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Abstract 

In contrast to other cognitive abilities, arithmetic skills are known to be preserved in 

healthy elderly adults. In fact, they would even outperform young adults because they more 

often retrieve arithmetic facts from long-term memory.  Nevertheless, we suggest here that the 

superiority of older over younger adults could also stem from the use of more efficient 

automated and unconscious counting procedures. We tested 35 older participants using the 

sign priming paradigm and selected the 18 most efficient ones, aged from 60 to 77. Sign 

priming are interpreted as the indicator of the pre-activation of an abstract procedure as soon 

as the arithmetic sign is presented. We showed that expert elderly arithmeticians behaved 

exactly as 26 young participants presenting the same level of arithmetic proficiency. More 

precisely, we showed that presenting the “+” sign 150 ms before the operands speeds up the 

solving process compared to a situation wherein the problem is classically presented in its 

whole on the screen. Only tie problems and problems involving 0 were not subjected to these 

priming effects and we concluded that only these problems were solved by retrieval, either of 

the answer for tie problems or of a rule for + 0 problems. These results could provide new 

insights for the conception of training programs aiming at preserving older individuals’ 

arithmetical skills and, in a longer-term perspective, at maintaining their financial autonomy, 

which is decisive for keeping them in charge of their daily life.  
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1- INTRODUCTION 

Autonomy maintenance in old age necessarily requires the preservation of numerical 

skills. Noticeably, mastering arithmetic constitutes the basic foundation for personal financial 

management through bill payment, healthcare information processing, budget planning and so 

on (e.g., Cahn-Weiner, Malloy, Boyle, Marran, & Salloway, 2000). It is therefore crucial to 

determine whether and how arithmetic skills decline with age in order to implement 

appropriate cognitive training to prevent or overcome deterioration (Hartley et al., 2018). If 

arithmetic skills do not decline with age, reinforcing these preserved capacities or basing 

reeducation programs upon them might be decisive in keeping the elderly in charge of their 

daily life.  

Addition problems are initially solved through counting procedures (e.g., 3 + 2 is 3, 4, 

5) by children from the age of 4 to 5 or 5 to 6 years (e.g., Dupont-Boime & Thevenot, 2018; 

Fuson, 1982; Siegler & Jenkins, 1989; Siegler & Shrager, 1984). After repetitive practice, 

procedural-based processes can be progressively replaced by more fluent memory retrieval 

ones (see Touron and Hertzog, 2009 for an overview) and this is exactly what is usually 

described in the domain of arithmetic. Counting procedures are indeed supposed to be 

replaced by memory retrieval of problem answers from networks stored in long-term memory 

(Ashcraft, 1992; 1995; Ashcraft & Battaglia, 1978; Campbell, 1995). In other words, practice 

would lead to the construction of arithmetic facts (e.g., 3 + 2 = 5) and problem answers could 

be reached without further reliance on algorithmic procedures.  

It is repeatedly described in the literature that older adults rely more on retrieval of 

arithmetic facts from memory during arithmetic problem solving tasks than younger ones 

(Arnaud, Lemaire, Allen, & Michel, 2008; Geary, Frensch, & Wiley, 1993; Geary & Wiley, 

1991; Thevenot, Castel, Danjon, Fanget, & Fayol, 2013). Higher or exclusive reliance on 

retrieval in older adults would explain how they sometimes outperform younger adults in 
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arithmetic tasks (see Duverne and Lemaire, 2005 for a review). Still, when both young and 

older adults use retrieval, older adults are slower in executing the solving process (Allen et al., 

2005). However, the reduced speed of execution in older adults could be due to slower 

operand encoding, strategy selection and verbal production of the answer rather than to the 

rate of retrieval per se (Allen, Ashcraft, & Weber, 1992; Allen, Smith, Jerge, & Vire-Collins, 

1997; Geary & Wiley, 1991).  

Nevertheless, we have recently questioned retrieval of the answers from memory as 

the expert strategy in mental addition by rehabilitating the disregarded conception that the 

development towards arithmetic proficiency consists of the acceleration of procedure 

execution (Baroody, 1983; 1984; 1994). We first formulated this conclusion after we showed 

in two experiments that, in expert young adults, problem solving is facilitated when the 

arithmetic sign is presented 150 ms before the operands for simple additions but not for 

multiplications (Fayol & Thevenot, 2012). These results were obtained using a production 

task and replicated previous results repeatedly obtained across three experiments using a 

verification task (Roussel, Barrouillet, & Fayol, 2002). The same observations were done in 

younger participants from the age of 12-13 years (Mathieu, Epinat-Duclos, Léone et al., 2018 

in a verification task; Perez, Houiller, Mathieu, & Thevenot, unpublished manuscript in a 

production task). We inferred from these results that abstract procedures were primed by the 

“+” sign and consequently used by adults and children from the age of 12-13 years to solve 

addition problems. The conclusion that counting procedures are still used by adults when they 

solve one-digit additions was also reached through a series of experiments showing that the 

increase in solution times as a function of the size of problems is hard to reconcile with a 

retrieval-based account (Barrouillet & Thevenot, 2013; Thevenot, Barrouillet, Uittenhove, & 

Castel, 2016; Uittenhove, Thevenot, & Barrouillet, 2016). Brain imaging studies also 

reinforced our conclusions because we showed that cerebral networks devoted to spatial 

attention was activated when a “+” sign and not when a “×” sign was presented to young 
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adults (Mathieu, Epinat-Duclos, Sigovan et al., 2018). We concluded that extremely fast 

procedures involving spatial moves on a mental number line could be used in order to solve 

simple additions (Mathieu, Gourjon, Couderc, Thevenot, & Prado, 2016). What is primed 

when the “+” sign is presented could therefore correspond to a mental representation akin to a 

mental number line along which individuals’ attention could make displacements by one. As 

in Groen and Parkman’s model (1972), a mental counter could be placed to a specified value 

corresponding to one of the two problem operands (e.g., 4 for 4 + 3) and the place of the 

counter could be moved by one until the number of steps represented by the other problem 

operand is reached (Figure 1). These procedures could be limited to four moves along a 

numerical sequence and automated counting procedures could therefore be limited to 

additions up to 4 elements (Uittenhove et al., 2016).  This quantity of 4 elements corresponds 

to the upper limit in the subitizing range or in other words to the number of objects that 

individuals can capture in a glance in order to determine how many items constitute a 

collection (e.g., Mandler & Shebo, 1982). This limit to 4 also corresponds to the number of 

elements that infants and animals can compare or discriminate (Boysen & Berntson, 1989; 

Feigenson, Carey, & Hauser, 2002; Starkey & Cooper, 1980). In fact, this limit probably 

reflects the maximum number of elements that the human cognitive system can apprehend 

within a single attentional snapshot (Cowan, 2001). Within this limit to 4, the calculations 

procedures are probably run to completion by experts without awareness and this could be the 

reason why adults massively report retrieval for problems such as 3 + 2 or 4 + 3 (e.g., 

LeFevre, Sadesky, & Bisanz, 1996). 

Even though retrieval model proponents have put forward several arguments against 

our automated counting procedure model (e.g., Campbell & Beech, 2014; Campbell & 

Therriault, 2013; Chen & Campbell, 2015; 2016; 2017; 2018), other teams of researchers 

have provided additional support for it (e.g., Baroody, 2018; De Chambrier & Zesiger, 2018; 
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Liu, Cai, Verguts, & Chen, 2017; Pinheiro-Chagas, Dotan, Piazza, & Dehaene, 2017; Zhu, 

Luo, You, & Wang, 2018; Wang, Gan, Zhang, & Wang, 2018), which attests that our model 

can constitute a satisfactory theoretical basis for further investigation in the domain of 

arithmetic.  

Our conclusion that young adults use extremely fast and unconscious procedures when 

they solve simple additions could challenge the current conception that efficiency in 

arithmetic in older adults is due to higher rates of retrieval than in younger adults. Rather, it is 

possible that, exactly as for young adults, arithmetic problems that are usually viewed as 

solved through retrieval or non-retrieval strategies in older adults correspond in fact to 

arithmetic problems that have been processed through automated or non-automated counting 

procedures. In this paper, we would like to address this alternative possibility by determining 

whether automated counting procedures are identifiable in older adults. If it is the case, the 

interpretation that older adults are more efficient in mental arithmetic because they rely more 

on automated procedures than younger adults and not only because they use retrieval more 

often could be envisioned.  To this aim, we used the sign priming paradigm and asked 18 

older adults aged between 60 and 77 to solve addition and multiplication problems either by 

presenting the problems classically on their whole on the screen (i.e, null Stimulus Onset 

Asynchrony hereinafter referred to as SOA) or by presenting the arithmetic sign 150 ms 

before the operands (i.e., –150 ms SOA).  This asynchrony timing of 150 ms was chosen 

because it had previously been showed in young adults that it corresponds to the condition in 

which priming effects of the sign are the neatest (Roussel, Fayol, & Barrouillet, 2002). If 

arithmetic problem solving mobilizes a procedural component, this procedure should be 

activated as soon as individuals know the nature of the task to be performed, independently of 

the specific problem (Anderson, 1983; Roussel, et al., 2002; Sohn & Carlson, 1998). 

Therefore, if presenting the arithmetic sign before the operands facilitates the solving process 



7 
 

for additions but not for multiplications, which are known to be solved through retrieval of the 

answers because they are learnt by rote in school (see Jolly, 1999 for a review), then it will be 

possible to conclude that procedures are mobilized by older adults to solve addition problems. 

In fact, the only category of addition problems for which no priming effect should be 

observed is tie problems, universally considered as solved through retrieval (e.g., Campbell & 

Xue, 2001; Fayol & Thevenot, 2012; Blankenberger, 2001). In contrast, priming effects 

should be observed for one-digit addition problems with a sum smaller and larger than 10.  

Exactly as in younger adults, the size of priming effects should be similar for these two 

categories of problems because we have accumulated evidence showing that small problems 

involving very small operands are likely to be solved through automated procedures (e.g., 

Uittenhove et al., 2016). In fact and as explained before, automated procedures could be 

limited to additions up to 4 elements. Nevertheless, this does not mean that larger problems 

cannot involve automated procedures because their operands can be broken down into smaller 

ones in order to reach one or several subgoals before the final result. Moreover, we also 

considered problems involving 0 and 1, which are classically studied together because they 

are supposed to be solved by retrieval of rules rather than by retrieval of individually stored 

facts, namely N + 0 = N and N + 1 = the next number after N in the numerical sequence for 

additions and N × 0 = 0 and N × 1 = N for multiplication (e.g., Baroody, 2004; Baroody, 

Eiland, Purpura, & Reid, 2012; 2013; Jost, Beinhoff, Henninghausen, & Rösler, 2004). 

Nonetheless and following Svenson (1985), we consider that N + 1 could perfectly be solved 

by a counting procedure and that undifferentiating the four problems might be misleading. 

This is the reason why we decided to study 0 and 1 problems separately. If we are right in 

assuming that N + 1 problems are processed by counting procedures as the other non-tie 

addition problems, then priming effects should also be observed for this problem category. 
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This set of results in older adults will be compared to that of a subset of younger adults 

collected previously for a different study (Fayol & Thevenot, 2012).  

 

2- METHOD 

2.1. Participants 

Thirty-five older adults aged from 60 to 80 years (M = 69.3; SD = 5.4) took part in the 

experiment. All of them were in excellent physical health. Their scores on the addition and 

subtraction-multiplication subtests of the French Kit (French, Ekstrom, & Price, 1963, see the 

Material section for the detailed procedure) measuring arithmetic fluency ranged from 38 to 

127 with a mean of 79 (SD = 22), which is extremely high compared to the mean score 

usually obtained in younger populations (53 in Thevenot et al., 2013; 59 in Thevenot, 

Barrouillet, Castel & Jimenez, 2011 or 64 in Thevenot, Castel, Fanget, & Fayol, 2010). The 

results of this population were compared to the results of 34 participants who were 

particularly good arithmeticians and scored between 70 and 145 on the same subsets of the 

French kit, with a mean of 90 (Fayol & Thevenot, 2012, Experiment 2). In order to compare 

the two populations, we matched the arithmetic fluency scores to a mean of 96 in the two age 

groups and to a minimal score of 77. This leads to 26 young adults who scored between 77 

and 145 and 18 older adults (aged from 60 to 77) who scored between 77 and 127. Most older 

adults in this sub-sample were recruited from the University of Third Age (U3A) in Liège (N 

= 11), Geneva (N = 4) and Lausanne (N = 1) and two of them were family relatives to one of 

the experimenters in France (N =2). In order to exclude the possibility of cognitive 

impairment in the elderly population, the MMS (Mini Mental State) was administered 

(Folstein, Folstein & McHugh, 1975). Unfortunately, the MMS was not administered to the 5 

participants from Switzerland. All the other participants scored more than 28, indicating 
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normal cognition. The 26 young adults selected for this study were all psychology students at 

the University of Geneva and were aged between 20 to 40 with a mean age of 28 years.  

The selection of high arithmetic performers in our two populations was necessary 

because we know that the priming effects we are seeking for cannot be observed, whatever 

the categories of problems, when we consider the whole population (Fayol & Thevenot, 

2012). We still have to determine whether this is because subtle priming effects usually 

ranging from 20 to 50 ms are drowned in long solution times or whether automated 

procedures are not used by average or low performer individuals. 

Considering that our research involved healthy individuals, it does not fall within the 

scope of application of the Swiss Organizational Ordinance on the Law on Research on 

Human Beings. 

 

2.2. Material and procedure  

2.2.1. The subtest of the French Kit 

Participants completed both the addition and subtraction-multiplication subtests of the 

French Kit. Each subtest consists of two pages of 60 problems, for a total of four pages. 

Additions involve three numbers of either one or two digits (e.g., 63 + 99 + 5), subtractions 

involve two-digit numbers with borrows in many problems (e.g., 53 – 28), whereas 

multiplications consist of multiplying a two-digit by a one-digit number (e.g., 73 × 8). 

Subtractions and multiplications are presented in alternative rows, starting with subtractions. 

Therefore, half of the problems in the French kit subtest correspond to additions, one quarter 

to subtractions and the last quarter to multiplications. All participants were given 2 minutes 

per page and were instructed to solve problems as fast and as accurately as possible. The 

number of problems correctly solved on each of the addition and subtraction-multiplication 

subtest were summed to yield a total arithmetic score.  
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2.2.2. The arithmetic task 

Participants were instructed to solve arithmetic problems by giving their answer orally 

as quickly and as accurately as possible. In order to construct the material, we divided the 100 

possible combinations of one-digit numbers in five categories of problems. Tie problems 

correspond to problems with repeated operands (e.g., 3 + 3). Problems involving 1 include the 

operand 1 and problems involving 0 include the operand 0. Finally, large problems 

correspond to one-digit number problems with a sum larger than 10 (e.g., 6  9) and small 

problems to problems with a sum inferior or equal to 10 (e.g., 2  3). All arithmetic facts were 

presented in the addition and in the multiplication conditions. For both operations, the 

arithmetic sign was presented either 150 ms before the operands (i.e., –150 ms SOA 

condition) or at the same time as the operands (i.e., null SOA condition). Note that the 

participants who were selected from Fayol and Thevenot’s sample (2012) also solved 

subtraction problems, for which we found significant priming effects. Moreover, participants 

were also confronted with an additional SOA condition wherein the operands appeared 150 

ms before the arithmetic sign. This condition constituted a control in order to ensure that 150 

ms preview were sufficient to reveal priming effects. It was the case and the results of this 

condition will not be reported here. All problems in each condition were presented twice. The 

total number of trials was therefore equal to 800 (i.e., 100 facts × 2 operations × 2 SOA × 2 

repetitions). Because it was not possible for one participant to solve such a large set of 

problems, the material was divided into four sets of 200 problems and each participant was 

tested on one of these four sets only. The problems were randomly presented within each set. 

The experiment was run under the DMDX software (Forster & Forster, 2003). Vocal 

responses were recorded with a voice key and individually checked off-line for accuracy 

using CheckVocal software (Protopapas, 2007). CheckVocal was also used to manually adjust 

the latencies recorded by DMDX, if necessary (e.g., when the voice key did not detect the 
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first answer of the participant, who had then to repeat it louder). Each trial began with the 

presentation of a 500 ms fixation signal, followed by the presentation of the stimulus (i.e., the 

sign then the operands in the 150 ms SOA condition or sign and operands simultaneously in 

the null SOA condition) (Figure 2). The problem was displayed on the screen until a verbal 

response onset was detected by the voice key. Solution times corresponded to the time elapsed 

between the presentation of the problem in its whole and voice key activation.  

 

3. RESULTS 

 The rate of correct responses in the arithmetic task was very high (mean of .97, 

ranging from .91 to .99 depending on the conditions).  A 2 (Operation: addition vs. 

multiplication) × 2 (SOA: –150 ms vs. null) × 5 (Type of Problems: tie, large, small, 

involving 0 or involving 1) × 2 (Age: Younger vs. Older adults) repeated measures ANOVA 

with the last variable as a between measure was performed on mean solution times revealed a 

main effect of Operation (.99 vs. .96 for addition and multiplication respectively, F(1, 34) = 

12.90, MSE = .01, ηp2 = .28, p = .001). The effect of Type of Problems was also significant, 

F(4, 136) = 8.56, MSE = .01, ηp2 = .20, p < .001). The highest rates of correct responses were 

associated with small, tie and n + 1 problems (.99 for the 3 categories of problems), followed 

by n + 0 problems (.97). Large problems were associated with the lowest rate of correct 

responses (.95). Finally there was an interaction between Operation and Type of Problems, 

F(4, 136) = 5.52, MSE = .01, ηp2 = .14, p < .001 showing that the difference between large 

problems and the other types of problems was due to multiplication (.92 vs.98 ) rather than 

addition (.98 vs .99).  No other effect reached significant. Noticeably, the effect of Age was 

not significant and did not interact with any of the variables.  

The analysis on solution times was carried out on correctly solved problems only (i.e., 

89.6% of the trials). Technical recording errors and outliers (below 200 ms and more than 2 
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standard deviations away from the participants’ mean) were also discarded from the analysis 

(i.e., 3.7% of the data). A 2 (Operation: addition vs. multiplication) × 2 (SOA: –150 ms vs. 

null) × 5 (Type of Problems: tie, large, small, involving 0 or involving 1) × 2 (Age: Younger 

vs. Older adults) repeated measures ANOVA with the last variable as a between measure was 

performed on mean solution times (Table 1). There was an effect of Age, F(1, 42) = 8.99, 

MSE = 2202948.56, ηp2 = .18, p < .01, showing that older adults were slower (872 ms) than 

younger ones (771 ms) but there was no effect of Operation, (815 ms for addition and 828 ms 

for multiplication), F(1, 42) = 2.36, MSE = 32933.09, p = .13 or interaction between 

Operation and Age, F(1, 42) = 1.57, MSE = 21908.71, p = .22. However, solution times 

varied as a function of Type of problems, F(4, 168) = 58.38, MSE = 1027741.17, ηp2 = .58, 

p < .001. Large problems were solved slower (947 ms) than problems involving 0 (835 ms, 

F(1, 42) = 32.71, ηp2 = .44, p < .001), which were not solved slower than small problems (809 

ms, F(1, 42) = 2.14, p = .15). Small problems were solved slower than tie problems (770 ms, 

F(1, 42) = 12.60, ηp2 = .23, p < .01), and tie problems were solved slower than problems 

involving 1 (747 ms, F(1, 42) = 7.17, ηp2 = .15, p = .01). The effect of Type of problems 

interacted with Age (F(4, 168) = 15.13, MSE = 266439.33, ηp2 = .27, p < .001) showing that 

whereas problems involving 1 were solved the fastest and large problems the slowest by both 

age groups, the order of problem types according to their solution times differs within each 

age group (see Table 1). Nevertheless, the effect of Type of problems was significant for both 

age groups (F(4, 39) = 36.98, ηp2 = .79, p < .001 for younger adults and F(4, 39) = 19.25, 

ηp2 = .66, p < .001 for older adults). There was also a main effect of SOA, F(1, 42) = 21.74, 

MSE = 90542.79, ηp2 = .34, p < .001. Problems were solved faster when the sign appeared 

before the operands (811 ms) than when it appeared at the same time (832 ms). The SOA 

effect did not interact with Age (F(1, 42) = 1.29, MSE = 5353.93, p = .26) showing that in 

both age groups problems with negative SOA were solved faster than those with null SOA 
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(F(1, 42) = 7.61, ηp2 = .15, p < .01 for younger adults and F(1, 42) = 14.21, ηp2 = .25, p < .01 

for older adults). 

 More interestingly, the interaction between Operation and SOA was significant, F(1, 

42) = 8.21, MSE = 24260.40, ηp2 = .16, p < .01, showing that the facilitation effect when the 

sign was presented before the operands was larger for addition (31 ms), F(1, 42) = 33.00, 

ηp2 = .44, p < .001, than for multiplication (10 ms), F(1, 42) = 2.66, p = .11. This interaction 

did not interact further with Age (F(1, 42) < 1, MSE = 10.89). The effect of SOA was larger 

for addition than multiplication in both populations (27 vs. 5 ms in young adults and 36 vs. 15 

ms in older adults, for addition vs. multiplication respectively). 

 There was no significant Operation × Type × SOA (F(4, 168) = 1.18, MSE = 3371.70, 

p = .32) nor Operation × Type × SOA × Age (F(4, 168) < 1, MSE = 1151.65) interactions. 

This last result was confirmed by a Bayesian repeated-measures ANOVA comparing models 

with and without the 4-variable interaction. The result strongly favored the model without 

interaction, BF01 = 19.71. However, because we formulated specific predictions regarding 

SOA effects as a function of the nature of problems, we carried out a series of planned 

comparisons in each of the population. For addition in older adults, presenting the sign before 

the operands was facilitating for large problems (43 ms, F(1, 42) = 5.44, ηp2 = .11, p = .02), 

small problems (55 ms, F(1, 42) = 7.11, ηp2 = .15, p = .01) and problems involving 1 (34 ms, 

F(1, 42) = 17.19, ηp2 = .29, p < .001), but not for tie problems (24 ms, F(1, 42) = 1.04, 

p = .31) nor for problems involving 0 (25 ms, F(1, 42) < 1). The same pattern was observed 

for younger adults, with a facilitating effect of 29 ms for large problems (F(1, 42) = 7.62, 

ηp2 = .15, p < .01), of 31 ms for small problems (F(1, 42) = 15.32, ηp2 = .27, p < .001), of 55 

ms for problems involving 1(F(1, 42) = 4.57, ηp2 = .10, p = .04) but a non-significant effect of 

20 ms for tie problems (F(1, 42) = 1.12, p = .30) and of –3 ms for problems involving 0 (F(1, 

42) = 1.74, p = .20). For multiplication in young and older adults, there was no type of 
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problems for which presenting the sign before the operands was significantly facilitating (20 

ms for large problems, F < 1; 31 ms for small problems, F(1, 42) = 1.64, p = .21; –9 ms for 

problems involving 1, F < 1; 33 ms for tie problems, F < 1; and 1 ms for problems involving 

0, F < 1 in older adults and –6 ms for large problems, F(1, 42) = 1.30, p = .26; 19 ms for 

small problems, F(1, 42) = 2.96, p = .09; 3 ms for problems involving 1, F < 1; 5 ms for tie 

problems, F(1, 42) = 3.29, p = .08; and 3 ms for problems involving 0, F < 1 in younger 

adults) (see Table 1).  

For the contrasts where a significant SOA effect was found, we conducted a Bayesian 

paired sample t-test with a Cauchy prior scale of 0.707. In younger adults, the estimated 

inverse Bayes factor (alternative/null) for small and large addition problems suggested an 

anecdotal support (BF10 = 2.68 and 2.30 for small and large problems, respectively) for 

alternative hypothesis of a model including a SOA effect. Nevertheless, even if anedoctal, the 

support is always in favor of the alternative hypothesis irrespective of the prior. Moreover, the 

support for alternative hypothesis was decisive (BF10 = 699.28) for problems involving 1. In 

older adults, the support for alternative hypothesis was substantial for large addition problems 

(BF10 = 3.41) and very strong for small addition problems (BF10 = 86.12). However, contrary 

to the frequentist approach repported above, the estimated Bayes factor (null/hypothesis) of 

BF01 = 1.81 for 1-digit addition problems suggested an anecdotal support for null hypothesis 

of a model without an effect of SOA. 

 

3. DISCUSSION 

 This study was conducted in order to determine whether automated counting 

procedures can be revealed in older adults with high arithmetic skills when they solve simple 

addition problems. As already mentioned in the Introduction, older individuals are supposed 

to often resort to memory retrieval when they solve simple arithmetic problems (Duverne & 
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Lemaire, 2005; Geary & Wiley, 1991; Thevenot et al., 2013). Nevertheless, we have recently 

advocated that procedural strategies can sometimes be mistaken for retrieval in young adults 

(Barrouillet & Thevenot, 2013; Fayol & Thevenot, 2012; Uittenhove et al., 2016) and it is 

important for theoretical and practical reasons to establish whether it is also the case in older 

individuals. First, in view of the scores obtained by our participants on an arithmetic fluency 

test, we replicated the results that healthy older adults present higher arithmetic abilities than 

younger individuals (see Duverne and Lemaire, 2005 for a review). More importantly here, 

when we selected a sub-population of 18 older adults who were even more efficient than the 

general population, we showed that solution times were speeded up when the “+” sign is 

presented 150 ms before the operands. This replicated what was previously observed in 

efficient young adults (Fayol & Thevenot, 2012; Mathieu et al., 2018; Roussel et al., 2002). 

As already explained in the Introduction, this facilitation is interpreted as an indication that a 

procedure is pre-activated and subsequently used to solve the problem (Sohn & Carlson, 

1998). Again as in younger adults, this effect was not observed when the “×” sign was 

presented before the operands. This different pattern of results for addition and multiplication 

supports the interpretation that it is a procedure that is pre-activated and used to solve addition 

problems as soon as the “+” sign is read on the screen whereas a procedure is not pre-

activated for multiplication problems. Note that the lack of priming effect for multiplication 

does not mean that all problems are solved by retrieval of the answer from memory (Prado et 

al., 2013) but that a ready-made and abstract procedure that could be applied to solve 

multiplication problems is not pre-activated by the “×” sign.  

An alternative interpretation of our results is that presenting the sign before the 

operands pre-activates a network of memorized arithmetic facts rather than an abstract 

procedure. However, in that case, priming effects should also have been observed for 

multiplication, which, due to the rote memorization of multiplication table in school, is 
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unanimously viewed as solved through memory retrieval of the answers in a mental network 

(e.g., De Visscher, Berens, Keidel, Noel, & Bird, 2015; De Visscher & Noel, 2014; De 

Visscher et al., 2018; Ischebeck et al., 2006; Stazyck, Ashcraft, & Hamman, 1982). Still, it 

would be possible that the addition network is more easily activated than the multiplication 

network. However, in this context, it would be difficult to explain why addition tie problem 

solving would not be facilitated by prior presentation of the “+” sign. A last argument that can 

be formulated against the interpretation that the arithmetic signs pre-activates semantic 

networks of arithmetic operations is that priming effects are observable when a “-” sign is 

presented before a subtraction (Roussel et al., 2002; Fayol & Thevenot, 2012). Subtraction is 

viewed by researchers in the domain of numerical cognition as mainly solved by calculation 

procedures and are therefore not viewed as represented in a semantic network (Campbell & 

Xue, 2001; Dehaene, 1992; Robinson, 2001; Seyler, Kirk & Ashcraft, 2003; Thevenot & 

Barrouillet, 2006). Therefore, facilitation effects due to the presentation of an arithmetic sign 

before the operands cannot be interpreted only in terms of activation of a semantic network.    

 The general pattern of results reported here, namely priming effect of the “+” sign for 

addition but no sign priming for multiplication, was modulated by the types of problems 

under study. For tie addition problems, no priming effect of the “+” sign was observed, which 

reinforces previous conclusions of the literature that these problems have a special status and 

are mainly solved through a retrieval strategy (e.g., Bagnoud, Dewi, Castel, Mathieu, & 

Thevenot, under review; Campbell & Gunter, 2002). Highly interestingly, whereas special 

additions involving 0 and 1 are often considered together and viewed as solved through the 

use of rules and heuristics (e.g., Ashcraft, 1992; Baroody et al., 2012; 2013; Baroody, 

Purpura, Eiland & Reid, 2015), a differential pattern of priming was obtained for these two 

categories of problems. For both young and older adults, we observed a priming effect for + 1 

problems but not for + 0 problems. Therefore, whereas + 0 problems seem to be solved by the 
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retrieval of a rule, + 1 problems seem to be processed by the same kind of abstract procedure 

as the other simple non-tie arithmetic problems. It has been repeatedly suggested that the 

procedure that is primed by the “+” sign could consist in the activation of the mental number 

line and the preparation to scroll it from left to right (Fayol & Thevenot, 2012; Li et al., 2018; 

Liu et al., 2017; Mathieu et al., 2016; Pinheiro-Chagas et al., 2017; Zhu et al., 2018). The 

results that we obtain suggest that both young and older adults solve + 1 problems by 

performing one step to the left of the other addend on the mental number line.  This 

corresponds to a standard counting procedure and not to the application of a rule. This result 

is important because it questions the methodology and the interpretation of previous studies 

considering + 0 and + 1 problems as a unitary category of problems concerning the strategies 

used for their resolution (e.g., Campbell & Xue, 2001; Fayol & Thevenot, 2012). 

Interestingly, such a dissociation between 0 and 1 problems has already be documented in the 

domain of multiplication by Allen et al. (2005) who showed that older adults make more 

errors than younger ones for x 0 problems but not for x 1 problems. The authors concluded 

that rule retrieval was impaired in older adults and therefore suggested that x 1 problems were 

processed exactly as other multiplication involving operands different from 0. Nevertheless, 

concerning our results, it has to be noted that whereas Bayesian statistics strongly support 

priming effect for + 1 problems in younger adults and therefore the use of procedure for this 

category of problem in this population, the evidence was weaker in older adults. Future 

experiments will therefore need to replicate those results in older adults before firmer 

conclusions can be drawn concerning the use of automated procedures for + 1 problems.  

 Thus, this study is the first suggesting that the advantage of elderly adults in arithmetic 

tests might not entirely be related to their better memorization of arithmetic facts compared to 

younger individuals. Exactly as younger expert adults, older adults present behaviors that are 

interpreted as reflecting the use of automated counting procedures.  If we extrapolate our 
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results to the general population, it is therefore possible that the superiority of older adults in 

the domain of mental arithmetic might, at least in part, stem from a more systematic use of 

automated and unconscious counting procedures. This would be coherent with the fact that, 

whereas acquisition of new procedural skills is more difficult in older than younger adults 

(e.g., Charness & Campbell, 1988), “there is a consensus that older adults have lasting 

preservation of procedural or motor memory” (Brickman & Stern, 2009, p.177). In support to 

our conclusions, it is striking to observe in our results that the categories of problems that we 

interpret as being processed through automated procedures because they benefit from the 

prior presentation of the “+” sign are solved only 52 ms slower by older than younger adults 

in the null SOA condition (i.e., difference of only 34, 64 and 59 ms for Large, Small and +1 

additions respectively) when older adults suffer more than triple the times (+162 ms) for 

addition problems that we interpret as being solved by retrieval (i.e., +215 ms and +110 for 

+0 and tie problems, respectively).  Again, this is perfectly coherent with the view that older 

adults present only slight procedural access and execution impairments, especially when the 

procedure has been intensively practiced through lifetime (Krampe & Ericsson, 1996) but 

significantly slower semantic access speed than younger ones (Petros, Zehr, & Chabot, 1983).  

 Before concluding, we would like to insist on the fact that our results have been 

collected in older adults who have particularly well preserved and particularly high arithmetic 

skills. This sub-sample of participants corresponded to slightly more than half of our original 

sample. Nevertheless, the characteristics of our paradigm do not allow the generalization of 

our interpretations to the whole population of elderly individuals. We encounter exactly the 

same limitations when younger adults are under study (Fayol & Thevenot, 2012), maybe 

because subtle priming effects (i.e., maximum of 55 ms in the present experiment) are easily 

drowned in long solution times. Therefore and up to now, we do not know whether this lack 

of priming effects in the more general population means that automated procedures are not 
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used by less efficient individuals or whether our paradigm fails to reveal them. Future 

experiments using technics that investigate brain functioning might advance our 

understanding concerning this topic and might allow us to generalize our results to the whole 

population. Still, our results that at least some older adults could use automated counting 

procedures can shed light or modulate previous results and conclusions of the literature in the 

more general population of older adults. Indeed, the superiority in arithmetic of older over 

younger adults is necessarily partly due to some extremely efficient seniors. We show here 

that the high efficiency of these participants can be due to the use of automated counting 

procedures and we therefore contribute to provide an explanation for the particularly good 

arithmetic skills of older adults in the general population.  

More generally, the present experiment conducted in older adults allows us to replicate 

the results we obtained in younger individuals and therefore to strengthen the reliability of our 

conclusions related to automated counting procedures for addition. Revealing that the results 

of simple non-tie additions could still be computed using procedural strategies in expert adults 

is crucial both on theoretical and more practical levels. First, our results question one of the 

main tenets of the associationist theory, according to which elements that are represented in 

close contiguity in a mental space are necessarily associated and necessarily retrieved as an 

association from long-term memory (Thorndike, 1911). Our results strongly suggest that one 

of the most repetitive cognitive activities, namely mental addition, does not necessarily result 

in the construction of associations between operands and answers but rather in the 

automatization of counting procedures. Therefore, an alternative model to the dominant one 

(e.g., Logan, 1988; Logan & Klapp, 1991) might need to be formulated in order to account for 

the automatization of learning (Thevenot, Dewi, Bagnoud, Uittenhove, & Castel, under 

review). On a more applied point of view, providing evidence that arithmetic expertise in 

addition is most likely to be achieved through procedural automatization than retrieval of the 
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answers from long-term memory suggests that overemphasize of rote memorization during 

learning may be misguided.  Instead, repeated use of a procedure as counting might be more 

efficient than memorization of direct associations between operands and answers.  

To conclude and more in relation with cognitive aging, the results of the present study 

suggest that preserved and efficient procedural arithmetic skills can be observed in older 

adults with high arithmetic skills. These automated counting procedures can therefore be 

considered as a good mental tool and a strong strength for maintenance of financial and thus 

daily life autonomy. As a consequence, it might be valuable to train these counting procedures 

through intensive practice in adults who do not age so successfully. Unfortunately, it is known 

that intensive practice in old age does not bring the same level of performance than the one 

reached by younger adults (Maquestiaux, Didierjean, Ruthruff, Chauvel, & Hartley, 2013; 

Touron, Hoyer, & Cerella, 2001). Consequently and in order to ensure automatization of 

arithmetic procedures, we think that it is necessary that training programs take place before 

the cognitive system departs excessively from its optimum level of efficiency. More 

generally, our results suggest that training program in arithmetic might need to be conceived 

and administered to adults of the new generations, who did not experience such intensive 

practice in school compared to individuals belonging to the older generations. In the United 

States, a cross-generational decline in arithmetical competencies has indeed been well 

documented by Schaie (1996) who indicates a drop in arithmetic performance for individuals 

who received their primary education after the mid-60’s compared to individuals who 

received their education just before or just after the Second World War. According to Geary 

and Lin (1998), this cross-generational decline could explain why older adults sometimes 

outperform younger ones (Geary, Salthouse, Chen, & Fan, 1996; Geary et al., 1997). The 

main explanations provided by Geary et al. (1996) for the decline in arithmetic performance 

over generations is a decrease in the teaching of problem decompositions as a strategy to 
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solve addition and subtraction problems (e.g., 7 + 8 = 7 + 7 +1). According to the authors, this 

type of strategy could promote retrieval of arithmetic facts. Nevertheless, as advocated in the 

present paper, the advantage of older adults over younger ones could also stem from a better 

automatization of counting procedures rather than only from higher reliance on retrieval of 

arithmetic facts. Therefore, our results suggest that more intensive practice of counting 

procedures in primary schools could also constitute a useful tool to help future young and 

older adults to strengthen and preserve their arithmetic abilities. It turns out that it has already 

been demonstrated that an intervention based on repetitive counting-on from the largest 

addend of an addition problem (3 + 4 = 5, 6, 7) is more efficient to develop arithmetic skills 

than a training program based on drill and practice (Tournaki, 2003).  However, our results do 

not exclude the fact that older adults sometimes outperform younger ones because of more 

frequent reliance on retrieval. For example, more intensive practice of arithmetic in schools in 

the past probably led to better consolidation of multiplication facts in older generations than 

in younger ones. Nevertheless, the present research highlights the possibility that, in addition 

to a retrieval fact advantage, healthy older adults use automated procedures better an more 

often than their younger counterparts. 

Finally, beyond arithmetic, our study addresses the general question of the role of 

strategies in cognitive aging (Lemaire, 2016). It has been shown that despite general cognitive 

decline with age, older adults can maintain a high level of performance in certain domains 

either by keeping stable and well-oiled strategies or by changing and adapting previous 

strategies. Our conclusions definitely fall within the first possibility and nourish the idea that 

expertise can annihilate cognitive decline due to aging. For example, Salthouse (1984) 

showed that typing speed decreases with age only in participants with a low level of typing 

expertise. The interpretation of this result is that, through automatization, the cognitive load of 

the task is reduced. As well established by Lemaire (2016), it turns out that the domains that 
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are less subjected to deleterious aging effects are the least demanding in terms of cognitive 

resources. Therefore, our research supports the view that intensive repetition of procedural 

knowledge throughout the entire life is one of the keys for successful aging.  
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Table 1. Mean solution times (and standard deviations) as a function of operation (Add. for 

Addition and Mult. for Multiplication), type of problems, SOA and age group as well as 

priming effects.  

 

Operation Type 
Older adults Younger adults Priming effect 

Null SOA -150 SOA Null SOA -150 SOA Older Younger 

Add.  Tie 839 (120) 815 (119) 729 (120) 709 (119) 24ns (98) 20ns (97) 

 Large 974 (149) 931 (167) 940 (149) 911 (167) 43* (64) 29** (66) 

 Small 846 (121) 791 (125) 782 (121) 751 (125) 55* (59) 31*** (61) 

 With 0 953 (129) 928 (147) 738 (129) 741 (147) 25ns
 (81) –3ns (82) 

 With 1 784 (105) 750 (86) 725 (105) 670 (86) 34***(68) 55* (66) 

Mult.  Tie 840 (110) 807 (98) 714 (110) 709 (98) 33ns (76) 5ns (76) 

 Large 963 (183) 943 (188) 952 (183) 958 (188) 20ns (72) –6ns (71) 

 Small 868 (164) 837 (126) 809 (164) 790 (126) 31ns (76) 19ns (76) 

 With 0 952 (151) 951 (176) 710 (151) 707 (176) 1ns (81) 3ns (82) 

 With 1 833 (113) 842 (130) 686 (113) 683 (130) –9ns (76) 3ns (76) 
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Figure 1. Schematic representation of the use of an automated procedure for the problem  

4 + 3 
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Figure 2. Examples of trial sequences for multiplication (a) in the null SOA and (b) the– 150 

SOA conditions 
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