72.0%
19239 H3K27ac 22780 17058 74.9%
19240 H3K27ac 28944 22363 77.3%
!"#$# %&'"$()& *++* "#! ,-./
!"#+! %&'"$()& "**0" *"" !-$/
!"#+" %&'"$()& "!*#+ !+. 0-+/
19238 H3K27me3 4823 2625 54.4%
19239 H3K27me3 9816 3733 38.0%
19240 H3K27me3 3795 2372 62.5%
12878 H3K4me1 34727 31929 91.9%
12891 H3K4me1 7237 6693 92.5%
12892 H3K4me1 7239 7001 96.7%
19238 H3K4me1 31618 27137 85.8%
19239 H3K4me1 35898 30828 85.9%
19240 H3K4me1 35377 33654 95.1%
12878 H3K4me3 6606 6300 95.4%
12891 H3K4me3 4540 4322 95.2%
12892 H3K4me3 5350 4956 92.6%
19238 H3K4me3 8189 7753 94.7%
19239 H3K4me3 8211 7723 94.1%
19240 H3K4me3 10348 9688 93.6%
12878 H4K20me1 1798 1102 61.3%
12891 H4K20me1 538 133 24.7%
12892 H4K20me1 952 40 4.2%
19238 H4K20me1 606 311 51.3%
19239 H4K20me1 2427 704 29.0%
19240 H4K20me1 78 60 76.9%
12878 MYC 1912 1667 87.2%
12891 MYC 596 492 82.6%
12892 MYC 991 854 86.2%
19238 MYC 287 271 94.4%
19239 MYC 34 33 97.1%
19240 MYC 46 39 84.8%
12878 POLR2B-broad 13012 5086 39.1%
12891 POLR2B-broad 12286 4116 33.5%
12892 POLR2B-broad 16417 12310 75.0%
19238 POLR2B-broad 16930 12020 71.0%
19239 POLR2B-broad 22408 4174 18.6%
19240 POLR2B-broad 23579 19994 84.8%
12878 POLR2B-narrow 2091 1391 66.5%
12891 POLR2B-narrow 2082 1274 61.2%
12892 POLR2B-narrow 2648 1873 70.7%
19238 POLR2B-narrow 3489 2648 75.9%
19239 POLR2B-narrow 3659 1748 47.8%
19240 POLR2B-narrow 4446 3492 78.5%
12878 PU.1 1667 1508 90.5%
12891 PU.1 1453 1327 91.3%
12892 PU.1 1967 1691 86.0%
19238 PU.1 855 774 90.5%
19239 PU.1 729 630 86.4%
19240 PU.1 1536 1343 87.4%
12878 TFIIB 380 334 87.9%
12891 TFIIB 246 216 87.8%
12892 TFIIB 235 194 82.6%
19238 TFIIB 126 96 76.2%
19239 TFIIB 97 72 74.2%
19240 TFIIB 59 54 91.5%
12878 GRO-seq (fwd) 4014 2643 .,-#/
12891 GRO-seq (fwd) 5142 3970 $$-"/
12892 GRO-seq (fwd) 4261 1406 &&-0/
12878 GRO-seq (rev) 3551 2373 ..-#/
12891 GRO-seq (rev) 4802 3717 $$-*/
12892 GRO-seq (rev) 3898 1265 &"-,/
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Table B.4: Filtering of low complexity sites for allele-specific analysis in the unrelated eight

CEU individuals.
!"#$%&'(#)&Filtering of low complexity sites for allele-specific analysis in the unrelated eight CEU individuals
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11830 H3K27ac 20928 16454 79%
11831 H3K27ac 18498 16236 88%
11840 H3K27ac 21261 19588 92%
11881 H3K27ac 19193 16388 85%
11894 H3K27ac 21085 18205 86%
12043 H3K27ac 20907 18200 87%
12776 H3K27ac 23515 21140 90%
12813 H3K27ac 26055 14141 54%
11830 H3K4me1 1539 1417 92%
11831 H3K4me1 5432 1785 33%
11840 H3K4me1 3642 2680 74%
11881 H3K4me1 13566 6521 48%
11894 H3K4me1 6990 1521 22%
12043 H3K4me1 7954 5994 75%
12776 H3K4me1 21109 51 0.2%
12813 H3K4me1 31708 23161 73%
11830 H3K4me3 9922 7739 78%
11831 H3K4me3 11178 8560 77%
11840 H3K4me3 10855 9417 87%
11881 H3K4me3 10943 9573 87%
11894 H3K4me3 12636 10786 85%
12043 H3K4me3 10557 8272 78%
12776 H3K4me3 11766 3323 28%
12813 H3K4me3 8538 3076 36%
11830 POLR2B-broad 16750 13605 81%
11831 POLR2B-broad 12190 10764 88%
11840 POLR2B-broad 9782 9119 93%
11881 POLR2B-broad 9596 8844 92%
11894 POLR2B-broad 8076 7520 93%
12043 POLR2B-broad 11009 9207 84%
12776 POLR2B-broad 7647 6587 86%
12813 POLR2B-broad 12643 8377 66%
11830 POLR2B-narrow 2990 2529 85%
11831 POLR2B-narrow 2812 2421 86%
11840 POLR2B-narrow 2805 2537 90%
11881 POLR2B-narrow 2470 2201 89%
11894 POLR2B-narrow 2367 2181 92%
12043 POLR2B-narrow 2885 2451 85%
12776 POLR2B-narrow 2485 2189 88%
12813 POLR2B-narrow 2923 2265 77%
11830 PU.1 878 335 38%
11831 PU.1 831 669 81%
11840 PU.1 1206 944 78%
11881 PU.1 1775 783 44%
11894 PU.1 1575 1290 82%
12043 PU.1 1730 1424 82%
12776 PU.1 1467 1270 87%
12813 PU.1 1321 712 54%
11830 TFIIB 495 46 9%
11831 TFIIB 290 4 1%
11840 TFIIB 582 116 20%
11881 TFIIB 208 66 32%
11894 TFIIB 617 345 56%
12043 TFIIB 316 138 44%
12776 TFIIB 483 341 71%
12813 TFIIB 25 25 100%
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Figure B.8: Distance of allele-specific SNP sites from the closest annotated transcription start

site. All accessible heterozygous sites per assay are plotted.
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Figure B.9: All accessible heterozygous SNPs for transcription factors (PU.1, MYC, CTCF,

TFIIB) and histone modifications (H3K4me1, H3K4me3, H3K27ac, H4K20me1, H3K27me3)

overlapping known eQTL SNPs and matched non-eQTL SNPs in the 1000 Genomes Project

phase1 European and African populations. Transcription factors show a slight enrichment of

allelic bias at eQTLs compared to non-eQTLs from the African population (Mann-Whitney U

test P = 0.016 between allele ratios for eQTLs and null) and a similar slight trend was observed

in the European population. No enrichment was observed for hPTMs. Of the individual as-

says, CTCF contributes most of the overlapping TF sites and, if excluded, the enrichment at

eQTLs does not remain significant (P = 0.85). Of the individual hPTMs, H3K4me1 shows a

minor enrichment at African eQTLs(P = 0.01). Based on a large-scale sequencing-based eQTL

study (7), the best eQTL variant per exon was also the causal variant for the observed expres-

sion change in 55% of EUR eQTLs and 74% of YRI eQTLs (same set of eQTLs was used for

the current analysis). A more conservative estimate was 34% and 41%, respectively. In line

with this, the observed enrichment of allelic bias at eQTLs for TFs in the current study is only

significant at African eQTLs.
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Figure B.10: De novo derived motifs from meta-sample PU.1, MYC, and TFIIB ChIP-seq peaks.

To analyze the mechanism underlying allele-specific binding events we first derived de novo

binding motifs for PU.1 and MYC and found that the inferred motifs were identical to the ones

previously published [168]. De novo motif search was also conducted for TFIIB, which does not

bind DNA directly on its own. Multiple known promoter motifs were discovered, consistent

with the well-characterized association of TFIIB with POL2RB and the transcription initiation

complex [169].
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Figure S11. Genome-wide analysis of allele-specific (AS) PU.1 binding. (A) Enrichment and 
classification (inlet) of significant AS PU.1 SNPs with reference to PU.1 binding site location 
within peaks. Data from trio individuals combined (n = 6). (B). ASB binomial test p-value 
distribution for significant B-SNPs. (C). PU.1 motif score changers are predictive of AS PU.1 
binding. Ratio between paternal and maternal PU.1 PWM scores (x-axis) and proportion of reads 
mapping to the paternal allele (y-axis) (red, significant sites; grey, non-significant sites). (D) 
Peaks with multiple homotypic PU.1 motifs show reduced AS binding activity. Peaks were split 
into two groups, i.e., peaks with one and two PU.1 motifs, respectively, and the proportion of 
significant AS sites per group was calculated (y-axis). Significance was determined using the 
Mann-Whitney-U test.
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Figure B.11: Genome-wide analysis of allele-specific (AS) PU.1 binding. A Enrichment and

classification (inlet) of significant AS PU.1 SNPs with reference to PU.1 binding site location

within peaks. Data from trio individuals combined (n = 6). B ASB binomial test p-value distri-

bution for significant B-SNPs. C PU.1 motif score changers are predictive of AS PU.1 binding.

Ratio between paternal and maternal PU.1 PWM scores (x-axis) and proportion of reads map-

ping to the paternal allele (y-axis) (red, significant sites; grey, non-significant sites). D Peaks

with multiple homotypic PU.1 motifs show reduced AS binding activity. Peaks were split into

two groups, i.e., peaks with one and two PU.1 motifs, respectively, and the proportion of sig-

nificant AS sites per group was calculated (y-axis). Significance was determined using the

Mann-Whitney-U test.
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Figure S12. Genome-wide analysis of allele-specific (AS) MYC binding. (A) Enrichment and 
classification (inlet) of significant AS MYC SNPs with reference to MYC binding site location 
within peaks. Data from CEU trio combined (n = 3). (B). ASB binomial test p-value distribution 
for significant B-SNPs. (C). MYC motif score changers are predictive of AS MYC binding. Ratio 
between paternal and maternal MYC PWM scores (x-axis) and proportion of reads mapping to 
the paternal allele (y-axis) (red, significant sites; grey, non-significant sites). (D) B-SNPs with 
high impact on the MYC motif show more frequent signals of allele-specific binding. All SNPs 
located within MYC binding sites were grouped into quartiles (x-axis) and the fraction of 
significant B-SNPs per group was calculated (y-axis).
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Figure B.12: Genome-wide analysis of allele-specific (AS) MYC binding. A Enrichment and

classification (inlet) of significant AS MYC SNPs with reference to MYC binding site location

within peaks. Data from CEU trio combined (n = 3). B. ASB binomial test p-value distribu-

tion for significant B-SNPs. C MYC motif score changers are predictive of AS MYC binding.

Ratio between paternal and maternal MYC PWM scores (x-axis) and proportion of reads map-

ping to the paternal allele (y-axis) (red, significant sites; grey, non-significant sites). D B-SNPs

with high impact on the MYC motif show more frequent signals of allele-specific binding. All

SNPs located within MYC binding sites were grouped into quartiles (x-axis) and the fraction of

significant B-SNPs per group was calculated (y-axis).
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Figure B.13: Allele-specific binding cooperativity at PU.1-binding sites. A Covariable TF mo-

tifs within PU.1 peaks are predictive of allele-specific PU.1 binding. All accessible 35 ChIP-seq-

derived TF motifs [168] were tested for allele-specific (AS) association between TF PWM score

covariance and AS PU.1 binding activity. Data from CEU and YRI trios was combined and

only significant PU.1 AS binding sites were considered. Tested motifs were sorted according to

Pearson correlation P-value (left to right) and only significant motifs are shown (5% false dis-

covery rate). The consensus PU.1 motif served as a positive control and ranked first among all

tested motifs. The header of each panel indicates the motif, number of tested SNPs, and Pear-

son correlation test P-value. Of note, in some instances the impact of variants on co-operative

motifs might be buffered due to heterotypic clusters of TFBS. B Overlap between predicted TF

binding sites and PU.1 binding sites for significant covariant motifs. Binding sites discovered

using the allele-specific binding cooperativity test pipeline were often shared between PU.1

and co- associated TFs indicating binding site ambiguity at significant PU.1 SNP sites. C Func-

tional validation of predicted covariance between SNPs in NFKB1 motifs and PU.1 binding.

All variable PU.1 peaks with unaffected (or not predicted) PU.1 motifs and an unambiguously

disrupted NFKB1 motif were inspected for NFKB1 binding in the CEU trio. NFKB1 ChIP-seq

datasets were obtained from Kasowski et al. 2010 [52].
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Figure B.14: Distribution of pairwise correlation coefficients of the union of significant allele-

specific sites (i.e. significant in either one or both individuals) between all unrelated CEU in-

dividuals (n = 10) for each assay. Correlation of the reference allele is calculated for each com-

parison using Spearman’s rank. Correlation is low for hPTMs but relatively high for PU.1 and

mRNA, further supporting stronger genetic influence on TF binding and gene expression than

chromatin marks.
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Figure S15. Distribution of pairwise correlation coefficients of shared significant allele-specific 
sites between the trio parents (n = 4) for each assay. The correlation of the reference allele ratio at 
shared significant AS sites was calculated for each comparison using Spearman rank correlation. 
Left: All comparisons among the four parents. Right: Comparisons within each trio only.
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Figure B.15: Distribution of pairwise correlation coefficients of shared significant allele-specific

sites between the trio parents (n = 4) for each assay. The correlation of the reference allele

ratio at shared significant AS sites was calculated for each comparison using Spearman rank

correlation. Left: All comparisons among the four parents. Right: Comparisons within each

trio only.

 

 

Figure S16. Pairwise correlation of allele ratios in all unrelated individuals at heterozygous SNP 
sites with a shared significant allele-specific effect (P <= 0.01) in any two individuals. 
Correlation of the reference allele ratios at sites pooled across pairs of individuals (Spearman rank 
correlation) (A) and individual pairwise examples of POLR2B-narrow (B) and H3K27ac (C). 
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Figure B.16: Pairwise correlation of allele ratios in all unrelated individuals at heterozygous

SNP sites with a shared significant allele-specific effect (P <= 0.01) in any two individuals.

Correlation of the reference allele ratios at sites pooled across pairs of individuals (Spearman

rank correlation) A and individual pairwise examples of POLR2B-narrow B and H3K27ac C.
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Figure S17. Extension 1 of the parental transmission analysis: Transmission of allelic effects at 
SNP sites where child has a significant (P <= 0.01) AS effect, one parent is homozygous, and the 
other parent heterozygous. Results are shown for all accessible assays.
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Figure B.17: Extension 1 of the parental transmission analysis: Transmission of allelic effects at

SNP sites where child has a significant (P <= 0.01) AS effect, one parent is homozygous, and

the other parent heterozygous. Results are shown for all accessible assays.

 

 

Figure S18. Standard transmission analysis results for all accessible assays at putative enhancer 
loci allowing for intronic loci. GRO-seq signal is plotted separately for each strand (filled and 
empty points, forward and reverse strand, respectively), but rho and P-values represent both 
strands combined. mRNA-seq was not considered at enhancers.
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Figure B.18: Standard transmission analysis results for all accessible assays at putative en-

hancer loci allowing for intronic loci. GRO-seq signal is plotted separately for each strand

(filled and empty points, forward and reverse strand, respectively), but rho and P-values rep-

resent both strands combined. mRNA-seq was not considered at enhancers.

133



 

 

Figure S19. Standard transmission analysis results for all accessible assays at promoters 
(transcription start site +/- 2.5 kb). GRO-seq signal is plotted separately for each strand (filled and 
empty points, forward and reverse strand, respectively), but rho and P-values represent both 
strands combined.
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Figure B.19: Standard transmission analysis results for all accessible assays at promoters (tran-

scription start site +/- 2.5 kb). GRO-seq signal is plotted separately for each strand (filled and

empty points, forward and reverse strand, respectively), but rho and P-values represent both

strands combined.

 

 

Figure S20. Extension 1 transmission analysis results for all accessible histone modifications at 
known eQTLs and dsQTLs (+/- 1 kb). Analysis of standard transmission at eQTLs could not be 
performed due to low number of accessible sites.
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Figure B.20: Extension 1 transmission analysis results for all accessible histone modifications at

known eQTLs and dsQTLs (+/- 1 kb). Analysis of standard transmission at eQTLs could not

be performed due to low number of accessible sites.
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Figure S21. Allelic coordination (AC) (A) and haplotypic coordination (HC) (B) at promoters 
(TSS +/- 2.5 kb) (D, E) and putative enhancers (F, G). A minimum of 20 SNP pairs per 
comparison was required to perform an AC/HC test. Significant correlation coefficients (P < 
0.05, Spearman rank) are indicated with colored lines and non-significant correlations with gray. 
Missing lines indicate lack of sufficient data points for analysis. An example of significant AC 
between H3K27ac and H3K4me3 at promoters is provided in (C). Sites pooled from the two 
trios.
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Figure B.21: Allelic coordination (AC) A and haplotypic coordination (HC) B at promoters

(TSS +/- 2.5 kb) D,E and putative enhancers F,G. A minimum of 20 SNP pairs per comparison

was required to perform an AC/HC test. Significant correlation coefficients (P <0.05, Spear-

man rank) are indicated with colored lines and non-significant correlations with gray. Missing

lines indicate lack of sufficient data points for analysis. An example of significant AC between

H3K27ac and H3K4me3 at promoters is provided in C. Sites pooled from the two trios.
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Figure S22. Analysis of haplotypic consistency (HC) and genomic distance (log(abs(bp)) 
between all pairs of assays around and within gene regions (+/- 50 kb). Significantly correlated 
assay pairs are presented (logistic regression P < 0.05). Grey areas show 95% confidence bands.
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Figure B.22: Analysis of haplotypic consistency (HC) and genomic distance (log10 |bp|) between

all pairs of assays around and within gene regions (+/- 50 kb). Significantly correlated assay

pairs are presented (logistic regression P <0.05). Grey areas show 95% confidence bands.

Figure B.23: SNP variants available for allele-specific analysis.Figure S23. SNP variants available for allele-specific analysis. 

Sample ID Population Relation Sex 1K dataset HET SNPs Phased HETs % Phased 
GM12878 CEU child F Pilot2 1702593 1410467 82.8 
GM12891 CEU father M Pilot2 1630518 1338412 82.1 
GM12892 CEU mother F Pilot2 1667890 1375784 82.5 
GM19238 YRI mother F Pilot2 2065238 1720785 83.3 
GM19239 YRI father M Pilot2 2111292 1766838 83.7 
GM19240 YRI child F Pilot2 2226055 1881591 84.5 
 GM11830 CEU unrelated F Pilot1 2067098 2035359 98.5 
GM11831 CEU unrelated M Pilot1 2009894 1991683 99.1 
GM11840 CEU unrelated F Pilot1 2025276 1979175 97.7 
GM11881 CEU unrelated M Pilot1 1952805 1943129 99.5 
GM11894 CEU unrelated F Pilot1 2078431 2041371 98.2 
GM12043 CEU unrelated M Pilot1 1966198 1951877 99.3 
GM12776 CEU unrelated F Pilot1 2062872 2012149 97.5 
GM12813 CEU unrelated F Pilot1 2019247 1972813 97.7 
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Figure B.24: Correlation of peak quantifications among different individuals and biological

replicates of A H3K4me3 and B H3K27me3. Biological replicates (independent ChIP on the

same cell preparation) are indicated in green. Less variation was observed between indepen-

dent ChIP experiments than between any two unrelated individuals, suggesting low levels of

technical variability.
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Figure S25. Distribution of total number of uniquely mapping reads (MAPQ >= 10) per sample 
(A, C) and assay (B, D) for the two trios and the eight unrelated individuals. Dashed line is at 20 
million reads.
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Figure B.25: Distribution of total number of uniquely mapping reads (MAPQ >= 10) per sample

A,C and assay B,D for the two trios and the eight unrelated individuals. Dashed line is at 20

million reads.
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A

B

Figure B.26: Peak size distribution of A all ChIP-seq assays and B assays with variable peak

lengths only. For DNA binding factors a fixed peak size of 200 bp was used. POLR2B peaks

were called with both fixed and variable peak length (POLR2B-narrow and POLR2B-broad,

respectively).

Figure B.27: Summary statistics of peaks called from the ChIP-seq trio metasamples.
Figure S27. Summary statistics of peaks called from the ChIP-seq trio metasamples. 

 

 

 H3K27me3 H4K20me1 POLR2B 
broad H3K27ac H4K4me1 H3K4me3 CTCF MYC PU.1 POLR2B 

narrow TFIIB 

Mean length (bp) 58038.56 23230.78 8261.54 4219.56 4105.01 3283.32 200 200 200 200 200 
Median length (bp) 22838 9350 3013 2575.5 2291 2592 200 200 200 200 200 
Standard deviation (bp) 93974.3 37062.79 17082.74 5084.17 5543.65 2465.07 0.03 0.19 0 0 0 
Number of peaks 21190 22128 36786 54840 90525 21167 145554 28014 57832 57241 18461 
Minimal length (bp) 601 275 131 1000 1000 1000 188 168 200 200 200 
Maximal length (bp) 1492283 610775 441208 100294 202718 26104 200 200 200 200 200 
Genome covered (%) 39.73 16.61 9.82 7.47 12 2.25 0.94 0.18 0.37 0.37 0.12 
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Figure S28. Pairwise overlap of trio metasample peaks between all pairs of assays. Colors 
indicate the percentage of overlap between peak set A and peak set B.

Figure B.28: Pairwise overlap of trio metasample peaks between all pairs of assays. Colors

indicate the percentage of overlap between peak set A and peak set B.

 

 

 

Figure S29. Flow-chart of the allele-specific analysis pipeline and associated filtering steps. 
Steps marked with an asterisk (*) were not applied to RNA-seq.

Figure B.29: Flow-chart of the allele-specific analysis pipeline and associated filtering steps.

Steps marked with an asterisk (*) were not applied to RNA-seq.
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Figure B.30: Summary of SNP sites susceptible to mapping bias in (A) population-based and

(B) personalized simulations of local sequence effects. Results are presented separately for each

read length (36 bp, 39 bp, and 49 bp for ChIP-seq, GRO-seq, and RNA-seq data, respectively).
Figure S30. Summary of SNP sites susceptible to mapping bias in (A) population-based and (B) personalized simulations of local sequence 
effects. Results are presented separately for each read length (36 bp, 39 bp, and 49 bp for ChIP-seq, GRO-seq, and RNA-seq data, respectively). 

A. Population-based 

Sample Biased SNPs Biased INDELs Total excluded 
 36 bp 39 bp 49 bp 36 bp 39 bp 49 bp 36 bp 39 bp 49 bp 
1k CEU YRI MAF > 0.01 3044649 NA 1783818 665306 NA 583842 3199002 NA 1953882 
 

B. Personalized 

Sample Biased SNPs SNPs near biased INDELs Total excluded 
 36 bp 39 bp 49 bp 36 bp 39 bp 49 bp 36 bp 39 bp 49 bp 

NA12878 85310 60696 27155 75536 81985 81749 156288 139115 107015 
NA12891 76184 53698 23696 75536 81985 81749 147602 132562 103762 
NA12892 74696 51544 21048 75536 81985 81749 146707 130860 101601 
NA19238 74503 50356 22604 84859 92527 93783 156174 140479 115050 
NA19239 80824 55222 24890 84859 92527 93783 162115 145109 117219 
NA19240 80932 55325 25001 84859 92527 93783 164219 146667 118228 

 

 

.

 

 

Figure S31. Distribution of the reference allele ratio across all accessible heterozygous SNP sites 
after each step of filtering in the allele-specific analysis and the number of sites remaining after 
each step (5). A representative example from POL2RB-narrow GM19239 is shown.!!
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Figure B.31: Distribution of the reference allele ratio across all accessible heterozygous SNP

sites after each step of filtering in the allele-specific analysis and the number of sites remaining

after each step. A representative example from POL2RB-narrow GM19239 is shown.
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Appendix C

Population Variation and Genetic

Control of Modular Chromatin

Architecture in Humans

C.1 ChIP Sequencing Experiments

C.1.1 Chromatin Immunoprecipitation of RNA Polymerase II (RPB2)

ChIPs were carried out as previously described [53] with a few modifications. Chromatin ex-

tracted from 5 x 107 cross-linked cells was sonicated to an average size of 200-700 bp. Sheared

chromatin was then immunoprecipitated with 7 µg per 107 cells of an anti-Rpb2 antibody (sc-

67318, Santa Cruz Biotechnology). Immunoprecipitated material was recovered with 2 mg per

107 cells of pre-blocked protein-A beads (17-0780-01, GE Healthcare) and washed twice with

dialysis buffer, three times with IP wash buffer [53] for buffer compositions). After reversal

of crosslinking and DNA purification, 10 ng of ChIP DNA was used for ChIP-seq libraries

preparation.

C.1.2 Chromatin Immunoprecipitations of PU.1 and H3K4me1

PU.1 and H3K4me1 ChIPs were carried out as previously [53]. Cells were lysed in nuclei ex-

traction buffer (50 mM HEPES-NaOH pH 7.5, 140 mM NaCl, 1 mM EDTA pH 8.0, 10% glyc-

erol, 0.5% NP-40, 0.25% TritonX-100) supplemented with a protease inhibitor tablet (Roche)

and phosphatase inhibitors (5 mM NaF, 1 mM glycerol phosphate and 1 mM sodium ortho-

vanadate) for 10 min at 4�C on a shaker. The isolated nuclei were then washed using washing

buffer (200mM NaCl, 1 mM EDTA pH 8.0, 0.5 mM EGTA pH 8.0, 10 mM Tris-HCl pH 8.0)

supplemented with protease and phosphatase inhibitors at RT for 10 min. Washed nuclei were
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resuspended in sonication buffer (1 mM EDTA pH 8.0, 0.5 mM EGTA pH 8.0, 10 mM Tris-HCl

pH 8.0 and 1% SDS) containing protease and phosphatase inhibitors and the chromatin was

fragmented using a Bioruptor sonicator (Diagenode) for 60 min using high amplitude and 30s

ON & 30s OFF cycles to obtain 200-500 bp-sized fragments. The fragmented chromatin was

then centrifuged at 17,000xg for 5 min and clear supernatant was diluted with ChIP dilution

buffer (1 mM EDTA pH 8.0, 10 mM Tris-HCl pH 8.0 and 1% TritonX-100 containing protease

and phosphatase inhibitors) to get chromatin equivalent to 10 X 106 cells for each IP. All IPs

were performed in duplicates. BSA and ssDNA (Salmon Sperm DNA)-preblocked protein-A

sepharose (80 µl/IP) beads were added to the samples and incubated for 2h to remove non-

specifically binding chromatin. To the supernatant, 5 µg/IP of PU.1 antibody (Santa Cruz, Cat

no: 22805X) or H3K4me1 antibody (Abcam, Cat no: ab-8895) was added to immunoprecipitate

the chromatin complex at 4�C overnight. After incubation, 50 µl blocked protein-A sepharose

beads were added to each sample and incubated for 90 min at 4�C to pull down the respective

antibody-chromatin complexes. The beads were then washed four times with low salt wash

buffer (20 mM Tris-Cl pH 8.0, 150 mM NaCl, 2 mM EDTA pH 8.0, 0.1% SDS, 1% TritonX-100)

followed by two washes with high salt wash buffer (20 mM Tris-Cl pH 8.0, 500 mM NaCl, 2

mM EDTA pH 8.0, 0.1% SDS, 1% TritonX-100), lithium chloride wash buffer (10 mM Tris-Cl pH

8.0, 0.25 M LiCl, 1 mM EDTA pH 8.0, 1% NP-40, 1% sodium deoxycholate) and Tris-EDTA (TE)

buffer (10 mM Tris-Cl pH 8.0, 1 mM EDTA pH 8.0). The antibody bound chromatin complexes

were eluted from beads for 30 min using 200 µl of elution buffer (100 mM sodium bicarbonate

and 1% SDS in milliQ water). The chromatin was then reverse-crosslinked at 65�C overnight

after adding 8µl of 5 M NaCl. The DNA was then purified from the reverse-crosslinked chro-

matin by proteinase-K and RNase digestion followed by purification using Qiagen DNA pu-

rification columns. The purified DNA was eluted in 30 µl of Qiagen elution buffer.

C.1.3 Chromatin Immunoprecipitations of H3K4me3 and H3K27ac

ChIP was carried out largely as suggested in [53], with modifications made to automatize the

procedure. Briefly, cells were lysed by addition of cell lysis buffer, then nuclei were washed and

subsequently lysed using nuclei lysis buffer. Chromatin was sheared with Covaris S220 soni-

cator (Covaris Inc., MA, USA). Sonication efficiency was assessed by running a sample of de-

crosslinked DNA on a 1.5% agarose gel. Fragmented chromatin was diluted 10-fold (5-fold in

case of H3K27ac IP) in ChIP dilution buffer and immunoprecipitated using antibodies against

H3K4me3 (Millipore 17-614; lot #JBC1793805) and H3K27ac (Abcam ab4729; lot #GR71158).

The immunoprecipitation assays were performed on Diagenode SX-8G IP-Star Compact auto-
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mated system using Auto Histone ChIP-seq kit (Diagenode S.A., Belgium). The minimum of

2 IPs of 106 cells (2x106 in case of H3K27ac) per cell line was used. Replicates were pooled

following RNase A and proteinase K treatments. DNA was purified with Qiagen DNA purifi-

cation kit (Qiagen N.V., Netherlands). DNA concentration was measured using Qubit appara-

tus (Life Technologies, CA, USA). Before proceeding with library preparation for sequencing,

enrichment of the precipitated DNA was assessed by quantitative PCR.

C.1.4 Library Preparation and Sequencing

ChIP libraries were prepared with the TruSeq DNA sample prep kit (Illumina) and AR001-

AR0027 indexing adapter set according to the manufacturer’s recommendations. The starting

amount of ChIP DNA used for library preparation ranged from 2.5 ng to 10.5 ng per sample.

Library quality and average fragment size was confirmed with Bioanalyzer DNA analysis chips

(25-1000 bp, Agilent). TruSeq libraries were subsequently multiplexed on Illumina HiSeq2000

lanes (three per lane, RPB2; four per lane all other assays) (read length 36 bp, single-end). A

subset of all libraries was sequenced multiple times in order to improve coverage. The number

of sequencing rounds for each sample as well as other experimental information is available in

Table C.1A.

C.1.5 Short-Read Alignment

ChIP-seq reads (36 bp, single-end) were mapped against the hg19 build of the human reference

genome supplemented with the Epstein-Barr virus (EBV) sequence with BWA 0.5.9 [107] using

default parameters. If a sample had data from multiple lanes, reads were merged after map-

ping. We kept only uniquely mapping reads with a mapping quality (MAPQ) score of >= 10.

Samtools [108] was used for general data processing throughout the project. The total num-

ber of usable reads for each assay and individual is summarized in Table C.1B. The average

number of usable reads per individual is 54 +/- 10M for H3K27ac, 50 +/- 12M for H3K4me3,

134 +/- 19M for H3K4me1, 49 +/- 9M for PU.1, and 71 +/- 17M for RPB2 (mean +/- standard

deviation).

C.1.6 Data Quantification

ChIP-seq peak calling was not performed in the current set of samples. Instead, we used

an independently-derived peak set for each assay [53]. Briefly, mapped reads from six 1000

Genomes Project pilot individuals (two trios) were merged into a meta-sample for each assay,

duplicate reads were removed, and peaks called using HOMER [101]. Obtained chromosomal
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peaks were filtered for collapsed repeat regions and genomic regions blacklisted by ENCODE

(see [53] for details). To quantify these peaks in this study, read counts from ChIP-seq experi-

ments were counted using HOMER within meta-peak regions across all unrelated individuals.

The rational behind this approach was to (1) avoid the issue of fuzzy peak boundaries that

would result from individual peak calling/merging and (2) to focus on common molecular

events and QTLs given our sample size. Reads were shifted based on their estimated ChIP-

fragment length and libraries were normalized by their size such that each library contains 10

million reads. Analysis in Section 6.9 was performed based on RPKM quantifications [170].

C.1.7 Data Normalization

Peak quantifications were first scaled to adjust for differences in total library size. We then

applied PEER [109] to identify and regress out hidden confounding factors in each dataset.

For QTL mapping we used PEER residuals that were first transformed to standard normal

distribution. To estimate the best number of covariates (K) to correct for, we first ran PEER for

chromosome 1 only across a range of values for K (0,1,3,5,7,10,13,15,20) and mapped cis-QTLs

separately for each K [56]. We monitored the number of unique ChIP-seq QTL peaks obtained

from each run (data not shown), and selected K=15 as the final number of covariates to correct

for. PEER was then run with the genome-wide dataset of each assay, adding the mean to the

model and using 100 iterations.

C.2 mRNA Sequencing Experiments

C.2.1 mRNA Extraction

Total mRNA was extracted from cell pellets using the standard Trizol protocol (Invitrogen).

mRNA concentration was measured with the Qubit system (Invitrogen) and the quality of the

samples confirmed with Agilent 2100 Bioanalyzer RNA 6000 Nano analysis chips.

C.2.2 Library Preparation and Sequencing

Libraries for mRNA-seq were prepared with the Illumina TruSeq mRNA sample preparation

kit, according to manufacturer’s instructions. 500 ng of total RNA was used for each library.

Briefly, poly-A RNA is selected using poly-T oligo-attached magnetic beads, the mRNA is

cleaved, and converted to cDNA with first strand synthesis. After RNA digestion and second

DNA strand synthesis, the fragments are end repaired and ligated to the adapters containing

specific primer indexes. Finally, the cDNA libraries are amplified by PCR. All samples were
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sequenced as part of pools with 12 libraries on the HiSeq (paired-end, read length 49 bp). Each

library was sequenced twice to achieve sufficient coverage.

C.2.3 Short-Read Alignment

mRNA-seq sequence reads (paired-end 49 bp) were mapped against the hg19 build of the hu-

man reference genome supplemented with the Epstein-Barr virus (EBV) sequence with BWA

0.5.9 [107] using default parameters. We kept only uniquely mapping reads with a mapping

quality (MAPQ) score of >= 10. Samtools [108] was used for general data processing through-

out the project.

C.2.4 Data Quantification

mRNA-seq data was quantified based on GENCODE v15 (08/2012) gene annotations [110] and

as previously described in Lappalainen et al. [56].

C.2.5 Data Normalization

All genes with more than 10% of the samples without a single overlapping read were removed

from the analysis and all remaining quantified genes were normalized similarly to ChIP-seq

data (section C.1.7), i.e. applying PEER with 15 covariates (K=15), adding the mean, and trans-

forming PEER residuals to a standard normal distribution.

C.3 Analytical Methods

C.3.1 Molecular Phenotype-Phenotype Associations

To map associations between pairs of peaks, we proceeded as follows for each of the 15 possible

unordered pairs of distinct molecular phenotypes (A1, A2). First, we measured inter-individual

Pearson correlation between every possible pair of normalized quantification at peaks (p1, p2)

such that (a) p1 and p2 belong to A1 and A2, respectively and (b) the genomic distance be-

tween p1 and p2 not exceeding 1 Mb. Note that the distances here were measured between the

respective peak centers, excepted form mRNA for which we used the transcription start site

(TSS). Then, we assessed how significant the correlations were different from 0 by calculating

P-values using the R function cor.test and corrected them for multiple-testing by calculating the

corresponding Q-values using the qvalue package R (Dabney A and Storey JD) in R. Finally,

we could both estimate the percentage of truly associated pairs of peaks among the tests per-
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formed from the Q-value’s p1 estimate and extract all significant associations at a 0.001 false

discovery rate [171].

C.3.2 Variable Chromatin Modules (VCMs)

To build VCMs from the discovered significant associations, we developed an approach based

on graph theory. We first consider as nodes all peaks significantly associated and as edges all

significant associations between peaks. Then, we defined as VCMs any two nodes for which

there is a path (i.e. a sequence of edges) that links them together. Conversely, two nodes

belong to two distinct VCMs as soon as there is not a single path linking them. In practice, we

implemented an algorithm in R using the igraph package (http://igraph.org/) that performs

this graph reconstruction by initially assigns a distinct VCM for every single node and then

iteratively merges VCMs connected by edges. We derived VCM activity levels using principal

component analysis (PCS) on normalized peak intensities using the prcomp function in R. The

first and second VCM PC was further transformed to a standard normal distribution for QTL

mapping (section C.3.3) and gene expression-VCM associations.

C.3.3 Mapping Chromatin and Expression Quantitative Trait Loci (QTL)

We mapped cis-acting QTLs within 250kb and 1 Mb of (a) the TSS for RNA or (b) the peak

center for histone modifications and transcription factor binding sites. More specifically, we

regressed genotypes linearly against peak quantifications for all variant site / phenotype pairs

when the genomic distance between them was smaller than 1 Mb. Then, we stored for each

peak the best association we found as a putative QTL. At this point, we had to correct for two

distinct levels of multi-testing in order to determine whole genome significance of the putative

QTLs: first, multiple variants sites are tested for association with a single peak and second,

multiple peaks are tested genome wide. To correct for the first multiple-testing problem, we

devised a permutation strategy in which we keep permuting quantifications for a peak until

we either (a) find 100 more extreme association P-values than the observed (i.e. nominal) one

or (b) reach a number of 100,000 permutations in total. Note that the genotype data stays

unchanged throughout permutations in order to preserve the local LD structure in the tested

cis-window. From this, we can then derive a corrected P-value for each peak that empirically

quantifies how frequently a more extremely associated variant can be found via permutations;

that is how likely the putative QTL we found can be obtained by chance. Then, we accounted

for multiple testing at the level of peaks by estimating the minimum false discovery rate (FDR)

at which each empirical P-value may be found significant; the Q-value. To compute them,
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we used the estimation method implemented in the qvalue package1. Once a Q-value was

obtained for each peak, we can extract all QTLs at X% FDR by only keeping QTLs with a Q-

value below X%. In practice, we implemented this QTL mapping strategy such that we can

simultaneously test multiple cis-window sizes (10 kb, 20 kb, 50 kb, 100 kb, 200 kb, 500 kb,

1 Mb, 2 Mb) and FDRs in a single association run, thus choosing a good trade-off between

both. We chose 10% FDR and 500 kb cis-windows which gave us a relatively high number of

QTLs that can be located relatively far away from the phenotype location (Figure C.4A-C). This

approach was implemented in the software package FastQTL (Ongen et al, 2015) available on

http://fastqtl.sourceforge.net/.

C.3.4 Mapping Allele-Specific Chromatin and Gene Expression Effects

Allele-specific (AS) analysis was performed using genotypes from the 1000 Genomes Phase1

release v3, available for a subset of the samples (N = 34/47). The original VCF file was down-

loaded from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/ and the subset of

individuals extracted with VCFtools, keeping only sites with a minor allele count >1 (-mac

1). This yielded a total of N = 9,609,399 SNP sites for analysis. Allele-specific analysis was per-

formed at heterozygous SNP positions of each individual (average 2.1M sites) using a modified

binomial test and accounting for multiple major sources of technical bias, such as reference al-

lele mapping bias, clonal reads and non-unique mappability of reads as described previously

[53, 56, 112]. To adjust the expected allele ratios in the binomial test for each site, the reference

allele mapping bias was estimated separately for each pair of alleles and mapping quality bin,

requiring a minimum of 250 sites per category (if less, a global average was used). A minimum

of 10 reads per site were required and only bi-allelic sites overlapping peaks (ChIP-seq) and

exons (mRNA-seq) were used for analysis. Allele-specific analysis was additionally used as a

QC step to identify putative sample swaps or contaminations. We monitored the proportion

of the heterozygous sites that appeared heterozygous also on the level of RNA/ChIP. Samples

showing an unusually low proportion of heterozygosity in the RNA were flagged as possible

swaps/contaminants. For the samples not included in the 1000 Genomes phase1 v3 release we

used genotypes from the GEUVADIS project to perform AS analysis for QC purposes.

C.3.5 Estimating Pairwise Sharing of QTLs Between Molecular Phenotypes

We designed a method to estimate how QTLs are shared between pairs of assays based on the

p1 (1-p0) statistic described in [86]. Specifically, we proceed in 4 steps: (1) we take for each

feature (peak/gene) with a significant QTL from assay1, (2) we find the closest corresponding
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feature in assay2, (3) we compute the association P-value between the QTL and the assay2 fea-

ture we selected, and (4) we measure enrichment of low P-values in the resulting distribution

via p1 estimation.

C.3.6 Detecting Multiple Effects of QTLs

We counted (a) the number of distinct features (peaks/genes) and (b) the number of distinct

molecular phenotypes affected by a given QTL by using the following method. We first mea-

sure association between the QTL and all features across all assays located within +/- 250 kb

of the QTL. Then, we adjust the resulting association P-values for multiple tests using Bonfer-

roni’s method; we divide all P-values by the number of tested features. Finally, we consider

features as associated when the their corrected P-value is below the 0.05 threshold. This gives

us the number of features affected by the QTL and therefore by looking at which assay they

belong to, the number of distinct molecular phenotypes affected.

C.3.7 Estimating Enrichment of QTLs Falling Within Features

To measure fold enrichment of assay1 QTLs located more likely than expected within features

defined by assay2, we developed an approach that aims to correct for the fact that assay1 QTLs,

assay1 features and assay2 features are not independently distributed along the genome which

can therefore lead to false enrichment with nave methods. More specifically, we proceeded in

five steps:

1. We ranked all association p-values within each cis-window for assay1 features that have

a significant QTL.

2. We built a genomic ’segment’ of associations for each cis-window w and each rank r with

left and right boundaries matching the left- and right-most variant sites with a p-value of

rank r. A segment basically contains only variants in full LD (r2 = 1).

3. For each possible rank r, we counted the number of times the segments of rank r over-

lap assay2 features across all cis-windows. We find that after the 50th rank, the overlap

counts converge around a stable value and we use the median from rank 50 to 200 as a

null overlap count for the next step (Figure C.4F)

4. We estimate the odd ratios and significance of the enrichment by performing a fisher test

between the rank 1 and null overlap counts. We consider as significant any enrichment

with a Bonferroni corrected P value (corrected by the number of cells in the heatmap)

below 0.05. All insignificant enrichments are not displayed in the heatmaps.
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C.3.8 Modeling Causality with Bayesian Networks

To assess the most likely transmission model of genetic effects onto chromatin and gene ex-

pression, we constructed three-node graphs (triplets) for all VCMs that show significant corre-

lations with gene expression. If at least one of the two was reported as a QTL, we combined

the QTL variant, the VCM and the gene quantifications to create a triplet. If both the VCM

and the gene were reported as QTLs with different variants, one variant was picked by chance.

Posterior probabilities for all 25 possible directed graph models with 3 nodes were computed

using the bnlearn package (v3.5) in R (v3.1.0). After a first assessment, posterior probabilities

for three biologically relevant models were extracted, scaled to sum up to one and the most

likely model per triplet was defined (posterior probability >= 0.9). For the PU.1 motif disrup-

tion analysis, triplets were constructed in a similar way, but based on significantly correlated

single molecular phenotype pairs involving PU.1. Whenever at least one of the two phenotypes

was reported as a QTL, a triplet was constructed consisting of the quantifications for the two

phenotypes plus the QTL variant genotype. If both molecular phenotypes were reported as

QTLs with different variants, one variant was picked by chance. For this analysis only triplets

where the variant showed a significant association (P <0.05) with both molecular phenotypes

were considered. Posterior probabilities for all 25 possible directed graph models with 3 nodes

were computed using the bnlearn package (v3.5) for R (v3.1.0) and posterior probabilities for

three biologically relevant models were extracted, scaled to sum up to one and the most likely

model per triplet was defined. Finally the resulting triplet models were grouped according to

whether a PU.1 binding site present in the reference genome was disrupted by the PU.1 QTL

variant of the triplet or not. Reference PU.1 binding sites were predicted with the software

fimo in the MEME suite (http://meme.nbcr.net/meme/) and using the PU.1 PWM described

in [168]. Only H3K27ac and H3K4me1 showed enough sharing of QTLs with PU.1 for these

analyses.

C.3.9 Functional Annotation of VCMs and VCM-Associated Genes

We used the online service GREAT v2.0.2 (http://bejerano.stanford.edu/great/public/

html/,defaultoptions) to predict over-represented pathways and biological processes for

VCM domains. Functional annotation of VCM-associated genes was performed using the on-

line service ConsensusPathDB-human (http://cpdb.molgen.mpg.de/, default options) using

the over-representation analysis module and gene ontology categories (BP level 2).
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C.3.10 Estimating Enrichment of QTLs with GWAS Hits

All GWAS variants used in this study were obtained from the NHGRI GWAS Catalog (http://

www.genome.gov/gwastudies/, Dec 8, 2014) and filtered out sites on the X and Y chromosome.

Mappings between GWAS studies to Experimental Factor Ontology (EFO) terms were obtained

from http://www.ebi.ac.uk/fgpt/gwas/ using PUBMED IDs. For each of the eight QTL list

we considered in our analysis:

1. We counted the number of QTLs overlapping GWAS hits, considering that two variants

overlap as soon as they are in relatively strong LD (r2 ¿= 0.5). This constitutes our ob-

served overlap.

2. We generated 1,000 null sets of variants of the same size matched for frequency and dis-

tance to target molecular phenotype, making sure that the association between the vari-

ant and the target phenotype is not significant (P-value >0.1). Then, we used these sets

to derive the null distribution of overlap with the GWAS hits using the same approach as

described in step (i).

3. Given the observed and null overlaps obtained in step (i) and (ii), respectively, we calcu-

lated odds ratios and a two-tailed empirical P values of enrichment/depletion by looking

at the position of the observed overlap within the null distribution. We declare a QTL list

as significantly enriched/depleted with GWAS hits if the P value is below 0.05.

C.3.11 Enrichment of Molecular Associations Within Contact Domains

High-resolution chromosomal contact domains were obtained for LCLs from [88]. Overlapping

contact domains were merged and the resulting contact domain sizes ranged from 65 kb to 2.7

Mb (median: 300kb). We then calculated the probability of VCM peak pairs occurring within

the same as opposed to two different contact domains using logistic regression models (glm

method as implemented in R). Distance-matched, non-significant molecular associations (nom-

inal P-value >0.1) served as an expected null. Association status (vcm/null) and peak-to-peak

distance were used as variables in the logistic regression model and location within/between

contact domains as the binary response variable. Peak-to-peak distance was used as a variable

to account for the fact that short-range molecular associations are more likely to be embedded

within the same contact domain than long-range associations. Molecular associations whereby

one or both peaks were not embedded within contact domains were excluded from the analyses

in order to avoid boundary effects and unrecognized contact domains, respectively.
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C.3.12 Haplotypic Coordination in Allelic Signals Between Cis-Regulatory Ele-

ments

AS effects were measured at phased heterozygous SNPs. We removed AS sites with mono-

allelic signals and only considered significant allelic biases at 1% FDR (calculated per assay).

We collected significant AS sites at non-overlapping cis-regulatory elements of molecular asso-

ciations defined based on VCMs and random controls (as defined in 6.11). We only considered

associations whereby both cis-regulatory elements exhibited significant allelic effects. If sev-

eral AS sites were located within one or both regions, then we selected a random pair of sites in

order to avoid overrepresentation of cis-regulatory elements in our analysis. We used logistic

regression models to test if regions defined by molecular associations exhibit higher levels of

concordance in allelic directions than random control regions (P<0.05) using association status

(VCM/null) and distance between cis-regulatory elements as predictor variables and coordi-

nation in allelic direction as the binary response variable (i.e. two cis-regulatory elements are

defined as showing coordinated allelic effects if biases occur on the same haplotype).

C.3.13 Identification of Collaborative TFs at Variable Cis-Regulatory Elements

We intersected binding of 56 TFs (based on NA12878) (ENCODE Consortium, 2012) with non-

overlapping covariable cis-regulatory elements (mid point +/- 1 kb) and tested for collab-

orative binding using Fisher exact tests. Non-significant (P-value >0.1), distance-matched

pairs of cis-regulatory elements served as a null set. We only considered TF pairs that passed

the Bonferroni corrected P-value threshold of 5% (nominal Fisher exact test P-value cutoff:

0.05/(0.5x56x56)=3.2e-5 based on 56 tested TFs). We also assessed if single TFs were specif-

ically enriched around cis-regulatory elements (+/- 1 kb) that are involved in long-range as-

sociations using logistic regression models that take distance between cis-regulatory elements

into account (P-value <0.05/56).
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Figure C.1: Characteristic of Molecular Phenotype Associations. A Genome-wide enrichment

of significant associations between molecular phenotypes (estimated using p1). B Proportions

of significant associations (p1) between molecular phenotypes at spatially separated regulatory

regions. P1 were estimated for all possible pairs of regulatory regions that are within 10 kb in-

tervals at a specified distance (e.g. 100-110 kb). The center of a regulatory region was hereby

considered as the reference position. C Total number of significant molecular phenotype asso-
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ciations. D Pearson correlation coefficient of all significant associations among molecular phe-

notypes. E Percentage of putative regulatory regions with significant molecular associations.

F Percentage of significant associations among all tested phenotype-phenotype pairs. G Num-

ber of significant associations per molecular mark. H-I Pairwise molecular associations for all

combinations of molecular mark (HMs, PU.1, RPB2) at two genomic regions: chr21:26,000,000-

28,000,000 (H) and chr4:141,000,000-143,000,000 (I) (chromosomal contact domains from [88]

are shown with black boxes). Related to Figure 3.2.
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Figure C.2: Long-Range Molecular Associations. A Percentage of molecular associations be-

tween non-overlapping cis-regulatory elements. The grey line marks the overall percentage

of non-overlapping associations. B Distance distribution between non-overlapping covariable

cis-regulatory elements and best log-normal fit (logmean=10.72, logsd=1.38). C Correlation

between association strength (Pearson’s r) and distance between associated molecular pheno-

types. Each dot represents a significant correlation pair across all tested molecular phenotype

associations. D-F Enrichment of CTCF, SMC3, and RAD21 DNA binding events at sites of

molecular association (peak center +/- 1 kb). Red line, significant molecular associations; blue

line, distance-matched random control region pairs (see Methods). Logistic regression-based

models indicate that all three TFs are significantly enriched at long-range molecular associa-
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tions vs short-range associations. Related to Figures 3.2 and 3.3.
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Figure C.3: Characteristic of a Variable Chromatin Module (VCM) and its Co-association

with Gene Expression. A-C Examples of VCMs on chromosome 21 (marked by colored areas).

Circles indicate the center positions of histone modified and TF-bound regions. Filled and open

circles indicate molecular phenotypes with significant (FDR 0.1%) and non-significant associ-

ations, respectively. Lines connecting filled circles indicate significant associations. Detailed

genomic view of VCM domains around the JAM2 gene promoter (B) together with all signif-

icant pairwise molecular associations (C). D Number of cis-regulatory elements that define

159



VCMs. VCMs with 10 or more domains were grouped together. E Relationship between VCM

size (number of cis-regulatory elements) and total number of molecular associations per VCM.

F Relationship between number of cis-regulatory elements per VCM and phenotypic compo-

sition. For example, 20% of all VCMs defined by a single cis-regulatory elements contain the

promoter mark H3K4me3. G Size distribution of cis-regulatory elements that are part of multi-

element VCMs with and without intra-element regions H Number of significant associations

between TFs/HMs and gene expression (FDR 0.1%). I-J Pairwise molecular associations are

shown for selected gene-HM pairs at two genomic regions: I chr21:26-28Mb; J chr4:141-143Mb.

K Pearson correlation coefficient of significant TF- and HM-gene expression associations. L

Gene expression variance explained by TF DNA binding and HM variation. M Number of

genes being associated with the same VCM. Related to Figure 3.4.
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Figure C.4: TF, HM, Expression, and VCM Quantitative Trait Loci (QTL). A Enrichment for

genetic associations per assay as a function of the cis-window size. We measured for each assay

and cis-window combination the p1 statistics [86] for the corresponding set of P-values. B

Number of significant QTLs per assay as a function of FDR and cis-window size. C Percentage

of molecular phenotypes per assay with a significant QTL as a function of the FDR and cis-
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window size. D Number of QTLs per assay at 10% FDR in 500 kb cis-windows (i.e., 2 x 250 kb).

E Percentage of QTLs per assay at 10% FDR in 500 kb cis-windows (i.e., 2 x 250 kb). F Density

distribution of variance explained by QTLs (FDR 10%, 500 kb cis-window). G QQ-plot of QTL

association with the first and second VCM principal components. Related to Figure 3.5.
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Figure C.5: Characteristics of cQTLs A Contribution of short insertions/deletions (top panel)

and structural variants (bottom panel) to tf-, hm-, and eQTLs. Expected and observed pro-

portions are shown in red and blue, respectively. For each assay / variant type combination,

the fold enrichment and its significance is indicated above (top panel) or under (bottom panel)

the corresponding bar. B Genomic distance density distribution between QTLs and the clos-

est transcription start site (TSS). We plotted the measured distance on the log10 scale for each

of the molecular assays. C-D Genomic distance density distribution between QTLs and their

associated peaks. We plotted the measured distance on the log scale for each of the molecular

assays and for all QTLs inside their associated non-coding regions (C) and all QTLs outside

their associated non-coding regions (D). E Percentage of QTLs for which the cis-association

test has a positive slope (i.e. positive regression b coefficient). A positive slope indicates higher

alternative allele counts and thus higher quantification levels of the associated molecular phe-

notypes. The results are stratified for QTLs falling within (in red) or outside peaks (in blue).

If there would have been a general mapping bias, we would have observed more negative

cis-associations inside vs. outside target non-coding regions. F Frequencies at which variants

overlap various types of non-coding regions as a function of their cis-association rank. Related

to Figures 3.5 and 3.6.
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Figure C.6: Characteristics of Shared QTLs for TF DNA Binding, HM, VCM States, and Gene

expression. A-B Percentage and number of distinct molecular marks (PU.1, RPB2, H3K4me1,

H3K4me3, H3K27ac, mRNA) (A) and molecular phenotypes (TF-binding, HM, gene expres-

sion) (B) being affected by the same tf-, hm-, or eQTL. C Association strength distribution for

isolated vs non-isolated QTLs. D-E Enrichment of cQTLs, eQTLs, and vcmQTLs within func-

tional regions defined by ENCODE in LCLs (NA12878). We measured how often QTLs (rows)

were located in functional regions (columns), estimated how often this occurred by chance, cal-

culated the fold-change between both quantities, and corrected for multiple testing. High and

low enrichment values are shown in dark and light blue, respectively. The ”ENCODE TFs”

track regroups all ENCODE TFs into a single track. F Enrichment of cQTL, vcmQTL, and eQTL

strength inside molecularly annotated non-coding regions. We calculated the fold-change in

median P-values of cis-association for QTLs (rows) falling inside and outside non-coding re-

gions (columns). For example, vcmQTLs falling inside PU.1-bound regions have a median
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P-value that is 70 times smaller than those falling outside PU.1-bound regions. Dark and light

blue show large and small fold changes in the median P-values, respectively. G Inference of

causal relationships between PU.1 and H3K4me1/H3K27ac. The frequency of the most likely

causal model is shown for instances where QTL variants affect reference PU.1 binding sites

(left column) and instances where QTLs fall outside of reference PU.1 binding sites (right col-

umn), respectively. H Comparison between vcmQTL strength and average association strength

between vcmQTL variants and VCM molecular events. The average cQTL strength scales lin-

early with the vcmQTL strength (r=0.93, P<2.2e-16), however, one order of magnitude weaker.

I Enrichment of molecular phenotypes being entry events for vcmQTL variants. Association

P-values between vcmQTL variants and each VCM member were calculated and molecular

phenotypes with the smallest P-value were defined as entry events. A null distribution was

estimated by randomly selecting a molecular phenotype within each VCM as the entry event

(n=10,000). The fold enrichment defines how often a molecular mark was observed as the entry

phenotype over random permutation. Significance is defined by empirical P-value. Related to

Figures 3.6 and 3.7.

165



Table C.1: Characteristics of ChIP-Seq Experiments. A Number of IPs, library input DNA

concentration, library size (in bp), and number of sequenced lanes per experiment. B Number

of usable reads per ChIP assay and individual.

This supplementary excel table can be downloaded under:

http://www.sciencedirect.com/science/article/pii/S0092867415009770

Table C.2: Functional Enrichment of VCMs and VCM-associated Genes. A-B Functional

enrichment (Pathway Commons, MSigDB Pathway, Gene Ontology Biological Processes) of

single-domain VCMs A and multi-domain VCMs B. C Enrichment of Gene Ontology Biological

Processes for VCM-associated genes. Related to Figures 3.4 and 3.5.

This supplementary excel table can be downloaded under:

http://www.sciencedirect.com/science/article/pii/S0092867415009770
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