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Abstract

We sequenced 2167 base pairs (bp) of mitochondrial DNA cytochrome b and 16S, and 1390 bp of nuclear genes BRCA1 and ApoB in
shrews taxa (Eulipotyphla, family Soricidae). The aim was to study the relationships at higher taxonomic levels within this family, and in
particular the position of difficult clades such as Anourosorex and Myosorex. The data confirmed two monophyletic subfamilies, Soric-
inae and Crocidurinae. In the former, the tribes Anourosoricini, Blarinini, Nectogalini, Notiosoricini, and Soricini were supported. The
latter was formed by the tribes Myosoricini and Crocidurini. The genus Suncus appeared to be paraphyletic and included Sylvisorex. We
further suggest a biogeographical hypothesis, which shows that North America was colonized by three independent lineages of Soricinae
during middle Miocene. Our hypothesis is congruent with the first fossil records for these taxa. Using molecular dating, the first exchang-
es between Africa and Eurasia occurred during the middle Miocene. The last one took place in the Late Miocene, with the dispersion of
the genus Crocidura through the old world.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Soricidae; Colonization; Miocene; Africa, Asia, America; Phylogeny
1. Introduction

Global climate has fluctuated greatly since the Cenozoic,
especially between the Late Eocene (40 Myr ago; Ogg,
2004) and the end of the last glacial maximum of the Pleis-
tocene (11,500 yr). The resulting sea level variations and
creation of temporary land bridges led to several intercon-
tinental exchanges between the new world and the old
world via the Bering Strait (Hunt, 2004). It is commonly
acknowledged that Cenozoic intercontinental exchanges
between Africa and Eurasia occurred during the Mio-
cene–Pliocene transition (5 Myr) via a land bridge situated
at the actual Gibraltar Strait that was caused by the Mes-
sinian salinity crisis that partly dried out the Mediterra-
nean sea (Azzaroli and Guazzone, 1979; Thomas et al.,
1055-7903/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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1982; Chevret, 1994). Most of these observations are based
on fossil data, especially of large mammals, whose fossils
are more easily preserved through time (Alroy, 2003).
For small mammals, the situation is different because fewer
fossil data are available. Molecular phylogenetic analyses
coupled with recent advances in relaxing molecular clock
(e.g., Sanderson, 1997, 2002; Thorne and Kishino, 2002)
can help put estimated divergence times on nodes without
fossils. They are therefore very useful to resolve migration
history of such taxa (e.g., Beerli and Edwards, 2002). This
is particularly true with shrews (Soricidae, Eulipotyphla),
because of their very poor and incomplete fossil record.
Any reconstruction of their biogeographic history is there-
fore largely dependent on the comparison of living species
(Butler, 1998).

Here, we analysed a sample of species from the Sorici-
dae, which is one of the largest mammalian clade with
more than 300 described species. It has recently been divid-
ed into three subfamilies (Hutterer, 2005). The Soricinae
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(red-toothed shrews), which are mainly distributed in the
Holartic region, contain 146 species split into 13 genera.
The Crocidurinae (white-toothed shrews), which have
diversified in Africa and Eurasia contain 210 described spe-
cies distributed in nine genera. Finally, the Myosoricinae
from Africa contain 18 species and three genera (Hutterer,
2005). Despite this diversity, much of the variations
observed are not particularly useful for taxonomic purpos-
es, which makes species assignment often problematic and
can render discriminant characters at supra-generic levels
difficult to find.

The most seminal paper published by Repenning (1967)
recognized the importance of the mandibular articulation
and allowed the grouping of three genera with white teeth
(Anourosorex, Chimarrogale and Nectogale) within the
‘‘red-toothed’’ Soricinae. However, uncertainties remained
at three important levels. First, within the African shrews,
the basal position of Myosorex, which shows a plesiomor-
phic dental formula, is not clearly demonstrated. This tax-
on was included by Repenning (1967) and Hutterer (1993)
in Crocidurinae (tribe Myosoricini), but it was recently
considered, with Congosorex and probably Surdisorex, as
a different subfamily (Myosoricinae; Hutterer, 2005). Sec-
ond, the relationships between Suncus Ehrenberg, 1832
and Crocidura Wagler, 1832 remains unclear. The latter
shows a reduction of one unicuspid, which is usually con-
sidered as derived and it is not clear if the reduction
occurred independently several times (Heim de Balsac
and Lamotte, 1957; Butler, 1998). Third, uncertainties
remain in the taxonomic delimitation of the tribe Neomy-
ini, from which Reumer (1987, 1998) proposed to extract
two other tribes, the Anourosoricini and the Notiosoricini.
He also proposed to separate the Blarinellini tribe from the
Soricini (Reumer, 1998).

Beside classical morphology, techniques such as karyolo-
gy and biochemical systematics based on enzyme electropho-
resis allowed much progress on species level assignment
(Catzeflis et al., 1985; Maddalena, 1990; Maddalena and
Bronner, 1992; Ivanitskaya, 1994; Maddalena and Ruedi,
1994; Ruedi and Vogel, 1995; Ruedi, 1996; Zima et al.,
1998; Schlitter et al., 1999). This resulted in a clarification
of the basal position of Myosorex, which suggested the crea-
tion of the Myosoricinae subfamily (Maddalena and Bron-
ner, 1992; Hutterer, 2005). More recently, mitochondrial
DNA (mtDNA) sequences allowed a much finer resolution
(George, 1988; George and Sarich, 1994; Ohdachi et al.,
1997, 2001; Ruedi et al., 1998; Fumagalli et al., 1999; Motok-
awa et al., 2000; Brant and Orti, 2002; Han et al., 2002; Vogel
et al., 2003; Ohdachi et al., 2004; Dubey et al., 2006; Dubey
et al., in press). At supra-generic level, complex relationships
emerged with paraphyletic, and or polyphyletic taxa, (e.g.,
for the basal African Crocidurinae; Quérouil et al., 2001).
The latter conclusions based on mtDNA were, however,
often not supported. Nevertheless, in our most recent study
on Soricinae (Ohdachi et al., 2006), the support was ade-
quate at a tribe level, partially confirming the concept of
Reumer (Soricini, Neomyini, Notiosoricini (1987, 1998)),
but Anourosorex was placed in an unexpected basal position
(Anourosoricinae). Such results may be due to misleading
information in mitochondrial genes at higher taxonomic
level, a situation that has led to erroneous phylogenetic
trees for other mammals (Janke et al., 1997) and for fishes
(Rasmussen and Arnason, 1999).

In this study, we aim at understanding the higher taxo-
nomic level within the Soricidae using two nuclear and two
mitochondrial markers. The lower mutation rate of nuclear
genes is expected to help obtaining a good resolution at a
higher taxonomic level such as subfamilies, tribes, and gen-
era, while the two mitochondrial markers will allow a good
resolution at lower taxonomic level such as intrageneric
relationships. Based on the trees obtained, we analysed
the potential origin of the different major clades, as well
as the number of transcontinental exchanges, using molec-
ular dating and reconstruction of biogeographic area of
origins. Our goal was to unravel the diversification history
of the family.

2. Materials and methods

2.1. Sampling

We analysed 81 samples of Soricidae, five of Erinacei-
dae, six of Talpidae, and as outgroup a more distant
Laurasiatheria, the Common Pipistrelle (Pipistrellus

pipistrellus).
Within the Soricinae, all the tribes were represented in

our analyses, and we included ten of the thirteen genera
recognized by Hutterer (2005). Within the Crocidurinae,
the three most widespread genera (Crocidura, Suncus, and
Sylvisorex) were represented. The rare and monospecific
genera Scutisorex and Ruwenzorisorex from Africa (for-
merly considered as Sylvisorex) and Ferroculus and Soliso-

rex from Highlands of Sri Lanka were not treated in the
present study. Within the Myosoricinae, only samples of
Myosorex were analysed. Thus, Congosorex, formerly con-
sidered as Myosorex (two species), and Surdisorex (two
species) were not treated. For the tribes or the genus Sorex

containing species on several continents, representative on
each ones were analysed.

The samples included material from the following col-
lections: Lausanne (IZEA), Switzerland; Paimpont (Station
Biologique), France; and Sapporo (Hokkaido University),
Japan (Table 1).

2.2. DNA extraction and amplification

IZEA samples were first frozen in the field in liquid
nitrogen and kept for several years at �70 �C before
being stored in ethanol until DNA extraction. Samples
from the other collections were directly stored in ethanol.
DNA extraction was carried out using the QIA Amp
DNA Mini Kit (Qiagen). Double-stranded DNA amplifi-
cations of the mitochondrial cytochrome b gene (cyt-b)
and 16S ribosomal sequence were performed with the



Table 1
Species and specimens used in the present study, specimen identification code for each species (ID), geographic origin of the samples and area code for the
biogeographic reconstruction analysis (1: Eurasia, 2: Africa, 3: North America), collection code, and GenBank accession number of the published cyt-b

sequences of Ohdachi et al. (2006) used in our study

Genus Species Specimen identification
code

Origin and biogeographic
code

Collection
code

GenBank accession
of published cyt-b sequence

Anourosorex squamipes 1 CN, Wollung Valley (Yunnan), 1 T4738
Anourosorex yamashinai 1 TW, Nantou Co., 1 ASTW.I AB175088
Anourosorex yamashinai 2 TW, Chiayi Co., 1 ASTW.2 AB175089
Blarina brevicauda 1 US, Michigan State, 3 02.7.23.1
Blarina brevicauda 2 US, Michigan State, 3 BLB.I AB175134
Blarinella griselda 1 VN, Mt. Tay Con Linh II, 3 BLG AB175144
Chimarrogale himalayica 1 VN, Ha Tinh, Huong Son, 1 VIET.CHV AB175094
Chimarrogale platycephala 1 JP, Nagasaki Pref., 1 IZEA 7610
Chimarrogale platycephala 2 TW, Nantou Co., 1 3.3.15.1
Chodsigoa caovansunga 1 VN, Mt. Tay Con Linh II, 1 COC1 AB175104
Chodsigoa caovansunga 2 VN, Mt. Tay Con Linh II, 1 COC2 AB175103
Chodsigoa parca 1 VN, Mt. Tay Con Linh II, 1 COPI AB175105
Chodsigoa parca 2 VN, Mt. Tay Con Linh II, 1 COP2 AB175106
Chodsigoa sodalis 1 TW, Kao-Hsiung Co., 1 SIS.2 AB175102
Chodsigoa sodalis 2 TW, Chiayi Co., 1 SIS.I AB127978
Cryptotis goldmani 1 Mexico, Gurrero State, 3 X2 AB175138
Cryptotis magna 1 Mexico, Oaxaca State, 3 X4 AB175141
Cryptotis parva 1 US, Texas State, 3 CRPI AB175135
Episoriculus fumidus 1 TW, Chiayi Co., 1 SIF.2 AB175108
Episoriculus fumidus 2 TW, Nantou Co., 1 SIF.I AB175107
Neomys anomalus 1 CH, Sion, 1 IZEA 5524
Neomys anomalus 2 YU, Popova Sapka, 1 IZEA 1367
Neomys anomalus 3 PT, Unhais da Serra Covilha, 1 IZEA 5919
Neomys fodiens 1 YU, Popova Sapka, 1 IZEA 1368
Neomys fodiens 2 IT, Laghi di Ceretto, 1 IZEA 5643
Neomys fodiens 3 CN, Parc Nat. Altaı̈, 1 IZEA 7453
Neomys fodiens 4 CH, Bassins, 1 IZEA 5686
Notiosorex crawfordi 1 US, Texas State, 3 NSC2 AB175146
Notiosorex crawfordi 2 US, Texas state, 3 NSCI AB175145
Sorex alpinus 1 CH, Pont-de-Nant, 1 IZEA 5444
Sorex araneus 1 SK, Bratislava, 1 IZEA 5744
Sorex araneus 2 CN, Parc Nat. Altaı̈, 1 IZEA 7452
Sorex cinereus 1 US, 3 99.9.19.1
Sorex cinereus 2 US, 3 99.9.21.1
Sorex excelsus 1 CN, Qinghai, 1 MSI 4456
Sorex excelsus 2 CN, Qinghai, 1 MSI 4470
Sorex fumeus 1 US, 3 PA110
Sorex fumeus 2 US, Pennsylvania State, 3 SEF.I AB175116
Sorex granarius 1 ES, Rascafria, 1 IZEA 639
Sorex isodon 1 FI, Iisalmi, 1 IZEA 5622
Sorex minutus 1 CH, Champmartin, 1 IZEA 7622
Sorex raddei 1 TR, Sumela, 1 IZEA 6080
Sorex raddei 2 TR, Sumela, 1 IZEA 6081
Sorex saussurei 1 MX, Guerrero State, 3 SESA2 AB175118
Sorex saussurei 2 MX, Guerrero State, 3 SESA1 AB175117
Sorex volnuchini 1 TR, Sumela Altindere, 1 IZEA 6079
Crocidura brunnea 1 ID, Java/Cibodas, 1 IZEA 4549
Crocidura buettikoferi 1 BF, Adiopodoumé, 2 IZEA 2409
Crocidura leucodon 1 TR, Altindere, 1 IZEA 6040
Crocidura malayana 1 MY, Ulu Gombak, 1 IZEA 3550
Crocidura nanilla 1 CI, Lamto, 2 IZEA 2530
Crocidura negligens 1 MY, Tioman, 1 IZEA 3557
Crocidura nigripes 1 ID, Bore Katimbo Sulavesi, 1 IZEA 4400
Crocidura olivieri 1 BF, Bangui, 2 IZEA 2821
Crocidura orientalis 1 ID, Java/Cibodas, 1 IZEA 4551
Crocidura shantungensis 1 JP, Tsushima Isl., 1 IZEA 7510
Crocidura suaveolens 1 HU, Fülophasa, 1 IZEA 6732
Crocidura theresae 1 BF, Bobo Dioulasso, 2 IZEA 3092
Crocidura viaria 1 BF, Oursi, 2 IZEA 3108
Suncus dayi 1 IN, Avallanchi, 1 IZEA V562
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Table 1 (continued)

Genus Species Specimen identification
code

Origin and biogeographic
code

Collection
code

GenBank accession
of published cyt-b sequence

Suncus dayi 2 IN, Avallanchi, 1 IZEA V567
Suncus dayi 3 IN, Kotagiri, 1 IZEA V576
Suncus etruscus 1 FR, Camargue/Le Pèbre, 1 IZEA 5462
Suncus etruscus 2 IT, Fivizzano c/o Farina, 1 IZEA 5641
Suncus montanus 1 IN, Kotagiri, 1 IZEA V573
Suncus murinus 1 IN, 1 IZEA V546
Suncus murinus 2 IN, Masinagudi, 1 IZEA V554
Suncus murinus 3 JP, Okinawa, 1 SUN2 AB175074
Suncus remyi 1 GA, Moueva, 2 SBP GA3650
Suncus varilla 1 ZA, 2 IZEA ‘‘4’’
Suncus varilla 2 ZA, 2 IZEA ‘‘3’’
Sylvisorex johnstoni 1 GA, Doudou Mounts, Moueva, 2 SBP GA3691
Sylvisorex johnstoni 2 GA, Doudou Mounts, Moueva, 2 SBP GA3695
Sylvisorex johnstoni 3 GA, Doudou Mounts, Moueva, 2 SBP GA3648
Sylvisorex ollula 1 GA, Doudou Mounts, Moueva, 2 SBP GA3586
Myosorex cafer 1 ZA, Serala Prov. Nature Res., 2 GB40764
Myosorex sclateri 1 ZA, Natal, Matubatuba, 2 GB40382
Myosorex sclateri 2 ZA, Natal, Matubatuba, 2 GB40359
Myosorex varius 1 ZA, Natal, Ngome Forest, 2 GB39824
Myosorex varius 2 ZA, Pretoria, 2 GB41102
Myosorex varius 3 ZA, Pretoria, 2 GB41086
Erinaceus europaeus 1 CH, Lausanne, 1 IZEA dorigny
Hylomys parvus 1 ID, Sumatra, 1 IZEA 4494
Hylomys parvus 2 ID, Sumatra, 1 IZEA 4495
Hylomys parvus 3 ID, Sumatra, 1 IZEA 4493
Hylomys parvus 4 ID, Sumatra, 1 IZEA 4484
Euroscaptor mizura 1 JP, Aomori Prefecture, 1 01.5.26.2
Talpa caeca 1 CH, Bellinzone, 1 IZEA 5968
Talpa caeca 2 CH, Bellinzone, 1 IZEA 5976
Talpa europea 1 CH, Meride, 1 IZEA 5972
Uropsilus sp. 1 CN, Wollung Valley (Yunnan), 1 IZEA T4739
Uropsilus sp. 2 CN, Wollung Valley (Yunnan), 1 IZEA T4743
Pipistrellus pipistrellus 1 CH, Préverenges, 1 IZEA 5408

Abbreviations of countries: BF, Burkina Faso; CI, Ivory Coast; CH, Switzerland; CN, China; ES, Spain; FI, Finland; FR, France; GA, Gabon; HU,
Hungary; ID, Indonesia; IN, India; IT, Italy; JP, Japan; MY, Malaysia; MX, Mexico; PT, Portugal; SK, Slovakia; TR, Turkey; TW, Taiwan; US, United
States of America; VT, Vietnam; YU, Yugoslavia; ZA, South Africa.
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primer pairs L14724/H15149, C1/C2, C3/H15915, and
L14724/H15915 (see Irwin et al., 1991; Dubey et al.,
2006), and 16sf (50cct acc gag cct ggt gat ag 30)/16Srbis
(50 ata gat aga aac cga cct gg 30), specifically developed
for this study. Amplification of the Breast cancer suscep-
tibility 1 (BRCA1) and Apolipoprotein B (ApoB) nuclear
genes (exons) were performed using the primer pairs,
B1f/B1r (Dubey et al., 2006) and ApoBf (50gca atc att
tga ctt aag tg 30)/ApoBr (50gag caa caa tat ctg att gg
30), specifically developed for this study. Amplification
conditions for the cyt-b, 16S, and BRCA1 consisted of
35 thermal cycles (40 for BRCA1) of 60 s denaturation
(30 s for the primers pairs L14724/H15149, C1/C2, C3/
H15915) at 94 �C, 60 s (45 s for the primers pairs
L14724/H15149, C1/C2, C3/H15915) annealing at 50 �C
for cyt-b (52 �C for BRCA1, and 55 �C for 16S) and
120 s (60 s for the primers pairs L14724/H15149, C1/
C2, C3/H15915) extension at 72 �C. Amplification condi-
tions for the ApoB gene consisted of 40 cycles of 45 s
denaturation at 94 �C, 45 s annealing at 50 �C and 90 s
extension at 72 �C.
PCR products were checked on a 1% agarose electro-
phoresis gel and visualised with ethidium bromide staining
to verify PCR quality. Products were then purified by cen-
trifugal dialysis using the QIAquick PCR Purification Kit
(Qiagen), according to the manufacturer’s instructions.

Cycle sequencing was performed in 10 ll total volume
containing 1–3 ll of amplified DNA, 1 ll of 10 lM primer,
4 ll of ABI PRISM� Dye Terminator 1 (Perkin-Elmer).
Sequence reactions were visualised on an ABI 3100 genetic
analyser (Applied Biosystems).
2.3. Phylogenetic analyses

The sequences were aligned using the multiple alignment
algorithm implemented in ClustalW (Thompson, 1994), and
further checked by eye. Due to the problems associated with
the ILD test (Yoder et al., 2001; Struck et al., 2006; Wheeler
et al., 2006), the congruence between the four markers was
tested by performing 100 bootstrap resamples on each mark-
er and comparing the support level thus obtained for each
node. The four DNA sequences were combined only if all
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supported nodes (defined here by bootstrap values >75%)
were present in all four obtained trees (e.g., Barrett et al.,
1991; Huelsenbeck et al., 1996; Mason-Gamer and Kellogg,
1996; Cunningham, 1997; Halanych, 1998; Struck et al.,
2006). Maximum parsimony analyses on the complete data
set were performed using Paup*4.0b10 (Swofford, 2001) with
10,000 random addition sequence followed by TBR branch
swapping, and keeping at most 100 trees at each replicate.
Support values were estimated using 1000 bootstrap resam-
ples using the same heuristic settings. For maximum likeli-
hood (ML) and Bayesian analyses (BA), the models of
DNA substitution were selected for each DNA region using
dt_modsel (Minin et al., 2003). The GTR + G (Rodriguez
et al., 1990; Yang, 1996) model best fitted the combined data
set formed by the concatenation of the four sequences. Fast
ML heuristic searches and bootstrap analyses (1000 repli-
cates) were performed on the combined data set only using
PHYML (Guindon and Gascuel, 2003). Bayesian analyses
were performed with a partition specific models, using
MrBayes version 3.0 b4 (Huelsenbeck et al., 2001). The
HKY85 + G + I model (Hasegawa et al., 1985; Yang,
1996) was used for the 16S and cyt-b partition and the
GTR + G for the ApoB and BRCA1 partition. Four inde-
pendent runs were performed, each consisting of four paral-
lel MCMC chains of five millions generations. Trees were
sampled every 1000 generations. The first 3000 trees were dis-
carded as burnin. Both ML and BA analyses were performed
on the Vital-IT cluster (Swiss Institute of Bioinformatics).

2.4. Molecular dating

The calibration points used for dating the trees was the
oldest known Soricinae–Crocidurinae ancestors (20 Myr,
Reumer, 1989, 1994), the oldest known Cryptotis (9 Myr
BP; Harris, 1998), and Otisorex (3.5 Myr BP; Maldonado
et al., 2001). Position of fossils in the tree is shown in
Fig. 2. The tree with the highest posterior probability
found by MrBayes (see above) was selected as the ‘‘true’’
topology for the molecular dating and a Bayesian
approach was used to estimate absolute divergence time.
The variance–covariance matrix of rates of substitution
of each data partition was estimated as implemented in
the software estbranch (Thorne and Kishino, 2002). The
four matrices were then used to estimate the divergence
time with the program multidivtime (Thorne and Kishino,
2002). The fossil calibration points were used as a lower
bound constraint, and the root of the tree was constrained
to be at most 50 Myr old (required by the software). Two
independent runs were done to assess convergence. In each
run, a one million generation chain was run, sampling
every 100 generations. All the analyses were ran on the
Vital-IT cluster (Swiss Institute of Bioinformatics).

2.5. Reconstruction of biogeographic origin

To infer the possible biogeographic origin of the
Soricidae and different genera, we reconstructed ancestral
geographical origins of each clades with a maximum like-
lihood approach using Mesquite 1.05 (Maddison and
Maddison, 2004). The current geographic distribution
of extant species was coded as, (1) for Eurasian taxa,
(2) for African taxa, and (3) for North American taxa
(Table 1). The model of character evolution was a simple
stochastic model (Mk1; Lewis, 2001), which assumes a
symmetric and equal rate of change between any two
states. The probability that a character changes along a
branch of the tree is then a function of the branch
length, a change being more likely on longer branches
than on shorter ones. Here, we used the calibrated tree
obtained by molecular dating (see section above) in order
to have branch lengths representing absolute time of
divergence.

3. Results

3.1. Phylogenetic relationships

The 93 sequences of 3577 bp (on which 338 bp were
excluded from the analyses) used in this study showed
1892 variable sites, of which 1638 were parsimony-infor-
mative. GenBank accession numbers are as follows: for
cyt-b, DQ630379-DQ630437, DQ42541, DQ521043-
DQ521045, DQ065609, DQ065611, for 16S, DQ630291-
DQ630378, for BRCA1, DQ630209-DQ630290, and for
ApoB, DQ630122-DQ630208. Other cyt-b sequences
were taken from our previous study (Ohdachi et al.,
2006; see Table 1). The alignment file is deposited on
TreeBASE under the submission ID number SN3114.
The congruence test showed that no nodes with boot-
strap higher than 75% were contradicted by another
partition of the data (data not shown). We thus consid-
ered that the four markers could be combined for fur-
ther analyses. Using the combined data matrix, trees
obtained by ML, MP, and BA showed identical sup-
ported clades. Consequently, only the tree obtained by
ML on the complete dataset is shown in Fig. 1. All
families, subfamilies, and tribes (Fig. 1) were monophy-
letic and were supported by 100% bootstrap, for MP,
ML, and a posterior probability of 1.0 for BA (branch-
es support is always cited in the same order in the text,
i.e., bootstrap for MP, ML, and posterior probability
for BA). All genera, except Suncus, were also supported
by all analyses (support of >78%, >83% and 1.0;
Fig. 1). Using a vespertilionid bat as outgroup, the Tal-
pidae was the most basal clade, followed by the Eri-
naceidae, which is the sister clade of the Soricidae
(support of 95%, 80%, and 1.0 for the Talpidae, and
100%, 100% and 1.0 for the Erinaceidae). Within the
Soricidae, the Crocidurinae and Myosoricinae (sensu

Hutterer, 2005) were both monophyletic (support of
each subfamily of 100%, 100% and 1.0), and clustered
together (support of 100%, 100% and 1.0), formed a sis-
ter clade to the Soricinae (support of 100%, 100% and
1.0). Within the Crocidurinae, the genus Suncus was



Fig. 1. Phylogeny of the 3314 bp analysed with maximum likelihood, using the TVM + G model of substitution and TBR branch swapping. Values in
branches are supports, for the major branches for maximum parsimony (MP) and maximum likelihood (ML) analyses, and Bayesian posterior
probabilities (BA). Specimens codes are as in Table 1.
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paraphyletic. The African Suncus (S. varilla and
S. remyi) and the representatives of the genus Sylvisorex

(S. ollula, S. johnstoni) formed a basal clade (support of
63%, 99% and 1.0; Fig. 1) to the Asiatic Suncus (S.
dayi, S. montanus, S. murinus; support of 86%, 100%
and 1.0). The pygmy white-toothed shrew Suncus etrus-
cus was found to be the sister group of the monophylet-
ic genus Crocidura (support of <50%, 53% and <0.5).

Three major clades are included in the Soricinae
subfamily. The first contained the Soricini tribe, where
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the subgenera Sorex, and Otisorex were monophyletic
(support of 100%, 100% and 1.0, and 100%, 99% and 1.0,
respectively). The second corresponded to the Blarinini
and Blarinellini tribes (support of 100%, 100% and 1.0).
Finally, the third included the Anourosoricini tribe that
is basal to the Notiosoricini, and the Nectogalini (Hutterer,
2005; former Neomyini, Hutterer, 1993) tribes. Within this
latter tribe, the genus Neomys is the sister clade to all other
genera (support of 90%, 100% and 1.0).
3.2. Molecular dating

The two independent runs of MCMC (Markov chain
Monte Carlo) gave very similar results (Pearson correla-
tion = 0.98) and the major dates obtained during the first
analysis are shown below. The separation between Sorici-
dae tribes occurred during the middle Miocene between
16.5 Myr (95% CI: 12.5–20.5) and 13.8 Myr (95% CI:
10.2–17.4) ago (Fig. 2). The separation of the Palaearctic
and Nearctic Soricinae happened during the same period,
i.e., between Otisorex and Sorex 13.9 Myr ago (95% CI:
10.2–17.5), Notiosoricini and Nectogalini 13.8 Myr ago
Fig. 2. Molecular dating of splits. The stars indicate the calibration points that
in Table 1, and genus abbreviations are Sor. for Sorex, Ano. for Anourosore

Episoriculus, Not. for Notiosorex, Bla. for Blarina, Cry. for Cryptotis, Ble for B

Myosorex.
(95% CI: 10.2–17.4), and Blarinella, Blarina and Cryptotis

12.1 Myr ago (95% CI: 5.1–17.7).
The split between the Myosoricinae and Crocidurinae

occurred 16.5 Myr ago (95% CI: 12.5–20.5). The split
between the basal African Crocidurinae clade (Sylvisorex,
and Suncus) and the Eurasian Suncus occurred 10.8 Myr
ago (95% CI: 7.6–14.0) whereas the split between this latter
and the genus Crocidura happened more recently around
9.3 Myr ago (95% CI: 6.4–12.3). Finally, the split between
Eurasian and African Crocidura occurred in the Late Mio-
cene around 8.0 Myr (95% CI: 5.4–10.7).
3.3. Biogeographic reconstruction

The common pipistrelle that was chosen as outgroup to
reconstruct the phylogenetic trees was removed because of
the difficulty to assign a biogeographic area for its distribu-
tion. It is furthermore a very distant taxa of the studied
families.

Therefore, the Erinaceidae and Talpidae were the
most basal groups for the biogeographic reconstruction.
Fig. 3a shows the results of the ancestral biogeographic
were taken as a lower bound on the indicated node. Specimens codes are as
x, Neo. for Neomys, Chi. for Chimarrogale, Cho. for Chodsigoa, Epi. for
larinella; Cro. for Crocidura, Sun. for Suncus, Syl. for Sylvisorex, Myo. for



Fig. 3. Hypothesized history of shrews based on the present phylogeny
(no time scale), taking into account for the biogeographic analysis (a) and
alternative scenarios for the Crocidurinae, only based on fossils records,
see Section 4.2 (b,c).
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origins based on maximum likelihood reconstruction of
ancestral areas. The Crocidurinae–Myosoricinae–Sorici-
nae ancestor presents a probability of 99.5% of being
Eurasian, and the basal nodes of Soricinae, and Crocid-
urinae a probability of, respectively, 99.9% and 76.4% of
being of Eurasian origin. The basal nodes between
American and Eurasian Soricinae, i.e., Notiosoricini vs
Nectogalini, Otisorex vs Sorex, and Cryptotis and Blari-

na vs Blarinella have a probability of, respectively,
99.8%, 98.1%, and 95.6% of being Eurasian. The basal
nodes within Otisorex, and between Blarina and Crypto-

tis have a probability of, respectively, 94.9% and 98.6%
of being of American origin. Concerning the Crociduri-
nae, the basal nodes of Crocidurini have a ML prob.
of 74.9% of being Eurasian. The basal node of the Eur-
asiatic Suncus and Crocidura, and the basal node to the
previous genus have a ML prob. of 99.4%, and 99.3% of
being Eurasian. The basal nodes of the African taxa, i.e.,
Myosorex, Sylvisorex, African Suncus, and African
Crocidura have probabilities up to 96% of being of an
African origin.
4. Discussion

4.1. Molecules vs morphology

The Talpidae, which were considered by most morphol-
ogists as sister group to the Soricidae and part of the Euli-
potyphla (Simpson, 1945; Macphee and Novacek, 1993;
Symonds, 2005), are replaced in our results by the Erinacei-
dae (Fig. 1), which are represented in this study by two sub-
families (Erinaceinae, and Galericinae). This position was
also supported by recent studies based on nuclear genes
(Murphy et al., 2001; Douady and Douzery, 2003).

With the combined DNA regions used in this study, the
Soricinae were found as sister group to the Crocidurinae
(sensu Repenning, 1967; Fig. 1). This position confirmed
the classical hypothesis of Repenning (1967).

Although Myosorex formed a monophyletic group, its
definition as a distinct subfamily (Maddalena and Bronner,
1992; Quérouil et al., 2001; Hutterer, 2005) cannot be
advocated from our results. The genetic distance, expressed
by the branch lengths, is comparable to those of different
tribes of Soricinae. This close relationship with Crociduri-
nae (sensu Hutterer, 2005) contrasts with Querouil’s results
(2001) that tend to cluster the Myosorex with Soricinae on
the basis of 16SrRNA data. However, their results were not
well supported.

Similarly, the classification of the Anourosorex in a dis-
tinct subfamily (Ohdachi et al., 2006) was not supported by
our analysis (Fig. 1), the Anourosorex being in a central
position within the Soricinae. Thus, we propose to attri-
bute a tribe level for these two clades, which should be
named, respectively, Myosoricini (included within the Cro-
cidurinae; Repenning, 1967), and Anourosoricini (included
within the Soricinae). The term Myosoricini (Crociduri-
nae), and Anourosoricini (Soricinae) will be used in the rest
of the discussion and in Fig. 3.

Within the Soricinae, five tribes received bootstrap sup-
port of 100%, 100% and posterior probabilities of 1.0
(Fig. 1). As in Repenning (1967), the Soricini remained a bas-
al tribe, but Blarinella does no longer belong to it (Fig. 1).
The split between the Eurasian subgenus Sorex and the
American subgenus Otisorex confirmed earlier hypotheses
(Fumagalli et al., 1999; Ohdachi et al., 2006). Furthermore,
the Asian genus Blarinella, should not be placed in a separate
tribe Blarinellini (Reumer, 1998; Hutterer, 2005), as it was
found to be the sister taxon of the American genera Blarina
and Cryptotis (support of 100%, 100% and of 1.0, Fig. 1).
This position confirmed the hypothesis of Thomas (1911)
and some of our previous results (Ohdachi et al., 2006). Con-
sequently, Blarinella will be considered in the rest of the dis-
cussion and in Fig. 3 as a member of the Blarinini tribe.
Moreover, the Neomyini (Repenning, 1967) should be split
into three tribes, as proposed by Reumer (1998): (i) the Nec-
togalini (Hutterer, 2005) with Neomys basal to Chodsigoa,
Episoriculus, and Chimarrogale; this last genus being basal
to Chodsigoa and Episoriculus, (ii) the Notiosoricini, and
(iii) the Anourosoricini (support of 100%, 100%, and of 1.0
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for each tribe, Fig. 1). The relationships between the Soricini,
the Blarinini and the other tribes remained unresolved
(Fig. 1).

Within the Crocidurini, the genus Suncus appeared
paraphyletic, the African species forming a basal clade with
the genus Sylvisorex Thomas, 1904, which is strictly con-
fined to Africa. In contrast, the three Asian species (S. dayi,
S. montanus, and S. murinus) formed a monophyletic clade
(support of 100%, 86%, and 1.0, Fig. 1), clustered with the
pygmy white-toothed shrew, Suncus etruscus, which is bas-
al to the monophyletic genus Crocidura (support of <50%,
53% and of <0.5, Fig. 1). These results are in agreement
with two molecular studies using the mitochondrial cyt-b

gene or 16S (Quérouil et al., 2001; Ohdachi et al., 2006),
which suggested that none of the Suncus species are includ-
ed within Crocidura.

Consequently, as the type species of the genus Suncus is
the Asian Suncus murinus (Linnaeus, 1766), the Eurasian
Suncus should then conserve their taxonomic status. How-
ever, the position of the African clade represented by the
genera Suncus and Sylvisorex is not yet clearly understood,
and no morphological synapomorphies are yet known to
define these clades. The analyses of additional species of
these genera are needed to unravel their phylogenetic rela-
tionships and draw systematic conclusions. This also
applies to the questionable position of the monospecific
genera Scutisorex Thomas, 1913, and Ruwenzorisorex Hut-
terer, 1986, whose type specimens were first described as
Sylvisorex somereni Thomas, 1910, and Sylvisorex sunco-

ides Osgood, 1936, respectively.

4.2. Biogeography

Our study is the first molecular biogeographic reconstruc-
tion of the Soricidae, based on molecular dating and recon-
struction of biogeographic area of origin. We should note
that the biogeographic analyses are based on a simple model.
The exchanges between continents are considered as equi-
probable in both directions, and they can occur at any time.
Under these assumptions, the family originated in Eurasia as
suggested by fossils records (Repenning, 1967; Rzebik-Kow-
alska, 1998; Storch et al., 1998). North America was colo-
nized by three independent lineages of Eurasian Soricinae
(Fig. 3) during the middle Miocene (from 13.9 to 12.1 Myr,
Fig. 2). These events are congruent with the first fossil
records of the genera Cryptotis and Notiosorex in North
America between 9 and 12 Myr (Harris, 1998), and with
the molecular study of Fumagalli et al. (1999) for the subgen-
era Otisorex. They occurred after the climatic transition
from 14.8 to 16.0 Myr, which was marked by major short-
term variations in global climate and a global low sea level
between 14.8 and 12.9 Myr (Flower and Kennett, 1994). This
led to the formation of a land connection between Siberia
and Alaska through the Bering Strait. These intercontinental
colonizations are contemporary to those of other taxa such
as felids (Tedford et al., 1987; Hunt, 2004; Wang et al.,
2004), but older than major colonizations of both continents
by small and big mammals (Late Miocene, e.g., 7 and
4.5 Myr, and since 9 Myr; Tedford et al., 1987; Hunt, 1998;
Webb and Opdyke, 1995; Tedford and Martin, 2001; and
Van der Made et al., 2002).

According to the biogeographic reconstruction and the
molecular dating (Fig. 3a), the first diversification of the
monophyletic Crocidurinae occurred in Eurasia, where
they differentiated in Crocidurini and Myosoricini
(16.5 Myr, 95% CI: 12.5–20.5; middle Miocene; Figs. 2
and 3). The Myosoricini were the first Soricidae to colonize
Africa in the Upper Miocene. Our result coincides with the
first fossil record of ‘‘Myosorex sp.’’ in Africa (12 Myr;
Robinson and Black, 1974), and could be associated with
the presence of forested corridors during the Neogene con-
necting Africa and Asia, 19 Myr ago (Thomas, 1985; Cox
and Moore, 1993), as previously suggested by Quérouil
et al. (2001). This was also hypothesized for bats (Juste
et al., 1999), and is in accordance with the colonization
of Africa by the Muridae (Butler, 1984; Jacobs, 1985).

In the late middle Miocene, two other Eurasian lineages
emerged (10.8 Myr, 95% CI: 7.6–14.0). One colonized Afri-
ca and differentiated in the actual Sylvisorex and in the
African ‘‘Suncus’’ as hypothesized by Butler (1998). Anoth-
er one differentiated in Eurasia leading to the actual Eur-
asian Suncus. From this last lineage emerged Crocidura

(9.3 Myr, 95% CI: 6.4–12.3) in Eurasia. Thus, the origin
of Crocidura is anterior to the oldest European and Asian
fossils known, respectively, of the early Pliocene (5 Myr)
and the middle Pleistocene (Rzebik-Kowalska, 1998;
Storch et al., 1998). Nevertheless, the discovery in Africa
of two very different Crocidura fossils, dating of the middle
Pliocene (3 Myr; Butler, 1998), suggests that the diversifica-
tion of the genus took place much earlier on this continent.
This discrepancy illustrated the very poor and incomplete
fossil record of the family, which could lead to erroneous
interpretations. The reconstruction of its biogeographic
history is therefore largely dependent on the comparison
of living species (Butler, 1998). Finally, in the Late Mio-
cene, the genus differentiated in an African and an Eur-
asian lineage (8.0 Myr, 95% CI: 5.4–10.7), which is older
than the Messinian regression. This differentiation corre-
sponds with the beginning of a more humid phase (Late
Tortonian) when savannah and subtropical grasslands
replaced the Sahara desert (Griffin, 1999, 2002; Micheels,
2003). This created a potential route of colonization
between Eurasia and Africa through the middle east, rather
than Gibraltar, as suspected by several authors (Azzaroli
and Guazzone, 1979; Thomas et al., 1982; Chevret,
1994). Nevertheless, additional Crocidura species should
be analysed to test for the presence of two distinct biogeo-
graphic lineages, and not one undifferentiated, as suggest
by Quérouil et al. (2001). Under this scenario, three inde-
pendent colonizations from Eurasia to Africa occurred
during the Miocene (Fig. 3a).

Without taking into account the biogeographic analysis,
two alternative equally parsimonious scenario can be pro-
posed (Fig. 3b and c). (i) First colonization of Africa



S. Dubey et al. / Molecular Phylogenetics and Evolution 44 (2007) 126–137 135
16.5 Myr ago (95% CI: 12.5–20.5) led to the actual Myos-

orex, Sylvisorex, and African Suncus. Then, a back coloni-
zation happened from Africa to Eurasia, leading to the
actual Asian Suncus and Crocidura. Some Crocidura then
migrated back to Africa to diversify into the actual African
Crocidura (Fig. 3b). (ii) First colonization of Africa
16.5 Myr ago (95% CI: 12.5–20.5) led to the actual Myos-

orex, Sylvisorex, African Suncus, and African Crocidura.
Then, two successive back colonizations occurred from
Africa to Eurasia, first by the African Suncus, and second
by the African Crocidura, leading to the actual diversity
of Eurasian Suncus and Crocidura (Fig. 3c).

These scenarios imply that the ancestral Crocidurinae dis-
appeared from Eurasia, and were replaced by the lineage
emerging from Africa. This hypothesis is supported by the
presence during the lower and middle Miocene of a very rich
Soricinae fauna in Eurasia and in North Africa, from where
they have since disappeared. In contrast, only one doubtful
Crocidurinae fossil is known from Eurasia (Turkey; Enges-
ser, 1980; Storch et al., 1998; Rzebik-Kowalska, 1998). The
first biogeographic scenario is in agreement with a former
hypothesis of Butler (1998), who proposed that three differ-
ent lineages emerged from Asia and colonized Africa (actual
Myosoricini, Suncus and the other Crocidurini). However,
this is in contrast with several authors (Meester, 1953; McLe-
llan, 1994; Quérouil et al., 2001) who gave an African origin
to the genus Suncus. The first two biogeographic scenarios
proposed (Fig. 3a and b) also contradict all the former
assumptions concerning Crocidura evolution, who pled for
an African origin of this genus (Butler, 1998; Meester,
1953; McLellan, 1994; Quérouil et al., 2001).

Nevertheless, the three scenarios have two points in
common. They all hypothesize: (i) a colonization of Africa
during the middle Miocene, and (ii) two independent ori-
gins of the Crocidura lineages.

Thus, at least three exchanges occurred between Africa
and Eurasia, first in the middle Miocene, and second in
the Late Miocene with the dispersion of the genus Crocidu-
ra through the old world. Nevertheless, more investigations
are needed. Additional material from, for example, Croci-

dura, Suncus and endemic African genera such as Scutiso-

rex, as well as the enigmatic Asian genera Ferroculus and
Solisorex, should be included in further analyses. These
taxa are of major interest to select between these three bio-
geograhic hypotheses for the Crocidurinae.

5. Conclusions

We highlight for the first time a clear relationship
between the major groups of taxa within the Soricidae.
Anourosorex should be definitively classified inside the
Soricinae and not in a different subfamily. Accordingly,
Myosorex should be included in the Crocidurinae. Our
results also suggest a complex relationship between Suncus

and Sylvisorex. Suncus is a paraphyletic unit including at
least two Eurasian clades and an African one, the latter
comprising Sylvisorex. It therefore needs a taxonomic revi-
sion. The biogeographic analyses showed a clear pattern
inside the Soricinae, which originated in Eurasia and colo-
nized subsequently North America with three different lin-
eages. However, part of the biogeographical history of
Crocidurinae remains uncertain.
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Tübingen.

Minin, V., Abdo, Z., Joyce, P., Sullivan, J., 2003. Performance-based
selection of likelihood models for phylogeny estimation. Syst. Biol. 52,
674–683.

Motokawa, M., Suzuki, H., Harada, M., Lin, L.K., Koyasu, K., Oda, S.,
2000. Phylogenetic relationships among East Asian species of Croci-

dura (Mammalia, Insectivora) inferred from mitochondrial cyto-
chrome b gene sequences. Zool. Sci. 17, 497–504.

Murphy, W.J., Eizirik, E., O Brien, S.J., Madsen, O., Scally, M., Douady,
C.J., Teeling, E., Ryder, O.A., Stanhope, M.J., de Jong, W.W.,
Springer, M.S., 2001. Resolution of the early placental mammal
radiation using Bayesian phylogenetics. Science 294, 2348–2351.

Ogg, J.G., 2004. Status of divisions of the International Geologic Time
Scale. Lethaia 37, 183–199.

Ohdachi, S.D., Dokuchaev, N.E., Hasegawa, M., Masuda, R., 2001.
Intraspecific phylogeny and geographical variation of six species of
northeastern Asiatic Sorex shrews based on the mitochondrial cyto-
chrome b sequences. Mol. Ecol. 10, 2199–2213.

Ohdachi, S.D., Hasegawa, M., Iwasa, M.A., Vogel, P., Oshida, T., Lin, L-
K., Abe, H., 2006. Molecular phylogenetics of soricid shrews (Mam-
malia) based on mitochondrial cytochrome b gene sequences: with
special reference to the Soricinae. J. Zool. 270, 177–191.

Ohdachi, S.D., Iwasa, M.A., Nesterenko, V.A., Abe, H., Masuda, R.,
Haberl, W., 2004. Molecular phylogenetics of Crocidura shrews
(Insectivora) in east and central Asia. J. Mammal. 85, 396–403.

Ohdachi, S.D., Masuda, R., Abe, H., Dokuchaev, N.E., 1997. Biogeo-
graphical history of northeastern Asiatic soricine shrews (Insectivora,
Mammalia). Res. Pop. Ecol. 39, 157–162.

Quérouil, S., Hutterer, R., Barrière, P., Colyn, M., Peterhans, J.C.K.,
Verheyen, E., 2001. Phylogeny and evolution of African shrews
(Mammalia: Soricidae) inferred from 16s rRNA sequences. Mol. Phyl.
Evol. 20, 185–195.

Rasmussen, A.S., Arnason, U., 1999. Phylogenetic studies of complete
mitochondrial DNA molecules place cartilaginous fishes within the
tree of bony fishes. J. Mol. Evol. 48, 118–123.

http://mesquiteproject.org


S. Dubey et al. / Molecular Phylogenetics and Evolution 44 (2007) 126–137 137
Repenning, C.A., 1967. Subfamilies and genera of the Soricidae. U.S.
Geol. Surv. Prof. Paper 565, 1–74.

Reumer, J.W.F., 1987. Redefinition of the Soricidae and the Heteroso-
ricidae (Insectivora, Mammalia), with the description of the Crocid-
osoricinae, a new family of soricidae. Rev. Paléobiol. 6, 189–192.
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