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Real‑world gait speed estimation, 
frailty and handgrip strength: 
a cohort‑based study
Abolfazl Soltani1,3, Nazanin Abolhassani2,3, Pedro Marques‑Vidal2, Kamiar Aminian1, 
Peter Vollenweider2 & Anisoara Paraschiv‑Ionescu1*

Gait speed is a reliable outcome measure across multiple diagnoses, recognized as the 6th vital sign. 
The focus of the present study was on assessment of gait speed in long-term real-life settings with 
the aim to: (1) demonstrate feasibility in large cohort studies, using data recorded with a wrist-
worn accelerometer device; (2) investigate whether the walking speed assessed in the real-world is 
consistent with expected trends, and associated with clinical scores such as frailty/handgrip strength. 
This cross-sectional study included n = 2809 participants (1508 women, 1301 men, [45–75] years old), 
monitored with a wrist-worn device for 13 consecutive days. Validated algorithms were used to detect 
the gait bouts and estimate speed. A set of metrics were derived from the statistical distribution of 
speed of gait bouts categorized by duration (short, medium, long). The estimated usual gait speed 
(1–1.6 m/s) appears consistent with normative values and expected trends with age, gender, BMI and 
physical activity levels. Speed metrics significantly improved detection of frailty: AUC increase from 
0.763 (no speed metrics) to 0.798, 0.800 and 0.793 for the 95th percentile of individual’s gait speed 
for bout durations < 30, 30–120 and > 120 s, respectively (all p < 0.001). Similarly, speed metrics also 
improved the prediction of handgrip strength: AUC increase from 0.669 (no speed metrics) to 0.696, 
0.696 and 0.691 for the 95th percentile of individual’s gait speed for bout durations < 30, 30–120 
and > 120 s, respectively (all p < 0.001). Forward stepwise regression showed that the 95th percentile 
speed of gait bouts with medium duration (30–120 s) to be the best predictor for both conditions. 
The study provides evidence that real-world gait speed can be estimated using a wrist-worn wearable 
system, and can be used as reliable indicator of age-related functional decline.

Gait speed, recognized as the ‘6th vital sign’1,2, is a reliable and sensitive measure of people’s functional ability, 
closely associated with well-being, healthy aging, physical frailty and survival in older adult populations3–14. Most 
studies that have contributed to the accumulated evidence about reliability of gait speed as predictor of adverse 
health outcomes among community-dwelling adults were based on measurements in the laboratory/clinical set-
tings. However, mounting evidence indicates that the speed assessed in a laboratory setting does not fully reflect 
the speed of individuals in their everyday life context15–20. Therefore, there is growing consensus about necessity 
to develop and validate tools for assessment of gait in real-world conditions15,18,19,21–24.

Gait/locomotion is an essential dimension of daily physical activity (PA) behavior. Monitoring systems includ-
ing body-worn sensor devices (e.g., accelerometers) and dedicated data processing algorithms may allow to 
characterize the multiple dimensions of PA, such as type (gait, body postures), duration of bouts, and intensity 
(speed, accelerometer counts, metabolic equivalent of task). One requirement for speed estimation in long-term 
monitoring protocols is detection of gait bouts. An additional constraint is to develop algorithms based on 
minimal data, usually from an unobtrusive single body worn device. The most common single device locations 
for long-term monitoring are the trunk (e.g., waist, chest, hip, lower back) or the wrist. While classification of PA 
dimensions using wrist movement data is technically challenging, recent research focused on the development 
and validation of robust algorithms25–27.

Given the difficulty of an accurate estimation of gait speed in real-world situations, most existing commer-
cial wearable devices still deploy the more straightforward classical approach for PA assessment, by providing 
only an estimation of PA intensity levels (time spent in sedentary, light, moderate, and vigorous intensities). 
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The issue with this approach is that the processing of raw data (acceleration signal) and definition of thresholds 
to classify intensity levels differ between various devices, making difficult comparison of PA-related outcome 
measures across studies/clinical populations28,29. The assessment of PA using gait speed as an outcome measure 
may overcome this issue since walking/gait characterized by speed is an ’invariant’ component of PA. Yet, there 
are additional aspects that need to be considered when real-world gait speed is used as an outcome measure. 
For example, only a few studies have investigated the gait parameters for different bout durations (e.g., short, 
medium, long)30,31. No study has evaluated the metrics derived from the statistical distribution of speed (e.g., 
mean, median, mode, standard deviation, etc.) in different gait bout durations, which are characteristic of PA 
behavior in daily-life context. Yet, the identification of bout durations corresponding to various purposeful daily 
activities and expected to carry relevant information about an individual’s physical performance, is an essential 
topic for outcome evaluation in population-based studies30.

Another aspect of being considered is the pervasiveness of real-world gait speed monitoring. The Global 
Navigation Satellite System (GNSS) integrated in smartphone could accurately measure gait speed32, but it is 
available only outdoors, and so only few values might be available per day, increasing the intra/inter subjects’ 
variability. Finally, an additional limitation of most existing studies is the relatively modest sample size, which 
reduces the power of the statistical analyses and generalization of the findings in large populations.

This cohort study targeted two primary goals. First, to demonstrate the feasibility of assessing gait speed 
using an accurate, user-friendly wrist-worn system26,27 for a long duration (13 consecutive days, 24 h per day) 
in a large population sample in free-living conditions. Second, to investigate the association of estimated real-
world gait speed with subject characteristics, and clinical variables recognized as indicators of overall physical 
health and mobility, such as frailty condition and handgrip strength. Indeed, grip strength is a component of 
frailty phenotype33 and is considered as an indispensable biomarker for older people34. Hence, an analysis of the 
associations between grip strength and walking metrics among elderly (> 65 years) people was also conducted.

Results
Study participants.  Of the initial 4881 participants in CoLaus|PsyCoLaus cohort (https://​www.​colaus-​
psyco​laus.​ch/​profe​ssion​als/​colaus/), 1982 (no walking speed data) and 90 (missing covariates) were excluded, 
and 2809 (46.3% men, 53.7% women, mean age 62.4 ± 9.9 years) were included in this study. After analysis, data 
of each participant was verified to check the number of days with detected gait bouts (valid days); days with no 
bouts detected were discarded. From the 2809 subjects, ~ 98% had at least eight valid days, thus including both 
weekdays and weekend day(s). This number was large enough for the estimation of preferred gait speed and 
related metrics35,36. The characteristics of the participants included and excluded are reported in Table 1.

Table 1.   Characteristics of participants included in this study (CoLaus cohort, Lausanne, Switzerland, 
2014–2017). Results are expressed as the number of participants (column percentage) or average ± standard 
deviation. Between-group comparisons performed using chi-square and student’s t-test.

Factors Included Excluded p-value

Total 2809 2072

Gender 0.021

Men 1301 (46.3) 891 (43.0)

Women 1508 (53.7) 1181 (57.0)

Age (years)  < 0.001

[45–54] 830 (29.6) 516 (24.9)

[55–64] 909 (32.4) 593 (28.6)

[65–75] 729 (25.9) 570 (27.5)

75+  341 (12.1) 393 (19.0)

Body mass index categories  < 0.001

Normal + underweight 1157 (41.2) 700 (33.8)

Overweight 1140 (40.6) 635 (30.6)

Obese 512 (18.2) 337 (16.3)

Missing data 0 (0) 400 (19.3)

Physically active  < 0.001

Active 1091 (38.8) 66 (3.2)

Inactive 1718 (61.2) 92 (4.5)

Missing data 0 (0) 1914 (92.3)

Frailty  < 0.001

No 2552 (90.8) 1376 (66.4)

Yes 257 (9.2) 209 (10.1)

Missing data 0 (0) 487 (23.5)

Handgrip strength (kg) 34.4 ± 12.0 32.7 ± 12.2  < 0.001

https://www.colaus-psycolaus.ch/professionals/colaus/
https://www.colaus-psycolaus.ch/professionals/colaus/
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Real‑world gait bouts detection and speed estimation.  An illustrative example of wrist accelera-
tion-based gait speed estimation for one study participant is shown in Fig. 1. Panel (a) displays the acceleration 
norm, and the estimated speed for the gait bouts detected during 13 continuous days in free-living situations. 
Panel (b) is a zoom to show analysis results in a typical day (24 h). This example demonstrates that the algorithms 
successfully estimated a consistent sequence of bouts and their corresponding speed in regular daily life activ-
ity. A repetitive pattern of gait bouts among successive days can be observed. Each day starts with a non-active 
period, likely related to sleep time, followed by two active periods in the morning and the afternoon (probably 
associated with a daily routine). Sometimes, a few bouts can be observed in the evening.

Univariate analysis: real‑world gait speed and subject characteristics.  Figure 2a shows the distri-
bution (mean, SD) of gait bouts in different bout duration categories (i.e., < 30 s, [30–120] s, > 120 s, considered 
representative for indoor and outdoor walking), and for subjects stratified by age. Figure 2b illustrates the distri-
bution of the preferred speed for each bout duration category, using the pooled data from all subjects. The effect 
of subject-specific factors (gender, age, BMI, PA level) on the preferred speed is graphically illustrated with the 
boxplots in Fig. 2c.

Multivariable analysis: real‑world gait speed, frailty and handgrip strength estimation.  The 
results of logistic regression, conducted to assess the discrimination of frailty status, are shown in Table 2 and 

Figure 1.   An illustrative example of a real-world GS estimation for a representative subject monitored in 
daily life situations. (a) Estimated speed of detected GB (red) and wrist acceleration norm (blue) during 13 
continuous days; (b) one typical day (day #12), (CoLaus cohort, Lausanne, Switzerland, 2014–2017).
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details are provided in Supplementary Tables  S1–S3. As indicated by a lower AIC/BIC and a significant LR 
test, Model B (including speed metrics) provides a substantial improvement in distinguishing frailty condition. 
Compared to model A, the AUC, AIC, and BIC of model B were enhanced in all conditions where an average 
improvement of 3.1 (%), 3.1 (%), and 2.7 (%) are respectively observed for all speed metrics in all bout durations, 
with slightly higher improvement for the range [30–120] s. Furthermore, the LR test suggests the 95th percentile 
as the best speed metric (in all bout durations) for discrimination of frailty status.

The results of linear regression for prediction of handgrip strength are shown in Table 3 and details are pro-
vided in Supplementary Tables S4–S6. Model B with inclusion of any speed metrics in all bout durations leads 
to a significant improvement compared to model A. Similarly, the 95th percentile of speed, and [30–120] s bout 
duration range showed more promising results. In order to visualize the difference between models A and B for 
discrimination of frailty, the ROC curves of both models are presented in Fig. 3. Here, the ROC curves for base-
line (model A) and three speed metrics (mean, 90th, and 95th percentiles) are displayed for each bout duration 
category; it can be observed that the AUC of model A is lower than of model B.

The results of stepwise regression models using different speed metrics within different bout duration cat-
egories in association with being non-frail and handgrip strength are presented in Table 4 and the details are 
provided in Supplementary Table S7. These results also support the previous results where the 95th percentile 
of speed distribution entered into the model for all bout durations.

Sensitivity analyses.  Exclusion of participants with high speed (assumed as running) leads to excluding 
753 out of 2809 subjects. The result of the repeated multivariable analysis for the remainder of participants (2056 
subjects) can be found in the Supplementary Tables S8–S17. The exclusion of running data had no significant 
impact on the multivariable analyses results.

The results of the analyses conducted in participants aged 65 years and over are presented in Supplementary 
Tables S18–S27. Results were similar to those of the main analyses, i.e. all gait speed metrics improved the pre-
diction of frailty and were significantly associated with handgrip strength. Further, and as in the main analysis, 
the 95th percentile was the variable most associated with both frailty and handgrip strength.

Figure 2.   (a) Distribution of bouts within each duration category, stratified by age groups. Each bar and 
the corresponding error bar report the mean and SD. For each individual in each age group, the values were 
calculated as percentages of their total number of bouts; (b) probability distribution (PDF) of the preferred 
speed for each bout duration category, including data from all subjects. First, the preferred speed of each subject 
for each bout duration was computed, then the PDF was estimated by the kernel smoothing function (ksdensity 
MATLAB); (c) boxplots of the preferred speed of different groups stratified by gender, age, BMI, and PA levels. 
The green line connects the median value of each group to highlight the underlying trend, (CoLaus cohort, 
Lausanne, Switzerland, 2014–2017).
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Discussion
The results of this study demonstrated the feasibility of using a wrist acceleration-based method for long-term 
real-world monitoring of gait speed in a large cohort of community-dwelling adults. Cross-sectional univariate 
and multivariable analysis demonstrated that the distribution of preferred speed was consistent with established 
normative values published in literature, when subjects were stratified by demographic data such as gender, age, 
BMI, and daily PA levels32,37. It also highlights that the statistical speed metrics derived from the distribution of 
speed within different bout durations improved the discriminative power of regression models built for detec-
tion of frailty status, and prediction of muscle weakness/handgrip strength. The large sample size (n = 2809) 
and the uniform distributions of the subjects within each category of demographic data and PA levels allowed a 
comprehensive, valid statistical analysis of the gait speed metrics.

The range of preferred gait speed in our study (1–1.6 m/s), for each range of bout duration, is consistent with 
the normative values reported by several previous studies32,37 and recent systematic review/meta-analysis38. 
Interestingly, the trend observed with age and gender appeared similar to data recently reported on a big Japanese 
population-based cohort study, where outdoor gait speed was assessed using the smartphone-integrated GNSS 
technology32. Nevertheless, this technology may raise privacy issues and might not be accepted by the ethical 
committee in clinical research. Similarly, the percentage of the total number of gait bouts within each duration 
range (Fig. 2a) appeared similar to results reported in other studies10,39,40, indicating an exponential reduction 
of the number of bouts for longer durations. From Fig. 2a, it can be observed that about 65% were short (< 30 s), 
30% were medium duration (30–120 s), and only 5% were long (> 120 s), and this trend was similar for all age 
categories. It was also observed that the longer bouts had a higher variation of speed. One possible explanation 
for this behavior would be the fact that the long bouts were related to outdoor activities, which are more influ-
enced by contextual factors (e.g., quick utilitarian walk to go to the corner shop, or peaceful recreational walk in 
a park). An expected effect of gender, age, BMI, and PA levels on the preferred speed was observed. The trends in 
Fig. 2c are also consistent with the literature6 and show the importance of real-world gait speed for monitoring 
and assessing functional decline caused by factors such as aging and obesity.

Our study demonstrated that each of the speed metrics in the various bout durations improved the dis-
crimination of the frailty status and handgrip strength. However, the improvements for medium duration bouts 
(30–120 s) appear slightly higher than the other periods. One explanation might be that short bouts (< 30 s) 

Table 2.   Effect of adding the speed metrics to predict frailty status, CoLaus cohort, Lausanne, Switzerland, 
2014–2017. Model A includes gender, age, BMI, and PA; model B consists of all variables from model A plus 
the variable of interest (the speed metric specified in each row). Models A and B were compared by likelihood 
ratio (LR) test. GB gait bout, NaN the values which were not possible to be computed, AUC​ area under the 
ROC curve, AIC Akaike’s information criterion, BIC Bayesian information criterion.

Name Duration (s) Speed metrics AUC​ LR p-value AIC BIC

Model A Each duration None 0.763 NaN NaN 1497.4 1544.8

Model B

 < 30

Mode 0.781 41.26  < 0.001 1458.1 1511.5

Median 0.789 58.62  < 0.001 1440.8 1494.1

Mean 0.793 71.06  < 0.001 1428.3 1481.7

75th percentile 0.789 60.28  < 0.001 1439.1 1492.5

90th percentile 0.796 72.72  < 0.001 1426.7 1480.0

95th percentile 0.798 77.27  < 0.001 1422.1 1475.5

Maximum 0.782 40.34  < 0.001 1459.1 1512.4

Standard deviation 0.781 31.74  < 0.001 1467.6 1521.0

30–120

Mode 0.781 41.46  < 0.001 1457.9 1511.3

Median 0.788 57.59  < 0.001 1441.8 1495.2

Mean 0.793 68.59  < 0.001 1430.8 1484.2

75th percentile 0.789 59.28  < 0.001 1440.1 1493.5

90th percentile 0.795 70.06  < 0.001 1429.3 1482.7

95th percentile 0.800 78.04  < 0.001 1421.4 1474.7

Maximum 0.785 43.70  < 0.001 1455.7 1509.1

Standard deviation 0.779 26.89  < 0.001 1472.5 1525.9

 > 120

Mode 0.778 28.28  < 0.001 1471.1 1524.5

Median 0.785 38.60  < 0.001 1460.8 1514.2

Mean 0.790 49.92  < 0.001 1449.5 1502.8

75th percentile 0.785 38.49  < 0.001 1460.9 1514.3

90th percentile 0.791 50.77  < 0.001 1448.6 1502.0

95th percentile 0.795 58.76  < 0.001 1440.6 1494.0

Maximum 0.770 15.46  < 0.001 1483.9 1537.3

Standard deviation 0.774 17.07  < 0.001 1482.3 1535.7
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are usually related to indoor activity, such as stepping in a constrained environment during daily tasks. Hence, 
individuals are not necessarily challenged by their walking ability. On the other side, the long bouts (> 120 s) 
represent only a small percent of daily gait, so the limited number of samples available may decrease the statisti-
cal power. The medium bouts appear optimal for the estimation of robust speed metrics because their number 
is sufficiently high (about 30%), and the duration long enough to correspond to a stable gait pattern.

Table 3.   Effect of adding the speed metrics to estimate the handgrip strength, CoLaus cohort, Lausanne, 
Switzerland, 2014–2017. Model A includes gender, age, BMI, and PA; model B consists of all variables 
from model A plus the variable of interest (the speed metric specified in each row). Models A and B were 
compared by likelihood ratio (LR) test. NaN the values which were not possible to be computed, AIC Akaike’s 
information criterion, BIC Bayesian information criterion.

Name Duration (s) Speed metrics R2 LR p-value AIC BIC

Model A Each duration None 0.648 NaN NaN 18,780.5 18,827.9

Model B

 < 30

Mode 0.660 100.91  < 0.001 18,681.6 18,734.9

Median 0.673 210.80  < 0.001 18,571.7 18,625.0

Mean 0.681 278.01  < 0.001 18,504.4 18,557.8

75th percentile 0.676 234.44  < 0.001 18,548.0 18,601.4

90th percentile 0.683 290.61  < 0.001 18,491.8 18,545.2

95th percentile 0.685 309.43  < 0.001 18,473.0 18,526.4

Maximum 0.662 112.55  < 0.001 18,669.9 18,723.3

Standard deviation 0.664 135.30  < 0.001 18,647.2 18,700.5

30–120

Mode 0.661 107.18  < 0.001 18,675.3 18,728.6

Median 0.672 198.52  < 0.001 18,583.9 18,637.3

Mean 0.679 257.77  < 0.001 18,524.7 18,578.1

75th percentile 0.674 215.08  < 0.001 18,567.4 18,620.7

90th percentile 0.679 260.00  < 0.001 18,522.5 18,575.8

95th percentile 0.682 285.11  < 0.001 18,497.3 18,550.7

Maximum 0.661 111.52  < 0.001 18,670.9 18,724.3

Standard deviation 0.660 101.86  < 0.001 18,680.6 18,734.0

 > 120

Mode 0.659 91.90  < 0.001 18,690.6 18,743.9

Median 0.669 170.34  < 0.001 18,612.1 18,665.5

Mean 0.675 221.42  < 0.001 18,561.0 18,614.4

75th percentile 0.667 159.97  < 0.001 18,622.5 18,675.9

90th percentile 0.674 213.48  < 0.001 18,569.0 18,622.3

95th percentile 0.674 220.24  < 0.001 18,562.2 18,615.6

Maximum 0.656 66.16  < 0.001 18,716.3 18,769.7

Standard deviation 0.654 53.03  < 0.001 18,729.4 18,782.8

Figure 3.   ROC of model A (baseline, i.e., without speed metrics) and B (baseline plus speed metrics: 
mean, + 90th, and + 95th percentile (pct)) in discrimination of frailty condition according to each bout duration, 
(CoLaus cohort, Lausanne, Switzerland, 2014–2017).
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The 95th percentile appears as the speed metric with the stronger association with frailty condition. The 
significant difference between models A and B, and increased AUC for 95th percentile revealed that this speed 
metric, among other speed measurements, can serve the best as a proxy for the frailty condition. The explanation 
is that the 95th percentile is an estimation of the upper-bound of speed distribution, therefore it is more likely to 
reflect the physical/physiological reserve of the person. This result is in line with37 where a key observation was 
that maximum gait speed declines more steeply than comfortable gait speed with increasing age. Findings were 
similar when the analysis was restricted to participants aged 65 years and over, indicating that those metrics can 
be used in all age groups and to monitor disability in aging, as suggested recently41.

Real-world speed metrics were also associated with handgrip strength/muscle weakness. Clinically, these 
results were expected and in agreement with existing studies37,42,43. Indeed, a reduction of both gait speed and 
handgrip strength may appear due to muscle weakness, which is one of the cardinal signs of frailty/transition to 
frailty. A Canadian study on older adults also found that gait speed alone was sensitive and specific as a proxy for 
the Fried frailty phenotype. However, the dual-trait measure of gait speed with grip strength was more sensitive 
than individual traits and other possible dual-factor combinations11. A systematic review also concluded that, in 
predicting the risk of adverse outcomes, gait speed alone was as good as other composite tools13.

The main strengths of this study are the assessment of gait speed in a long-duration monitoring protocol 
(i.e., 13 successive days), in a large (n = 2809) and diverse cohort (i.e., both gender, and various age and BMI), 
and under entirely free-living situations using acceleration data from a wrist-worn device. The comprehensive 
statistical analyses on such a rich database led to a reliable understanding of the importance of real-world speed 
estimation in clinical applications. Furthermore, the methodology presented could help analyze massive existing 
databases recorded with GENEActiv device (http://​mmarch.​org/​mmarch-​sites)44, or other wrist-worn devices 
that record raw acceleration data45.

This study also has some limitations. First, it was conducted in a community-dwelling population that can be 
considered mostly healthy; hence, the results might not apply to hospitalized and more impaired people. Second, 
frailty was defined using a small set of criteria. There were an imbalanced number of subjects in the fit and frail 
groups; the results might change if the definitions based on other criteria would be used. Still, the definition of 
frailty used in this study is reliable in functional performance33. Finally, this study was cross-sectional where 
causality between PA and frailty or handgrip strength cannot be established; the ongoing follow-up of the CoLaus 
cohort will allow such assessment.

Methods
Study population.  Subjects were enrolled in the framework of CoLaus|PsyCoLaus cohort study (https://​
www.​colaus-​psyco​laus.​ch/), an ongoing prospective survey investigating the biological and genetic determinants 
of cardiovascular risk factors and cardiovascular disease in the population of Lausanne, Switzerland46. A simple, 
non-stratified random sample of population aged between 35 and 75 years was drawn based on the following 
inclusion criteria: (i) written informed consent and (ii) willingness to take part in the examination and to pro-
vide blood samples. The baseline survey was conducted between 2003 and 2006, the first follow-up between 2009 
and 2012, and the second follow-up between 2014 and 2017. The baseline and subsequent follow-ups included 
an interview, a physical exam, blood sampling, and questionnaires. In the second follow-up (4881 participants), 
daily PA was also assessed by accelerometry; hence, data from the second follow-up was used in cross-sectional 
analysis.

Data collection.  Participants have worn a lightweight (16 g), waterproof device including a 3-axial acceler-
ometer (GENEActiv Original, ActivInsights Ltd, UK) on the wrist (dominant hand) for 13 successive full days in 
their free-living situations without any supervision or intervention. The acceleration was recorded with a range 
of ± 8 g and a sampling frequency of 50 Hz, where the accelerometer was calibrated based on47.

Table 4.   Summary of results of stepwise regression forward models for identification of non-frailty condition 
and prediction of handgrip strength, (CoLaus cohort, Lausanne, Switzerland, 2014–2017). s seconds. ‘–’The 
variable did not remain in the stepwise approach. The table reports the significant p-values obtained by using 
each speed metric within each bout duration category.

Speed metrics

p-values for Non-frailty p-values for Handgrip strength

 < 30 s 30–120 s  > 120 s  < 30 s 30–120 s  > 120 s

Mode 0.048 – – – – –

Median – – – – – –

Mean – – – – –  < 0.001

75th percentile – – – – –  < 0.001

90th percentile – – – – – –

95th percentile  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001  < 0.001

Maximum 0.044 0.022 – – 0.006 –

Standard deviation – 0.018 –  < 0.001  < 0.001 –

http://mmarch.org/mmarch-sites
https://www.colaus-psycolaus.ch/
https://www.colaus-psycolaus.ch/
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Gait bouts detection, speed estimation and speed metrics.  After recording, raw acceleration data 
were transferred to a computer for analysis, to identify the gait bouts and estimate speed using validated algo-
rithms, as shown in Fig. 426,27.

Bouts detection27.  The acceleration signal was first enhanced, and several biomechanically meaningful features 
(defined based on intensity, periodicity, posture, and noisiness) were extracted. Then, the features were fed into a 
classification procedure consisting of a Bayes classifier followed by two smart post-classification blocks. The out-
put of this algorithm was per-second labels for continuous gait bouts. A median sensitivity, specificity, accuracy, 
and precision, 90.2, 97.2, 96.6, and 80.0 were reported (values in %, the highest possible value 100 corresponds 
to full agreement between the validated algorithm and the ground truth48).

Speed estimation26.  The non-personalized version of the algorithm26 was used to estimate the speed of detected 
bouts. Relevant features such as energy, step frequency, mean of acceleration, intensity of wrist swing were 
extracted from the enhanced acceleration signal, and fed into a linear regression model to estimate the instan-
taneous speed (per second). A median root mean square error of 0.10 and 0.31 (m/s) were reported for the 
instantaneous walking and running speed estimation, respectively.

Speed metrics.  For each subject, the detected bouts during monitoring time were stratified into three categories 
according to their durations (< 30 s; [30–120] s; > 120 s). The rationale was that short (< 30 s) bouts occur mostly 
indoors and are mainly context-dependent, whereas long (> 120 s) bouts happen mostly outdoors49. The other 
category ([30–120] s) could be a mixture of indoor and outdoor activities49. To characterize the ensemble of gait 
speed values, a set of metrics were derived from the statistical distribution of speed (average, mode, median, 
75th, 90th, and 95th percentiles (pct), standard deviation (SD), and maximum) of each bout duration category.

All analyses were performed using MATLAB 2017b (MathWorks, USA).

Other covariates.  Age was categorized into four groups: [45–54], [55–64], [65–74] and [75 years. Body 
mass index (BMI) was categorized as normal (18.5 < BMI < 25 kg/m2), overweight (25 ≤ BMI < 30 kg/m2) and 
obese (≥ 30 kg/m2). As the percentage of underweight (BMI ≤ 18.5 kg/m2) participants was small (< 2%), they 
were included in the normal weight group.

Handgrip strength was assessed using the Baseline Hydraulic Hand Dynamometer (Enterprises Inc, Elmsford, 
NY, USA) with the subject seated, shoulders adducted and elbow flexed at 90°. Three measurements were per-
formed consecutively with the right hand, and the highest value was included in the analyses. Frailty condition 
was defined using gender, BMI, and handgrip strength (kg) and categorized as frail and non-frail according to 
Fried et al.33, i.e., the frailty condition was identified as follows; for men: if BMI ≤ 24 and handgrip strength ≤ 29, 
or 24 < BMI ≤ 28 and handgrip strength ≤ 30, or BMI > 28 and handgrip strength ≤ 32; and for women: if BMI ≤ 23 
and handgrip strength ≤ 17, or 23 < BMI ≤ 26 and handgrip strength ≤ 17.3, or 26 < BMI ≤ 29 and handgrip 
strength ≤ 18, or BMI > 29 and handgrip strength ≤ 21.

PA levels were estimated from the raw acceleration data using the R-package GGIR (http://​cran.r-​proje​ct.​
org)47 and the criteria of White et al. (https://​github.​com/​Thomi​te/​pampro/​tree/​v0.4.0) to define moderate and 
vigorous intensity. PA levels were further categorized into inactive (< 150 min/week) and active (≥ 150 min/week) 
of moderate and vigorous PA, respectively.

Ethical statement.  The Ethics Committee of the University of Lausanne, which afterward became the Eth-
ics Commission of Canton Vaud (www.​cer-​vd.​ch), approved the CoLaus study. The study was performed in 
agreement with the Helsinki declaration and its former amendments, and under the applicable Swiss legislation. 
All participants gave their signed informed consent before entering the study.

Figure 4.   Block diagram of the system deployed for real-world gait speed estimation. Two validated algorithms 
were used, one for gait bout detection and the second for gait speed estimation.

http://cran.r-project.org
http://cran.r-project.org
https://github.com/Thomite/pampro/tree/v0.4.0
http://www.cer-vd.ch
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Statistical analysis.  Statistical analysis was performed using Stata 16 software (StataCorp. 2019. Stata Sta-
tistical Software: Release 16. College Station, TX: StataCorp LLC.) and MATLAB 2017b (MathWorks, USA). 
First, we performed univariate analysis to investigate the effect of each factor (gender, age, BMI, and PA lev-
els) on gait speed, and to demonstrate the consistency between the speed values estimated in this study from 
the wrist-worn device and the normative/reference values in literature. Then, a comprehensive multivariable 
analysis was designed using the covariates and speed metrics as independent variables and the frailty index and 
handgrip strength as dependent variables.

Univariate analysis.  For each subject the number of gait bouts in each duration category was calculated as 
percentage of total bouts detected, and the values were compared for subjects grouped by age categories. Then, 
the subject’s preferred/usual speed, for all bouts as well as for bouts in each duration category, was estimated as 
the mode (peak) of probability distribution function (PDF) using the Kernel Smoothing Function (ksdensity, 
MATLAB 2017b, MathWorks, USA). Besides, the preferred speed of subjects stratified by gender, age, BMI, and 
PA levels were compared through boxplots to highlight the effect of each factor.

Multivariable analysis.  Two logistic regression nested models (A and B) were built to assess the importance of 
including gait speed for discrimination of frailty status. Model A included gender, age, BMI, and PA intensity 
levels, as these covariates are associated with frailty33. Model B used the same covariates as model A, plus the gait 
speed metrics. Similarly, two linear regression nested models (A and B) assessed the association with handgrip 
strength: model A included gender, age, BMI, and PA levels, and model B was the same as model A plus the gait 
speed metrics. For both analyses, the results were expressed as the area under the ROC (AUC) and Akaike’s and 
Bayesian information criteria (AIC and BIC, respectively). The improvement in detection of frailty, as well as the 
estimation of handgrip strength, was assessed by comparing model B with model A using likelihood ratio test 
(LR) and AUCs (for frailty) or adjusted R-square (for handgrip). The rationale of choosing nested models is that 
they can be compared statistically easily using the standard metrics (e.g., AIC, BIC, AUC). With this approach, 
the more complex one (Model B) was constructed by adding variable(s) (e.g., speed metrics) to the simpler 
one (Model A). To select the best out of these two models, we simply verified whether that added variable(s) 
explained a significant amount of additional variance in the data.

Eventually, to confirm the results of the previous analyses, a stepwise logistic regression (forward method) 
with a p-value for the entry of 0.05 was deployed to select the speed metric(s) with the stronger association with 
the non-frail condition. The same analysis was performed for handgrip strength with a stepwise linear regres-
sion. Due to the large number of tests performed, statistical significance was arbitrarily assessed for a two-sided 
test with p < 0.001.

Sensitivity analysis.  The analysis algorithms26,27 could not distinguish between walking and running. There-
fore, we excluded the participants whose 95th percentile of speed distribution (all bouts) was above the maxi-
mum value of walking speed reported in Ref.37. We then repeated the multivariable analysis as described above. 
We used the 95th percentile of speed since, statistically, it is more reliable than the maximum value. Finally, a 
second sensitivity analysis was conducted for participants aged 65 years and over.

Participation in the accelerometry study was voluntary, and a sizable fraction of the sample declined to 
participate. As this led to a non-random group with missing data, imputation of the missing data could not be 
performed50.
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