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Summary

Nowadays, the joint exploitation of images acquired daily by remote sensing

instruments and of images available from archives allows a detailed monitoring of

the transitions occurring at the surface of the Earth. These modifications of the

land cover generate spectral discrepancies that can be detected via the analysis

of remote sensing images. Independently from the origin of the images and of

type of surface change, a correct processing of such data implies the adoption

of flexible, robust and possibly nonlinear method, to correctly account for the

complex statistical relationships characterizing the pixels of the images.

This Thesis deals with the development and the application of advanced

statistical methods for multi-temporal optical remote sensing image processing

tasks. Three different families of machine learning models have been explored

and fundamental solutions for change detection problems are provided.

In the first part, change detection with user supervision has been considered.

In a first application, a nonlinear classifier has been applied with the intent of

precisely delineating flooded regions from a pair of images. In a second case

study, the spatial context of each pixel has been injected into another nonlinear

classifier to obtain a precise mapping of new urban structures. In both cases, the

user provides the classifier with examples of what he believes has changed or not.

In the second part, a completely automatic and unsupervised method for

precise binary detection of changes has been proposed. The technique allows

a very accurate mapping without any user intervention, resulting particularly

useful when readiness and reaction times of the system are a crucial constraint.

In the third, the problem of statistical distributions shifting between acquisi-

tions is studied. Two approaches to transform the couple of bi-temporal images

and reduce their differences unrelated to changes in land cover are studied. The

methods align the distributions of the images, so that the pixel-wise comparison

could be carried out with higher accuracy. Furthermore, the second method can

deal with images from different sensors, no matter the dimensionality of the data

nor the spectral information content. This opens the doors to possible solutions

for a crucial problem in the field: detecting changes when the images have been

acquired by two different sensors.
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Résumé

L’exploitation conjointe des images de télédétection acquises sur une base

journalière et de celles présentes dans les archives permettent un suivi détaillé des

transformations survenant à la surface de la Terre. Les modifications des classes

de couverture du sol engendrent des divergences dans l’information spectrale qui

peuvent être détectées par l’analyse d’images de télédétection. Indépendamment

de l’origine de l’image ou du type de changement au sol, le traitement de ce type

de données implique l’utilisation de méthodes flexibles, robustes et potentielle-

ment non-linéaires, ainsi qu’une bonne prise en compte des relations statistiques

complexes qui caractérisent les pixels des images.

Cette Thèse aborde le développement et l’application de méthodes statistiques

avancées pour le traitement d’images optiques multi-temporelles. Trois différentes

familles de modèles d’apprentissage par ordinateur ont été explorées et solutions

aux problèmes fondamentaux pour la détéction de changements sont proposées.

Dans la première partie, la détection de changements est realisée sous la su-

pervision de l’utilisateur. La première application présentée exploite un classifi-

cateur non-linéaire pour la cartographie des zones inondées à partir d’un couple

d’images. Dans le deuxième exemple, le contexte spatial de chaque pixel est

injecté dans un autre classificateur non-linéaire pour obtenir une carte précise

des nouvelles structures urbaines. Dans les deux cas, l’utilisateur fournit aux

classificateurs des exemples de ce qu’il croit avoir pas changé ou non.

Dans la deuxième partie, une approche complètement automatique et non-

dirigée est proposée pour la détection binaire. Cette méthode est particulièrement

précise sans nécessiter l’intervention de l’utilisateur. Un tel algorithme se révèle

utile quand le temps de réaction du système est réduit.

Dans la troisième partie, le problème des distributions statistiques qui

changent d’une acquisition à l’autre pour des classes stables dans le temps est

abordé. Les deux méthodes présentées alignent ces distributions de façon à

améliorer la précision de la comparaison par pixels pour détecter les change-

ments. De plus la deuxième méthode est capable de traiter des images avec des

différentes dimensionalités et informations spectrales. Cela permet d’envisager

des pistes de solutions au problème crucial de la détection de changements dans

des images provenant de capteurs différents.





“ [...] car rien ne se crée, ni dans les opérations de l’art, ni dans

celles de la nature, et l’on peut poser en principe que, dans toute

opération, il y a une égale quantité de matière avant et après

l’opération; que la qualité et la quantité des principes est la

même, et qu’il n’y a que des changements, des modifications.”

Antoine Laurent de Lavoisier,

Traité élémentaire de chimie (1789), p. 101.
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Chapter 1

Introduction to the Thesis

1.1 Motivation

Since the advent of new generation satellites, the science of Earth observation has known

an unprecedented progress. Images are acquired and stored in archives for future use and

their joint exploitation allows a very precise temporal and geographical monitoring of the

evolution of the surface of the Earth.

Remote sensing images are encountered in many different aspects of daily life: from

the visualization to recover the path to a friend’s house, to the extraction of physical

parameters used in numerical models providing scenarios of climate change. Independently

on the degree and complexity of the use, remote sensing image processing is central in each

one of these tasks. From the acquisition of the image to the delivery of a product (e.g. a

map) the analyst relies on those methods to transform, enhance and process the datasets.

In this Thesis, we tackle the topic of multi-temporal processing and change detection

in optical remote sensing images. By multi-temporal processing we intend all the tools

that are explicitly designed to account for the temporal component of the image data,

during their processing. In this sense, change detection is a particular instance of this

family of methods, and it aims at detecting and mapping the changes occurred in the

ground cover between the considered acquisitions over the same geographical area. High

societal value applications such as environmental and urban monitoring, post-catastrophe

assessments, natural hazard quantification, crop monitoring and surveillance application

are greatly dependent on the methods used for the multi-temporal image analysis and

change detection.

The above observations underline the diversity of the application fields in which those

methods have to be applied, but a common observation joins them: the manual screening

of the images to map the differences is not a feasible option. To this end, automatic meth-

ods are truly needed. These approaches should be able to process newly acquired data,

but also have to solve problems requiring the use of older data stored in archives. In par-

ticular, if one may want to study the evolution of the ground cover of a particular region,

then archives are a primary source of information. They may also provide some additional
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1. Introduction to the Thesis

information prior to the processing, useful to drive the analyses. The user is expecting to

be able to apply methods providing very accurate solutions, so that his particular monitor-

ing application will be correctly carried out. In other situations, the practitioner dealing

with change detection may not dispose of information about the processes occurring at the

surface of the Earth, but still require an automatic precise cartography of changes. Fur-

thermore, in particular situations such as post catastrophe assessment or natural hazard

quantification, the time available for the analyses may be a constrain for the processing.

Consequently, the user may want to apply methods specifically developed to provide high

readiness of the system while accurate enough to correctly map changes.

To obtain the most accurate detection even in the most challenging situation, we take

advantage of the recent developments in a domain of computer sciences intermingled with

mathematics and statistics, known as machine learning. Theoretical advances in data

analysis as the ones provided by this field are of great interest in many disciplines, ranging

from economy to biology [Blundell and Duncan, 1998; Camps-Valls et al., 2007b; Keshet

and Bengio, 2008; Schölkopf et al., 2004], and they are also of great interest also for remote

sensing image processing tasks [Camps-Valls and Bruzzone, 2009]. These methods are able

to learn a model from the data and their interrelations, thus not requiring computationally

heavy numerical simulations and physical models. Moreover, they provide tools able to

solve many analysis situations (classification, function estimation, extraction of relevant

information, etc.), such as those considered in this Thesis.

Specifically, we aim at relating more closely the field of change detection and a specific

field of the machine learning research: the kernel methods. This family of algorithms

allows elegant and robust solutions for most of the multi-temporal processing tasks we are

interested to, and fit well the many open issues in remote sensing data analysis, such as

change detection between multiple sensors, accurate and automatic partitioning of changes

and precise monitoring. Kernel methods provide a common modelling solution to all these

problems making a simple assumption: similarity between pixels is the only information

needed.

1.2 Objectives

This Thesis aims at relating more closely the field of kernel methods to multi-temporal

image processing tasks. We believe that this framework is robust and flexible enough

to positively contribute with methods able to encode and exploit the versatile nature of

remote sensing data. In particular, we aim at proposing solutions to both supervised

and automatic (unsupervised) change detection. Although in the machine learning lit-

erature a variety of benchmark problems are efficiently and accurately solved by kernel

methods, only few contributions are found in the field of multi-temporal processing and

change detection. Thus, the general objectives of the Thesis are twofold: contribute in

the theoretical development of kernel methods for change detection tasks and provide

real solutions to two main families of problems encountered: supervised and unsupervised

change detection problems.
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The first family is intended for monitoring purposes, in which the accuracy of the

products is of central importance and the computational time is not in general a limiting

factor. The adopted system, to guarantee the maximal precision of the final thematic

product, must be able to deal with heterogeneously distributed classes in possibly high

dimensional spaces, a setting that usually lowers the performance of standard algorithms.

In this case, one is able to retrieve sub-meter resolution maps exhaustively summarizing

the observed processes, that may be composed of distinct class transitions and permanent

(stable) ground cover classes. These products are usually employed in consequent analyses,

ranging from the study of ecological systems to the mapping of re-/de-forestation. The

scientists involved often extrapolate additional information from these maps, for instance

to parametrize other models or describing particular phenomena, e.g. the spread rate

of invasive weed species. It clearly appears that an accurate mapping is needed to fully

support those extrapolations. Consequently, one objective of the Thesis is to develop

kernel-based systems for accurate supervised change detection.

Conversely, other applications may require a rapid mapping of changes, in which one

does not dispose of examples exploitable to learn models and the time available for the

mapping is limited. In this case, one usually looks for a binary mask, indicating whether a

pixel has changed or not, without having any prior information about the location and the

type of transition that may have occurred between the acquisitions. Phenomena such as

earthquakes, tsunamis, landslides, avalanches and many other processes generating abrupt

changes may generate modifications of the landscape and damages to human infrastruc-

tures. Consequently, the user has no access to information (ground reference data) to

initialize or validate the adopted change detection methods. In these cases, a change de-

tection system should be able to provide within a short time interval highly reliable (thus

accurate) change masks. These are to be used to either support rescue teams, assess and

rapidly quantify the damages or plan the physical access to the involved regions without

disposing of anything but the couple of pre- and post-event images. When facing such

applications of change detection the maps have to be obtained by completely automatic

methods, allowing also inexperienced users to use them. The second domain in which

the Thesis aims at contributing is the automatic and unsupervised processing for change

detection.

The above objectives resulted in three main contributions of the Thesis, as depicted

in the next Section.

1.3 Contributions

In the Part III of the Thesis, the main contributions are presented. Here, we briefly recall

the main points of each and list the publications and conference proceedings related to

each topic.
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1.3.1 Chapter 6

This Chapter proposes, studies and evaluates supervised approaches for precise monitoring

of natural and urban processes. In a first application, the supervised kernel Fisher’s

discriminant analysis classifier is studied with the aim of flood mapping. In a second study

support vectors machines are used for supervised change detection and multi-temporal

classification of urban scenes. In the latter, the use of very high spatial resolution data

required the adoption of spatial regularization schemes. To this end, spatial context

features of different nature are studied and evaluated in two change detection schemes.

The Chapter is based directly and indirectly on the following works:

[Volpi et al., 2009] Volpi, M.; Tuia, D.; Kanevski, M.; Bovolo, F. & Bruzzone, L.; Super-

vised Change Detection in VHR Images: a Comparative Analysis; In IEEE Interna-

tional Workshop on Machine Learning for Signal Processing MLSP 2009, Grenoble

(F), pp. 1-6, 2009.

[Volpi et al., 2013c] Volpi, M.; Tuia, D.; Kanevski, M.; Bovolo, F. & Bruzzone, L.; Super-

vised Change Detection in VHR Images Using Contextual Information and Support

Vector Machines, International Journal of Applied Earth Observation and Geoinfor-

mation, vol. 20, pp. 77-85, 2013a.

[Volpi et al., 2013d] Volpi, M.; Petropoulos, G. P. & Kanevski, M.; Flooding Extent Car-

tography with Landsat TM Imagery and Regularized Kernel Fisher’s Discriminant

Analysis, Computers and Geosciences, vol. 57, pp. 24-31. 2013b.

[Longbotham et al., 2012] Longbotham, N.; Pacifici, F.; Glenn, T.; Zare, A.; Volpi, M.;

Tuia, D.; Christophe, E.; Michel, J.; Inglada, J.; Chanussot, J. & Du, Q.; Multi-

modal Change Detection, Application to the Detection of Flooded Areas: Outcome

of the 2009-2010 Data Fusion Contest, IEEE Journal of Selected Topics in Applied

Earth Observations and Remote Sensing, vol. 9, no. 6, pp. 331-342, 2012.

1.3.2 Chapter 7

This Chapter presents and validates an unsupervised approach to automatic change de-

tection. The standard difference image is reformulated into higher dimensional feature

spaces, the reproducing kernel Hilbert spaces, and a difference kernel defined to implicitly

work in that space is exploited. Additionally, to tackle the issue of tuning the hyperpa-

rameters, a completely automatic cost function inspired from the geometry of the problem

has been developed.

The Chapter is based directly and indirectly on the following works:

[Volpi et al., 2010a] Volpi, M.; Tuia, D.; Camps-Valls, G. & Kanevski, M.; Unsupervised

change detection by kernel clustering, In SPIE Image and Signal Processing for

Remote Sensing XVI, Toulouse (F), 7830, 2010.

[Volpi et al., 2011] Volpi, M.; Tuia, D.; Camps-Valls, G. & Kanevski, M.; Unsupervised

Change Detection in the feature space using kernels, In IEEE International Geo-

sciences and Remote Sensing Symposium IGARSS, Vancouver (CAN), pp. 106-109,

2011.
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[Volpi et al., 2012b] Volpi, M.; Tuia, D.; Camps-Valls, G. & Kanevski, M.; Unsupervised

change detection with kernels, IEEE Geoscience and Remote Sensing Letters, vol.

9, no. 9, pp. 1026-1030, 2012a.

1.3.3 Chapter 8

This Chapter studies a kernel-based feature extraction framework to improve the change

detection process. Two different cases are presented: in the first, the use of a standard

kernel-based feature extraction method allows a simple yet effective alignment of the sta-

tistical distribution of unchanged samples prior to the detection of changes. In the second,

an extension of the above reasoning using a different kernel method yields to a system al-

lowing the projection of heterogeneous images into a common subspace, thus permitting

to perform change detection between two different sensors.

The Chapter is based directly and indirectly on the following works:

[Volpi et al., 2012a] Volpi, M.; Matasci, G.; Tuia, D. & Kanevski, M.; Enhanced change

detection using nonlinear feature extraction, In IEEE International Geosciences and

Remote Sensing Symposium IGARSS, Munich (D); pp. 6757-6760, 2012b.

[Volpi et al., 2013a] Volpi, M.; de Morsier, F.; Camps-Valls, G.; Kanevski, M. & Tuia,

D.; Multi-sensor change detection based on nonlinear canonical correlations, In

IEEE International Geosciences and Remote Sensing Symposium IGARSS, Mel-

bourne (AUS), 2013c.

[Volpi et al., 2013b] Volpi, M.; Matasci, G.; Kanevski, M. & and Tuia, D; Multi-view

feature extraction for hyperspectral image classification, In European Symposium

on Artificial Neural Networks, Computational Intelligence and Machine Learning

ESANN, Bruges (B), pp. 11-16, 2013d.

[Matasci et al., 2011] Matasci, G.; Volpi, M.; Tuia, D. & Kanevski, M.; Transfer Com-

ponent Analysis for Domain Adaptation in Image Classification, In SPIE Image and

Signal Processing for Remote Sensing XVII, Prague (CZ), 8180, 2011.

[Trolliet et al., 2013] Trolliet, M.; Tuia, D. & Volpi, M.; Classification of urban multi-

angular image sequences by aligning their manifolds, In Joint Urban Remote Sensing

Event, Sao Paolo (BRA), 2013.

[Matasci et al., 2013] Matasci, G.; Bruzzone, L.; Volpi, M.; Tuia, D. & Kanevski, M.; In-

vestigating feature extraction for domain adaptation in remote sensing image classifi-

cation, In International Conference on Pattern Recognition Application and Methods

ICPRAM, Barcelona (SP), 2013.

[Tuia et al., 2013a] Tuia, D.; Trolliet, M. & Volpi, M.; Multisensor alignment of im-

age manifolds, In IEEE International Geosciences and Remote Sensing Symposium,

Melbourne (AUS), 2013.

1.3.4 Other unrelated yet related work

Besides change detection and multi-temporal image classification, the Thesis project al-

lowed also to contribute in other remote sensing processing studies. In particular, topics
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related to hyper- and multi-spectral image thematic classification, specifically active learn-

ing and feature learning, were also explored.

[Volpi et al., 2010b] Volpi, M.; Tuia, D.; Kanevski, M.; Advanced Active Sampling for

Remote Sensing Image Classification, In IEEE International Geosciences and Re-

mote Sensing Symposium IGARSS, Honolulu (USA), pp. 1414-1417, 2010.

[Volpi et al., 2012c] Volpi, M.; Tuia, D. & Kanevski, M.: Memory-Based Cluster Sam-

pling for Remote Sensing Image Classification, IEEE Transactions on Geoscience

and Remote Sensing, vol. 50, no. 8, 3096-3016, 2012.

[Copa et al., 2010] Copa, L.; Tuia, D.; Volpi, M. & Kanevski, M.; Unbiased query-by-

bagging active learning for VHR image classification, In SPIE Image and Signal

Processing for Remote Sensing XVI, Toulouse (F), 7830, 2010.

[Tuia et al., 2011] Tuia, D.; Volpi, M.; Copa, L.; Kanevski, M. & Muñoz-Maŕı, J.; A

Survey of Active Learning Algorithms for Supervised Remote Sensing Image Clas-

sification, IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 3, pp.

606-617, 2011.

[Tuia et al., 2012] Tuia, D.; Volpi, M.; Dalla Mura, M.; Rakotomamonjy, A. & Flamary,

R.; Discovering relevant spatial filterbanks for VHR image classification, In Interna-

tional Conference on Pattern Recognition ICPR, Tsukuba (JAP), 2012.

[Tuia et al., 2013b] Tuia, D.; Volpi, M.; Dalla Mura, M.; Rakotomamonjy, A. & Flamary,

R.; Create the relevant spatial filterbank in the hyperspectral jungle, In IEEE Inter-

national Geosciences and Remote Sensing Symposium IGARSS, Melbourne (AUS),

2013.

[Penna et al., 2013] Penna, I. M.; Derron, M.-H.; Volpi, M. & Jaboyedoff, M.; Analysis

of past and future dam formation and failure in the Santa Cruz River (San Juan

province, Argentina), Geomorphology, vol. 186, pp. 28-30, 2013.

1.4 Outline

The Thesis is organized in four parts. In Part I, Chapter 2 provides a general introduction

to the field of remote sensing and to the types of imagery derived from optical sensors.

In Part II, Chapter 3 provides general concepts of machine learning. In Chapter 4, the

family of kernel methods is presented. Finally, Part III reviews the main contributions

of the Thesis. Chapter 5 presents principal elements of the state-of-the-art literature

in change detection and multi-temporal processing. Chapter 6 illustrates the supervised

methods. Chapter 7 presents the developed unsupervised approaches, while Chapter 8

explain the feature extraction-based methods for the alignment of unchanged spectral

information. Finally, Part IV concludes the Thesis. Chapter 9 summarizes the main

results and contributions, and it states possible future research directions in the field of

remote sensing image analysis.
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Chapter 2

Introduction to remote sensing

imagery and to change detection

This Chapter introduces the basic notions of remote sensing imaging.

Section 2 recalls the principles of electromagnetic radiation for optical

remote sensing, Section 2.2 characterizes passive remote sensing sys-

tems and Section 2.3 illustrates change detection in optical data. In the

latter, the reader is introduced to change detection by exploiting the con-

cept of difference image, and the main preprocessing considerations are

extrapolated from this basic but universal representation.

2.1 An overview of the acquisition systems

Remote sensing may be defined as the ensemble of the technologies, analogical or digital,

allowing the distant acquisition of informations about an object or a process of interests.

Therefore, the term remote sensing could refer to different systems, acquiring signals as

diverse as from differential GPS1 system for precise geographical coordinate retrieval,

to microwave sounding of the atmosphere. Remote acquisitions may be consequently

performed by ground networks, by aircraft (airborne) or by satellites (spaceborne). In

this Thesis, we will refer to remote sensing as the ensemble of airborne or spaceborne

technologies permitting the collection of imagery of the Earth surface. In this sense,

two different families are distinguished: active and passive sensors [Lillesand et al., 2004;

Schowengerdt, 2007; Woodhouse, 2006].

Active systems are imaging sensors that process electromagnetic energy (EM) emitted

by an antenna, usually in the microwave region of the spectrum, as illustrated in Figure 2.1.

The system interprets the sensed energy reflected back to the receiver, after interacting

with the surface of the Earth, to form an interpretable signal: the radar image. The

most advanced radar imaging systems are the synthetic aperture radar (SAR), that, in

contrast to real aperture radars, exploits the movement of the sensor carrier to form much

1For all the abbreviations, see the glossary on page xix
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Figure 2.1: The electromagnetic spectrum - Electromagnetic spectrum and its principal

characteristics, with emphasis on the visible region. The light blue vertical shade represents

the optical regime.

higher spatial resolution images. It is worth mentioning that radar acquisitions are almost

insensible to atmospheric conditions and to sun illumination. For additional details, see

[Jensen, 2007; Woodhouse, 2006]. On the contrary, passive systems exploit the energy

coming from the Earth, that is either composed by reflected radiations from the Sun or

heat emitted by the surface, to create a spatial representation of it: the optical image.

In the next Sections, the origin of the spectral signatures is summarized by recalling

the main physical properties of the EM spectrum, how it interacts with the atmosphere

and finally by describing its interplay with the surface of our planet.

2.1.1 The EM radiations in the optical regime

The sun, thanks to complex thermo-nuclear processes, emits energy in the full EM spec-

trum. This radiation propagates throughout the space until an interaction with it occurs,

e.g. by the atmosphere of a planet. These radiations are characterized by properties such

as the wavelength (λ), frequency (ν) and amplitude. The velocity of propagation in the

vacuum is the speed of light c = 299′792.5 · 103 [m/s], and in the Earth atmosphere the

attenuation is negligible. These quantities are related by the fundamental equation c = λν.

Optical remote sensing-based Earth observation (EO) studies the spectral signatures of

the materials contained in each pixel, the smallest spatial element composing an image. It

is usually defined through the visible (VIS) and near infrared (NIR) to the thermal infrared

(TIR). In this introduction we will mainly focus on the reflective portion of the spectrum,

defined in the VIS and NIR wavelengths (VNIR). The most of the images processed and

used in this thesis do not include thermal channels.

The radiations considered here cover only a small portion of the EM spectrum that

comes towards Earth, as illustrated in Figure 2.11. This interval is composed by two

distinct physical behaviours: the VNIR part of the spectrum is called solar-reflective

region. The considered VNIR EM interval is reflected by most of the materials at the

1Modified from:

http://upload.wikimedia.org/wikipedia/commons/0/00/Electromagnetic spectrum sRGB.svg
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2.1 An overview of the acquisition systems

surface of the Earth, and in the visible wavelengths corresponds to the perceived colors.

Although not recognized by the human eye, the NIR behaves similarly to visible light in

terms of reflections. The second category refers to mid- to thermal infrared radiations,

corresponding to the emission of heat by the surface of the Earth and the objects on it.

This last category is only marginally influenced by the direct reflection of solar radiations,

the only exception being found when objects behaves as specular reflectors, that is, the

solar radiation is redirected directly to the remote sensor.

The reflected EM energy that reaches the sensor can be decomposed in different pro-

cesses. They are caused by interactions that the light experiences in its path to and from

the Earth surface, as well as the processes that take place when the radiations hit the

surface.

The interaction between electromagnetic energy and the atmosphere. The very

first obstacle that the light encounters in its path to the Earth surface are the atmospheric

layers. The atmosphere, being composed by gases, molecules, micro- and macroscopic

solid particles such as ashes, droplets and ice, has a large impact on the amount of energy

that effectively hits the ground and is scattered back to the sensor. The quantity of EM

radiation that effectively illuminate the sensor can be decomposed in three atmosphere-

related components. The total energy received by the sensor is given by the sum of three

elements: EA,tot
λ = EA,sr

λ + EA,ds
λ + EA,us

λ .

The first, defined as EA,sr
λ , corresponds to the energy that is transmitted throughout

the atmosphere, interacts with the surface, and travels back to the sensor. The fraction

of the solar radiation that effectively reach the Earth surface is provided by the atmo-

spheric transmittance, illustrated in Figure 2.21. This quantity varies as a function of

the wavelength, and is given by the transparency of the atmosphere to specific wave-

lengths. Gases such as ozone (O3), carbon dioxyde (CO2) and water vapour (H2O) may

completely absorb or strongly attenuate the incoming energy at some wavelengths, corre-

sponding to the absorption losses depicted in Figure 2.2. As an example, the atmospheric

layer mostly composed by O3 prevent the dangerous ultraviolet radiations to reach the

Earth surface. The regions that are poorly affected by these effects are called atmospheric

windows. The EM energy corresponding to the VNIR spectrum is only poorly affected

by gas absorption and passes trough the atmosphere (the optical window). Another im-

portant absorption-free region is the so-called radio window, corresponding to almost a

full atmospheric transparency for microwave radiations (λ from roughly 1[cm] to 10[m]).

The absorption windows, in which the spectrum is almost completely absorbed, are often

exploited for remote sensing of clouds and atmosphere.

The second phenomena describing EA,ds
λ is the portion of the energy that is first down-

scattered in the atmosphere then it is reflected and up-scattered by the ground surface to

the sensor. This radiation is also known as diffuse light, and it is caused by the Rayleigh

scattering. This effect concerns all the wavelengths of the spectrum, but it is significant

1modified from http://commons.wikimedia.org/wiki/File:Atmospheric window EN.svg
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Figure 2.2: Atmospheric Transmittance - Atmospheric transmittance (in %) as a func-

tion of the wavelength λ. The dashed line approximates the losses due to scattering, while

the principal molecule causing absorption is highlighted at the top of the figure. Atmospheric

windows correspond to the gray regions of non-zero transmittance.

only in higher energy radiations, being proportional to the inverse of the fourth power of

the wavelength. These losses of energy are due to the continuous scattering of the light by

molecules and atoms that are much smaller than the wavelength, in particular by gases

such as N2, O2 or by very small dust particles.

In the presence of much larger particles such as smoke, dust, water droplets and pollen,

approximately of the same size of the wavelength, another type of energy diffusion known

as the Mie scattering occurs. The interactions are much more complex than the ones

occurring in a Rayleigh situation, and are very localized spatially. They mostly depend on

factors such as wind, anthropization, seasonality, humidity, etc. Both Rayleigh and Mie

scattering occur at the same time, and cause the losses due to scattering illustrated in the

dashed line of Figure 2.2. Additionally, large particles such as dust in sandstorms, snow,

haze and clouds generate a wavelength-independent non-selective obstruction of the light,

i.e. causing shadows.

Finally, the third component EA,us
λ corresponds to the part of the light that is com-

pletely up-scattered by the atmosphere, reaching the sensor without interacting with the

ground. However, the size of a satellite field of view is often too small to observe spatial

variations of this quantity and its contribution is assumed as constant.

Summing up, the energy that comes into the instantaneous field of view of the satellite

(IFOV) is strongly influenced by the atmosphere. In particular most of these effects are

proportional to wavelength, acquisition geometry and Sun angles, both defining the length
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Figure 2.3: Solar irradiance - This plot depicts the incoming energy at the top-of-the-

atmosphere (green line) along with the surface irradiance (red line). The black line depicts

the model for solar irradiance at the top-of-the atmosphere, a blackbody of 5500 [K]. The

absorption windows of the atmosphere are clearly visible.

that the light has to travel in the atmosphere. Also, the season and the weather conditions

strongly affect the atmosphere, thus directly influencing the acquisition of images.

An illustration summarizing the top-of-the-atmosphere irradiance (incoming energy)

and the atmospheric effects, by plotting the surface irradiance, is shown in Figure 2.3.

For the Sun EM emission, the maximal illumination occurs in the visible region, while for

mid-IR and larger wavelength the magnitude of the radiations is much lower.

The interaction between electromagnetic energy and the Earth surface. A por-

tion of the quantity measured by the sensor is influenced by the sensed surface by processes

such as reflection, absorption and transmission of the incident radiance. Other interac-

tions such as fluorescence are not reviewed here and one can find additional information

in [Campbell and Wynne, 2011; Lillesand et al., 2004].

Depending on the type of material, these three physical processes vary as a function

of the wavelength and allow us to distinguish the different objects composing a remotely

sensed image. By recurring again to the principle of energy conservation, we can decom-

pose the surface irradiance as ES,tot
λ = ES,sr

λ +ES,sa
λ +ES,tr

λ . In other words, the reflected

energy equals the amount of incoming radiation (irradiance) minus the either absorbed or

transmitted energy.

The amount of reflected energy ES,sr
λ directly depends on the surface roughness (at

given wavelengths), and varies between an ideally specular reflector (a mirror-like situa-

tion) to the perfectly diffuse reflection (Lambertian surface). However, both cases are very
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2. Introduction to remote sensing

rare in nature, being the most probable observable situation a combination of the two. A

more precise approximation, accounting for the reflective behaviour of the irradiant energy

as a function of the surface type, topography and geometry of acquisition, is mathemati-

cally described using the bidirectional reflectance distribution function (BRDF).

Since the most of these effects are measurable or at least an approximation can be

obtained, and since the total energy going through the sensor EA,tot
λ is known, the at-

mospheric contributions and the BRDF may be estimated and the data compensated (or

corrected) for their effects. To obtain these quantities an accurate knowledge of acqui-

sition, atmospheric, topographic parameters and the BRDF itself are needed. From the

simple (unitless) numbers composing a raw image (the DN) the at-sensor radiance in [W

m−2 sr−1µm−1] can be computed by knowing sensor coefficients gain and offset. After

the compensations of the atmospheric effects, the empirical reflectance may be extrapo-

lated as the proportion of the energy reflected by the surface, as described by the BRDF,

by considering the atmospheric attenuation. For details, see [Martonchik et al., 2000;

Schaepman-Strub et al., 2006].

Once pixel values are converted from the raw DN to reflectance, the image is expressed

using an absolute and in principle invariant reference for each wavelength. However, as

mentioned above, to obtain these values large efforts in collecting the adequate prior infor-

mation and computationally intensive physical models have to be made, to estimate the

compensation coefficients. This large amount of information is often neither accessible nor

provided, and this largely justify statistical and data driven approaches for the processing

of remote sensing images. At least in a relative manner, the pixel values may be used

to extrapolate measures of interest or thematic classification maps, as we will see in the

following.

2.1.2 Spectral signatures: characterizing materials

Independently on the type of information carried by each pixel the sensor measures sam-

pled parts of the continuous spectrum reflected by the surface. For each pixel and for each

wavelength interval (the band), this amount of energy gives us the spectral signature.

The series of sampled values are very characteristic of the ground cover composing

the scene. If reflectance values are used, these measures are generalisable also to other

observations from other satellites, but if DN or radiance data are considered, these are only

discriminative in a relative manner, for the considered dataset. Practically, for a given

pixel at given geographical coordinates, the spectral signature is a vector: being xi the

ith pixel indexed by i indicating indirectly its geographical location, the spectral values

are defined (here and throughout the thesis) as xi = [xi1 xi2 . . . xid]
′, i.e. a d-dimensional

column vector defined in Rd, d being the number of spectral channels. By considering

all the pixels together for a given spectral band, they are organized in d two-dimensional

arrays (d spectral bands) corresponding to d graylevel images1.

1For a list of the most used symbols, see Table on page xx
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Figure 2.4: Example of spectral signatures - The image shows three different spectral

signatures for the hyperspectral dataset Salinas acquired by the AVIRIS sensor over the Salinas

Valley, California, USA, illustrated in (a). In (b), the three different lines correspond to the

spectral signature of the pixels corresponding to three different ground covers, highlighted by

the colored circle. Namely, from top to bottom: Celery, Bare Soil and Broccoli.

Using a widely cited sentence, Parker and Wolff [1965] define the bases for remote

sensing by introducing the concept of spectral signature as:

“Everything in nature has its own distribution of reflected, emitted and ab-

sorbed radiation. These spectral characteristics can – if ingeniously exploited

– be used to distinguish one thing from another or to obtain information

about size, shape, and other physical and chemical properties” (citation from

[Campbell and Wynne, 2011])

Traditional remote sensing bases most of the processing hypotheses and algorithms on

this seminal statement, assuming in a wide sense the uniqueness of the spectral signature

with respect to a given material. In Figure 2.4 a visual example is given1: three different

ground covers – two of them related to cultivated crops, one to bare soil – are plotted. The

1dataset freely available online at:

http://www.ehu.es/ccwintco/index.php/Hyperspectral Remote Sensing Scenes
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image was acquired by the AVIRIS1 hyperspectral sensor (see the following for a formal

definition). The x-axis illustrates the wavelength, in [µm] for each measured sampled

wavelength interval. The y-axis shows the corresponding reflectance in the IFOV (colored

circles in Figure 2.4). This sensor samples a very detailed spectrum, by measuring the EM

energy in 10[nm] (0.01 [µm]) wide bandpass, for a total of 224 different spectral channels

from 380 to 2500 [nm]. By analysing the spectral signature of the two differently vegetated

cultivations, it is relatively easy to discriminate them one from each other. In more detail,

“celery” and “broccoli” classes show a similarly shaped signature, but a different EM

response for wavelengths ranging from 400 to 1370 [nm] and particularly in the NIR-MIR

region (from 700 to 1400 [nm]). The spectral signature corresponding to the “bare soil”

class shows a completely different behaviour, since related to a very dissimilar ground cover

class. By exploiting these properties, we are able to discriminate these three ground cover

all over the image, by comparing the spectral signatures of these three references to all the

other pixels within the image. This is the principle of pixel-wise thematic classification.

Although for a same spectral class, in relative or in absolute terms, the spectral sig-

nature behave very similarly from pixel to pixel, one can note slight differences in the

signature of pixels sampled over a same ground cover. This issue can be related to effects

caused by topography, shadowing and by mixed pixels. The latter is caused by the fact

that, in the IFOV of the satellite, it is very rare (at all the possible resolutions), to observe

only a single and pure spectral signature in the sensed pixel. As an example, think to

the Broccoli cultivation above: since the ground projected IFOV (GIFOV) of the sensor

corresponds to a pixel size of 5[m], it results impossible to observe pixels containing only

broccoli in an uniform manner. In practice, it is very likely to observe a mixing of the

spectral signatures of broccoli, bare soil, small weeds and the attenuation introduced by

their shadows. It results that, for a land use cover corresponding to “broccoli cultivation”,

the spectral signature is a (mostly) linear mixing of the pure spectral signatures related

to the different sub-classes contained in the pixel. The branch of the remote sensing sci-

ence that is devoted to decode these signals, i.e. finding the percentage of pure signatures

that compose the observed mixed pixel signature, is referred to as signal unmixing, and

it is intimately related to source separation problems in signal processing. The interested

reader is referred to [Bioucas-Dias et al., 2012] for more details.

2.2 Optical remote sensing systems

Evolutions and innovations in remote sensing technologies, from aerospace engineering to

camera sensors, from data transmission protocols to optical elements such as lens and

mirrors, allowed an incredible improvement in the optical data quality. In Figure 2.5(a)

(one of) the first image of the Earth from the space is visualized alongside one of the most

recent in Figure 2.5(b). In the first image clouds are barely distinguishable, while in the

second the cars, building façades (thanks to the off-nadir acquisition angle) and road signs

1Airborne visible and infrared imaging spectrometer
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(a) (b)

Figure 2.5: RS image evolution - In (a) the first image acquired from space by a 35mm

camera, from a V-2 rocket launched the October 24, 1946, from a New Mexico (USA)

missile range. Image from http://www.airspacemag.com/space-exploration/FEATURE-

FirstPhoto.html. In (b) an image acquired by the WorldView-II sensor over Dallas, Texas

(USA) on October 19, 2009. ©DigitalGlobe, from http://www.geovar.com/wv-2.htm.

are clearly visible. This sensor comes with a maximal spatial resolution of 0.46[m] for

the high resolution panchromatic band. Furthermore, it comes with a total of 8 spectral

channels in the VNIR region, with 1.8[m] of spatial resolution.

As deducible from these paragraphs, it is clear that the optical images coming from

different sensors could differ largely one from the another. So far, we mentioned hyperspec-

tral, very high resolution, multi-spectral and other characterizing terms without properly

defining them. In the next Sections, these main characteristics are detailed, by presenting

the four types of resolutions that characterize these kinds of data.

2.2.1 A characterization of optical sensors

The sensors populating our sky acquire the images in different ways, depending on the

manner of sensing the Earth surface. There are mainly two different scanning schemes:

the whiskbroom scanners acquire pixel values by mirroring in the cross-track direction

(perpendicular to the sensor movement) the reflected light into several detectors. The

pushbroom scanners analyze separate lines of pixels covering all the ground-projected field

of view (GFOV). It corresponds to projecting the light into a linear array of detectors,

covering the area of the field of view (FOV), coinciding with the angle covered by the

sensor in the cross-track direction, i.e. the image width. The natural displacement of

the sensor allows to scan spatially contiguous lines of pixels, until the predefined area (or

strip) is sensed. This last scheme is usually adopted by airborne hyperspectral sensors.

On the basis of the number of spectral channels, different families of sensors can be

distinguished. This first categorization is based on the absolute number of spectral bands

acquired. In this sense, we usually make distinction between multi-, super-, hyper- and

ultra-spectral sensors, as summarized in Table 2.1.
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Category Number of bands

RGB (standard image) 3

Multi-spectral 4-15

Super-spectral 16-50

Hyper-spectral 51-500

Ultra-spectral 501- >1000

Table 2.1: Categorization of sensors based on the number of spectral channels.

One should be cautious in thinking that a large number of spectral channels correspond

generally to better data. Usually, the bandpass width trades-off with the spatial resolution,

to keep an optimal signal-to-noise ratio. Thus, many spectral bands usually corresponds

to lower spatial resolution. To obtain (very) high spatial resolution hyperspectral data,

one may recur to the use of airborne sensors with adjustable optics, such as the ROSIS1

[Kunkel et al., 1988], with 115 bands in 5[nm] intervals on the VNIR, with a maximal

spatial resolution of 1.2[m] (IFOV of 0.56[mrad]).

The different sensors are usually categorised on the basis of the number of spectral

channels. Standard RGB imagery is usually acquired by airborne cameras and it is used

to retrieve very high spatial resolution images (VHR) in the range of 0.1-0.5[m]. At the

opposite situation we have spectrometers2 such as the MetOP-IASI sensor, sampling 8461

spectral channels in the infrared (IR, in 3.62 - 15.5[µm]). It is used for meteorological

applications and to retrieve atmospheric parameters (e.g. temperature, ozone, humidity)

[Camps-Valls et al., 2012].

The spatial resolution. It is usually defined as the size of the smallest spatial element

that can be distinguished by observing the image. However, as an objective simplification,

it is often assumed that the spatial resolution corresponds to the GIFOV (also known

as ground sample distance, GSD), the actual size of the ground projected pixels. It is

common to design sensors such that the GIFOV corresponds to the distance between two

pixel centres (defined as the ground sample interval, GSI), so that the image is composed

by an array of adjacent pixels with a common boundary [Schowengerdt, 2007]. In Table 2.2

a distinction of the sensors based on their spatial resolution is given.

The spectral resolution. The spectral resolution is defined by the ability of the sensor

to sample the EM radiation with the smallest possible bandpass. The smaller this interval,

the more precise spectral details are. To define this type of resolution using an example,

think to the spectrum sensed by the AVIRIS used in Fig. 2.4. In this example, bands are

0.01[µm] wide, allowing a very fine sensing. In contrast, a spectral band of a standard

multispectral sensor such as the Landsat’s ETM+, say the NIR band, is constituted by a

1Reflective optics system imaging spectrometer
2Imaging spectrometers are often referred to as hyperspectral sensors
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Category Image GIFOV [m]

Very high resolution < 2.5

High resolution 2.5-10

Medium resolution 10-50

Low resolution 50-100

Very low resolution > 100

Table 2.2: Categorization of sensors based on the spatial resolution.

passband of 0.15[µm], between 0.75 and 0.9[µm]. The AVIRIS sensor covers this interval

by 15 distinct channels: by considering a spectral property visible only in one of these

intervals, solely AVIRIS can resolve it. On the contrary, the ETM+ would simply have

averaged out such fine wavelength details. Summing up, hyperspectral images provide a

high-resolution sensing of spectrum, defined by the fine sampling and the large number

of channels, while multi-spectral sensor provide few bands with wider bandpass. For such

sensors the signal-to-noise ratio is improved and smaller spatial details can be resolved.

The radiometric resolution. It is related to the ability of the detector to quantize,

for each spectral band, the EM energy into distinct graylevel values. The more these

intervals are, the better this resolution is, since the spatial variations of the quantity of

EM received by the sensor are more detailed. The quantity of these intervals is given by

the number of bits used to code the information, as for the most of digital data. The

number of bits, say B, gives the number of distinct values of the sampled, as 2B, in an

interval DNrange = [0, 2B−1]. For a same continuous signal, for larger B the quantization

is more detailed and higher is the radiometric resolution. Usually, remote sensing images

are coded using 8, 11, 12 or 16 bits per channel.

The temporal resolution. It is defined by the shortest time that the acquisition system

needs in order to acquire an image of a same geographical area sensed previously. It has

been greatly improved by the introduction of adjustable systems allowing the acquisition

of images at off-nadir angles. However, for large angles, geometrical detail degrades and

parallax effects should be taken into account when processing the data. Indicatively, large

distortions start to appear when acquiring off-nadir images with angles wider than ±25◦.

For instance, fixed angle acquisition system such as the TM or the ETM+ can acquire an

image of a given geographical area each 16 days ([d]). The commercial sensors QuickBird

and WorldView-II, depending on the latitude and on the off-nadir angle, can provide data

in 1 to 3.5[d].

2.2.2 The optical data as grayscale images

A remote sensing dataset can be seen as a collection of single grayscale images. Conse-

quently, we should briefly recall some properties common to all types of image data. One
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of the most important effects introduced by the sensor is the imaging noise. That is, some

random variations to the true pixel signal are introduced, resulting in histograms that

instead of showing a single peak have some spread. For optical data, pixel values will

most likely follow a Gaussian distribution. In this case, noise is composed by independent

and identically distributed (iid) realizations from a Gaussian probability density function

(PDF) with mean 0 and standard deviation σ. It is a special case of the white noise: the

intensity of the noise does not change with the spatial frequency at which it is observed

(constant power spectrum). Moreover, it follows an additive model, i.e. it is not depen-

dent on the pixel signal. The process generating the pixel values can be described, for a

grayscale pixel xi, as xi = gi + εi. The true signal gi is uncorrelated from the noise εi,

drawn from a zero mean Gaussian distribution. A measure of the noise intensity is readily

obtained from the model above: the signal-to-noise ratio (SNR). It is defined as the ratio

between the variation of the signal gi and the variation of the noise εi [Schowengerdt,

2007]:

SNR =
n−1

∑
i(gi − n−1

∑
i gi)

n−1
∑

i(εi − n−1
∑

i εi)
. (2.1)

However, its practical estimation requires the knowledge of the true signal and noise distri-

butions. A priori, this is often unknown, but it can be estimated from the image directly.

By introducing the concept of spatial autocorrelation, we know that neighourhooding pix-

els will probably have a closer value to each other than to two pixels which are far away.

Additionally, due to the noise properties, we may observe that the empirical average of

pixels covering a homogeneous area is close to the true underlying signal. In these terms,

for a given homogeneous area within a neighbourhood W , the signal noise can be esti-

mated as the deviation of the samples from the mean of pixels in W . Note that the noise

variance is assumed to be constant on the whole image, and the average is assumed to be

an unbiased estimate of the true signal corresponding to the pixels to which a sufficiently

large W corresponds:

E[xi] = E[gi + εi] = E[gi] +��
�*0

E[εi] = E[gi]. (2.2)

The SNR can then be approximated as:

SNR =
n−1

∑
i(gi − n−1

∑
i gi)

n−1
∑

i(gi − n−1
∑

j∈W gj)
. (2.3)

The SNR is commonly evaluated in [dB] after a nonlinear transform [Sonka et al., 1999]:

SNRdB = 10 log10 SNR. (2.4)

It is worth mentioning that there exist different estimations of the SNR [Atkinson et al.,

2005]. Since noise is assumed to be constant in the images and caused by the sensor,

degradation of channel quality is a consequence of the low signal present in it, for two

main reasons. The first is that, atmospheric scattering may strongly reduce the amount of

signal for channels corresponding to shorter wavelengths, and secondly because the light
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measured by a sensor could be reduced to zero depending on the molecular absorption

windows of the atmosphere. In remote sensing image processing, a direct application

of the SNR measure is for detecting uninformative spectral channels, such as the ones

affected by water vapour absorption. In both cases, the imaging noise is not directly

caused by the wavelength, but the signal is weakened consequently decreasing the SNR.

One can take advantage of the above observations to improve SNR of the image. Some

advanced methods, such as the SNR-based rotations, oriented PCA, or minimum noise

fraction rotations and their nonlinear extensions [Canty, 2007; Gómez-Chova et al., 2011;

Green et al., 1998; Nielsen, 2011] take SNR estimators as objective functions to estimate

a projection of the original data minimizing the noise.

2.3 Change detection in remote sensing data

Now that the data in which changes are to be detected have been introduced, we detail

the general problem of change detection.

A human interpreter may detect changes in the shape and state of objects with a very

high accuracy, by simply comparing of two images roughly covering the same geographical

area. This holds for images with arbitrary size, different spectral channels (the shape

of objects is invariant to colors), spatial resolution, independently from seasons and Sun

elevation levels. This is due to the ability of our brain to interpret the image and to extract

the relevant information from both images, such as the relative localization, shape and

color information (if required), and to discard the uninteresting effects, such as shadows,

differences in illumination, high level of details. Finally, our brain makes a decision on

whether a change is relevant and if it should be qualified as such [Rensink, 2002].

Still, our brain is able to interpret only a portion of the information carried in a remote

sensing image, that is the spatial aspect of the objects and their relative position and their

color, if relevant. However, this last characteristic is defined by the visualization system,

that usually rely on a RGB composition of the available spectral channels. Consequently,

many bands may not be considered in the process of change detection by the human

brain, simply because not visualized. In this sense, other changes related to a more

intimate state of the object (e.g. thermal variations) are only visible by manually analysing

and comparing the spectral bands related to the wavelengths at which the phenomena is

observable, or by properly considering all the bands at once. Additionally, images usually

cover many square kilometres, and it is almost impossible to manually screen bi-temporal

couples of images with the aim of change detection.

In change detection (CD) terms, there are many phenomena that can generate changes

between acquisition. Raw differences are simply given by deviations in the DN numbers

for the pixels at the same spatial coordinates. However, most of them are not related to

actual changes or transitions in the ground cover. Therefore, we should first define which

transitions are of interest. Change detection in remote sensing data has been consid-

ered for many applications, principally for urban monitoring and mapping [Nemmour and

Chibani, 2006; Schneider, 2012], crop and environmental monitoring [Kennedy et al., 2009;
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Koppe et al., 2013; Zhang and Jia, 2013], natural hazard detection and quantification [Gi-

aninetto and Villa, 2007; Metternicht et al., 2005; Tralli et al., 2005] and post-catastrophe

assessment [Gillespie et al., 2007; Guchi et al., 2003; Suppasri et al., 2012]. However, even

if these application fields are very different, all of them rely on the detection of specific

changes and transitions, that are the ones the user is interested in.

Without entering now in methodological details, we can readily classify changes de-

pending on the phenomena generating them. The changes in which we are interested in are

related to structural differences, generated by processes such as addition and removal of

materials or object motion [Rensink, 2002]. The latter deserves a precise definition, since

motion does not corresponds in general to actual changes in land use and ground cover.

Specifically, two images of a car moving on a road generates a structural change, while ash

plumes or river streams, even if obviously moving, are not considered as a changes. Dy-

namic processes generating transitions in ground cover may not be considered as changes

depending on the acquisition time instants. Using again the river stream as example, two

remote sensing images acquired over it within a few days will not show any change, if no

abrupt process such as a flooding occurred, while the same area imaged ten years apart

will likely show structural differences due to river bed erosion.

The intervention of external effects such as different illuminations, Sun elevation, par-

allax effects, registration errors and noise in general, may generate detectable changes from

the radiometric point of view, since spectrally distinguishable, but without belonging to a

semantic or to a specific thematic information class transition. The most evident example

resides in the shadow: a very easily detectable change from the spectral point of view, but

semantically inconsistent (shadow is not a ground cover). Regarding changes due to uni-

form transformations of the image values, due for instance to homogeneous atmospheric

effects, may generate strong differences in object and notably to colors. Without a proper

preprocessing of the data and the application of advanced methods this may result in false

detections. As introduced in Section 2.1.1 the obvious solution is to work with reflectance

values, but this kind of preprocessing is very costly and not always applicable. In this

Thesis, we consider as changes of interest all the transitions generated by a structural

modification of the objects, in ground cover state and in land use, all of them detectable

by image analysis and image comparison. Illumination differences and shadows, if not

stated differently, are not considered as changes.

2.3.1 Standard approaches to change detection

To detect changes occurred in a pair of images (bi-temporal change detection), different

approaches may be exploited. Ideally, two main paradigms for CD exist: feature-based

and pixel-based. The former, extract a series of features independently from the original

images, such as structure descriptors, edges and object identifiers. Then, these features are

compared one to each other and changes are detected if modifications in their shape and

values are observed. The latter family includes the approaches developed in this Thesis

and builds on the assumption that changes are directly detectable by comparing each pixel
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at the same spatial coordinates from both images. To make a decision on whether the

land cover to which the pixel belongs has changed or not a similarity measure, a change

metric or a decision function, is computed. These values are finally thresholded in order

to separate changed from unchanged pixels. Note that this definition places the change

detection process very close to standard machine learning tasks such as classification,

clustering, or density estimation task [Camps-Valls et al., 2011].

To provide an introduction of many crucial concepts for CD, we analyze a simple yet

effective family of methods, those relying on the difference image [Bovolo and Bruzzone,

2007; Bruzzone and Fernandèz-Prieto, 2000; Coppin et al., 2004; Malila, 1980; Mas, 1999;

Radke et al., 2005; Singh, 1989]. The image comparison is based on a differencing operator,

i.e., for general d-dimensional images Xt1 and Xt2 , acquired at times instants t1 and t2,

the difference image D is computed as:

D = X2 −X1, (2.5)

where X1 and X2 are the data matrices of the image, i.e. pixels are rearranged from a

stack of d two-dimensional arrays into a n × d matrix where each one of the n lines is a

pixel and its d columns are the values of the d spectral channels.

Ideally, a multi-variate difference close to 0 indicates that at the spatial coordinate to

which the pixel belongs a change has not occurred, while for values significantly different

than 0, say larger than an optimal discriminating threshold, will probably indicate a

ground cover change. To compress the change information from a d-dimensional space

into a 1-dimensional measure easily interpretable, spectral change vectors contained in D

are decomposed into a magnitude (the difference pixel vector norm) as ∆i = ‖Di‖2 and

orientation Ξi = arccos(
∑

j Dij

∆i
). Transitions can be discriminated by inferring a binary

decision, as:

ŷ =

{
1 if ∆i ≥ θ;
0 otherwise.

(2.6)

where θ is a user defined threshold discriminating high magnitudes related to pixel change.

In parallel, the same can be performed on the angles Ξ to discriminate groups of pixels

probably belonging to the same transitions. In this case multiple thresholds quantize the

angle values into distinct spectral classes of change. By considering the information class

to which they belong, pseudo-classes of changes may be detected [Bovolo et al., 2012], as

well as artificial differences [Marchesi et al., 2010]. This approach is also known as the

change vector analysis or CVA. For a description of main approaches of change detection

and for a state-of-the-art literature review, see Chapter 5.

For different methods for CD, the task is often very similar, and some general state-

ments can be made. Key points of paramount importance that the algorithm and CD

systems must face are the robustness with respect to noise and to different illumination

conditions, to enhance the ability of detecting true structural and semantically coherent

changes. Noise is the main reason why D ≈ 0 and not D = 0. In this case, one must pay

attention to the fact that noise must not be considered as change, of course, even if large
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deviations from the no change score are observed. Concerning differences in illumination,

the method should possess some invariance properties to global transformations of the

image, such as those due to Sun elevation level and seasonality. In the next Sections,

spatial and spectral requirements for change detection are reviewed.

2.3.2 Geometrical requirements for change detection

Since many change detection approaches are based on pixelwise processing of the multi-

temporal images or a their transformation, either by stacking images, computing the

difference or comparing independently obtained classification maps (see Chapter 5.1), the

precision of the spatial correspondence of pixels is of crucial importance. A perfect super-

position ensures that the comparison of each pixel is related to an absolute geographical

location, and artificial changes due to misregistrations are not introduced in the process.

This geometrical preprocessing step is known as co-registration if the images are referenced

in a relative manner and (absolute) registration or georeferencing when geographical co-

ordinates in a given geographical projection system are assigned to each pixel. Detailed

studies on the effects of the misregistration errors on change detection can be found in

[Bovolo et al., 2009; Dai and Khorram, 1998]. To this end, different manual or automatic

techniques exist [Campbell and Wynne, 2011; Lillesand et al., 2004; Schowengerdt, 2007].

The choice between manual or automatic (co-)registration is usually made on the basis of

the amount of deformation that has to be corrected. If images were acquired with signifi-

cantly different acquisition angles, a preprocessing step exploiting digital surface elevation

models known as orthorectification may be needed before co-registering the images, so that

different perspectives does not affect image geometry and change detection [Schowengerdt,

2007].

As a general observation, the higher is the resolution of the image, the challenging

is the spatial matching processing. Moreover, VHR systems have the ability of tilt the

sensor to large angles, and the parallax effects are hardly compensable in particular for

a highly variable surface, such as in urban areas with tall skyscrapers or in mountainous

areas. On the contrary, mid to low resolution fixed-angle sensors such as the Landsat TM

are usually easier to match, and only require global linear shifts after orthorectification to

compensate the misregistrations.

2.3.3 Spectral and radiometric requirements for change detection

Similarly to geometrical properties, radiometric values of the spectral channels should be

matched so that the relative comparison of images can be carried out meaningfully. Since

the conditions might vary from one acquisition to another, it is important to compensate

shifts that make the values of same classes differ from one acquisition to the other. As in-

troduced, these shift are caused by atmospheric conditions and differences in illumination.

These adjustments are of particular importance for unsupervised methods, since basing

the CD process on a direct detection of the deviation between pixel values (see Chapter 5

and Chapter 7). For supervised classification-based change detection methods this step
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is less crucial, since the feature vector is modelled directly without any assumption on

the value it should take (see Chapter 5 and Chapter 6). However, it has been demon-

strated that for multi-temporal analyses, a preprocessing aiming at matching the image

values is always beneficial, with a worst case scenario of no difference between analysing

preprocessed or raw images [Song et al., 2001]. Three main approaches are usually ap-

plied: atmospheric compensation to obtain reflectance, data normalization and histogram

matching. The first transforms values in an absolute, global, sensor independent refer-

ence, unique for a given wavelength and ground cover class. In this case, one does not

need any further transformation and all the spectral band values are in [0, 1]. Regarding

the second and the third approach, they aim at matching the radiometry of the image in

a relative manner, so that for a same spectral channel and a same ground cover class the

spectral values are as closest as possible and thus comparable. Data normalization aim

at applying some data-dependent or fixed transformation function to pixels such that the

feature vector values are adjusted to a common scale, while histogram matching infers

the distribution of each channel to the corresponding one of the other image. If changed

areas affect large regions of the images, or if changes are generated by new and previ-

ously unseen classes, parameters for the scaling of the data may be extrapolated manually

from unchanged regions, so that differences may be detected more effectively. In detail,

principal normalizations used in the field of data analysis are:

Centering The pixel values are translated or centered such that their mean is µ = 0,

i.e. xi − µ, ∀ i. This provides a homogenization of the variable means. In change

detection this is particularly useful since for a large scene, if changed regions are

only a fraction of the total and belong to the same spectral classes in both images,

the average of the bands for each image should correspond. Centring is a useful

transformation when external effects are considered homogeneous and the average

of the channel values are stationary over the time (again, if changed pixels are few

in a large image, and not due to novel classes). This might correspond to a very

basic relative atmospheric compensation and radiometric correction.

Standard scores The pixel values are transformed such that each channel is rescaled to

mean µ = 0 and standard deviation Σ = I. The data are centered (as described

above) and further normalized by the standard deviation of each channel so that the

data range is also matched. It is well suited to deal with data following a normal

distribution, since after the transformation the samples will follow N(0,1), although

it can be applied without assuming any prior probability density. Standardization

is often required depending on the adopted method, in particular when variables

should possess the same scale.

Unit norm This type of normalization maps independently each feature vector (pixel)

on the unit hypersphere, so that ‖xi‖2 = 1. This is useful when the data sample

magnitude is not important and only the angle between vectors should be discrim-

inative of their properties (e.g. spectral angle mapper classification). The relative

importance of the variables is preserved. The normalization might provide some

helpful illumination invariant properties.
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Data rescaling This widely used data stretching does not affects relative importance or

statistical behaviour of data samples and variables. Usually, a stretching function

is applied so that the set of images are bounded by, for instance, x̃i ∈ [−1, 1] or

x̃i ∈ [0, 1], where x̃i, ∀ i denotes the stretched data sample.

In some situations the normalization of data is not only useful to enhance the separabil-

ity of samples (e.g. improve classification accuracy), but it can reduce the computational

time of some algorithms [Graf and Borer, 2001; Villa et al., 2008].

Finally, one of the most widely used radiometric preprocessing of remote sensing data is

to transform the image histograms by either histogram equalization or histogram matching.

Again, these approaches are valid under the assumption that small changed areas, not due

to novel classes, affect the image. The former applies a function on the image histogram

aiming at linearizing it, such that the distribution of values is approximated by a uniform

distribution. The cumulative density function (CDF) is simply applied to the image whose

distribution has to be equalized. The specified uniform histogram values x̃ with p1(x) being

the density function of the image, are given by:

x̃s = CDF1(xs) =

∫ s

0
p1(w)dw. (2.7)

The discrete approximation of the analytical specification of a uniform histogram is:

x̃s = CDF1(xs) =

s∑
i=0

p1(xs) =

s∑
i=0

ns
n
, (2.8)

with s = 0, 1, . . . , 2B − 1 and B the number of bits of the image and ns the number of

pixels having a value of s. A way to match the values for unchanged areas of the image is

to apply independently the histogram equalization.

However, a better approach preserving maximally the original distributions, avoiding

artefacts and color distortion, is the histogram matching procedure. This techniques is

used to specify the PDF of an image to a second one, by inferring the inverse CDF of

the image from which the histogram is to be transferred to the equalized histogram of the

image to be transformed:

x̃ = CDF−1
2

(
CDF1(x)

)
, (2.9)

where CDF1 and CDF2 are obtained as in Equation (2.7) or Equation (2.8). In practice,

the inverse CDF−1
2 (·) is not needed since the support, being bounded in [0, 2B − 1], allows

the explicit computation and storage of all the possible values of CDF2(·). Alternatively,

when the image radiometric resolution is very high, one may recur to the use of very small

quantiles (binning) to estimate the inverse of the CDF.

2.4 Some considerations

As discussed in this Chapter, the processing of remote sensing data and in particular

the detection of changes involves a series of important observations. From the semantics
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behind observed changes and their detection, going through data normalization and the

computation of a robust change indicator used to map changes, the practitioner may end

up in situations in which standard change detection methods are not effective, in particular

for new generation data and for high level requirements to obtain accurate and detailed

outputs for a very specific application.

Nowadays, many researchers are involved in the application of machine learning ap-

proaches for processing remote sensing data, mostly for thematic classification problems.

Fundamental limitations in such systems were underlined by trying to obtain high level

products as required by modern geoscientists and planners by exploiting standard image

classification tools, incapable of overcoming the complexity of most tasks. The pattern

recognition and statistical machine learning fields are offering solutions to these issues, and

proposing mathematical tools able to solve many of such problems. For change detection

purposes, the same observation could be made: fundamental limitations in the efficiency

and accuracy of standard methods are appearing clearly, since users are requiring products

of increasing quality standards.

With the increase of the computational power, many researchers adopt the machine

learning (ML) paradigms to process remote sensing data and images. In particular, early

developed methods based on standard statistical and signal processing models are rapidly

being replaced by more powerful and versatile algorithms from the advanced ML theory.

The application of ML tools to remote sensing data is still an open research field and meth-

ods aiming at solving specific processing tasks are still needed to be studied, developed

and verified for operational use [Richards, 2005]. Nowadays, a standard laptop provides

enough computational power to solve in a fast and reliable manner processing problems,

by exploiting such power to solve complex optimizations and learning problems. Fur-

thermore, a fast moving research area in remote sensing data analysis deals with parallel

implementation of processing algorithms, and with the integration of the high performance

computing through the distribution of computations to graphical processing units [Plaza

et al., 2010]. For these reasons, machine learning and pattern recognition based process-

ing methods are promising tools to solve also the new challenges in multi-temporal remote

sensing image processing tasks.
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Chapter 3

Machine learning methods for

data analysis

This Chapter introduces the main concepts of statistical machine learn-

ing and of regularization theory used throughout the Thesis. Section 3.1

summarizes the fundamental concepts of machine learning, and Sec-

tion 3.2 couples them with regularization theory. In Section 3.3 the

model selection issues are discussed. Finally, Section 3.4 briefly reviews

the main families of machine learning data analysis methods.

3.1 Learning from data

Given a learning task, we look for the functional f of x ∈ X ⊂ X that best fits inputs to

outputs. The task may be to classify a pixel, to estimate a quantity of interest or to find

a the subspace on which the data live. In other words [Bishop, 2006]:

Definition 1 (Learning function) A learning task is solved by a function f that takes

input vectors x and maps data samples from an input space X with realizations X to an

output space Y with realizations Y , with minimal error. It is instantiated by corresponding

input-outputs pairs (x, y):

f : X→ Y

x 7→ ŷ = f(x). (3.1)

Here, X ∈ Rd is the d-dimensional input space, while Y may vary from task to task, for

instance Y ∈ N for thematic classification (a given information class is recoded trough

discrete labels), Y ∈ R for regression and Y ∈ Rq, with q � d for feature extraction /

selection or for multi-output regression predicting q variables.

To find the optimal form of f , a function estimating the disagreement between esti-

mated and true outputs, f(x) and y respectively, has to be optimized. This step is known

as the training step, and it allows to optimize the internal parameters Θ of the model
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f so that the best possible approximation (or fit) of the data is obtained. This is per-

formed through the optimization of a loss function L(f(Θ,x), y) on the training samples

{(xi, yi)}ns
i=1

1. Keep in mind that many models also have some free hyperparameters to

be manually selected. For now, consider that those to be set by the user are fixed.

Definition 2 (Loss function, [Schölkopf and Smola, 2002]) A loss function denoted

as L(f(Θ,x), y) is an integrable, nonnegative function quantifying the error or fit of the

model f(Θ,x) over known example pairs (x, y). It evaluates the disagreement in the form

of a function L : X × Y → R(0,+)(or [0,∞)). The value of L(·) ranges from 0 (no error,

perfect fit) to any larger value corresponding to larger errors (bad fit).

A classical example of loss function, widely used in classification models with true and

predicted labels y ∈ [−1, 1], is the 0-1 loss L(f(Θ,x), y) = 1
2 |f(Θ, x) − y|. It returns a

value of 0 if the true label y is correctly estimated by f(Θ,x), 1 otherwise. Another well-

known function is the quadratic loss: L(f(Θ,x), y) = 1
2(f(Θ, x)−y)2 used in least-squares

regression.

Starting from an appropriate loss function quantifying the errors occurring between

f(Θ,xi) and yi, it should be further extended to approximate the error on all the samples

coming from the observed distribution pemp(x, y). It is assumed that the samples used to

learn the model are from an underlying process generating the data P(x, y). For a fixed

amount of observed examples ns, the empirical risk (training error) of a model f(Θ,x),

is:

Remp(f) =

∫
X×Y

L(f(Θ,x), y)pemp(x, y)dxdy =
1

ns

ns∑
i=1

L(f(Θ,xi), yi). (3.2)

However, a direct minimization of the empirical risk (the ERM principle) will lead to

solutions not representative of the true underlying distribution, since we usually dispose

only of a small training set from P(x, y) [Schölkopf and Smola, 2002; Vapnik, 1998]. Con-

sequently, the empirical risk Remp(f) on a finite set alone is not a good approximation

of the true risk of the model with respect to P(x, y). To verify if this situation occurred,

we may want to compute the generalization error, also known as risk. It corresponds

to the empirical risk Remp(f) evaluated over all the possible outcomes of the underlying

distribution function P(x, y) =
∫
X×Y p(x, y)dxdy:

R(f) =

∫
X×Y

L(f(Θ,x), y)p(x, y)dxdy = E(Rtest). (3.3)

Recall that examples modelled by f are also generated from the governing distribution

P(x, y). The rightmost part in Equation (3.3) provides another look at this integral of

the loss over the density p(x, y). It can be interpreted as the expectation of the test error

estimated using (infinite) iid realizations of the governing process P(x, y). However, as we

will see, one usually dispose only of finite sets, making impossible a direct estimation of

Equation 3.3 since p(x, y) is not accessible.

1For a formal definition of the sets used for learning, see Appendix A.
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To estimate the generalization ability of the model, we usually employ a finite test set of

nt elements. This set allows to estimate the model performance on previously unseen data

by mimicking another independent draw from P(x, y), thus providing an approximation

of E(Rtest). Note that this set has never been used to train the model. In this case, we

replace the expectation with the sample average, to obtain the test, or generalization,

error.

Definition 3 (generalization error) The generalization error of a trained model f , de-

noted as Rtest(f), is defined as the rate of errors over the total of predictions, as:

Rtest(f) =
1

nt

nt∑
i=i

L(f(Θ,x), y) (3.4)

As one remarks, there is no apparent difference with the empirical error of Equation (3.2).

However, note that the parameters defining the function f(Θ,x) in Equation 3.4 are fixed,

indicating a trained model.

We may now fix two important concepts in machine learning: under- and over-fitting.

Figure 3.1 illustrates the behaviour of the train and test errors for models of increasing

complexity. If a model is not complex enough (or if its class of hypothesis is not rich

enough), it underfits the examples and fails to model the true underlying data structure,

resulting in high generalization error. This situation is related to a high bias of the model,

meaning that we would observe a large generalization error even if we train the model on

a very large set. In this case the variance of the model is low, since for other realizations

of the training data the estimations would not differ largely. The opposite situation is

met at the rightmost part of Figure 3.1. A model complex enough fits the training set

always perfectly, but fails in capturing the true structure of the data, which results in

a poor generalization ability. For different realizations of the training data such model

undergoes to large variations, while showing a low bias since it easily adapts to very

complex distributions.

Summing up, these extreme situations are very atypical in nature, and models should

always avoid them. In most cases, the optimal solution providing the lowest generalization

error is somewhere in between, meaning that a good model has to be sufficiently complex

to capture the data structure but simple enough to guarantee generalization ability on

new samples. Thus, a trade-off between bias and variance is needed. This is often referred

to as bias-variance dilemma [Hastie et al., 2009]. These intuitions were already studied

in the 13th century by William of Ockham, an English Franciscan friar. The principle is

known as the Ockham’s razor: the simplest model providing acceptable accuracies should

be preferred, since is likely to possess the larger explanatory power [Duda et al., 2001].

Based on these observations, we may finally state that the generalization ability of a

model trades-off with its complexity. By observing the error rate that one commits on the

training and on the test sets, we may extrapolate some important informations. These

are the bases of the probabilistic induction principle of the statistical learning theory

[Evgeniou et al., 1999; Vapnik, 1998].
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Figure 3.1: Bias-variance dilemma - Behaviour of training and test errors in a finite set

situation for a general model f (modified from [Hastie et al., 2009]).

To avoid underfitting situation, it suffices to ensure that the family of models selected

is rich enough to capture complex data relationships. To guarantee a certain degree of

generalization, the final solution must choose a model f ∈ F that best approximates the

expected error on unseen samples. In this setting, choosing the functional by a direct

minimization of the ERM [Schölkopf and Smola, 2002; Vapnik, 1998]:

f∗ = min
f∈F

Remp(f), (3.5)

is not a good choice, since it provides an overfit of the data.

A solution to this issue is given by the structural risk minimization principle in the

statistical learning framework (SRM) [Schölkopf and Smola, 2002; Vapnik, 1998]. One of

the core concepts of the statistical learning theory builds on the consistency of the ERM

principle. Vapnik [1998] stated formally what deducted above: as n → ∞, minimizing

Equation (3.5) converges towards the optimal (lowest achievable) R(f∗), being f∗ the

optimal function. That is, ERM leads to the same solution as if minimizing directly R(f).

Formally, this may be presented as the following convergence in probability:

lim
n→∞

P(sup
f∈F

(R(f)−Remp(f)) > ε), (3.6)

with ε > 0. In this case, the consistency depends on the class of function F. One needs

to estimate feasible and admissible hypotheses spaces F guaranteeing the convergence of

the errors under the limit of n → ∞. The problem is now to select the correct function

among the family of functions guaranteeing this convergence.

The solution to this problem is to constraint the family of possible hypotheses F∗ to

functions that minimize the observed error for the minimal complexity. Also, the choice
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should be made in order to accommodate the consistency presented in Equation (3.6). The

framework of the SRM translates these observations into the addition of a capacity term

to the empirical risk Remp(f), which penalizes complex models that do not guarantee the

uniform convergence above. In the SRM framework, Equation (3.5) is modified to take into

account the model complexity with an additional term, a confidence interval depending

on the model complexity defining an upper bound on the true risk [Schölkopf and Smola,

2002; Vapnik, 1998]:

R(f) ≤ Remp(f) + ψ
(√h

n
, (1− η)

)
. (3.7)

Here ψ
(√

h
n , (1 − η)

)
is an increasing function of h

n and η. Specifically, being n the

number examples, h is a capacity term (growing for increasing complexity) and 1 − η

defines the probability of observing the above mentioned bound. As depicted from the

uniform convergence of Equation (3.6), the capacity term goes to zero for n→∞.

A quantification of the capacity of the class of functions in F may be given by the

Vapnik-Chervonenkis (VC) dimension [Vapnik, 1998]. It is defined as the largest number

of samples with binary labels in any configuration that can be shattered (solved in a

classification sense) for a given F. For instance, a linear separation in R2 has a VC

dimension of 3 since it can separate any 3 points with binary labels in any configuration

in R2. The same holds for a VC dimension of 4 for planes (R3), and so on. For linear

separating functions the VC dimension is d+ 1.

The SRM principle illustrated in Figure 3.2 can be seen as selecting a single model

from the optimal set of functions F∗ satisfying the SRM, selected from a series of hy-

potheses families with increasing VC dimension (or capacity) F1 ⊂ F2 ⊂ . . . ⊂ F..., with

F =
⋃∞
i=1 F

i. The choice of the optimal model will account for the variance-bias issue

implicitly, as depicted in Figure 3.2. For a detailed derivation of the bounds, see [Alon

et al., 1997; Evgeniou et al., 1999; Schölkopf and Smola, 2002].

Summing up, the statistical learning theory exploits the SRM principle to select models

and their parameters, and it is implemented as a penalization term added to the empirical

risk. However, even if this is an intuitive concept, it is hard to apply it to complex classes

of functions, in particular since estimating the effective VC dimension is often infeasible.

In Chapter 7 of [Hastie et al., 2009] an example of approximating the VC dimension by

other complexity measures is given. In general, when applicable, the complexity of a model

may be related to the internal parameters vector of a model. This will be the subject of

Section 3.2.

3.1.1 A practical example

This Section is deemed to provide a short example of the general concepts introduced

before. In this case, the k-Nearest Neighbour (kNN) classifier is employed. This method

assigns to a previously unseen sample the label that is the most frequent among its k

neighbours. The neighbourhood of xi corresponds to the k closest samples in terms of

Euclidean distance, as d(xi,xj) = ‖xi − xj‖2. Note that in this case, the model does not
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LEGEND: Training error regularization term · · · Structural risk

Figure 3.2: Structural risk minimization - The regularized risk functional shows a min-

imum that trade-offs complexity and empirical risk minimization.

have any internal parameter to optimize and it does not require training (lazy learner).

It only has a user defined hyperparameter k. Even if the kNN does not have internal

parameters that can be exploited to estimate its complexity, the ratio ns/k can be used

instead, corresponding to the effective degrees of freedom [Hastie et al., 2009].

In Figure 3.3 three situations are illustrated. We observe that the model obtained with

100 NN separates the samples with a very smooth function, with training and test errors (in

terms of the 0-1 loss) of 0.295 (29.5%), Figure 3.3(a), and a test one of 0.3, Figure 3.3(d).

The model shows also a very low complexity, corresponding to 200/100 = 2. In this case,

the model is not flexible enough to learn an appropriate separation and it disregards the

region of green samples in the lower left corner. In this case, we incur in underfitting.

The opposite situation is illustrated in Figure 3.3(c)-(d) for train and test errors respec-

tively. It is observed when using a 1 NN classifier and the training samples are obviously

always perfectly separated. In this case, the Remp(f) = 0 and Rtest(f) = 0.310. As further

indicated by the large model complexity (200/1 = 200) this corresponds to overfitting.

Finally, the intermediate solution is given by a 15 NN, illustrated in Figure 3.3(b).

The model is neither too complex nor too simple, with a complexity of 200/15 = 13.35.

The balanced errors Remp(f) = 0.215 and Rtest(f) = 0.205 also depicts that no extreme

situations in the sense of Figure 3.1 occurred. Practically, the value of k = 15 has been

obtained by minimizing the cross-validation error varying the value of k and retaining the

one generating the best model in terms of accuracy. This issue will be discussed later in

Section 3.3.

As mentioned, if the training set is infinitely large, the difference between empirical

and expected risk will be reduced to zero. In this case we may compute the true risk since

we know the distribution from which the data have been generated. Such error is called
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Remp(f) = 0.295 Remp(f) = 0.215 Remp(f) = 0
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T
E

S
T

Rtest(f) = 0.300 Rtest(f) = 0.205 Rtest(f) = 0.310

(d) (e) (f)

LEGEND: Decision function, RED: class 1, GREEN: class 2, o: errors

Figure 3.3: kNN classification errors - In (a), the model voting over 100 NN with training

errors circled in black and corresponding Remp(f) . In (b) and (c) the same but using 15 and

1 NN. In (d)-(f), the same as above but showing test errors and the corresponding Rtest(f).

Train and test samples are two separate realizations from the same underlying P(x, y).

the Bayes rate, and model generating it is the optimal Bayes classifier.

The RED and GREEN classes have been generated accordingly to two bivariate normal

distributions with x ∼ N(µ,Σ), and are illustrated in Figure 3.4.

• RED CLASS. Uni-modal distribution with 100 samples from N(µ,Σ) with

µ = (−0.5,−1), Σ =

(
0.5 0

0 0.5

)
• GREEN CLASS. Bi-modal distribution with 50 samples from N(µ,Σ) with

µ = (1, 1), Σ =

(
0.5 0

0 0.5

)
and 50 samples with µ = (−1,−2), Σ =

(
0.5 0

0 0.5

)
.

The optimal Bayes classifier is simply obtained by assigning a sample to the class

maximizing the posterior probability, as:

f(x) = max
y∈{RED,GREEN}

P(y|x). (3.8)
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P(x) TRAIN TEST

Remp(f) = 0.220 Rtest(f) = 0.205

(a) (b) (c)

LEGEND: Decision function, RED: class 1, GREEN: class 2, o: errors

Figure 3.4: Bayes optimal classification - In (a), the underlying probabilities generating

the data. In (b) the optimal Bayes model fitting the data with training errors black circles,

and in (c) the same but outlining the test error (Bayes rate).

Since class covariances are equal, the decision boundaries are linear. Returning again

to the kNN example, we may observe that the best model we obtained, is the one that

better approximates the optimal Bayes classifier, both in sense of the error and of the

decision function shape.

3.2 Connections with regularization theory

As mentioned, the estimation of the exact bound of Equation (3.7) may be a difficult

task. To approximate the model complexity, we may want to replace the capacity term

with a regularization penalizing complex models. The regularization theory has been

introduced by Tikhonov and Arsenin [1977], and it was intended with the aim of solving

ill-posed inversion problems issuing from the discretization of integral equations. The ill-

posedness of a problem is given by Jacques Hadamard’s definition of well-posedness, as

follows [Hable and Christmann, 2011; Steinwart and Christmann, 2008]. An optimization

problem is well-defined (or well-posed) if (i) a solution exists, (ii) it is unique and (iii)

slight changes in the data generate very small changes in the model. By contradiction, an

ill-posed problem is encountered when one of these conditions is not met.

Additionally, these concepts allow to introduce a problem often encountered in data

analysis and machine learning: the curse of dimensionality [Hughes, 1968; Lee and Ver-

leysen, 2007; Trunk, 1979]. As we will see in the next Chapter, it is easier to solve

classification problems in high dimensional spaces. Since for a given and finite number

of samples the space exponentially empties as the dimensions increase, linear separations

are more likely to shatter samples. As the dimensionality increases, so does the number

of valid separation of training sample, making the solution not unique (ill-posed problem
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3.2 Connections with regularization theory

from condition (ii)). Additionally, this phenomenon makes the norm of vectors (of iid

samples) grow proportionally to
√
d, while the variance remains constant. This heavily

affects the meaning of Euclidean distances in high dimensional spaces [Lee and Verleysen,

2007]. Consequently, learning a model with a small training set and in high dimensions

may be a very difficult or even an infeasible task, since the space is mostly empty and

strong regularization to solve the problem is required. Finally, the penalization allows to

avoid choosing models that would show small bias and large variance, ensuring that the

problem is not ill-posed from condition (iii).

Regularization theory ensures the well-posedness of the problem by adding a term Ω(f)

during the ERM to avoid training too complex models resulting in poor generalization

ability, as indicated by the SRM theory. We may define a penalized or regularized risk as:

Rreg(f) = Remp(f) + γΩ(f). (3.9)

This is straightforward in the interpretation: the regularized risk minimization aims at

finding a solution fitting well the training data (Remp(f) data dependent fitting) but at

the same time finding a solution that do not incur in complexity penalizations (γΩ(f)

restricts the function class). The term γ is a user defined trade-off parameter controlling

the amount of penalization of complex models. Provided that Remp(f) is convex, one

chooses Ω(f) to be also convex, so that a unique minimum of Rreg(f) exists.

There are different families of Ω(f), and a small review of main families of parametric

and non-parametric penalties may be found in [Cherkassky and Mulier, 2007]. In general,

we may encounter regularizers that enforce some prior guess on the distribution of model

weights, or penalizers in the form of differential operators discarding models with high

frequency in the input domain, such as Fourier-based [De Canditiis and De Feisb, 2006].

However, for many learning algorithms, the most of these capacity constraints are in the

form of `p norms of the weight vector of the model as:

`p(w) = ‖w‖p :=
( d∑
i=1

|wi|p
) 1

p
. (3.10)

Regularizers of this form with p 6= 0 often lead, provided the convexity of the loss

function, to convex optimization problems. Equation (3.10) is illustrated for a vector

of parameters w ∈ Rd defining f , and p ≥ 1. The family of `p norms possesses many

interesting features, for instance a minimization using the `1-norm (approximation of the

usually infeasible `0 regularization) favours coefficients of w to become 0, since for growing

values of ‖w‖1 the solution may only be encountered when some coefficients of w are zero.

For `2 norms, the solution is not sparse since when ‖w‖2 grows the solution is met also

with a dense w. Moreover, these solutions from the regularization theory show connections

with the SRM principle for a variety of important classes of functions [Evgeniou et al.,

1999, 2002]. Parameter γ may be chosen so that nested subspaces of hypotheses spaces

with growing complexity are created.

It is worth mentioning that other techniques aiming at controlling the complexity of

the models exists, besides SRM and regularization theory. For example, we may mention
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3. Machine learning

techniques such as the early stopping criterion, widely used in neural networks [Haykin,

1999]. In the Bayesian inference context one exploits prior information on the form of

the admissible solution to shrink F [Bishop, 2006], or noise injection, which is a com-

plexity control simulating new noisy samples from P(x, y), building directly from the last

Hadamard’s well-posedness [Bishop, 1995].

However, as a matter of fact, we simply added an additional hyperparameter to be

estimated to the minimization problem. In the next Section, a brief summary of the

model selection procedure is provided.

3.3 Hyperparameters optimization

As mentioned above, there are many methods which require the fitting of some extra hyper-

parameters before estimating their internal parameters. These hyperparameters strongly

depend on the data at hand, and, when possible, should be set so that the final model

generalizes optimally, i.e. provides a generalization error the closest possible to the ex-

pected risk. Practically, one looks for the hyperparameters Θ∗h among all the possible Θh

that satisfy:

Θ∗h = arg min
Θh

L(f,Θh, y). (3.11)

where f corresponds, as before, to f(Θ,x).

In this case we evaluate a model learned on the training set using all the precautions

given by Equation (3.9), but we evaluate it on the validation one. In this case, we hope

that:

R(f) ≈ L(f(Θ,x), y). (3.12)

where the x and y are from the validation set, and the model parameters Θ are learned

on the training set by the minimization of Equation (3.9).

In this case we assume that by employing the validation set as the testing one, it

would provide an approximation of the true generalization error. In the most optimistic

situation, and by disposing of very large sets, Rvalidation(f) ≈ Rtest(f). However, disposing

of an independent held-out validation set is rare, since labelled samples are costly. It is

consequently hard to split the dataset into training, validation and testing set. However,

samples required by a validation set may be used to complete the population of the training

or the test set.

An important observation, directly relating to the ERM principle, is that one can not

select the hyperparameters on the basis of the minimization of Rreg(f). In this case, the

selected model would bring to a severe overfitting of the training samples and consequently

leading to a suboptimal model. We mention two main strategies. The first is the leave-one-

out cross-validation (LOO-CV): one of the examples of the training set is kept apart and

the model is trained using the ns−1 remaining samples. Then, the error is evaluated on the

single held-out sample and its output stored. This is repeated for all the ns combinations,

and the corresponding estimated outputs are used to compute the validation error. Since
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3.4 Models of machine learning

this could be computationally expensive even for moderately large training sets (e.g. think

as ns = 100 with |Θh| = 100 parameters to test, it would result in training and predicting

10000 models), more efficient schemes exist. The second approach, probably the most

used, is the generalization of the LOO-CV, the k-fold cross-validation. In this case, the

subset splitting is performed for k random folds. The model is trained with the k − 1

groups and tested on the kth remaining block. The final validation error is the average

of the errors obtained from each held-out fold. Finally, the hyperparameters defining a

model minimizing the error are then retained to train the final model.

Other approximations of the expected generalization error may be obtained using boot-

strap based estimations [Hastie et al., 2009], techniques close to the aforementioned ones.

For instance, the leave-out bootstrap approach draws randomly a given number of samples

from Xs but with replacement, then it evaluates the model trained on the remaining part.

3.4 Models of machine learning

So far, we only considered the broad family of supervised algorithms in a general manner,

i.e. an arbitrary model is learned from the training data {(xi, yi)}ni=1 ∈ X×Y exploiting the

knowledge of the labels y from Y. In the literature there exist many distinctions between

methods, and this Section is deemed to introduce the main families of learning models.

The first differentiation is between parametric and nonparametric models.

3.4.1 Parametric and non-parametric inference

Parametric models. Algorithms of this family are characterized by the availability of

some prior knowledge in the form of the distribution generating the data. The modelling

process aims estimating a finite set of parameters from the data, assumed to be a realization

of the true and a-priori known Θ-parametrized distribution. Thus, the fitting of the data

is based on an estimation of the parameters of the joint distribution P(Θ|x, y) from its

density p(Θ|x, y), that best approximates the data.

A classical example for the classification of optical imagery is to fit the class-conditional

probability by a multivariate normal distribution of the data with Θ = {µ,Σ}. In this

case, µ is the mean and Σ the covariance matrix of the d-variate distribution. It is

assumed that {x ∼ N(µ,Σ)
∣∣y}. The modelling task is thus to find a fΘ that belongs to

the restricted class of functions:

F =
{
fΘ = N(µ,Σ) =

1√
(2π)d|Σ|

e−
1
2

(x−µ)Σ−1(x−µ)
∣∣∣µ ∈ Rd,Σ � 0

}
, (3.13)

with Σ � 0 defining the positive definiteness of the covariance matrix1. There are many

models that belong explicitly or implicitly to this family, from both the supervised and

the unsupervised family. The above example corresponds to the maximum likelihood

classification (MLC) and may be solved by fitting the parameters by the expectation-

maximization algorithm [Dempster et al., 1977].

1A matrix M is said to be positive definite if, for any nonzero column vector z, z′Mz > 0.
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3. Machine learning

Nonparametric models. While models belonging to the parametric family fit a pre-

defined distribution to the data, nonparametric models fit the data by optimizing a func-

tional directly on the observations, with a distribution-free approach. The adoption of this

paradigm is often motivated by the too restrictive and rigid hypotheses given by paramet-

ric models. In this sense, nonparametric models try to directly fit a descriptive model to

the data, without imposing any prior restriction on the form of the generating process.

The number of total parameters may vary depending on the data characteristics, such

as number of dimensions for linear models. Nonparametric models may be more difficult

to interpret due to the strong data-dependent setting and additional information may be

rarely retrieved from a trained model. For this reason, they are often qualified as black box

models. However, non-parametric data-driven density estimation such as the kernel den-

sity estimator (KDE) may estimate the probability density function using only observed

samples (thus in principle with infinite parameters, as n → ∞). In addition, methods to

retrieve posterior probabilities from fitted nonparametric decision functions are available.

This category of methods is very large and comprehends the family of the kernel methods

[Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004] and Gaussian processes

[Rasmussen and Williams, 2006], neural networks [Haykin, 1999] and many others.

3.4.2 Supervised, unsupervised and semi-supervised models

Supervised learning. Models discussed so far require the presence of labels to exploit

in the learning, i.e. pairs {(xi, yi)}ni=1 are used for training, validation and testing. Many

real world examples are characterized as supervised problems: for instance, let :

X = {coordinates; soil type; porosity; water content; depth; Cesium content}, with

Y = {Lead content}. The modelling of such relationships may be motivated by the fact

that simply sampling the data in x is much less costly that also measuring the correspond-

ing amount of lead, or field / laboratory estimations of x do not allow to retrieve directly

lead content. In this case we want to predict the dependent variable yi by learning the

relationship with xi and generalize the model for the other available x to obtain their

estimated y. In addition, and most importantly, classification and regression (or spatial

interpolation in this case) provide also generalization in the spatial domain of punctual

measurements, thus generating maps and cartographic products [Kanevski et al., 2007,

2009]. Supervised learning is not limited to regression and classification problems, but it

comprehends also novelty detection [Tax and Duin, 2004], density estimation [Schölkopf

et al., 2001], feature extraction [Mika et al., 1999] and feature selection [Camps-Valls et al.,

2010].

Unsupervised learning. At the opposite situation, we may encounter learning prob-

lems characterized by the availability of feature vectors x alone, without the corresponding

y. In this case, one wants to discover some hidden structures and partitioning in the data,

without any knowledge of the y. This is known as unsupervised learning. The most of

these approaches to data analysis are related to clustering (e.g. k-means [MacQueen,
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3.4 Models of machine learning

1967], Gaussian mixture models (GMM) [Dempster et al., 1977], spectral clustering [Ng

et al., 2002]), i.e. the task of automatically grouping similar samples into disjoint sets

(see example below). However, many efforts have been also devoted to feature extraction,

dimensionality reduction and manifold learning (e.g. PCA [Hotelling, 1933], Laplacian

eigenmaps [Belkin and Niyogi, 2003]), and to density estimation (e.g. GMM, KDE). In

Figure 3.5, an example of parametric clustering (based on GMM) is given. In this case, a

mixture of three Gaussians has been fitted to the data, as:

p(x) =

k∑
i=1

πiN(x|µi,Σi),

k∑
i=1

πi = 1, 0 ≤ πi ≤ 1, (3.14)

with k = 3 for the example illustrated below. Here, πi are the mixing coefficient of each

distribution. This may be seen as a density estimation step and then an inference process

assigning regions of the space maximizing the posteriors probability to belong to a given

component of the mixture to the identifier of such component, the cluster index. In this

example, its performance is compared to the supervised Bayes classifier (providing very

similar outcomes for unimodal classes), since the true distribution is known.

To measure the difference between the fitted distribution pGMM(x) and the original

ptrue(x) = N(x|µ,Σ), the Kullback-Leibler divergence (also known as marginal entropy)

KL(PGMM||Ptrue) has been adopted [Bishop, 2006]. For two multivariate (d-dimensional)

normal distributions N1(x) = N(x|µ1,Σ1) and N2(x) = N(x|µ2,Σ2) with unequal covari-

ances, the KL distance is:

KL(N1(x)||N2(x)) =

∫
N1(x) log

N1(x)

N2(x)
dx

=
1

2

(
trace(Σ−1

1 Σ2) + (µ1 − µ2)′Σ−1
2 (µ1 − µ2) + ln

(det(Σ1)

det(Σ2)

)
− d
)
. (3.15)

In this case, KL distance has been computed for each pair of normal distributions, between

the one generating the cluster and the fitted one, and then averaged. It gives a value

KL(N1||N2) = 0.055, indicating a very good fit.

Semi-supervised learning. A third family of learning algorithms issues from an in-

termediate situation, in which a very large amount of samples are available, but only a

small fraction of it is labelled, as shown in Figure 3.6(a). This is the case in many real

world situations, and in particular for remote sensing image processing: all the pixels

composing the image are available, but usually only a small portion of them is labelled,

since assigning ground truth to pixels is a very costly or time consuming process. One can

improve a failing supervised model, Figure 3.6(b), by inferring some knowledge extracted

from the unlabelled data. Additional information corresponds to the geometrical distri-

bution of the unlabelled samples providing insights on the form of the space in which data

lie (the manifold). Many approaches implement this intuition by adding some marginal

information: in the example illustrated in Figure 3.6 a graph is estimated using 5 NN,

i.e. putting a link between samples xi and xj if they are among their 5 NN. One can in
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Remp(f) = 0.067 Rtest(f) = 0.043 KL(PGMM||Ptrue) = 0.055
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Remp(f) = 0.053 Rtest(f) = 0.03 Ptrue(x)

(d) (e) (f)

LEGEND: Decision function, RED: cluster 1, GREEN: cl. 2,

BLUE: cl. 3, o: errors

Figure 3.5: GMM-based clustering - In (a) and (b) the partitioning of the space using a

GMM with training (not used to estimate the distributions) and testing samples respectively,

along with their errors. Note that the training error has been computed only for illustrative

purposes. In (c) the density is estimated by the GMM. In (d)-(f), the same as above but

showing the Bayes classification, based on the known class distributions.

• RED 100 samples from N(µ,Σ) with µ = (2, 1), Σ =

(
0.5 0

0 0.5

)

• GREEN 100 samples from N(µ,Σ) with µ = (−1,−2), Σ =

(
0.5 0

0 0.5

)

• BLUE 100 samples from N(µ,Σ) with µ = (−0.5, 1), Σ =

(
0.5 0

0 0.5

)
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3.4 Models of machine learning

the following propagate the known labels via the paths linking the samples in the graph.

The recently developed semi-supervised paradigm is generally based on three principal

assumptions [Chapelle et al., 2006]:

Cluster assumption and low density separation This assumptions states that two

samples lying in the same cluster are likely to belong to the same class. This state-

ment can also be seen from the opposite point of view: separating boundaries should

be favoured to lie in low density areas. These observations enable the use of trans-

ductive methods, i.e. learning by incrementally updating a model on the basis of the

gradual labelling of the unlabelled set and to shift separating boundaries accommo-

dating this assumption.

Smoothness assumption If two points lie in the same high density region, so will their

output. This enables a series of generative models for semi-supervised learning.

Manifold assumption Disregarding the statistical distribution of the samples, one can

note that high dimensional data will likely lie on a lower dimensional representation,

i.e. lying close on a manifold. These samples close on the manifold will likely share

some properties, such as the label. This motivates the use of graph-based learning

methods in supervised settings (see example in Figure 3.6).

Recall that supervised, unsupervised and semi-supervised models may be either para-

metric or nonparametric.

3.4.3 Linear and nonlinear models for data analysis

A last distinction that has to be made is between linear and nonlinear models. These

categories are usually discriminated by the form of the decision function they draw in the

input space. Consequently, nonlinear models are able to model and deal with nonlinear

relationships between data samples. Models producing a linear separation (e.g. linear

discriminant) or a linear function approximation (e.g. linear regression) are assumed to

be the simplest ones with low complexity, since usually depending on few parameters. For

instance, the linear regression y = Xw needs only the estimation of d weight parameters

w to interpolate the data in X. On the other hand, while being much more powerful,

nonlinear models are usually complex and need computationally expensive training algo-

rithms. For instance, when using neural networks, the models need to be specified by

an architecture (e.g. number of hidden layers, number of neurons). Then, the learning

step estimates weights liking the neurons, by iteratively fitting an error function. During

training, one should pay attention to stop the learning process before overfitting the data,

since the learning step has to fit a number of model weights growing exponentially with

the data dimensionality and the number of neurons per layer. More details can be found

in [Haykin, 1999]. Although the cost may seem high, these models are very powerful and

can describe data in any form, following any distribution and providing accurate solutions

to supervised classification and regression problems. Additionally, once trained, the pre-

diction step is usually fast, being a weighted sum of the inputs. For these reasons, they

have been successfully applied in a variety of problems.
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(a) (b)

(d) (e)

LEGEND: Decision function, RED: class 1, GREEN: class 2,

Figure 3.6: Semi-supervised classification toy example - (a) available information:

distribution p(x) and 1 labeled sample per class. (b) a suboptimal supervised model (minimum

Euclidean distance), (c) the 5 NN graph and (d) output of a semi-supervised model accounting

for the local structure (label propagation on connected regions, e.g. [Camps-Valls et al.,

2007a]).

Another important family of nonlinear algorithms are the kernel methods [Schölkopf

and Smola, 2002; Shawe-Taylor and Cristianini, 2004], that will be further described in the

next Chapter. The underlying idea of this family is that a nonlinear analysis in the input

space can be obtained by running standard linear algorithms in some higher dimensional

feature space [Aizerman et al., 1964].
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Chapter 4

Learning with kernels

This Chapter introduces to kernel methods by illustrating main features

and properties of this family of learning algorithms. In Section 4.1 the

kernel ridge regression is exploited to introduce the reasoning behind ker-

nel methods. Then, Section 4.2 reports main characteristics and proper-

ties of these nonlinear algorithms, in relation to Chapter 3. Section 4.3

draws some considerations.

4.1 A motivating example: from least-squares linear regres-

sion to the kernel ridge regression

As introduced in the previous Chapter, the theory for machine learning, pattern recog-

nition and data mining is well defined and robust. Within this framework, the family

of kernel-methods is a unifying theory for linear and nonlinear analysis for general data

(e.g. vectors, strings, sets, structured data, graphs, etc.) offering advanced tools for many

learning problems such as classification, regression, clustering, density estimation, etc.

using a common and well-founded theoretical framework.

Kernel methods may be summarized in five different points [Campbell, 2002; Camps-

Valls and Bruzzone, 2009; Hoffmann et al., 2008; Schölkopf and Smola, 2002; Schölkopf

et al., 1999; Shawe-Taylor and Cristianini, 2004]:

1. They map samples into an embedding higher dimensional vector space H.

2. In H, the relationships among data samples are likely to be linear. A linear algorithm

in H suffices to solve the learning task.

3. The theory reformulate the learning task such that the explicit coordinates in H are

not needed.

4. Kernel methods depend only on inner products between samples in H, and they can

be computed efficiently using kernel functions taking as argument only the data in

their original input space.

5. Depending on the kernel function, learning in H returns a nonlinear solution in the

input space.

47



4. Learning with kernels

Let us introduce kernel methods using a practical example, allowing to draw a direct

link with the concepts presented in Chapter 3. This is done by formulating the kernel

ridge regression from its standard least-squares counterpart.

A function estimation (regression) problem may be approached by estimating a func-

tional

f : Rd → R
x 7→ f(x) = 〈w,x〉 = w′x =

ns∑
i=1

wixi. (4.1)

The operator 〈·, ·〉 indicates the inner product between weights w and observations x.

Definition 4 (Inner product, [Axler, 1997], Chapter 6) The inner product opera-

tor 〈·, ·〉 generalizes the dot product to abstract vector spaces H (in this thesis limited to

the field of R). This operation is defined as 〈·, ·〉H : H×H→ R, and satisfies the following

properties. Let a,b and c be three vectors in H and a scalar v ∈ R:

1. Positive definiteness: 〈a,a〉H ≥ 0, with 〈a,a〉H = 0 only if a = 0

2. Symmetry: 〈a,b〉H = 〈b,a〉H
3. Linearity (additivity + homogeneity): 〈va + b, c〉H = v〈a, c〉H + 〈b, c〉H

By generalization of the dot product (recall that we limit to real spaces), the following

properties also hold:

4. ‖a‖H =
√
〈a,a〉H

5. cosω = 〈a,b〉H
‖a‖H‖b‖H

6. 〈a,b〉H = 0 if a ⊥ b

Going back to our regression problem, the issue is to find the weights w that produces

the best fit of the training pairs {(xi, yi)}ns
i=1. In vector notation, one wants to minimize

the misfits between the true outputs y and the predicted ones Xw. Note that we have

now the output vector y ∈ Rn, X ∈ Rn×d and w ∈ Rd. By considering the sum-of-squares

loss function L(Xw,y) = ‖y − Xw‖2, the optimal w can be obtained by equating the

derivative of the loss with respect to the parameters, as ∂L(Xw,y)
∂w = 0:

∂L

∂w
‖y −Xw‖2 =

∂L

∂w
(y′y + (Xw)′(Xw) + 2(Xw)′y)

=
∂L

∂w
(y′y + w′X′Xw + 2w′X′y) = 2X′Xw − 2X′y. (4.2)

Letting Equation (4.2) equal to 0 gives:

2X′Xw − 2X′y = 0 ⇔ X′Xw = X′y.

w = (X′X)−1X′y . (4.3)

As it was introduced in the previous Chapter, this may lead to either to overfitting

or to ill-posed situations, in particular if X is high-dimensional with d > n. In the first

case, it may be solved with zero error. In the second case, depending on the row rank of
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4.1 From least-squares to kernel ridge regression

X, X′X may not be invertible. One possible approach is to reduce the capacity of the

learner, by imposing the regularization term γΩ(f) = γ‖w‖2. In this case, we obtain the

regularized squared loss L(Xw,y) = ‖y −Xw‖2 + γ‖w‖2, and it favours solutions with

a small weight vector in norm, that is, no features participate with very large weights (or

dominates) to the solution.

Thus, the regularized least squares regression problem, also known as a ridge regression,

is the following:

∂L

∂w

(
‖y −Xw‖2 + γ‖w‖2

)
=
∂L

∂w
(y′y + w′X′Xw + 2w′X′y + γw′w)

= 2X′Xw − 2X′y + 2γw. (4.4)

With Equation (4.4) equal to 0:

2X′Xw − 2X′y + 2γw = 0 ⇔ X′Xw + γw = X′y.

(X′X + γI)w = X′y ⇔ w = (X′X + γI)−1X′y . (4.5)

The output of a previously unseen test sample x can now be estimated by using y =

w′x. By taking advantage of the dual properties of the weight vectors, we know that the

minimum norm weight will always lie in the span of X [Shawe-Taylor and Cristianini,

2004]. We can rewrite w = X′α, where α ∈ Rn are the dual weights [De Bie et al., 2004;

Guyon et al., 1992]. In Shawe-Taylor and Cristianini [2004] this is outlined by verifying

that w is a linear combination of X, from Equation (4.3).

By plugging the dual weights in Equation (4.4) we obtain:

∂L

∂α

(
‖y −XX′α‖2 + γ‖X′α‖2

)
=
∂L

∂α
(y′y +α′(XX′XX′)α− 2α′XX′y + γα′XX′α)

= 2(XX′XX′)α− 2XX′y + 2γXX′α. (4.6)

Putting Equation (4.6) equal to 0 gives now

2(XX′XX′)α− 2XX′y + 2γXX′α = 0 ⇔ (XX′XX′)α+ γXX′α = XX′y.

XX′(XX′ + γI)α = XX′y ⇔ α = (XX′ + γI)−1y . (4.7)

Now we can rewrite the functional of the original regression problem:

f(x) = 〈w,x〉 = α′Xx = 〈X′(XX′ + γI)−1y,x〉 = x′X′(XX′ + γI)−1y. (4.8)

Interestingly, the solution of any test point depends on its dot product with training

samples y = α′Xx, and α is in the span of the rows of the data matrix X.

If we define the kernel function k(x,xi) = 〈x,xi〉H further generalizing the inner

product operator to some unknown space H, we can see that Equation (4.8) yields:

f(x) = 〈X′α,x〉 = α′Xx =
n∑
i=1

αik(x,xi). (4.9)
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4. Learning with kernels

That is the form of the kernel ridge regression. By replacing all the inner product

matrices XX′, we obtain α = (K + γI)−1y where K is the matrix containing all the eval-

uations of the kernel function k(·, ·) between the training samples in X as Kij = k(xi,xj).

As a side note, from Equation (4.7) one can see that ridge regression can naturally predict

dout multiple outputs Y = [y1 . . .ydout ] by replacing y with Y.

In this example, we discussed the principles of the kernelization of an algorithm, in

this case the ridge regression. As mentioned in the introduction, by adopting a specific

nonlinear k(·, ·), the ridge regression becomes a nonlinear function estimation method.

The ingredients of the kernel methods used throughout this Thesis, will be detailed in the

next Section.

4.2 Kernel methods: theory and regularization

In the previous Section, we illustrated how we can transform an algorithm from its stan-

dard form, the primal, to a more flexible and nonlinear formulation that can be expressed

in terms of kernel functions, the dual [Suykens and Alzate, 2010]. Kernel functions pro-

vide a measure of similarity between the samples, exactly as the inner product does.

Furthermore, such use of the inner products, extends the development of kernel learning

algorithms by using simple analytic geometry and linear algebra [Schölkopf et al., 1999].

In fact, any algorithm that can be reformulated so that data matrices appear only in the

form of inner products, can be rewritten using kernel functions. This is the kernel trick

[Aizerman et al., 1964].

Definition 5 (Kernel function) Let φ be a feature map to the vector space H endowed

with an inner product such that:

φ : X→ H

x 7→ φ(x) (4.10)

The similarity can be evaluated by the inner product into this space, 〈·, ·〉H. For two data

samples xi,xj ∈ X, we define the kernel function as

k : X× X→ R
(xi,xj) 7→ k(xi,xj) = 〈φ(xi),φ(xj)〉H. (4.11)

Note that for notational convenience, the subscript H is dropped and the space in which

the inner product is evaluated will be clear from the context.

Additionally, linking Definition 4 to Definition 5, we may observe that the kernel

function is positive definite, thus generating a kernel matrix of inner products (a Gram

matrix) that is in turn positive definite. This implies positivity on the diagonal and

symmetry of the kernel operator, k(xi,xj) = k(xj ,xi) and thus K = K′.

It appears from the Definition 5 that by replacing dot products of any algorithm

by kernel evaluations, we may reformulate the linear method to work in some feature

50



4.2 Kernel methods: theory and regularization

space, possibly of much higher (even infinite) dimensionality, defined by the mapping

φ(·). However, the optimal function φ(·) projecting data samples in H is not known a-

priori. The only information about the desirable function is that it must enforce linear

relationships in the projected space. However, as mentioned in the introduction of this

Chapter, explicit coordinates are not needed, as we will see in the following.

To obtain the same formulation of the kernel ridge regression but starting from a

different point of view, we can rewrite the introductory example in Section 4.1 by using

the samples mapped to H as defined in Definition 5, x 7→ φ(x), and by building our data

matrix of mapped samples Φ, which contains the coordinates of the samples in H. By

solving and exploiting Definition 5, the solution of the kernel ridge regression is obtained.

4.2.1 Reproducing kernel Hilbert space

To each (valid) kernel corresponds a unique hypothesis space H, as implicitly assumed in

the Definition 5, for a specific feature map φ(·). This space of functions H is said to be a

Hilbert space if the inner product is a valid operation, explicitly defining an inner product

space as illustrated in Definition 4. It is a generalization of the Euclidean space to an

abstract vector space, composed by a finite or infinite number of dimensions [Aronszajn,

1950; Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004].

By definition, H is the space of functions (or hypotheses) to be used in the learning

process. These are linear combinations of the weight vectors and the training samples as

H =
{
f(·) =

n∑
i=1

αiφ(xi) =
n∑
i=1

αik(·,xi)
∣∣∣xi ∈ X, αi ∈ R, i = 1, . . . , n

}
. (4.12)

In this space, an addition of functions f and g is expressed as (f + g)(x) = f(x) + g(x),

and the multiplication of a function by a scalar (λf)(x) = λf(x) underlining that H is a

vector space. Finally, as observed above, a Hilbert space is qualified as reproducing kernel

Hilbert space (RKHS), if there exist a kernel function k which satisfy the reproducing

property 〈f(·), k(·,x)〉 = f(x) and specifically 〈k(·,xi), k(·,xj)〉 = k(xi,xj).

If we now define two functions that the are elements of H as f(x) =
∑n

i=1 αik(xi,x)

and g(x) =
∑l

j=1 βjk(zj ,x), their inner product is:

〈f,g〉 =
n∑
i=1

l∑
j=1

αiβj〈φ(xi),φ(zj)〉

=
n∑
i=1

l∑
j=1

αiβjk(xi, zj) =
l∑

j=1

βjf(zj) =
n∑
j=1

αig(xi) ≥ 0. (4.13)

Since f, g are positive definite, so is K, and 〈f, f〉 =
∑n

i=1

∑n
i=1 αiαjk(xi,xj) = α′Kα ≥ 0.

Following Shawe-Taylor and Cristianini [2004], the reproducing property of the kernel

may be observed again from the Equation (4.13), with k(·,x) = 〈·,φ(x)〉

Hf = 〈f, k(·,x)〉 =
〈 n∑
i=1

αiφ(xi),φ(x)
〉

=

n∑
i=1

αik(xi,x) = f(x). (4.14)
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4. Learning with kernels

This also defines the reproducing kernel of Hf , i.e. it is possible to work in a unique Hf

by adopting any valid kernel. As outlined in [Hastie et al., 2009] the f(x) is a solution of

any convex problem in the RKHS of the form

min
f∈H

1

n

n∑
i=1

L(x, f(x)) + γΩ(f), (4.15)

providing a property called the representer theorem [Schölkopf and Smola, 2002]. Because

of Ω(f) = ‖f‖2 =
∑n

i=1

∑n
j=1 αiαjk(xi,xi) this may be rewritten as:

min
α

L(K,α,y) +α′Kα. (4.16)

Interestingly, the minimizer of Equation 4.16 f(x) =
∑n

i=1 αik(xi,x) gives a representation

of the function f as a weighted sum of kernels centred on each training data point.

Note that the regularization is now implicit in the formulation itself by considering the

term Ω(f) = ‖f‖2 = α′Kα, and the coefficients of the solution optimize the regularized

risk. In the setting above, the squared norm of the functional is penalized, corresponding to

a solution with small norm of the primal weight vector in the RKHS wH due to the primal-

dual relationship [Suykens and Alzate, 2010]. This norm decreases as the smoothness of

the function increases, i.e. it varies slowly between two close (similar) points, by avoiding

variables taking large coefficients of the weight vector.

This result is very useful, because a direct minimization of the weight norm is infea-

sible since wH may live in an infinite dimensional space. However, minimizing in the

dual formulation the solutions with small α′Kα corresponds to α′ΦΦ′α, which, in turn is

related to w′HwH. This further illustrates the reproducing property illustrated in Equa-

tion (4.14). Also, by the connection between Equation (4.16) and Equation (4.14), is clear

that by adopting a kernel function one implicitly adopts a form on the hypothesis space.

By plugging the sum-of-squares error in Equation (4.16) and solving it, it boils down

to the solution of the kernel ridge regression directly (in its dual form is also known

as regularization networks [Evgeniou et al., 2002]). Moreover, by plugging specific cost

functions different models can be retrieved, for instance, support vector machines (SVM)

by plugging the hinge loss (see Chapter 6) or SVM for regression (SVR) by adopting

an ε-insensitive loss. For detailed proofs and high level explanations, see [Schölkopf and

Smola, 2002; Shawe-Taylor and Cristianini, 2004; Suykens and Alzate, 2010].

4.2.2 Operations in the RKHS

It was shown that in the RKHS we may solve infinite dimensional problems with a linear

combination of kernel functions only requiring samples in their finite dimensional input

space. In other words, a possibly infinite dimensional minimization problem reduces to

minimizing over Rn.

In the RKHS a series of basic operations stems from the fact that the RKHS H is a

vector space endowed with an inner product (and consequently with a norm). Following
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4.2 Kernel methods: theory and regularization

[Camps-Valls and Bruzzone, 2009] and [Gómez-Chova et al., 2010] the operations that are

important for the rest of the Thesis are detailed here. For two samples x, z ∈ X, we have:

Translation A sample in H can be translated by

φ̃(x) = φ(x) + Γ with Γ ∈ H (4.17)

where Γ = {γ1, . . . , γn} is a vector of translations restricted to lie in the span of

{φ(x1), . . . ,φ(xn)}. Then, the inner product between translated maps is:

〈φ̃(x), φ̃(z)〉 = 〈φ(x) + Γ,φ(z) + Γ〉 (4.18)

= 〈φ(x),φ(z)〉+ 〈φ(x),Γ〉+ 〈Γ,φ(z)〉+ 〈Γ,Γ〉

= k(x, z) +
n∑
i=1

γik(x,xi) +
n∑
i=1

γik(xiz) +
n∑

i,j=1

γiγjk(xi,xj)

= k̃(x, z).

Centering By exploiting the above property we can centre the data (zero mean) in the

RKHS by letting Γ = −µH, with:

µH =
1

n

n∑
i=1

φ(xi) (4.19)

since µH is a linear combination of the samples (the sample average)

k̃(x, z) = k(x, z)− 1

n

n∑
i=1

k(x,xi)−
1

n

n∑
i=1

k(z,xi) +
1

n2

n∑
i,j=1

k(xi,xj)

Distances The distance between the RKHS maps of two samples can be naturally ex-

pressed as:

d(φ(x),φ(z)) = ‖φ(x)− φ(z)‖ =
√
〈φ(x)− φ(z),φ(x)− φ(z)〉

=
√
〈φ(x),φ(x)〉+ 〈φ(z),φ(z)〉+ 〈φ(x),φ(z)〉 − 〈φ(z),φ(x)〉

=
√
k(x,x) + k(z, z)− 2k(x, z). (4.20)

Therefore, an algorithm relying on distances, can be run in H by adopting such

distance (e.g. the kernel kNN).

Normalization An additional operation that can be carried out in the RKHS is the

evaluation of the similarity between two normalized samples x, z in H, by scaling

their feature vectors to the unit norm (mapping them to the unit sphere in the

RKHS):

k̃(x, z) =
〈 φ(x)

‖φ(x)‖ ,
φ(z)

‖φ(z)‖
〉

=
k(x, z)√

k(x,x)k(z, z)
. (4.21)

Note that k̃(x, z) = cosH(θ), where θ = (∠(φ(x),φ(z))), from the definition of the

inner product.
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4. Learning with kernels

4.2.3 The kernel functions

As it was discussed, the kernel function allows to use a linear algorithm in some higher

dimensional space to perform nonlinear analyses, relying on the assumptions stated by

the Cover’s theorem [Cover, 1965]. This mapping is implicitly performed by any kernel

function adopted, provided its validity by the Mercer’s theorem [Mercer, 1909], ensuring

that the RKHS of a kernel is unique. It states that the symmetric kernel function k(xi,xj)

can be expressed as the 〈φ(xi),φ(xj)〉H only if the kernel function is positive definite, i.e.∫
X×X k(xi,xj)f(xi)f(xj)dxidxj ≥ 0.

If one adopts the standard dot product as the kernel function, no higher dimensional

mapping is performed and the original linear algorithm is recovered in its dual form,

providing up to a scaling factor the same solution as for the algorithm in the primal. The

use of the standard inner product results in the linear kernel:

k(x, z) = 〈x, z〉 = x′z. (4.22)

It measures the similarity as the collinearity of the two vectors, as illustrated in Defini-

tion 4, point 5. It ranges from 0 for orthogonal vectors (maximally dissimilar samples) to

a value equal to the product of the two vector norms, since 〈a,b〉 = cos θ‖a‖2‖b‖2 with

θ = 0. This is kernel function perform a mapping defined as φ(x) = x.

Another well known kernel is the polynomial one:

k(x, z) = (〈x, z〉+ b)p, (4.23)

with the hyperparameters p > 1 and b to be tuned. When b = 0 it is known as ho-

mogeneous polynomial, otherwise as a non-homogeneous. Shawe-Taylor and Cristianini

[2004] illustrates that these kernels return the value of a dot product in a space with

dimension

(
d+ p− 1

p

)
for the homogeneous polynomial kernel and

(
d+ p

p

)
for a

non-homogeneous one. Their explicit feature maps can obtained with a similar reasoning.

A classical example is as follows. Consider the dataset composed of three classes in

R2, with a class-conditional distribution as concentric circles shown in Figure 4.1(a). In

this case, the expansion of the form φ(x) = (x2
1, x

2
2,
√

2x1x2) maps the bi-variate samples

into a three-dimensional space. It follows that:

〈φ(x),φ(z)〉 = 〈(x2
1 x2

2

√
2x1x2), (z2

1 z2
2

√
2z1z2)〉

= x2
1z

2
1 + x2

2z
2
1 + 2x1x2z1z2

= (x′z)2 = k(x, z). (4.24)

For this homogeneous kernel of degree 2 its feature map is of dimensionality 3, as it is

verified by

(
2 + 2− 1

2

)
=

(
3

2

)
= 3. Computing the mapping explicitly for all the

samples illustrates that the problem in in Figure 4.1(a) can be solved linearly, as showed

in Figure 4.1(b).
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Figure 4.1: Polynomial kernel map - Feature map φ(x) = (x21, x
2
2,
√

2x1x2) of the 2D

coordinates of the 3 concentric circles (a) not separable using linear functions, to a 3D space

(b), in which classes are linearly solvable by a simple planar (linear) decision.

Still, the most known and used kernel function in machine learning is the Gaussian

radial basis function (RBF), and it is expressed as:

k(x, z) = exp
(−‖x− z‖2

2σ2

)
(4.25)

where σ > 0 is a hyperparameter to be tuned. Its values range from 0 to 1, since two very

dissimilar samples having large −‖x−z‖
2σ2 will results in a value of k(x, z) close to 0, while at

the other limit case where x = z, the −‖x−z‖
2σ2 makes exp(0) = 1. The in-between situations

provide a measure of pairwise similarity. The scaling factor σ is very important and it

may be interpreted as a control of the scaling of the Euclidean distance of the numerator

[Bavaud, 2011], controlling the degree of nonlinearity of the kernel map. The use of this

kernel function is well documented and motivated in the literature and it is supported

by good performances and successful applications [Kanevski et al., 2009]. Additionally,

Bach and Jordan [2002b] reported that when using this kernel, the projected data in the

RKHS are likely to be normally distributed. In light of this observation, this kernel is

often preferred by the consistency of the hypotheses made for the primal algorithm, even

if, by definition, kernel-methods do not assume any prior distribution. A multi-modal

distribution in the input space is consequently represented by a uni-modal distribution

in the RKHS, provided that an adequate σ, as illustrated in Appendix A of [Cremersa

et al., 2003]. This means that when the input space distribution is not Gaussian and

possibly nonlinearly shaped, the Gaussianity holds for mapped data. Obviously, Gaussian

data in the input space is still mapped into Gaussian distributions. This may ease the

interpretation of many kernel methods when using the Gaussian RBF function. In this

Thesis, the kernel Fisher’s discriminant (Chapter 6) and the kernel k-means (Chapter 7)

will both benefit from these observations.

Regarding the kernel hyperparameter, we may observe that small values of σ may

lead to overfitting situation. In the extreme case, the sample is only similar to itself and

accommodates any solution during the training step of a model. In this case, the kernel
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4. Learning with kernels

matrix K tends to the identity matrix. On the contrary, very large values of σ may

provide underfitted situation since the models using such parameter tend towards a linear

solution, by making the kernel close to a constant function. In this case the geometry of

the input space is preserved and the map into a Gaussian RKHS is not verified. Note that

the distance in the numerator of the kernel in Equation (4.25) can be itself expressed as

a distance in the RKHS as in Equation (4.20), thus allowing extensions to the use of non-

Euclidean distances and on non-vectorial data. As illustrated in [Francois et al., 2005],

the original Gaussian RBF may be suboptimal in a very high dimensional input space,

since the range of similarities (the histogram of the kernel values), as d grows, may tend

to saturate around the mean. This is due to inflation of the Euclidean distance at the

denominator, as the dimension of the sample vectors grow. As they show, this corresponds

to hardly distinguishable small and large distances in the RKHS, that is, the first and last

quantiles of the distribution of the similarity values tend to become empty. The authors

propose to use a pRBF kernel function: it corresponds to a standard Gaussian RBF, but

with the distance at the numerator and the σ at the denominator both elevated to the pth

power. This ensure the locality of the kernel also for large d.

For the Gaussian kernel function, it has been proven that the induced dimensionality of

such kernel is infinite. A way to see this important observation comes from the analysis in

terms of Taylor’s series expansion. It can be demonstrated that the Gaussian RBF kernel

is a homogeneous polynomial kernel of infinite degree, since exp(〈x, z〉) =
∑∞

i=0
1
i!〈x, z〉i.

Details can be found in [Belanche, 2013; Steinwart et al., 2006].

Many other valid kernel functions exist. One can find a comprehensive review and

explanation in [Schölkopf and Smola, 2002; Shawe-Taylor and Cristianini, 2004].

4.2.4 Ad hoc-kernel functions and closure properties

An interesting property of kernel methods is that, by respecting some base principles

making the Mercer’s conditions hold, one can create his own kernel function adapted to

specific problems. Some prior information on the data structure and their similarity may

be available, and it can be introduced in the computation of the kernel to obtain a better

representation. One can develop its own kernel functions by observing the following rules,

also known as the closure properties [Camps-Valls and Bruzzone, 2009; Schölkopf and

Smola, 2002; Shawe-Taylor and Cristianini, 2004].

Let k1(x, z) and k2(x, z) be two valid kernel functions, defined over X×X ⊆ Rd, scalars

v, p > 0, a real-valued function g(·), a symmetric positive definite matrix A and a valid

distance metric d(x, z). Then, the following properties lead to valid kernels k(x, z):

k(x, z) = k1(x, z) + k2(x, z)

k(x, z) = vk1(x, z)

k(x, z) = k1(x, z)k2(x, z)

k(x, z) = g(x)g(z)

k(x, z) = x′Az

k(x, z) = (k1(x, z) + v)p

k(x, z) = exp(−d(x, z))

k(x, z) = exp(k1(x, z)).
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Other important kernel properties follow [Gómez-Chova et al., 2010]:

k(x, z) =

R∑
r=1

drkr(x, z),

R∑
r=1

dr = 1, dr ≥ 0 (4.26)

which defines a convex combination of R base kernels. Approaches aiming at optimize

this convex combination are known as multiple kernel learning [Bach et al., 2004; Rako-

tomamonjy et al., 2008; Tuia et al., 2010a].

Also, the deformation of a kernel with another positive matrix is a valid kernel. It is

particularly useful in semi-supervised learning, in which marginal information coming from

unlabelled samples may be integrated into the kernel. A classical approach is to deform

the original kernel by the geometrical information carried by the empirical graph Laplacian

M as K̃ = K + δKMK. In Chapter 8 this property is exploited for regularization.

Finally, by exploiting again the above properties, one can construct kernels between

distributions: for p1(x) and p2(x) as k(p1(x), p2(x)) = 〈p1(x), p2(x)〉 =
∫
X
p1(x)p2(x)dx.

It is possible to take advantage of these properties to define a very specific represen-

tation of the problem at hand, by combining and weighting different forms and sources

of information [Camps-Valls et al., 2006, 2008]. This can be done for a variety of data

types, e.g. using string kernels for gene prediction [Leslie and Kuang, 2004], kernels built

on trees [Shin et al., 2008], kernels on graphs [Vishwanathan et al., 2010], kernel over sets

for structured predictions [Ricci et al., 2008]. For a review, see [Belanche, 2013].

4.2.5 The Gram matrix

Accordingly to the kernel methods literature, the symmetric matrix Kij = 〈φ(xi),φ(xj)〉
is often referred to as a Gram matrix. Any Gram matrix is defined as the positive definite

matrix in which entries ij correspond to the inner products of vectors xi and xj . Obviously,

this holds also for the projection of xi 7→ φ(xi) and thus Kij is a Gram matrix.

The Mercer’s theorem allows us to interpret the kernel Gram matrix as a covariance

operator (see Chapter 3 in Shawe-Taylor and Cristianini [2004]). By applying the spectral

decomposition of the sample covariance matrix Σ = (n − 1)−1X′X and of the centred

Gram matrix G = XX′, one can verify, by requiring eigenvectors normalized to unit

norm, that the eigenvalues are the same, and the eigenvectors are proportional for both

representations. This can be easily verified by observing the relationships between primal

and dual PCA modes (see Chapter 8).

4.2.6 On the choice of the kernel function and its parameters

By either adopting a pre-existent kernel function or by developing a custom similarity

measure, one imposes a form on the data representation. Even before selecting the correct

hyperparameters of the kernel, one should select an appropriate function. In particular, as

pointed out in Section 4.2.1, by selecting a kernel function one defines a hypothesis space

in which the learning task will be accomplished. This is a crucial task, since the form
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of the kernel function effectively corresponds to the prior information available about the

problem [Schölkopf and Smola, 2002]. By using a Gaussian kernel, its implicit regulariza-

tion penalizes derivatives of all the orders, favouring low energy of high frequencies of the

Fourier spectrum of the function, by selecting a polynomial kernel of degree p one looks

for the pth order relationship of the data or when using a linear kernel, the flatness of the

final function is favoured [Evgeniou et al., 1999; Schölkopf and Smola, 2002].

Once the appropriate kernel function is chosen, its hyperparameters have to be fitted

during the model selection step, as illustrated in Section 3.3. This restricts the hypothesis

space, while the model optimization provides the solution. Finally, note that many hy-

perparameters may have to be optimized when adopting combinations of kernels. In this

case, fast model selection procedures are proposed, as in [Chapelle and Rakotomamonjy,

2008; Chapelle et al., 2002; Rakotomamonjy et al., 2008].

An example of the influence of the Gaussian RBF σ parameter is illustrated in Fig-

ure 4.2, by using a SVM classifier (see Section 6) with a C parameter equal to 10. Similarly

to what is observed in the example of Figure 3.3 regarding under- and over-fitting, a correct

hyperparameter tuning gives the minimum generalization error.

4.3 Some considerations

As we illustrated, kernel methods are a particular family of machine learning algorithms

with a robust and well founded theory. The use of kernels provide nonlinear solutions to

many learning problems, from classification to clustering, from feature extraction to regres-

sion, with formulations varying smoothly one from the other sharing the same underlying

form, the representer theorem (Section 4.2.1). Furthermore, they allow the inclusion of

precise and ad-hoc information about the problem at hand, by either designing kernel

function encoding the structure of the particular data, by satisfying Mercer’s conditions

(Section 4.2.3), or by blindly combining different kernels and letting the algorithm to find

the optimal combination as in a multiple kernel learning approach, making use of the

closure properties (Section 4.2.4).

In the remote sensing image processing literature kernels are gaining growing interest

in many application fields, and they became an active research area for both theoretical

and fundamental developments and scientific applications [Camps-Valls and Bruzzone,

2009]. As the title of this Thesis suggests, kernel methods are very useful also for change

detection analyses. In the rest of the Thesis, after a brief literature review to put the

reader aware of the main strategies for change detection, the solutions proposed within

the context of the Thesis are presented.
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Figure 4.2: Sigma parameter of Gaussian RBF kernel - Influence of the σ parameter

using a SVM classifier. In (a)-(c) the training error for an increasing σ parameters, while (d)-

(f) illustrates the test error. Note the decreasing model complexity for larger σ parameters.
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Chapter 5

A review of the approaches for

remote sensing multi-temporal

image analysis

This Chapter introduces and discusses the state-of-the-art for remote

sensing multi-temporal data analysis, with particular focus on statistical

approaches. Section 5.1 gives a general introduction to the task. Then,

the literature concerning supervised, unsupervised and feature extraction-

based approaches is reviewed in Section 5.2, Section 5.3 and Section 5.4,

respectively. Section 5.5 provides some concluding remarks.

5.1 Learning from pixels

As introduced in Chapter 2, each pixel comes with a series of measurements directly related

to the ground cover type, which constitute its spectral signature. Depending on the nature

of the processing task, we may want to estimate the probability of appearance of given

pixel values, to approximate a function discriminating classes of samples, or to build an

inversion model predicting biophysical parameters. In any way, these values are given

to a processing algorithm which models the relationships of interest. In multi-temporal

image analysis, the input of a learning system vary from single-time imagery to bi- and

multi-temporal (time series) data compositions.

It is reasonable to qualify the data preparation task, defining the inputs of the learn-

ing system, as a preprocessing step. For standard image classification tasks, the inputs

of the learning algorithm (training, testing and, if any, validation) are the pixels coming

from an image Xt0 ∈ Rd, where t0 stands for a general time 0, being this problem inde-

pendent from the temporal component. In the case of bi-temporal analyses, that is the

setting of standard change detection, the two images and their pixels may be combined

in different ways. For many automatic algorithms the input is the difference image D.

As mentioned in Section 2.3.1, this strategy does not allow a multi-class categorization of
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Figure 5.1: PCC, DMC and DIA schemes - General flowchart for: (a) Post-classification

comparison, (b) direct multi-date classification and (c) difference image analysis. Note that

the feature extraction step is not mandatory.

unchanged samples, since D ≈ 0 for the stable transitions indistinctly. If an exhaustive

map summarizing both changed and stable classes from a bi-temporal set is required, one

might want to adopt their stack as input, as Xs =
⋃T
i=1X

ti = Xt1 ∪ Xt2 . In this case,

all the radiometric information is preserved and all the classes can be modelled, provided

that an exhaustive training set exists. For general multi-temporal images and time series

analysis involving the modelling of T distinct images, the stack approach is still valid since

the concatenation operation Xs =
⋃T
i=1X

ti is not affected by the number or dimension-

ality of the single images, contrarily to image differencing. However, if the time series

is large, e.g. when analysing temporal trajectories, one may fall in issues related to the

high dimensionality. For these reasons, one may prefer to model independently the pixels

as multivariate time series and adopting some generalization schemes on the rest of the

dataset [Lhermitte et al., 2011]. Another approach is to extract some lower dimensional

representation such as the the NDVI from the images corresponding to each time point

and to study the derived temporal sequence [Verbesselt et al., 2010]. Finally, additional

approaches are to study some time series-derived indicators in given temporal intervals,

such as trends or cycles [Mello et al., 2013; Wessels et al., 2012], or to embed the pixel

time series into a lower dimensional space [Small, 2012].

Note that the radiometric normalization techniques defined in Section 2.3.3 are still

required, in particular when dealing with the difference image. Similarly, when analysing

image time series, global normalization schemes should be applied carefully since the

relative change from one date to another might smaller than the acquisition dependent

deformations. In the next Section, a review of supervised approaches to change detection

is presented.
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5.2 Supervised change detection

Supervised change detection methods can be grouped in three categories: post-classification

comparison (PCC), direct multidate classification (DMC) and supervised difference image

analysis (DIA) [Coppin et al., 2004; Singh, 1989].

5.2.1 Post classification comparison

Methods from this family are the most simple and used approaches to operational change

detection for monitoring purposes. To this end, PCC compares classification maps ob-

tained from each image separately. The resulting output is a summary of a series of maps,

encoded by an appropriate legend. For instance, Lee [2008] coded the classification maps

obtained from a series of Landsat images, all acquired in November to minimize the phe-

nological differences, into a single map describing the forest evolution over 30 years. The

uni-temporal maps of trees categories were obtained by NDVI minimum-error threshold-

ing. Serra et al. [2003] studied a maximum likelihood classification (MLC) based approach

to PCC with particular attention to the error generation and propagation phenomena in

the PCC process. Since images are classified independently using independent training

sets, the worst possible error may result from the multiplication of the per-class error rates

(errors are independent). Additionally, this is studied under a multi-sensor perspective,

which is natural for PCC schemes. Similarly, Alphan et al. [2009] and Fichera et al. [2012]

applied the MLC for a PCC analysis for environmental monitoring. In [Anhed et al.,

2008] the PCC is used into a geographical information system (GIS). First, images are

segmented and labelled using GIS layers, then the PCC summarizes land cover evolutions.

Chen et al. [2011] proposed a probabilistic approach to PCC by analysing the differences

in posterior probabilities of the pixels given the class, obtained again by the MLC.

As one can see, PCC-based approaches offer a straightforward solution to change de-

tection, also in multi-modal (multi-sensor) and time series scenarios. Furthermore, the

ground truth is collected independently for each image without the need of labelling all

the observed transitions. Another interesting property of PCC is the possibility to avoid

atmospheric compensations or relative radiometric normalizations. However, depending on

the classifier adopted, these specific preprocessing methods may still be needed: statistical

models do not need them, while classifications based on the comparison with reflectance

databases obviously need calibrated values [Song et al., 2001]. In both cases one has to

pay attention to the ability of each classifier to solve accurately the single classification

tasks, because of the error propagation thorough the process of map comparison. For this

reason, a final manual selection of plausible and realistic changes has to be carried out

carefully, resulting in a strong limitation of this family of methods. For instance, a PCC

involving the analysis of two maps classified into k and q classes respectively may generate

in a worst case situation k × q transitions, but only a small part of them are observable

or even realistic.
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5.2.2 Direct multi-date classification

In DMC change detection, one performs a direct categorization exploiting a single model,

classifying the stack of original or transformed images. The change map is obtained

directly and the classes modelled are only those present in the training set.

This approach to change detection has been considered since early developments of

satellite-based precision monitoring, such as in [Salem et al., 1995], in which the authors

monitored citrus agriculture fields by the use of the MLC on stacked multi-temporal veg-

etation indexes. In the following years, neural networks classifiers were also considered

[Long Dal and Khorram, 1999; Sucharita and Woodcock, 1996]. In the former, DMC

aimed at analysing the development of the city of Wilmington (USA). The comparison

of the neural approach versus the MLC demonstrated a sharp increase of almost 10%

in accuracy, thus clearly pointing out the advantages of nonlinear classification also in

multi-temporal applications. In the latter, a neural network of similar architecture was

employed to model forest changes due to conifer mortality caused by a severe drought in

the Lake Tahoe (USA) basin. Another approach based on the direct multi-date analysis

of image time series is presented in [Elmore et al., 2000]. Authors used spectral unmixing

to analyze the abundance of vegetation in the time series images. The relative maps of

vegetation abundance at each time point composed another time series on which changes

have been modelled. In [Yuan et al., 2005], an hybrid DMC and PCC scheme was adopted

to monitor the cities of Minneapolis and Saint Paul, USA. Four couples of images were

independently classified using DMC schemes, and their maps were then compared with

PCC. In Nemmour and Chibani [2006] supervised change detection is implemented using

a cascade of binary SVM to solve multi-class problems. The comparison with a neural

network classifier proved that SVM were less prone to overfit the data and training issues

related to non-convex error functions were avoided, providing a better generalization. The

same authors extended their analyses in [Nemmour and Chibani, 2010] by testing different

multi-class SVM architectures.

DMC has been adopted less frequently than PCC, in particular since data dimen-

sionality doubles for bi-temporal applications, or grows proportionally to the number of

dimensions of the considered dates, increasing the requirements in the modelling process.

The most of the aforementioned literature adopts approaches reducing original data into

low dimensional variables, such as spectral indexes. This greatly facilitates the supervised

analysis of time series and image stacks, in particular with respect to the training set size

requirements thanks to the lower dimensional space. However, a large loss of information

may harm the process since only few channels are usually considered to compute such

variables. Thus, a strong problem depended component is always present in the choice of

the representation and modelling of the data.

The benefits of kernel methods and in particular classifiers such as SVM were only

poorly analyzed. In the perspective of the most recent high resolution imagery, DMC

approaches may be difficult to implement, since VHR data is prone to posses low between-

class separability due to the large amount of spatial detail, resulting in large within-class
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variances. In Chapter 6, an approach to supervised change detection in VHR images

exploiting spatial context features to cope with this problem will be presented.

5.2.3 Supervised difference image analysis

In the DIA setting, one aims at modelling only the changes enhanced by the difference

image. This approach is limited to the analysis of two images at a time, but it has the

advantage of dealing with datasets of dimensionality equal to the one of the original single-

time images. In the literature of supervised change detection, supervised DIA approaches

are only marginally studied. They can be seen as a particular case of the DMC, in which

the particular temporal composition of the images emphasizes only changes (provided an

adequate preprocessing), whilst minimizing the unchanged areas signals.

Coppin and Bauer [1994] presented an approach based on the supervised thresholding

of the normalized difference of vegetation indexes, for forest canopy monitoring purposes.

Prior to change detection, authors performed feature selection among a variety of spectral

indexes by quantifying their correlation with ground observations. Dale et al. [1996] ap-

plied a similar approach for the monitoring of wetlands in Australia. Guerra et al. [1998]

studied the changes in a vegetated environment by proposing a multi-temporal normalized

vegetation index, in which changes were successfully discriminated. Finally, Camps-Valls

et al. [2008] proposed a complete framework for multi-temporal classification and change

detection based on composite kernels [Camps-Valls et al., 2006]. Although the approach

can be adapted to a variety of learning problems, experiments in the study exploit super-

vised classifiers. Authors formulated the difference, the ratio and the stack operators for

change detection directly into the RKHS, thus generalizing to abstract vector spaces the

notion of multi-temporal image compositions. By the adoption of nonlinear kernels, the

change information can be modelled nonlinearly through ad-hoc kernel functions repre-

senting the nature of the problem. Multi-modal change detection can also be performed

explicitly, by combining in a weighted fashion information from different sensors. Finally,

Du et al. [2012] presented an interesting approach relying on the fusion of multiple differ-

ence images to perform multi-modal change detection. The difference images are computed

via various spectral distance indexes (e.g. absolute distance, ratio, Chi-squared distance,

etc.), and the subsequent fusion improved robustness to noise and to outliers.

5.3 Automatic and unsupervised change detection

The approaches of this family exploit unsupervised and automatic algorithms to detect

changes. Due to the appealing setting of complete automation, and since obtaining an

appropriate labelling of changes is often infeasible, unsupervised approaches are probably

the most prominent part of the change detection literature. They may be divided into two

principal categories: the first relies on clustering and unsupervised classification methods,

while the second reformulates the problem as a novelty detection process. Note that both

categories may comprehend the application of a series of supervised algorithms initialized
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by exploiting a standard change detection approach to provide a suboptimal training

set, from which start the learning step. The obtained pseudo-training samples are then

employed by a more robust supervised algorithm to refine the partitioning of the multi-

temporal data.

In general, the most of these approaches rely on the difference image, and consequently

the final output is a binary change map indicating the spatial occurrence changed pixels.

5.3.1 Clustering and unsupervised classification

In his seminal work, Fung [1990] proposed different approaches to change detection. One of

them relied on the unsupervised thresholding of the difference image using a distribution-

based fitting. Then, in [Bruzzone and Fernandèz-Prieto, 2000] and [Melgani et al., 2002]

different approaches to the automatic thresholding of the magnitude of the difference

image were reviewed. Hazel [2001] studied an object-based approach to detect changes

in two coregistered images, further extended in [Bovolo, 2009] by proposing a spatially

aware CVA system. These schemes first segment independently the bi-temporal images

and then performs change detection. Similarly, but with a segmentation step occurring

after the computation of the difference image magnitude, was presented in Desclée et al.

[2006]. After segmentation, the mean values of the regions were clustered using a variant

of the k-means algorithm. Dalla Mura et al. [2008] proposed a similar approach based

on the filtering of the difference image with morphological reconstruction operators prior

to a CVA. Melgani and Bazi [2006] presented an approach to change detection via the

fusion of change maps obtained via independent CVA, relying on different thresholding

methods. The fusion was based on Markov random fields, so that the spatial structure

of the phenomena was considered while being robust to outliers. In [Im et al., 2008] an

algorithm for change detection based on logical reasoning was proposed. In their model,

the magnitude of the difference image and the local spatial autocorrelation were considered

simultaneously to optimize a threshold for the CVA. Other context-driven approaches were

presented in [Celik, 2009a,b]. In the former, the spatial component of the difference image

magnitude was assimilated through a wavelet transform, while in the latter a parcel-based

principal component transformation summarized simultaneously spatial and pixel intensity

information. Once the improved difference images were obtained, k-means was adopted

in both cases to compute the change maps. For both methods, a trade-off between spatial

smoothing and detail preservation has to be manually tuned. An approach based on the

automatic level set segmentation of the difference image was presented in [Bazi et al.,

2010]. Finally, in [de Morsier et al., 2012] the unsupervised hierarchical support vector

clustering was performed on the difference image. A criterion based on the between-cluster

distance was proposed to group changed areas.

In [Ghosh et al., 2007], the change detection task was performed by initializing a

Hopfield neural network via CVA, as presented in [Bruzzone and Fernandèz-Prieto, 2000].

The system modelled the spatial autocorrelation of the difference image, so that the context

of each pixel improved the coherence of the final map. Bovolo et al. [2008] proposed a
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nonlinear and automatic system relying on the semi-supervised transductive SVM. The

method was again initialized on the outcome of a CVA, so that the first transduction model

could exploit some pseudo-training samples for learning. Advantages over standard SVM

with the same initialization were detailed. In [Huo et al., 2010], the method described

above was applied to objects issued from multi-temporal segmentation.

In this Thesis, the Chapter 7 is deemed to present an automatic change detection

method based on the clustering of the difference image computed in the RKHS. To enforce

the stability of the algorithm, an initialization similar to the one adopted by the methods

described above is employed.

5.3.2 Novelty detection

Novelty detection approaches to the analysis of changes have received the most of the

attention for anomalous change detection in hyperspectral images. However, this problem

setting is now becoming of broad interest also for researchers involved in the development

of multi-spectral change detection system. These methods usually rely on the analysis of

the unchanged information, while changes are considered as outliers, i.e. samples deviating

significantly from the background. To this end, one-class classification methods are often

employed [Muñoz-Maŕı et al., 2010], while statistical measures of deviation are employed in

hyperspectral target and anomalous change detection. In this latter setting, the most of the

approaches aim at detecting the apparition of new classes. Note that these methods may

also be classified as feature extraction based, since they often rely on subspace projections

to detect anomalies.

Authors in [Bovolo et al., 2010] adopted a supervised novelty detection method, the

support vector domain description (SVDD), initialized using the CVA technique. Their

approach modelled changes as targets, while unchanged pixels were detected as those lying

outside the hypersphere containing changed samples. To tune hyperparameters, both

classes issuing from the CVA initialization were employed. Pacifici and Del Frate [2010]

proposed an approach relying on the unsupervised pulse coupled neural network. This

algorithm flags spatial patches of the images in which a change occurred. In [de Morsier

et al., 2013] a semi-supervised extension of the cost-sensitive version of the SVM, i.e.

considering class-wise cost, is proposed for change detection purposes. The SVM needs

only samples belonging to the background composed by unchanged samples, while the

semi-supervised criteria automatically detects changed regions.

Regarding methods of anomalous change detection in bi-temporal hyperspectral data,

one can find a review in [Theiler, 2008; Theiler and Perkins, 2007]. These approaches

find changed samples by comparing a transformation of the spectral channels at both

times. The type of transformation of the original images defines the sensitivity of the

anomaly detection scheme to detect outliers. Depending on the measure from which

estimate the transformation the original data, different methods are obtained: standard

difference, chronocrome [Theiler, 2008], RX detector, of which a kernel extension exist

[Kwon and Nasrabadi, 2005] and many others. However, as the name of this family of
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approaches suggest, changes are detected only if they are anomalous, i.e. they are a set

of rare occurrences corresponding to areas that changed into a new spectral class. In

this sense, many methods of anomaly detection may be reformulated to perform change

detection. For instance, Wu et al. [2013] adopted the orthogonal subspace projection

to perform change detection, a method that has also been generalised to nonlinear and

semi-supervised problems [Capobianco and Camps-Valls, 2009].

5.4 Feature extraction for multi-temporal applications

Linear and nonlinear feature extraction methods have been widely utilized in the context

of dimensionality reduction for hyperspectral image classification. In this case, the aim

is to reduce the many spectral bands to few variables maximizing some statistical mea-

sure. In change detection and multi-temporal image analysis literature, these approaches

have been only partly explored. The goal of this family of models is twofold: (i) apply a

transformation explicitly designed to enhance changed areas or (ii) apply the transforma-

tion to obtain a relative radiometric normalization to maximally align unchanged samples.

After the transformation, the change map can be obtained by thresholding a single pro-

jected variable or by running a standard classification or clustering algorithm on the set

of projected variables. Also, since the change information appears clearly in the features

extracted, a RGB composition of the new multi-temporal variables may be sufficient for

a visual discrimination. More insights of these algorithm will be provided in Chapter 8.

First feature extraction based approaches to multi-temporal image analysis were pro-

posed by using PCA rotations in the work of Fung [1990]. By diagonalizing the covariance

matrix of the stacked multi-temporal set, the author observed that the component of the

transformation related to largest variance summarized the information about unchanged

areas. Since changes are located in a different region of the spectral space and are usu-

ally uncorrelated from unchanged areas, these are found in the second largest component,

orthogonal to the first one. In this sense, under low noise conditions and a linear relation-

ship between unchanged samples, a simple threshold is able to provide a change map. A

nonlinear extension of these assumptions was proposed in [Nielsen and Canty, 2008] by

adopting the kernel version of the PCA. In this case, the extracted components have to

be analyzed manually since the first and second directions of maximal variance may not

correspond to unchanged and changed areas respectively. Nielsen [2002] proposed the anal-

ysis of an image time series by applying a relative radiometric normalization via multi-set

canonical correlation analysis. This method is able to discover a liner map of the different

datasets to a space in which their projections are maximally and mutually correlated. A

RGB composition of the variables corresponding to the components of largest correlation

provide a visual (but not discrete) indicator of changed areas. Nielsen [2007] presented

an extension of this approach developed for bi-temporal change detection, the iteratively

reweighted multi-variate alteration detection. The approach aims at iteratively enhance

the separability between changed and unchanged pixels by matching the unchanged sam-

ples distribution. Then, a threshold based on the fit of the canonical variables distribution,
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provides the change map. A review of the feature extraction based methods proposed by

these authors are summarized in [Canty and Nielsen, 2012].

Zhong and Wang [2006] classified with a MLC the components derived from the in-

dependent component analysis of the stacked images. The more compact and improved

representativeness of the new features allowed a better classification than by the original

input stack. Deng et al. [2008] presented an approach relying on the supervised classi-

fication of the first components of the PCA transformation of the multi-temporal stack.

In [Marchesi and Bruzzone, 2009] an approach to the analysis of different multi-temporal

compositions (stacked and difference images) based on the independent component anal-

ysis and its kernel extension are reviewed. To obtain change maps, manually selected

features corresponding to change directions are thresholded as in the CVA. Finally, in

[Gómez-Chova et al., 2012, 2013] a nonlinear kernel-based feature extraction approach

was explicitly designed to extract the change information from a pair of difference images,

in which changes of interest are contained in the second image. Experiments on cloud

detection demonstrate the high discriminative power of the change components.

Chapter 8 presents two approaches relying on feature extraction for change detection

applications. Rather than exploiting labels of unchanged and changed regions, only few

samples corresponding to unchanged areas are exploited. Then, the feature extraction

method is aimed to maximally align the information carried by those pixels in order to

obtain a more discriminative representation of changes.

5.5 Some considerations

The statistical change detection literature is rapidly evolving. It progresses proportionally

to the advances in the pattern recognition and machine learning literature, trying to

overcome fundamental limitations of current techniques to face the processing challenges

generated by the most recent acquisition systems and the new applications issuing from

the increasing needs of the users. As it clearly appears, it is hard to be exhaustive in

reviewing the state-of-the-art in such an evolving research field. However, clear trends are

remarked: the consideration of the spatial context, in particular for VHR images, and the

adoption of nonlinear methods to process the data. In the late 1990 an the early 2000,

the literature exploiting nonlinear models was mainly dedicated to neural networks, while

in the last years kernel methods started to be considered also in this processing problem.

Currently, attention is being paid to the scarcity of labelled information, by either using

unsupervised or semi-supervised models, or by enhancing the changed data. Moreover,

great efforts are paid to the development of models allowing change detection between

different sensors. Emerging trends in this field are certainly to be researched in merging

the aforementioned considerations. In the next Chapters, the methods developed in this

Thesis to tackle these issues are presented.
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Chapter 6

Supervised change detection.

Representativeness of the input

space1

This Chapter presents two change detection methods based on two su-

pervised classifiers: kernel Fisher’s discriminant and support vector ma-

chines. After briefly introducing the tasks to be solved in Section 6.1,

the adopted classifiers and the obtained results are presented in Sec-

tion 6.2 and Section 6.3 respectively. General conclusions are drawn in

Section 6.4.

6.1 Supervised change detection for monitoring

In this Chapter, two case studies involving supervised change detection are presented.

In the former, an approach to flooded area extraction using regularized kernel Fisher’s

discriminants (kFDA) is proposed, with emphasis on the comparison between uni- and

multi-temporal approaches. In the latter, we study the contribution of contextual features

into a SVM-based multi-class supervised change detection for VHR urban monitoring

purposes.

In the flood mapping scenario we aim at delineating the zones that have been inundated

by a river flood. To this end, two approaches are studied: uni- and multi-temporal image

classification. Depending on the use of the derived map, both approaches are valid: in

the former, the classification of the post-event image provides a cartography delineating

the water extent at the time of the acquisition. The extracted map (regardless of the

permanent standing water) is useful in particular ecological applications, e.g. if only a

water mask is needed [Chormanski et al., 2011; Dey et al., 2009; Khan et al., 2011]. In

general, uni-temporal approaches are usually preferred when time constrains the process

1This Chapter is based on the following publications: [Volpi et al., 2013c] and [Volpi et al., 2013d]. See

Section 1.3.1 for the details.
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6. Supervised change detection

or the producer only dispose of limited data, memory and computational power [Ip et al.,

2006]. The second mapping scenario is implemented as a change detection problem, in

which only the non-permanent standing water is targeted as “flooded” (changed) areas.

This solution makes sense when a precise cartography of the exceeding amount of water

is needed [Hudson and Colditz, 2003; Sanders et al., 2005; Zwenzner and Voigt, 2009].

In the second case study, the aim is to extend the supervised DMC studied in the

first monitoring task to account for the spatial context of each pixel in order to process

VHR data. To this end, we studied local indicators of texture [Haralick et al., 1973]; and

regional smoothing based on local extremes, the mathematical morphology [Soille, 2004;

Soille and Pesaresi, 2002]. To asses the improved informativeness of the proposed input

spaces, accounting for different multi-scale representations of the images, two schemes for

the combination of the multi-temporal information are adopted: DMC and supervised

DIA. Their role in the process of precise cartography of the changes in a urban scenario

are deeply discussed, and parallels with standard spatio-spectral image classification are

drawn [Benediktsson et al., 2005; Pacifici et al., 2009; Tuia et al., 2009, 2010b]. The role

of these variables have been only poorly studied in multi-temporal applications and in

particular for change detection analyses.

6.2 Supervised approaches for flooded area extraction

In this case study, the kFDA will be exploited to assess the flood mapping task by pro-

viding theoretical analysis of the classification setting and by examining the role of the

permanent standing water. The discrimination problem can be efficiently solved by the

kFDA, offering a regularized and nonlinear solution. This also provides low sensitivity

against high dimensional datasets and robustness to over-fitting issues by controlling the

complexity of the model [Bandos et al., 2009]. The use of the kFDA is further motivated

by its simplicity, while keeping the advantages of kernel methods. However, the black box

application of the kFDA does not allow a clear understanding of the flood cartography

process. For this reason, the temporal component of input space, the role of the perma-

nent standing water and the linear / nonlinear classification models are discussed for each

setting implemented (uni- and multi-temporal classification). To this end, the “permanent

standing water” class as been recoded to “flooded” in the uni-temporal case, while it has

been assigned to “not flooded” in the DMC.

6.2.1 The regularized kernel Fisher’s discriminant classifier

The Fisher’s discriminant analysis (FDA) [Fisher, 1936] can be used either as a linear

supervised dimensionality reduction or a linear classification technique. In its standard

binary classification formulation, it aims at finding a unidimensional projection of the

training pixels {(xi, yi)}ni=1, yi ∈ {−1,+1}, that maximally separates the two class means.

Once this direction is found, a threshold suffices to classify the projected data. The

standard linear decision function can be expressed in the form f(x) = 〈w,x〉+ b, w being
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6.2 Supervised flooded area extraction

the projection vector to the discriminant subspace (a weight vector of an hyperplane, as in

SVM) and b a bias term. It is possible to define the mean of class c, composed by nc samples

in the subset of the training set Xc = {(x, y) ∈ (X,Y )|y = c}, as µc = 1
nc

∑
xi∈Xc

xi. The

projection onto the discriminant direction is consequently mc = 1
nc

∑
xi∈Xc

w′xi = w′µc.

Un-normalized variance (scatter) of the projected data can be consequently defined as

s2
c =

∑
xi∈Xc

(w′xi−mc)
2. After the definition of these class-wise measures, the objective

function of the Fisher’s discriminant can be formulated as the maximization of:

arg max
w

(m1 −m2)2

(s2
1 + s2

2)
=

w′(µ1 − µ2)(µ1 − µ2)′w

w′(
∑

c

∑
xi∈Xc

(xi − µc)(xi − µc)′)w
. (6.1)

The optimal separation is given by the direction that maximizes the distance between

the means but also minimizes the scatter around them, that is, an optimization of the

separation / overlap ratio, as depicted in Figure 6.1. The solution w corresponds to the

direction in which the between-class variance Sb is maximized and the total within-class

variance Sw is minimized. It corresponds to the following Rayleigh quotient [Mika et al.,

1999; Shawe-Taylor and Cristianini, 2004]:

arg max
w

w′Sbw

w′Sww
, (6.2)

where the between - and within-scatter matrices are defined respectively as:

Sb = (µ2 − µ1)(µ2 − µ1)′ (6.3)

Sw =
∑
c

∑
xi∈Xc

(xi − µc)(xi − µc)′. (6.4)

One can observe that the norm of w at the denominator w′Sww is not important to

find the direction of the discriminant subspace, since it always points in the direction of

(m1 −m2) [Mika, 2002]. Therefore, one can set w′Sww = 1 without loss of generality.

The problem may now be reformulated as a constrained optimization:

arg max
w

w′Sbw (6.5)

s.t. w′Sww = 1 (6.6)

The solution of the above optimization may be found by its Lagrangian:

L(w, λ) = w′Sbw − λ(w′Sww − 1). (6.7)

By equating to 0 the partial derivative of the function with respect to the parameters, the

optimality conditions give:

∂L

∂w
= 2Sbw − 2λSww = 0, (6.8)

and it can be solved, for instance, by the generalised eigenvalue problem (note that both

Sb and Sw are symmetric and positive definite):

Sbw = λSww. (6.9)
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Figure 6.1: FDA graphical interpretation - An example of classification using FDA. The

different statistical measures are used to find the weights w that maximally separate the two

groups in the projected space.

Here, λ are the eigenvalues and w the eigenvectors of the system. The solution optimizing

the projections defined in Equations (6.5) and (6.7) are given by the projections corre-

sponding to the largest eigenvalues in λ. As illustrated above, Fisher’s discriminant are

interesting since they provide a solution in a closed form, with a global minimum. In

addition, it has been demonstrated that for normally distributed classes with equal co-

variances, Fisher’s discriminant corresponds to the Bayes classifier by setting a threshold

corresponding to b = 1
2(m1 −m2)′(m1 −m2), corresponding to p(+1|xi) > 0.5.

In the linear case, the final class assignment is given by the sign of f(x) = 〈w,x〉+ b,

that is, indicates to which projected mean the sample is closest. However, in this form,

it still limited by the linearity of the projection. Moreover, as clearly indicated by the

use of the scatter matrices, multi-modal or strongly skewed and asymmetric distributions

will affect the discriminant ability of w. In order to overcome these problems and to take

advantage of the flexibility and nonlinearity offered by kernels within the Fisher’s discrimi-

nant, one may recur to the solution proposed by [Mika et al., 1999, 2000]. Original scatter

matrices in Equation (6.3) and Equation (6.4) are replaced by their counterparts com-

puted in the RKHS. To derive the dual formulation enabling the use of kernels, we switch

from the primal weights to the dual ones (representer theorem) with wH =
∑n

i=1 αiφ(xi),

by already considering samples projected to the RKHS by means of the map φ(·). It is

possible to compute the mean value for class c in H by µH
c = 1

nc

∑
xi∈Xc

φ(xi). Therefore,

the value of the projected class average onto the discriminant subspace in the RKHS is:

mH
c = w′HµH

c =
1

nc

n∑
i=1

∑
xj∈Xc

αi〈φ(xi),φ(xj)〉 =
1

nc

n∑
i=1

∑
xj∈Xc

αik(xi,xj) = α′k̄c (6.10)

where k̄c is the column vector corresponding to k̄c = 1
nc

∑n
i=1

∑
j∈Xc

αik(xi,xj) = 1cKc,

that is, the average value of kernel evaluations between the samples belonging to class

c and all the training samples, in short Kc. Here, 1c corresponds to a vector of length

nc with entries 1/nc. It is now possible to rewrite the numerator of Equation (6.2) by
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6.2 Supervised flooded area extraction

considering SH
b in the RKHS as:

w′HSH
b wH = w′H(µH

1 − µH
2 )(µH

1 − µH
2 )′wH

= (w′HµH
1 −w′HµH

2 )(w′HµH
1 − (w′HµH

2 )′

= α′(k̄1 − k̄2)(k̄1 − k̄2)′α

= α′Mα (6.11)

with M = (k̄1 − k̄2)(k̄1 − k̄2)′ (6.12)

Similarly, we can rewrite the denominator as:

w′HSH
w wH = w′H

( ∑
c=1,2

∑
xj∈Xc

(φ(xj)− µH
c )(φ(xj)− µH

c )′
)
wH

=
( n∑
i=1

αiφ(xi)
)′( ∑

c=1,2

∑
j∈Xc

(φ(xj)− µH
c )(φ(xj)− µ′Hc )

)′( n∑
i=1

αiφ(xi)
)

=
∑
c=1,2

n∑
i=1

∑
j∈Xc

((
αi〈φ(xi),φ(xj)〉 −

1

nc
αi〈φ(xi),φ(xj)〉

)
(
αi〈φ(xi),φ(xj)〉 −

1

nc
αi〈φ(xi),φ(xj)〉

)′)
=
(
α′KcK

′
cα+

1

n2
c

α′KcK
′
cα−

2

n2
c

α′KcK
′
cα
)

=
(
α′Kc −

1

nc
α′Kc

)(
α′Kc −

1

nc
α′Kc

)′
= α′

( ∑
c=1,2

KcIK
′
c −KcIcK

′
c

)
α

= α′
(
K(I− I1 − I2)K′

)
α

= α′Nα (6.13)

with N = K(I− I1 − I2)K′.

where Ic is a nc × nc matrix with entries equal to 1/nc on the diagonal.

The Rayleigh ratio in Equation (6.2) in the RKHS can be rewritten as:

max
α

α′Mα

α′Nα
, (6.14)

solved again by the generalised eigendecomposition Mα = λNα [Mika, 2002; Shawe-

Taylor and Cristianini, 2004]. Finally, the projection of a new sample x onto the kernel dis-

criminant component and its classification is given by the sign of f(x) =
∑n

i=1 αik(xi,x)+

b. In this case, b is set as half the distance between the RKHS mean projections.

Since the problem of estimating covariances in a possibly infinite dimensional space

using n samples is ill-posed, and since the computation of the dual weights α might

be infeasible, N must be regularized to ensure its non-singularity [Bandos et al., 2009;

Friedman, 1989; Mika et al., 2000]. The introduction of a regularization parameter γ ad-

ditionally controls the capacity when working in RKHS, alleviating over-fitting caused by

77



6. Supervised change detection

the curse of dimensionality. Here, we adopted a ridge penalization in Equation (6.14), as

Nγ = N + γI, where I is the identity matrix of size n × n and γ the penalty parameter

to be tuned by the user. In this case γ penalizes large norms of the vector of dual coeffi-

cients α, since α′(N + γI)α = α′Nα+ γ‖α‖2. However, note that different penalization

schemes exist [Mika et al., 1999, 2000]. In particular, it is worth mentioning the Tikhonov

regularization: w′H(SH
w + γI)wH = w′HSH

w wH + γ‖wH‖2 that, when switching to the

dual expression, becomes α′Nα + γαKα = α′(N + γK)α. This solution penalizes the

norm (of the possibly infinite dimensional) weight vector wH. The use of the latter reg-

ularization shows a link between the regularized kFDA and the least squares SVM [Gua

et al., 2010; Mika et al., 2000; Van Gestel et al., 2002]. In parallel, as illustrated in [Bandos

et al., 2009; Friedman, 1989], one might want to add the regularization to decrease the

bias between the eigenvalues of the empirical covariance matrix and of the ones the true

covariance, since the largest eigenvalues of both matrices does not converge to the same

value as n→∞.

As mentioned, it may happen that non-linear, multi-modal and heavily asymmetric

and skewed distributions reduce the effectiveness of the linear FDA. An effective approach

to alleviate these issues is to deform the empirical scatter matrices by local information

issuing from the manifold distribution by adopting a graph Laplacian deformation. This is

known as locality preserving Fisher’s discriminant [Sugiyama, 2007]. However, by adopt-

ing the kernel-based extension, these limitations are strongly relaxed. With the use of

Gaussian RBF, it has been verified that the data in the RKHS are normally distributed

[Bach and Jordan, 2002b; Cremersa et al., 2003; Kwon and Nasrabadi, 2005]. Since non-

Gaussianity in input space corresponds to Gaussianity in the RKHS, the kFDA results

optimal, provided the correct hyperparameters. Note that the aforementioned graph reg-

ularization may still be employed to include information regarding the manifold into the

kernel to enforce smoothness and locality preservation properties of the projections.

6.2.2 Experimental setup

The Landsat TM dataset used in the analyses is presented in Appendix B. It corresponds

to a recent flooding occurred in a tributary of the Missouri River in South Dakota (USA).

Training and testing labels were carefully selected by visual inspection from to two

spatially disjoint regions of the image in order to avoid spatial autocorrelation when es-

timating figures of merit (see Appendix B for the details). They are composed by three

classes: “flooded”, “not flooded” and “permanent standing water”. Recall that in the

experiments, the latter class is recoded either to “flooded” or “not flooded” depending on

the temporal composition to be classified. The training set is composed of 48’379 exam-

ples while the testing of 88’501. Labelled areas were chosen so that the class variability

is well represented in both train and test regions, in particular for the heterogeneous

“not flooded” class. Specifically for the “flooded” class, different water colours have been

included in the sets. Pixels corresponding to regions that are only partially flooded or

covered by shallow water presented a spectral contamination by the ground cover before
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6.2 Supervised flooded area extraction

the event, attenuated by the water absorption proportionally to its depth. This further

increases variance and class overlap with the permanent standing water, for which the

same phenomenon is observed. For the illustration of the original details used to visually

validate the mapping settings, see Figure 6.4 (Ex. 2,3,4).

The regularized kFDA is trained with random subsets composed of 10 to 1000 examples

per class (in a balanced classification setting), allowing us to evaluate its robustness and

sensitivity under different training sets sizes. Final numerical accuracies are averaged

over 10 independent realizations of such sets, to have a robust estimate and a confidence

interval over the values. The upper limit of 1000 training samples is given by a plateau

effect observed on the numerical accuracies for larger sets. When exceeding this size, only

a decrease in the standard deviation of the accuracy measure has been observed. For

both the uni- and multi-temporal setting, digital numbers for each spectral band were

mean-centred and scaled to unit variance prior to experiments.

Linear and nonlinear models, applied to the uni- and multi-temporal problems, resulted

in four independent mapping tasks. Since the Gaussian RBF kernel has been adopted,

two hyperparameters have to be set: the σ and the regularization parameter γ. Model

selection by grid search within a 3-fold cross validation scheme has been applied. The

σ was optimized in {0.5σe, 0.6σe, . . . , 1.5σe}, where σe is the median Euclidean distance

between 5000 randomly selected pixel from the initial dataset. This choice avoids falling in

over-/under-fitting situations caused by a bad choice of the kernel bandwidth, in particular

for small training sets. The γ parameter was optimized in the range {10−3, 10−2, . . . , 102}.
The outcomes are then numerically evaluated and compared by considering the estimated

Cohen’s Kappa statistic (κ), the error matrices and the McNemar test (see Appendix A).

6.2.3 Results

Figure 6.2 illustrates the estimated κ coefficient as a function of the training set size.

Since for each of the tested settings the training sets are composed by the same pixels

co-ordinates, curves are comparable. Still, the label switch for the permanent standing

water pixels should be always kept in mind.

Results suggest that the most accurate mapping method resides in the multi-temporal

nonlinear kFDA classification, with a peak of 0.937 average κ points for a training set

composed by 500 pixels. For larger sizes the model shows a plateau effect around κ = 0.93.

Its linear counterpart performs poorly. Even though the accuracy for the smallest training

sets (10, 50 pixels) is comparable, the nonlinear kFDA rapidly outperforms the linear

algorithm for larger sets. The Gaussian kFDA false alarm rate is also strongly reduced,

a fact also depicted by the “flooded” class user’s accuracy, increasing from 67.52% to

89.42%. This ability is also underlined by observing the label assignment for only the

“permanent standing water” pixels, which are classified correctly on the average the 10%

of the times for the linear model (into “not flooded” class) and 57.27% by the nonlinear

one. Even if the linear model seems to be generally less accurate, it provides a higher

detection rate for the flooding class, corresponding to few missed detections of the flooded
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Figure 6.2: Supervised flood mapping results - Estimated κ statistic and standard

deviation (error bars) for the flood mapping tests.

area, which are comparable to the nonlinear kFDA outcomes. A McNemar test at level of

p = 0.001 indicates a significantly higher average accuracy of the nonlinear approach for

models built with 100 or more training samples per class.

In the uni-temporal perspective, the problem reduces to a binary classification of water

against the rest. This problem can be solved easily, since the spectral signature of the water

is usually well distinguishable from other land covers. This results in accuracy curves for

the linear and nonlinear models that behave similarly, with a slight improvement for the

nonlinear one. The performance still significantly lower than the aforementioned multi-

temporal Gaussian kFDA (in the range of 0.05 to 0.1 κ points). Nevertheless, the lower

performance of these models is counterbalanced by the stable accuracy with respect to

the class sizes, i.e. models trained on 10 and 50 samples performs as the ones using 1000

pixels. This leads to two observations: on the one hand the class water is (mostly) linearly

separable and easily discriminable, thanks to the strongly clustered distribution. On the

other hand, some issues related to class overlap seem to limit the performance of the

uni-temporal models. The close performances of both the linear and nonlinear models

can also be observed from the error matrices (Table 6.1). The nonlinear model performs

significantly better at p = 0.01 (but not at p = 0.001) for all the different training set

sizes. The linear model appears again to be more conservative in the prediction of flooded

pixels (detection rates are higher than in the nonlinear scheme). This is reflected in a

higher user’s accuracy. For the nonlinear kFDA the producer’s accuracy for the “flooded”

class is slightly inferior, but the overall accuracy results larger.
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uni-temporal

True

L
in

.
F NF Us.

E
st

. F 10842.9 4890.4 68.92

NF 5.1 72762.6 99.99

Pr. 99.95 93.70 94.47

R
B

F

F NF Us.

E
st

. F 10806.9 4584.5 70.22

NF 41.1 73068.5 99.94

Pr. 99.62 94.10 94.77

multi-temporal

True

F NF Us.

F 10841.6 5225.1 67.52

NF 6.4 72427.9 99.99

Pr. 99.94 93.27 94.09

F NF Us.

F 10739 1284.7 89.42

NF 109 76368.2 99.86

Pr. 98.99 98.35 98.43

F Flooding NF Not flooding

Est. Predicted label True True label

lin. Linear RBF Radial basis function

L
e
g
e
n

d

Pr. Producer’s accuracy Us. User’s accuracy

Table 6.1: Average error matrices - Obtained using models trained on 500 pixels. Accu-

racy values are expressed in [%], in bold the overall accuracy.

6.2.4 Discussion

The classification of the permanent standing water as “not flooded” requires nonlinear

strategies in a multi-temporal setting. Otherwise, standard single image classification

methods can easily detect pure water pixels. However, the latter only provides a cartog-

raphy of the water bodies present in the post-event scene, after the flood occurred, and

cannot be considered as a proper flood extent map by itself without performing further

adjustments. However, even with very small training sets, single time image classification

using kFDA appears to be robust to the size of the training sets.

In the multi-temporal scenario the ability of the Gaussian kFDA to exploit all the

spectral information to solve the mixed / ambiguous samples in the input stack makes the

approach very accurate, but only when considering 150 or more samples to train the mod-

els. The linear model cannot separate the permanent standing water from the examples

belonging to the flood class, making the maps less pertinent. By observing Figure 6.3, to

separate the permanent standing water from the “flooded” class in the different spectral

variables, a nonlinear boundary is often required, due mainly by the high class mixing,

when merging permanent standing water samples and unchanged pixels. The classification

task can also cope with the high spectral variance due to the large heterogeneity of the

multi-modal classes. The separation is more complex than simple water discrimination in

single image classification. It results clearly that the suboptimal model tends to assign

“not flooding” pixels to the “flooded” class, instead of wrongly predicting mixed pixels

and shallow water to dry regions. In particular, the class distributions represented in

Figure 6.3 show different behaviours: If the flood and permanent standing water can be
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6. Supervised change detection

roughly approximated by two overlapping normal distributions with a larger variance in

the second time direction, the same can not be stated for the “not flooding” class, strongly

multi-modal and scattered density. This explains why the linear model fails in discrim-

inating only the flooded areas from the permanent standing water. For the nonlinear

kFDA, without any assumption on the underlying distribution, examples are mapped into

a Gaussian RKHS, resulting in a correct maximization of the separability of the classes

[Huang and Hwang, 2006].

The nonlinear multi-temporal setting provides a reliable flood extent map correctly

delineating only the exceeding water. In more detail, Figure 6.4 Ex. 1, shows that the

small water basins appearing far from the river bed are correctly delineated by both multi-

and uni-temporal approaches. The small river in the upper-left part of the image does not

present a general augmentation of the surface due to flooding, but only a small area in the

upper part is related to exceeding water. In this case, the permanent standing water has

been again correctly discriminated by the nonlinear classifier using stacked input data.

In Figure 6.4 Ex. 2, a larger portion of flooded river is considered. The river in 2005

is clearly visible meandering on the alluvial valley. Again, the multi-temporal kFDA does

not detect it as flooded area, correctly delineating the exceeding water. On the right

hand side of the image, a variety of small water bodies appear, and in this case all the

approaches detect well the most of the puddles.

The last two examples in Figure 6.4 Ex. 3 and Figure 6.4 Ex. 4 show a combination

of the two aforementioned examples, with the addition of permanent lakes. Clearly, the

uni-temporal approaches cannot discriminate them, since no temporal component is ex-

ploitable. The multi-temporal Gaussian kFDA correctly assigns the permanent standing

water to the class “not flooded”, generating pertinent maps of the event.

Future developments may be conducted mainly by improving the representativeness of

the training samples by optimizing their input space. This can be achieved by injecting into

the classification problem relevant information as features related to physical properties

of the phenomenon, such as normalized difference vegetation index (NDVI), normalized

water difference index (NDWI), or surface temperature and elevation models. Also, the

complementarity with SAR data could be exploited, that has proven to be useful but

suboptimal in flooded area extraction tasks. Additionally, to reduce the heterogeneity

of classes and in particular for the “not flooded” regions, spatial filters smoothing the

spectral information as a function of the spatial context of each pixel may be considered.

To this end, data fusion and multi-source methods are a worthwhile research direction.

In the next case study, involving supervised change detection for monitoring the urban

area of Zurich, these possibilities are investigated for VHR images. In particular, we

examine the improved informativeness of the input space when filling the lacks of spectral

information by injecting the spatial context of pixels.
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Figure 6.3: Scatterplot matrix of the multi-temporal Landsat TM flooding data

- Obtained by subsampling the test set at 300 pixels per class after normalization (mean

centered and unit variance).
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pre- post- multi-temporal uni-temporal

event event linear Gaussian linear Gaussian

κ = 0.782 κ = 0.952 κ = 0.850 κ = 0.859

Ex. 1a Ex. 1b Ex. 1c Ex. 1d Ex. 1e Ex. 1f

Ex. 2a Ex. 2b Ex. 2c Ex. 2d Ex. 2e Ex. 2f

Ex. 3a Ex. 3b Ex. 3c Ex. 3d Ex. 3e Ex. 3f

Ex. 4a Ex. 4b Ex. 4c Ex. 4d Ex. 4e Ex. 4f

Figure 6.4: Subsets of the Landsat TM flooding scene - (a)-(b) Subset of the original

images; (c)-(f) detail of the flood extent map.
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6.3 Supervised change detection for urban monitoring

6.3 Exploiting the spatial context in VHR supervised change

detection for urban monitoring

As mentioned in the concluding remarks of the Section before, the spatial context of each

pixel may alleviate issues related to low class separability and to the heterogeneity of the

class-conditional distributions. The exploitation of this information in multi-temporal and

change detection applications is poorly documented in the literature, as pointed out in

Section 5.2, although the benefits of considering such variables are clearly demonstrated in

classification tasks, particularly for VHR images [Benediktsson et al., 2005; Pacifici et al.,

2009; Tuia et al., 2009, 2010b].

In this Section, two change detection architectures are considered: direct multi-date

classification (DMC) and supervised difference image analysis (DIA) (see Section 5.1).

The rationale of the approach is to exploit the benefits of the improved representativeness

of the input space, while exploiting the properties of the SVM classifier, proved to be a

suitable tool in many remote sensing applications [Camps-Valls and Bruzzone, 2009].

6.3.1 The support vector machines for classification

SVM are a non-parametric binary classifier relying on Vapnik’s statistical learning theory

[Vapnik, 1998] (see Chapter 3 of this Thesis). This method aims at building a linear

separation rule of the form f(x) = 〈w,x〉 + b between examples {(xi, yi)}ns
i=1. The final

decision whether a sample belongs to the class yi ∈ {+1;−1} is given by the sign of

the decision function. The issue resides in finding the weight vector w and bias term b,

as in the kFDA, defining the separating hyperplane. Following Chapter 3, the solution

guaranteeing the optimal generalization ability is the ones that finds a trade-off between

the minimization of the training error and a control of the complexity. The SVM problem

may be formulated as a regularized problem of the form:

min
w,b,ξ

1

ns

ns∑
i=1

L(f(xi), yi) + γ‖f‖2 (6.15)

In the SVM formulation, the hinge loss is adopted: L(f(xi), yi) = max(1 − yif(xi), 0)

[Boser et al., 1992; Cortes and Vapnik, 1995]. This function penalises samples that lie

inside the 1-margin of the model f and increases as the decision function grows with

wrong sign (recall the sign of f(x) corresponds to the predicted class). By doing so, SVM

fits a separating boundary with the largest margin between the examples of the two classes.

To make the classifier robust to outliers by allowing some training errors, it is possible to

relax the L(f(xi), yi) with slack variables ξi. The SVM problem becomes:

min
w,b,ξ

1

ns

ns∑
i=1

ξi + γ‖f‖2

s.t. L(f(xi), yi) ≥ ξi (6.16)
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6. Supervised change detection

By recasting the problem into H, the nonlinear formulation in the original space is ob-

tained. The solution is given by the hyperplane defined by wH, and f(x) = 〈wH,φ(x)〉+ b.

We can further modify the objective function as:

min
wH,b,ξ

C

ns∑
i=1

ξi +
1

2
‖wH‖2

s.t. 1− yi
(
〈wH,φ(x)〉+ b

)
≥ ξi (6.17)

ξi ≥ 0.

Note that in Equation (6.17) the two terms have been multiplied by 1
2γ and replaced by

a cost term C = 1
2γns

. This manipulation simplifies the derivation of the expression for

the subsequent optimization. Now, similarly to γ, C has to be tuned by the user and it

controls the trade-off between the maximization of the hyperplane margin and the number

of allowed training errors. This further strengthen the generalization ability on previously

unseen data from P(x, y). This constrained quadratic optimization problem may be solved

by introducing the Lagrange multipliers α for the first constraint and β for the second:

min
wH,b,ξ

max
α,β

L(wH, b, ξ,α,β) = C

ns∑
i=1

ξi +
1

2
‖wH‖2

−
ns∑
i=1

αi

(
ξi − 1 + yi

(
〈wH,φ(x)〉+ b

))
−

ns∑
i=1

βiξi. (6.18)

The optimum is given by the saddle point of L(wH, b, ξ,α,β). By fixing α and β, the

partial derivatives of L with respect to wH,b and ξ are then equated to 0:

∂L

∂wH
= wH −

ns∑
i=1

αiyiφ(xi) = 0 (6.19)

∂L

∂b
=

ns∑
i=1

αiyi = 0 (6.20)

∂L

∂ξi
= C − αi − βi = 0 (6.21)

Using the optimality condition in Equation (6.19), wH =
∑n

i=1 αiyiφ(xi). Finally, the

problem in the dual space is obtained by replacing the above derivatives into Equation 6.18

and solving. The expression is optimized by finding the α maximizing (note that by

replacing βiξi = (C − αi)ξi, the β disappeared) [Boser et al., 1992; Schölkopf and Smola,

2002; Suykens and Alzate, 2010]:

max
α

ns∑
i=1

αi −
1

2

ns∑
i=1

ns∑
j=1

αiαjyiyj〈φ(xi)φ(xj)〉 (6.22)

where αi are the coefficients determining the solution of the optimization problem. As

illustrated in the Chapter 4, we may now apply the kernel trick to obtain the final kernel
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Class +1
Class - 1
SV of class +1
SV of class - 1

0 < αi < C

αi = 0

αi = C

,

,

,

f(x) = +1f(x) =
-1

f(x) = 0

Figure 6.5: SVM graphical interpretation - An example of classification using SVM.

The different situation involving the α corresponding to specific training samples.

formulation as:

max
α

ns∑
i=1

αi −
1

2

ns∑
i=1

ns∑
j=1

αiαjyiyjk(xi,xj) (6.23)

s.t. 0 ≤ αi ≤ C and

ns∑
i=1

αiyi = 0.

When the solution to Equation (6.23) is found, the label of an unknown sample x is given

by the position with respect to the separating hyperplane:

ŷ = sign
(
f(x)

)
= sign

(
ns∑
i=1

αiyik(xi,x) + b

)
. (6.24)

Thanks to the primal-dual relationship, Equation 6.24 corresponds to the solution of

ŷ = sign
(
f(x)

)
= sign

(
〈wH,φ(x)〉+ b

)
. We obtain that for any training sample xi with

0 < αi < C (an unbounded support vector), ξi and 1−yi
(
〈wH,φ(x)〉+ b

)
are both equal

to 0. The offset b may be obtained as b = yi−〈wH,φ(xi)〉 = yi−
∑ns

j=1 yjαjk(xi,xj). By

observing the solutions αi corresponding to samples xi, we have three different situations:

αi = 0 The training sample is correctly classified, i.e. it lies on the correct side of the

separating hyperplane with yif(xi) > 1. It does not contribute to the decision

function.

0 < αi < C The sample xi is an unbounded support vectors, implying that it lies exactly

on the class margin, and yif(xi) = 1.

αi = C The example xi is a bounded support vector, lying inside or outside (but on

the wrong side) the separating boundary. They correspond to training errors, and

yif(xi) < 1.

A graphical interpretation of SVM classifiers, according to the definitions given above, is

given in Figure 6.5.

Depending on the implementations, multi-class SVM may be obtained by reformulating

the problem involving |Y | classes into different binary sub-problems. The most used
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6. Supervised change detection

approaches are the one-against-all (OAA), solving |Y | binary sub-problems (shattering

each class from all the others at a time) and assigning the label as the class with the

largest decision function, and the one-against-one (OAO), that builds |Y |(|Y |−1)/2 binary

separations discriminating one class from the other and assign the label as the class with

the most frequent outcome. Note that direct multi-class optimization exists, and it is based

on a multi-class hinge loss function [Suykens and Alzate, 2010]. In the next Sections, the

contextual filters considered to account for the spatial information are presented.

6.3.2 Textural features

Occurrence and co-occurrence textural statistics (TXT) [Baraldi and Parmiggiani, 1995;

Haralick et al., 1973] are local indexes computed on the basis of overlapping moving

windows of size P × Q (usually P = Q). The resulting variables emphasize the local

texture structures of the graylevel image. The image from which the statistics are retrieved

can be of different forms: in the case of multi-spectral VHR scenes it is common to use

the panchromatic band, the first principal component or a task-dependent discriminative

band or combinations of them (e.g. NDVI).

Occurrence statistics These measures are computed on the intensity values contained

in the moving window centred on the pixel xij . They return a local texture value defined

by the statistic T at xji, as xT
ij . In this Section, two occurrence indicators are considered,

mean and variance:

xM
ij =

1

|V|
∑
p,q∈V

xpq (6.25)

xVAR
ij =

1

|V|
∑
p,q∈V

(xpq − xM
ij )2 (6.26)

where V denotes the neighbourhood of the pixel xij (note that, unless stated otherwise,

ij are the spatial coordinates of the pixel), and |V| their number (|V| = P ·Q). The local

average (M) reduces effects of noise and outliers such as saturated pixels, by smoothing

their large values. The local variance (VAR) indicator summarizes differences in the

graylevel values contained in the considered patch, emphasizing edges between objects

at different scales. Other indicators such as skewness or kurtosis can be considered for

additional information on the graylevel distribution [Haralick et al., 1973].

Co-occurrence statistics These indicators are based on the graylevel co-occurrence

matrix (GLCM), that represents the relative occurrence frequency p(m,n) of two graylevel

values m and n in the P × Q window at a given angular neighbourhood (note that the

radiometric scale of the image values may be changed to avoid null occurrences). The lag

is given by a connecting vector (δx, δy) in x and y spatial coordinates. Many statistical

texture descriptors can be extracted on the basis of the GLCM [Haralick et al., 1973;
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Figure 6.6: Multi-scale occurrence texture statistic - Four examples of moving window-

based occurrence statistic, the mean (M). For each image, the outcome for the 3 considered

window sizes (squares of size 3, 7, 15) are illustrated in growing order (M3-M15) along the

original image (IM).

Petrou and Sevilla, 2006]. In this paper three descriptors are adopted: entropy (ENT),

angular second moment (ASM) and homogeneity (HOM).

xENT
ij = −

∑
m,n

p(m,n) log p(m,n) (6.27)

xASM
ij =

∑
m,n

p(m,n)2 (6.28)

xHOM
ij =

∑
m,n

p(m,n)

1 + |m− n| . (6.29)

ENT is a measure of information content and can be interpreted as a the randomness

of the graylevel values. Regions with high variance of the graylevels will result in high

entropy, while smooth patches correspond to low entropy. ENT is a good indicator of

the intensity of the texture in the considered patch. ASM indicates the local contrast. It

provides an accurate estimate on the degree of uniformity of the values of the GLCM. A

low ASM value indicates that no spatial coherence characterizes the patch. HOM measures

the variance around the diagonal of the GLCM. In homogeneous patches, the values are

clustered around the diagonal resulting in high HOM statistic value. Other GLCM-based

indicators can be used, such as correlation or contrast [Haralick et al., 1973], but have

been disregarded since highly correlated to the ones listed above.
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Figure 6.7: Multi-scale co-occurrence (GLCM) texture statistic - Four examples

of moving window-based GLCM statistics, the HOM feature. For each image, the outcome

for the 3 considered window sizes (squares of size 3, 7, 15) are illustrated in growing order

(HOM3-HOM15) along the original image (IM).

6.3.3 Mathematical morphology

Many textural indices may present similar statistics for different classes. Consequently,

they are insufficient to describe properly the spectral classes. To solve this issue, the

joint use of texture indicators with multi-band morphological profiles [Benediktsson et al.,

2005; Fauvel et al., 2008] is proposed. The mathematical morphology (see [Soille, 2004;

Soille and Pesaresi, 2002] for details) defines a family of operators that aim at emphasizing

homogeneous spatial structures in a graylevel image. The resulting variables present higher

autocorrelation for neighbouring pixels in the same object, reducing noise and within-class

variance. Since a multi-band approach is adopted, the between-class variance may ensue

increased, improving separability. These filters are based on a moving window of given

shape and size called the structuring element S.

Basic operations are erosion and dilation, respectively denoted as εS(xij) and δS(xij).

They are defined as follows:

εS(xij) = min(xij , xs) ∀ xs ∈ Sij (6.30)

δS(xij) = max(xij , xs) ∀ xs ∈ Sij , (6.31)

they return respectively the minimum and the maximum value between pixel xij and the

ones contained in the structuring element Sij centred on xij .
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Figure 6.8: Multi-scale opening and closing morphological operators - Four exam-

ples of opening and closing morphological operators. For each image, the outcome for the 3

considered structuring element sizes (disks of radius 3, 7, 9) are illustrated in decreasing order

for the closing operator (C9-C3). The original image is in the centre (IM), while on the right

the opening operator for the same structuring element illustrated in increasing order (C3-C9).

Opening and closing (OC) These two filters are the concatenation of erosion and

dilation:

γS(xij) = δS

(
εS(xij)

)
(6.32)

ωS(xij) = εS

(
δS(xij)

)
. (6.33)

The opening γS(xij) of the graylevel image filters out elements that are brighter than

the ones contained in the neighbourhood defined by the structuring element S. Closing

ωS(xij) filters out darker elements in the same range.

Opening and closing by reconstruction (OCR) Although emphasizing meaningful

contextual information, opening and closing do not preserve the shape of objects repre-

sented in the image. To provide the same level of smoothing but preserving the geometri-

cal information at precise object level, the use of reconstruction filters is proposed [Fauvel

et al., 2008; Soille, 2004].

Opening and closing by reconstruction are noted as ρδS (IM ) and ρεS (IM ) respectively.

These operations reconstruct the original image by iterative cycles of erosions or dilations

on a marker image IM . If IM is an erosion of the original image (IM = εS(xij)), the latter
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Figure 6.9: Multi-scale opening and closing by reconstruction morphological op-

erators - Four examples of opening and closing by reconstruction operators. For each image,

the outcome for the 3 considered structuring element sizes (disks of radius 3, 7, 9) are illus-

trated in decreasing order for the closing operator (C9-C3). The original image is in the centre

(IM), while on the right the opening operator for the same structuring element illustrated in

increasing order (C3-C9).

is reconstructed by iterative series of dilations of IM as IkM = δ1δ2δ3 . . . δk(IM ) resulting

in the opening by reconstruction:

ρkδS

(
εS(xij)

)
= min(IkM , xij) (6.34)

and the process is iterated until ρk = ρk−1. Similarly, closing by reconstruction recon-

structs the graylevel image starting from its dilated version IM = δS(xij) iteratively per-

forming erosions of the marker image IM as IkM = ε1ε2ε3 . . . εk(IM ):

ρkεS

(
δS(xij)

)
= max(IkM , xij), (6.35)

converging to the final filtering when ρk = ρk−1. As for the OC operators, opening

and closing by reconstruction filter out brighter and darker elements smaller than Sij ,

but preserving the original spatial structures larger than S, since the reconstruction is

constrained by values of the original images.

In all the cases, the signal of the spatial-context-augmented input vectors allows a

better discrimination among changed and unchanged classes, as depicted in Figure 6.10.

For the DMC approach, the per-pixel input signal is considered as a whole, while for the

DIA only the punctual differences are used to discriminate the different changed areas.
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Figure 6.10: Multi-scale class-wise multi-temporal signal - Example of the newly

created input space, illustrated by the average value of the features for each class, in 2002 and

2006. In (a) the legend of the classes, in (b) the average spectral signature per class, in (c)

the average occurrence features (OCC) Mean (M) and Variance (V), (d) GLCM co-occurrence

(for each window size, ordered as ENT ASM HOM, (e) opening-closing (for each structuring

element size, O C for each band) and (f) opening and closing by reconstruction (same as for

OC), again illustrated on a per-class average basis. Note that values are standardized.
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Set Name Dimensions Description

IMM 4 Pansharpened bands

TXT 15 (+4) 6 occurrence and 9 co-occurrence

OC 24 (+4) Opening and closing

OCR 24 (+4) Opening and closing by reconstruction

OCOCR 48 (+4) OC and OCR stacked

OCTXT 39 (+4) OC and TXT stacked

OCRTXT 39 (+4) OCR and TXT stacked

OCOCRTXT 63 (+4) OC, OCR and TXT stacked

Table 6.2: Contextual information feature blocks - The number of the features refers

to a single date. For both dates, same features with same parameters are extracted. For each

set of features, the pansharpened image is included (+4, the IMM set).

Furthermore, as depicted by the scatterplots in Figure 6.11, the inclusion of the spatial

context eases the process of class separation. Specifically, multi-channel reconstruction

operators allow a better classification by both reducing within-class variability and by

including discriminant information, thus increasing the distance between classes.

6.3.4 Experimental setup

Textural features are computed on the corresponding panchromatic bands (2002 and 2006).

For each occurrence statistic, three window sizes are considered (3×3, 7×7 and 15×15),

resulting in 6 variables per date as illustrated in Figure 6.6 with the corresponding signal in

Figure 6.10(c). Regarding co-occurrence indicators, the average of the statistics computed

in four directions (0◦, 45◦, 90◦ and 135◦) has been considered, with a shift in horizontal

and vertical directions proportional to the moving window size. The reason of considering

the average on four directions is that, since the GLCM-based indicators are symmetric,

e.g. x̂ij(0
◦) = x̂ij(180◦)), their average is invariant to rotation. Three window sizes have

been utilized for computing the GLCM (3×3 with a shift of 1 pixel, 7×7 with a shift

of 2 pixels and 15×15 with a shift of 5 pixels) resulting in 9 co-occurrence variables as

depicted in Figure 6.7 and Figure 6.10(d). The choice of the window size is related to the

resolution of the objects represented in the scene. To preserve the level of details, 3 × 3

pixels windows have been computed (roughly corresponding to squares of 2[m] of side) to

provide information about small patches as trees and small buildings, along with abrupt

variations in object borders. The 7× 7 window accounts for local structures in a range of

5[m], including information at building and road level, as well as smooth changes among

different texture classes. Finally, the 15 × 15 window provides textural information for

larger regions (approximately 10[m]) accounting for trends in fields and grasslands as well

as commercial buildings. Larger windows have not been considered since the scenes are

mainly characterized by small and medium sized objects. Finally, morphological filters

have been implemented with three different disk-shaped structuring elements, with radius

3, 7 and 9 pixels, independently for all the spectral channels of the images. The size of the
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Figure 6.11: Increased separability of similar classes by the inclusion of morpho-

logical features - The separability of “Bright building” and “Roads” classes, for the image

acquired in 2006, results increased. Specifically, for the green and red spectral channels, a

lower within class variance is accompanied by a better separation of the two data clouds.

structuring element is again proportional to the size of the object of interest. The OC and

OCR features, both composed by 24 variables per date, are visualized in Figure 6.8 and

Figure 6.9 respectively, while their signal is shown in Figure 6.10(e) and Figure 6.10(f).

To allow fair comparisons between DMC and DIA, where unchanged pixels are treated

as single class, a third approach referred to as reduced DMC is considered: all the sam-

ples representing unchanged classes are assigned to the class unchanged, and the change

detection is performed as for the standard DMC scheme.

To better understand the role of the spatial-contextual information within the process

of supervised change detection, blocks of features and their combinations are tested inde-

pendently and in growing order. Furthermore, for each feature block, eight experimental

conditions are tested, accounting for different sizes of the training sets: 5, 10, 20, 50, 100

and 200 labelled examples per class randomly extracted from the available training ground

truth. The size of the sets varies from very small to large, and for the smaller ones the

number of dimensions can be larger than the one of training samples (e.g. the Brüttisellen

OC set accounts for 56 multi-temporal features and just 45 training samples for 9 classes in

the smallest complete DMC setting). Classification results are consequently very sensitive

to the representativeness of training set. To provide robust statistical estimates, results

are averaged on 10 independent experiments.

SVM hyperparameters are selected by a 3-fold cross-validation. The C parameter is

selected by exhaustive search in the range {1, 10, 20, . . . , 1000}. To mitigate overfitting, in

particular for small training sets, an initial guess on the Gaussian kernel bandwidth σp has

been obtained by computing the median distance on 3000 randomly chosen coordinates

for the considered dataset. A refined search around this initial guess, in {0.5σp, σp, 1.5σp},
has been performed and the parameters producing minimal error were retained. The free
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Original retails

Feature Set IMM OCOCRTXT

Complete DMC, 5ppc

Complete DMC, 50ppc

Reduced DMC, 5ppc

Reduced DMC, 50ppc

DIA class., 5ppc

DIA class., 50ppc

Figure 6.12: Details of the Brüttisellen change detection maps - Note that on the

left column of the maps, the IMM set has been used, while on the right one the OCOCRTXT

provided the maps. For the legend please refer to Appendix B.

Torch 3 library has been used to solve the SVM optimization [Collobert et al., 2002].

The generalization accuracy is evaluated in terms of estimated Cohen’s Kappa statistic

(κ) [Foody, 2004]. To assess the significance of differences in accuracy, the McNemar test

is reported in Table 6.15 (see Appendix A). This table shows if the average accuracy is

significantly higher (+), lower (-) or statistically similar (o) to the one obtained using the

pure spectral baseline set (IMM).

6.3.5 Results

Brüttisellen dataset results The accuracies for the Brüttisellen experiments are re-

ported in Figure 6.13(a),(c),(e) as a function of the per class training set size.

The complete DMC shows very good classification performances saturating around

a κ = 0.9, in particular for the composite textural and morphological spatio-spectral

sets. The sets showing the lowest accuracy are the pure spectral and spectral-textural,
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Figure 6.13: Test accuracies for urban monitoring datasets - Test accuracies as a

function of the per class training set size: Brüttisellen (a),(c),(e) and Steinacker (b),(d),(f),

illustrating the complete DMC, reduced DMC and DIA accuracies for the tested input spaces,

respectively.
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6. Supervised change detection

indicating that texture alone does not help in discriminating all the classes. The McNemar

test reported in Table 6.15 indicates that, except for the TXT, all the contextual features

improve significantly the DMC results without contextual information.

The reduced DMC shows similar trends. It is worth mentioning that, since the number

of classes is different (4 instead of 9), no direct comparisons on the absolute accuracies

observed above can be made. In particular, note that classification errors within the

unchanged classes are removed. Again, the baseline IMM set performs worse than the

others, with a very close performance of the TXT set. The contextual information improves

significantly the accuracies, as depicted in Table 6.15.

Regarding DIA, different observations can be made. As in the previous experiments,

the pure spectral IMM feature set performs significantly worse than the others. The three

morphological sets (OC, OCR and OCOCR) show similar κ scores and standard deviations,

and provide accuracies from 0.7 to 0.8 κ as the training set size increases. The best

approaches are again the composite textural-morphological, improving significantly the

classification provided by morphological sets. The texture seems an important information

to mitigate the ambiguity of the spectral change vector representations and, if combined

to other measures, reduces greatly the false alarm rate. In this case, the TXT set accuracy

grows rapidly to the performance of the most accurate feature sets. By comparing the

reduced DMC and the DIA schemes it appears clearly that the difference in accuracy

of 0.03-0.07 κ points is related to richness of the multi-temporal signal, preserved in the

former. On the other hand, even if the accuracy provided by the latter is lower the

dimensionality of the dataset is the half, mitigating issues related to low sample conditions.

Figure 6.12 compares the classification maps obtained by the pure spectral input set

(IMM) and morphological composite OCOCRTXT sets for 5 and 50 samples per class.

This last size has been chosen since a plateau effect on the accuracy is observed (see

Figure 6.13). The change detection maps show an improved spatial coherence when adding

contextual information, and, when the training sets better represent the variance of the

class, higher accuracies are obtained.

Steinacker dataset results As observed for the previous dataset, the complete DMC

performances of IMM and TXT sets are significantly lower than the other tested feature.

The sets providing the most accurate results are those composed by the mixed textural-

morphological and spectral information. For training sets larger than 20 samples per

class, standard deviations are very low, indicating stable classification models. As for

the previous dataset, Table 6.15 confirms the significance of the improvements in change

detection accuracy when adding spatial information.

In the reduced DMC setting, the TXT feature set provides the worse results (signifi-

cantly worse than the IMM features) for each training set size considered . The baseline

IMM block performs in the range of the other sets when considering 5 and 10 examples per

class, then worsen from 20 samples per class on. The best accuracies are again obtained

by models that include contextual information.

Regarding DIA setting, trends are similar to those observed for the previous dataset.
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Original retails

Feature Set IMM OCOCR

Complete DMC, 5ppc

Complete DMC, 50ppc

Reduced DMC, 5ppc

Reduced DMC, 50ppc

DIA class., 5ppc

DIA class., 50ppc

Figure 6.14: Details of the Steinacker change detection maps - Note that on the left

column of the maps, the IMM set has been used, while on the right one the OCOCR provided

the maps. For the legend please refer to the Appendix B.

The IMM set performs constantly worse than the rest and the TXT set increases to the best

accuracies when adding training samples. All tested variables, except TXT with 5 training

samples per class, are significantly better than the pure IMM information. Morphological-

textural composite sets behave very similarly, indicating again the appropriateness of this

information for the DIA setting. As for the previous experiments, the differences between

reduced DMC and DIA are related to the loss in information when adopting the difference

image, in contrast to all preserved information for DMC schemes. Figure 6.12 reports the

change detection maps produced with training sets of 5 and 50 samples per class. The

spatial coherence of the basic spectral change detection map is again greatly improved by

the inclusion of morphological contextual information (OCOCR).
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6. Supervised change detection

Method Complete DMC Reduced DMC DIA

per class size 5 10 20 50 100 200 5 10 20 50 100 200 5 10 20 50 100 200

TXT – – – ◦ ◦ ◦ ◦ + + – ◦ + + + + + + +

OC + + + + + + + + + + + + + + + + + +

OCR + + + + + + + + + + + + + + + + + +

OCOCR + + + + + + + + + + + + + + + + + +

OCTXT + + + + + + + + + + + + + + + + + +

OCRTXT + + + + + + + + + + + + + + + + + +B
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OCR + + + + + + - + + + + + + + + + + +

OCOCR + + + + + + + + + + + + + + + + + +

OCTXT + + + + + + – + + + + + + + + + + +

OCRTXT + + + + + + ◦ + + + + + + + + + + +S
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Figure 6.15: Outcomes of the McNemar tests for the urban monitoring datasets

- The + indicates that the tested set of features is significantly better that the baseline IMM

set with z > 1.96 at α = 0.05 level, while - indicates that IMM is better than the compared

approach z < −1.96. The ◦ indicates no significant difference.

6.3.6 Discussion

The experiments on the VHR multi-temporal datasets provided interesting insights about

the inclusion of spatial context information in the process of supervised change detection.

From Table 6.15, it is clear that considering such information significantly improves the

accuracy of the process in the most of the tested settings.

The complete DMC setting has the advantage of predicting a full map by considering

each stable and transitional class. If the ground truth has been created carefully, the

different classes are well-defined and separability is increased by including spatial infor-

mation. The usefulness of the pixel context is also beneficial for obtaining smooth change

detection maps, eliminating spurious changes and salt-and-pepper noise, while reducing

the false alarm rate, as shown in the change map details in Figure 6.12 and Figure 6.14.

Regarding the reduced DMC setting, performance is even higher thanks to the easier

classification problem given by the lower number of class, due to the aggregation of all the

permanent land covers into a single class. However, problems may arise when the training

sets are small, as underlined by the corresponding high variances of the κ score. This is

mainly due to the multi-modal distribution of the unchanged class, becoming sparse and

clustered in the high dimensional input space. As a consequence, even a robust method

such as the SVM needs many training samples to discover correct separating hyperplanes.

For the DIA approach it can be noticed that the inclusion of composite contextual

information is always beneficial, reducing the effects of ambiguity and increased class

overlapping. The comparisons with the reduced DMC scheme suggest that DIA can pro-
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vide high accuracies by utilizing only textural information, allowing the use of simpler

classifiers due to the lower dimensionality of the dataset. The increased separability when

considering pixel context is evident.

When only few samples composed the training set, the dimensionality was often higher

than the number of samples. Even if SVM are robust to the curse of dimensionality

[Hughes, 1968; Trunk, 1979], one has to control the ns/d ratio (number of samples /

dimensions) by providing enough examples to model correctly the class boundaries. In our

experiments a ns/d ratio lower than 0.6 - 0.7 provided the less stable solutions. This fact

is underlined by the decrease of the standard deviation for larger training sets, indicating

stable models. However, note that the most of the considered set sizes were too small

for many classifiers (e.g. Fisher’s discriminant). Hence, SVM classifiers are strongly

recommended due to their robustness against the curse of dimensionality.

6.4 Conclusions

As discussed in this Chapter, kernel-based supervised change detection is a stable and ef-

fective way to obtain exhaustive and very accurate maps. Considering both persistent and

transitional classes as for the Zurich case study or by looking for a semantically coherent

map of changes, such as depicted in the James River case study, both the nonlinear kFDA

and SVM provided very good results. They showed robustness to high dimensional input

spaces, in particular for the SVM case study, thanks to the implicit kernel mapping and

the possibility to control the capacity of the classifier.

As it has been observed, the training sample selection issue must be addressed carefully.

While for pansharpened VHR images (GSD of roughly 0.6[m]) the user might be able to

correctly label pixels by photointerpretation, when using medium resolution images even

the most trained and experienced user might fail in correctly assigning labels to pixels.

In this case, terrain campaigns are needed. For the case involving the urban monitoring

task, the addition of discriminant features acted as an additional regularization, penalizing

spatial variability and noise, greatly improving the class discrimination process. However,

adequate training sets must be provided: they should be large enough to be representative

of the class distribution and to provide to the SVM an appropriate number of candidate

support vectors. In this sense, many pixels coming from a large homogeneous region

(further smoothed by spatial filters) would likely provide only a small fraction of support

vectors, while samples coming from more ambiguous and spatially varying areas are likely

to possess more information about the geometrical limits of the correct class separation,

in particular if those possess high variance as in VHR images [Foody and Mathur, 2004].

In this sense, active learning may be an interesting solution. It is a family of iterative

sampling schemes that, on the basis of the classifier confidence, return some unlabelled

samples to the user asking for the label. Then, the model is retrained with the largest set,

until some stopping criterion is met [Tuia et al., 2011; Volpi et al., 2012b]. These schemes

are promising for the data classification, and there is no apparent constraint for their

application in supervised change detection and multi-temporal classification scenarios.

101



6. Supervised change detection

For the flood mapping scenario, it resulted clearly that the precision of supervised

classifier is often counterbalanced by the difficulty of obtaining exhaustive training sets.

However, in many change detection studies one may not be interested in exhaustive maps,

but only in a binary discrimination of the type “change”-“no change”. In the flood map-

ping example, labels only referred to easily discriminable classes: water at the two dates

and general unchanged pixels. This latter class suggested the adoption of the kernel ex-

tension of the FDA, to be able to work with normally distributed classes in the RKHS,

and therefore covariance based operations are effective.

In both cases, the difficulty in correctly labelling pixels appeared evident. For many

change detection applications assuming available labelled information prior to the analysis

is often an unrealistic assumption. In the next Chapter, a completely automatic and

unsupervised approach to change detection is presented, with the aim of contributing to

applications where the readiness of the system is of paramount importance.
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Chapter 7

Unsupervised change detection.

Automatic clustering the

difference image in the RKHS1

This Chapter presents an unsupervised and automatic approach to non-

linear change detecion. First, the kernel-based clustering method is

briefly introduced in Section 7.2. Then, the elements composing the

change detection algorithm, i.e. initialization and hyperparameters opti-

mization, are illustrated in Section 7.2.2 and Section 7.2.3 respectively.

The feature maps studied to perform nonlinear clustering are presented

in Section 7.2.4. Section 7.3 presents the experimental setup, while Sec-

tion 7.4 reviews three case studies involving SPOT, QuickBird and Land-

sat TM exploited to validate the proposed change detection scheme. Fi-

nally, Section 7.5 draws the conclusions.

7.1 Clustering for automatic change detection

As summarized in the state-of-the-art review in Chapter 5, many efforts in change de-

tection research are put into unsupervised methods, which require no or minimal user

intervention in the process. As illustrated in the previous Chapter 6 for supervised multi-

temporal classification, the collection of ground truth samples allowing to correctly train

a model is often very difficult to be properly carried out. In particular, for many change

detection applications related to catastrophes and natural hazards, it is unrealistic to as-

sume the availability of ground truth samples. Moreover, to precisely define transitions

in a supervised context, ground truth samples need to be spatially registered. While it

may be possible to perform terrain campaigns for the most recent acquisition, information

about the landcover prior to the event under study is usually not available.

1This Chapter is based on the following publication: [Volpi et al., 2012b]. See Section 1.3.2 for the

details.
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7. Unsupervised change detection

Therefore, many recently developed automatic change detection systems rely on clus-

tering algorithms to partition the multi-temporal data into changed and unchanged re-

gions. In this Chapter, we introduce an unsupervised approach to change detection relying

on kernels. Kernel k-means clustering is used to partition a selected subset of pixels of

the image, representing changed and unchanged areas with high probability. Once the

optimal clustering is obtained, the estimated representatives (or centroids) of each group

are used to assign all the others pixels composing the multi-temporal scenes to their class.

We review different ways to encode the multi-temporal information and, in particular, we

show the superiority of computing the difference image directly in the RKHS by adopting

a difference kernel approach [Camps-Valls et al., 2008]. Moreover, we propose an effective

way to cope with the estimation of the hyperparameters of the kernel function (e.g. Gaus-

sian RBF bandwidth) in a completely unsupervised way. Experiments on three datasets

(a very high, a high and a medium resolution image) validate the proposed system.

7.2 The proposed unsupervised kernel-based change detec-

tion scheme

The proposed scheme relies on three different steps: (i) initialization, (ii) estimation of the

kernel parameters and clustering, and (iii) final assignment of the pixels to their classes.

7.2.1 A partitioning algorithm: the kernel k-means

The kernel k-means partitioning (KkM) extends the standard linear k-means [MacQueen,

1967] to higher dimensional RKHS denoted as H. Based on the criteria discussed in Chap-

ter 4, the k-means formulation can be expressed solely in terms of inner products between

samples, and consequently kernel functions can replace them as 〈φ(xi),φ(xj)〉 = k(xi,xj).

In clustering problems, we do not dispose of labels during training: the learning set is com-

posed by {xi}ns
i=1 ∈ X only.

Let k denote the total number of desired clusters. The kernel k-means algorithm can

be formulated as the minimization of the loss function corresponding to the sum of squares

of the distance between mapped samples φ(xi) in cluster c, denoted as Xc, to their mean

in H, µH
c = 1

nc

∑
xi∈Xc

φ(xi) [Girolami, 2002]:

L(φ(xi), k) = d2(φ(xi),µ
H
c ) =

k∑
c=1

∑
xi∈Xc

‖φ(xi)− µH
c ‖2. (7.1)

As illustrated in Chapter 4, a distance in the RKHS can be expressed using kernels. In

this case, the distance to the mean of group c is:

d2(φ(xi),µ
H
c ) = 〈φ(xi),φ(xi)〉 −

2

nc

∑
xj∈Xc

〈φ(xi),φ(xj)〉+
1

n2
c

∑
xj ,xl∈Xc

〈φ(xj),φ(xl)〉

= k(xi,xi)−
2

nc

∑
xj∈Xc

k(xi,xj) +
1

n2
c

∑
xj ,xl∈Xc

k(xj ,xl), (7.2)
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7.2 The proposed unsupervised kernel-based change detection scheme

This problem may be solved iteratively, by alternating the computation of d2(φ(xi),µ
H
c )

and then reassigning the samples to the closest center, until convergence [MacQueen, 1967].

Since the coordinates of φ(xi) are used implicitly and are not explicitly known, we can not

obtain the true cluster center. We approximate the centroid as the sample of cluster c clos-

est to its true center in the feature space µH
c ∈ H, i.e. xc = arg minxi∈Xc

d2(φ(xi),µ
H
c ).

After the final centroids xc are obtained, a new unseen sample x is assigned to the

cluster c whose centroid is the closest, as arg minc d
2(φ(x),φ(xc)). This last expression

can be seen as a kernel minimum distance classification, with the class representatives

estimated by the kernel k-means. As for many iterative partitioning clustering algorithms,

the initialization of the cluster centroids strongly affects the convergence to the global

minimum of the cost function. If the algorithm is initialized in a suboptimal manner, it

may happen that the convergence is reached at a local minima of the cost function. In the

next Section, we present a strategy able to initialize in a robust manner the partitioning.

7.2.2 The initialization

In an optimal situation, cluster centers should be initialized close to the true represen-

tatives of the group structure of samples. In a supervised context, empirical estimates

of such representatives can be obtained by computing the class average or mode. Since

we do not dispose of label information, a suboptimal partitioning of the multitemporal

image allowing a correct unsupervised selection of training samples – a pseudo-training

set – is adopted. This way, information on the change detection problem can be included

to alleviate the issue of bad initializations. This procedure returns a set of pixels expected

to belong to the two classes (change and no-change, respectively ym and yl) with high

confidence. This is performed by selecting two subsets of the original bi-temporal data

on the basis of the statistical distribution of the difference image magnitude. Using this

pseudo-training set, the centroids of the clusters are estimated using the kernel k-means,

used in the following to partition the rest of the bi-temporal images.

Let Xt1 and Xt2 be the n×d (n pixels and d spectral channels) coregistered and radio-

metrically matched images at times t1 and t2. The magnitude of the ith pixel is computed

on the basis of the `2-norm of the d-dimensional difference image D as introduced in Sec-

tion 2.3.1. In this unidimensional representation, low values (ideally near 0) correspond

to unchanged pixels, while large values (usually larger than a given threshold) correspond

to pixels whose radiometric differences indicate a change between the two acquisitions.

This distribution can be approximated by a mixture of two univariate Gaussian distribu-

tions [Bruzzone and Fernandèz-Prieto, 2000], as p(δ) = p(ym)p(δ|ym)+p(yl)p(δ|yl), whose

parameters can be estimated using the Expectation-Maximization algorithm [Dempster

et al., 1977]. Since image noise, differences in illumination and in particular outliers can

affect the tails of the magnitude distribution (e.g. the tail of p(δ|ym) may represent false

changes related to saturated pixels), we choose the pseudo-training samples in the most

dense regions of the distribution, by selecting a threshold proportional to the standard

deviation around the means of the components of the bimodal distribution. The sketch of
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yl ym δ

p(δ)

Figure 7.1: Magnitude-based initialization of the kernel k-means - Threshold of

the magnitude of the difference image to obtain a raw initialization of samples belonging to

changed areas ym and unchanged zones yl.

the proposed initialization is illustrated in Figure 7.1 .

To lighten the computational load, a random subset sufficiently large of the selected

regions of p(δ) can be chosen without losing the representativeness. The KkM applied

to this subset returns the centroids of the samples closest to the cluster mean in the

RKHS. As mentioned in the previous Chapter, and as illustrated in [Bach and Jordan,

2002b; Cremersa et al., 2003], the use of a Gaussian RBF kernel makes the assumption of

Normality in the RKHS consistent. In this case, samples closest to the mode of the cluster

in RKHS will show a kernel value close to one, while for tails of the cluster, such value

decreases. Ideally, the similarity between modes has to be zero. Therefore, errors and

noise included in the pseudo-training set, if they are only a fraction of the total number of

samples, should be placed in the tails of the distribution. The KkM should return centroid

consistent with the densities of problem at hand, provided a good hyperparametrization.

Since the final class assignment is performed in the same RKHS the retrieved centroids

are still adequate for the successive classification.

7.2.3 The unsupervised cost function

As for all the kernel-based algorithms, the choice of the kernel hyperparameters plays a

central role for the success of the method. When dealing with labelled data, i.e. in a

supervised framework, the parameters can be estimated by minimizing an error function

over a given subset for example by adopting leave-one-out or cross-validation estimations,

as introduced in Chapter 3. In unsupervised problems, as the one considered here, the

issue of fitting hyperparameters is usually addressed by expert knowledge or by trial and

error. To avoid such a heuristic strategy and to obtain an objective and data driven

solution, we propose to fit the kernel hyperparameter(s) Θh by optimizing a geometrical

criterion. Such a function favours mappings enhancing geometrical configurations adapted

to the partitioning task, which in the case of KkM corresponds to the definition of far

clusters (high between-cluster distance) showing low within-cluster variance. We propose

to minimize the difference between the average within-cluster distances from each center

and the between-cluster distance in the RKHS.
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7.2 The proposed unsupervised kernel-based change detection scheme

As illustrated in the previous Chapter 6 for the kernel Fisher’s discriminant classifier,

this situation is optimal to discover the class structure in the RKHS. In this case, no

labelled information is available to extrapolate such measure from the data at hand. By

exploiting the partitioning provided by the KkM, the cluster centroids are used to evalu-

ate this geometrical loss. The set of kernel hyperparameters Θh satisfying the following

relationship are retained:

arg min
Θh

1

n

k∑
c=1

∑
xi∈Xc

d2(φ(xi),µ
H
c )−

∑
c6=q

d2(µH
c ,µ

H
q ). (7.3)

Equation (7.3) is evaluated by subsequent runs of the KkM using the same initial pseudo-

training samples and varying the set of kernel free parameters Θh. The hyperparameters

minimizing the above expression are retained, and the corresponding centroids are used

to partition the multi-temporal dataset into changed and unchanged classes. Note that

the KkM maximizes by definition the distance between the cluster centers, and, since the

partitioning is performed using the isotropic distance function, an hypersphere defines

the labellings of the samples closest to their center of mass. The optimal situation for

clustering is obtained when finding the kernel hyperparameter that offer an optimal trade-

off between the clusters compactness, i.e. the average of the hypersphere radius, and the

maximization of the distance between the centroids. By analyzing the above formulation,

underfitting may be defined as the situation in which the implicit map performed by the

kernel function projects samples into a space overestimating the similarities and resulting

distances are null, e.g. all the samples are equally similar in H (e.g. using very large σ

for a Gaussian RBF). On the contrary, a situation in which samples are similar only to

themselves is likely to provide a feature space in which clusters are not separable. In this

case, all the samples are scattered around their mean which are mutually superimposed.

This situation is likely to be provided by a too small σ parameter.

Note that, even if exact coordinates of µH
c ∈ H are not retrievable, exact distances

between two mapped samples and between the two centers can be obtained, as illustrated

by Equation 7.2 and as discussed in Section 4.2.2. It is worth observing that the pro-

posed cost function is independent on the form of the kernel function adopted, and the

geometrical tenet holds for different kernels, their combinations and multiple parameters.

However, the use of Gaussian RBF kernels should enforce the properties of the KkM in

the RKHS, that is, the cluster normality. In its linear version, the k-means is globally

optimal only when samples are generated according to Gaussian distributions.

7.2.4 Feature maps

In addition to the kernel parameters, the temporal information must be correctly encoded

to detect changes accurately. In this Section we present two kinds of feature maps used for

automatic change detection: the first correspond to mapping into the RKHS the standard

difference image, while the second defines the difference image directly into RKHS.
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7. Unsupervised change detection

Difference image in the input space. To perform this mapping, images are first

subtracted pixelwise to obtain D ∈ X (see Section 7.2.2). The difference pixels xd are

mapped to H as φ(x) = φ(xd). This approach aims at defining a multivariate threshold,

similarly to CVA, that discriminates changes (linearly or not linearly depending on the

type of mapping function used) on a linear combination of the images in their input spaces

known to emphasize changes occurred between the two acquisitions (see Section 2.3.1).

Although this approach is widely used, nonlinear relationships hidden in single images and

in the bi-temporal dataset cannot be discovered and correctly modelled. Problems related

to the ambiguity of the difference image can affect the process, since the same difference

values may be either related to actual processes occurred on the ground or to radiometric

differences not related to land cover transitions.

Difference image in the feature spaces. This feature map is built explicitly to ac-

count for linear and nonlinear dependencies between the single and the bi-temporal pixels.

This mapping function computes the difference image in the higher dimensional feature

space, known to enforce linear relationships among the different structures in the data.

The RKHS feature vector φ(·) corresponding to the difference pixel induced by (possibly

different) mappings of uni-temporal pixels ϕ(·) can be defined, for a given sample xi, as:

φ(xi) = H(t2)ϕ(x
(t2)
i )−H(t1)ϕ(x

(t1)
i ), (7.4)

where H{t1,t2} are positive and symmetric projection matrices to match the feature map-

pings. Then, the similarity of two difference vectors in feature spaces φ(xi) and φ(xj)

is evaluated by 〈φ(xi),φ(xj)〉. By solving the inner product with Equation (7.4), and

exploiting the closure properties introduced in Section 4.2.4, we obtain the corresponding

kernel evaluating the similarity among pixels composing the difference image in the RKHS:

k(xi,xj) = 〈φ(xi),φ(xj)〉
=
〈(

H(t2)ϕ(x
(t2)
i )−H(t1)ϕ(x

(t1)
i )

)
,
(
H(t2)ϕ(x

(t2)
i )−H(t1)ϕ(x

(t1)
i )

)〉
= ϕ(x

(t2)
i )′H′(t2)H(t2)ϕ(x

(t2)
j ) +ϕ(x

(t1)
i )′H′(t1)H(t1)ϕ(x

(t1)
j )

−ϕ(x
(t2)
i )′H′(t2)H(t1)ϕ(x

(t1)
j )−ϕ(x

(t1)
i )′H′(t1)H(t2)ϕ(x

(t2)
j )

= ϕ(x
(t2)
i )′H′(t2)ϕ(x

(t2)
j ) +ϕ(x

(t1)
i )′H′(t1)ϕ(x

(t1)
j )

−ϕ(x
(t2)
i )′H(t2,t1)ϕ(x

(t1)
j )−ϕ(x

(t1)
i )′H(t1,t2)ϕ(x

(t2)
j )

= k(x
(t2)
i ,x

(t2)
j ) + k(x

(t1)
i ,x

(t1)
j )− k(x

(t2)
i ,x

(t1)
j )− k(x

(t1)
i ,x

(t2)
j ) (7.5)

Kernel functions composing the above expression can be of different nature and form,

since no restriction has been put on ϕ(·). The difference kernel needs the estimation

of the corresponding parameters (e.g. 4 bandwidths when using 4 RBF kernels). The

cost function proposed in Section 7.2.3 depends only on the cluster assignments and can

be used directly to estimate multiple parameters of different kernels. However, the ker-

nels composing Equation (7.5) can be grouped in two categories, uni-temporal kernels –
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Figure 7.2: The block diagram of the proposed change detection scheme.

k(x
(t1)
i ,x

(t1)
j ) and k(x

(t2)
i ,x

(t2)
j ) – and cross-time kernels – k(x

(t1)
i ,x

(t2)
j ) and k(x

(t2)
i ,x

(t1)
j )

– their parameters are assumed to be shared and in the experiments reported only a search

among 2 kernel hyperparameters Θh = {θ single
h , θ cross

h } is performed.

7.3 Experimental setup

Three multi-temporal images are considered for testing the unsupervised scheme: The

Gloucester flooding, the Brüttisellen 2 and the Greek islands subsets, detailed in Appendix

B. In Figure 7.2 the main steps of the proposed system are summarized.

In order to test the sensitivity of the proposed approach to initial conditions, different

initial pseudo-training sets have been considered by sampling different quantities of pixels

to define ym and yl. After experimental evaluation, we report results only on a single set

size, since many pseudo-training samples can be obtained at zero cost once the thresholds

are estimated, and a plateau effect on the accuracy was observed for sets larger that the

ones considered, for each multi-temporal pair of images. It is recommended to sample a

balanced number of pixels to cover data variability but also to allow fast computations,

regulated by the computation and storage of the kernel matrix. For all the nonlinear cases,

Gaussian RBF kernels were adopted. RBF bandwidths are optimized in the interval in

{0.1, 0.2, . . . , 10} using the cost function defined in Equation (7.3). In order to have robust

statistical estimates of the accuracy, 10 runs of each experiment have been performed (each

one considering a different realization of the pseudo-training set over the modes p(δ)).

The average of the skill scores and its standard deviation are reported. For each scene, a

ground truth has been visually extracted in order to validate the outcomes of the change

detection schemes. Overall Accuracy (OA), estimated Cohen’s κ statistic [Foody, 2004],

ROC Curve, Area Under the ROC Curve (AUC) [Fawcett, 2006] and adjusted Rand index

(AR) [Rand, 1971] are used as figures of merit (see Appendix A for a list). Change maps
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are produced as the sum of the clustering outcomes, with values for each pixel ranging

from 1 to 10. The colour ranges from black (the pixel was never classified as changed), to

white (the pixel was always classified as changed). Then, from darker to brighter colours,

it indicates how many times the pixels have been detected as changed (e.g. purple means

1 out of 10, orange 5 out of 10).

The proposed approaches are tested versus the linear counterpart of the considered

mappings (both resulting in standard k-means on the difference image) providing a baseline

accuracy, and against two automatic change detection methods: the standard CVA [Bovolo

and Bruzzone, 2007] and the approach presented in [Celik, 2009a]. The former puts a

threshold in the magnitude distribution as in [Bruzzone and Fernandèz-Prieto, 2000]. The

latter relies on a patch-based PCA transformation of the difference image of the intensities

followed by standard binary k-means. Additionally, tests using the fully supervised SVM

classifier introduced in Section 6 are also provided, defining a best possible scenario, with

models trained with the same number of samples used for testing the proposed KkM but

coming from pre-defined ground truth regions. Since the approach of [Celik, 2009a] is

designed for univariate intensity images, an investigation to select the best unidimensional

representation of changes has been carried out: among single band differences and the

magnitude, the latter resulted in higher accuracies and has been used in the experiments.

7.4 Results and experimental validation

7.4.1 Case studies

The Gloucester flooding (DFC dataset). The pseudo-training sets are composed by

500 randomly selected pixels, 250 per mode of the magnitude distribution. By observing

figures of merit reported in Table 7.1, the Diff. Lin. approach shows a relatively high

κ value coupled to the lowest standard deviation, indicating that it is the most stable

approach. It also exhibits a high AUC value, suggesting a low missed detections rate,

confirmed by the ROC curves in Figure 7.4(a). The nonlinear Diff. RBF accuracy suggests

that nonlinearly cluster the difference image did not improve significantly the change

detection process, if compared to the Diff. Lin. The Ker. Diff. RBF approach is the

most accurate and it illustrates clearly the improvements when considering the difference

image representation in the feature spaces. The κ score increased by 0.065 with respect to

the Diff. RBF. Standard CVA and the approach from [Celik, 2009a] provided the lowest

accuracies, caused respectively by the high false alarm rate and by the weak detection rate.

Supervised SVM outperformed all considered change detection approaches, except for Ker.

Diff. RBF, which shows equal accuracy but higher standard deviations. It underlines the

good performances of the change detection computed in the difference image in RKHS,

without exploiting any label.

Change maps are reported in Figure 7.3, Gloucester (a)-(f), corresponding to the sum

of the 10 independent binary maps. By observing the change maps, the Ker. Diff. RBF is

characterized by the lowest false alarm rates, making it the most accurate approach, as il-
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Diff. Lin. Diff. RBF Ker. Diff. RBF CVA [Celik, 2009a] SVM

OA 87.49 (1.63) 87.72 (1.71) 90.93 (2.04) 48.52 (-) 80.31 (-) 90.83 (0.36)

κ 0.749 (0.03) 0.754 (0.04) 0.819 (0.04) 0.527 (-) 0.609 (-) 0.817 (0.01)

AUC 0.952 (0) 0.955 (0.01) 0.975 (0.01) 0.864 (-) 0.896 (-) 0.967 (0.01)

AR 0.563 (0.05) 0.570 (0.05) 0.672 (0.07) 0.293 (-) 0.367 (-) 0.667 (0.01)

Table 7.1: Figures of merit for the automatic change detection methods for the

Gloucester dataset - The most accurate and the second most accurate are outlined in bold

and italic, respectively.

lustrated in Table 7.1. Maps of the supervised SVM are very similar to the aforementioned

ones, but providing a much lower standard deviation of the outcomes, visually defined by

the predominance of black and white colours in the sum-of-changes map. By comparing

the obtained maps to the CVA, it is visible that the improvements in accuracy are given

by the lower commission errors, that greatly penalised the CVA. Finally, the approach of

[Celik, 2009a] indicated clearly where changes occurred, but at the price of strong spatial

smoothing, highlighting the difficulty of finding a trade-off between the filtering of noise

and consideration of spatial context to remove false detections and preservation of the

geometrical resolution of the original images.

Brüttisellen subset. For this case study involving again a Zurich neighbourhood, since

the images are smaller, 100 random pixels per mode of the histogram are selected. The

same number of samples has been used to train the SVM. Globally, on the average, all

the tested approaches provided very good results, except for the CVA and the approach

presented in [Celik, 2009a], as illustrated in Table 7.2. By observing the difference between

the Diff. Lin. and Diff. RBF, it appears that nonlinear clustering provides a smoother

solution, in the range of 0.11 κ better. As for the previous case study, the Ker. Diff. RBF

provided the highest accuracy among the unsupervised approaches, this time with a very

low standard deviation. Its accuracy further improves the Diff. RBF by 0.1 κ and results

only 0.02 points inferior to SVM. As for the previous case study, although valid approaches

to highlight main changes, CVA and the approach of [Celik, 2009a] result in the poorer

performances. CVA suffers from the ambiguity of the representation, and the method from

[Celik, 2009a] again suffers from a very hardly tunable balance of the spatial smoothing

at the price of the preservation of the geometrical accuracy. In this case, note that the

ground truth used for testing the method, in particular for the class “change”, respects

well the geometry of the objects and consequently penalizes spatial over-smoothing.

By comparing the change maps in Figures 7.3, Brüttisellen 2 (a)-(f), the same obser-

vations made by analyzing the figures merit are remarked. In particular, the low standard

deviation and very high accuracy of the Ker. Diff. RBF and of the SVM provided the best

maps. SVM further reduced false alarms and differences between outcomes. In general,

the most accurate approaches improve the maps by providing lower rates of false alarms.

This observation is underlined also by looking at the ROC curves in Figure 7.4(b). How-
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Diff. Lin. Diff. RBF Ker. Diff. RBF CVA [Celik, 2009a] SVM

OA 91.13 (16.1) 95.13 (12.24) 98.60 (0.3) 95.67 (-) 86.35 (-) 99.48 (0.02)

κ 0.752 (0.46) 0.867 (0.35) 0.968 (0.01) 0.903 (-) 0.651 (-) 0.988 (0)

AUC 0.998 (0) 0.986 (0.04) 0.999 (0) 0.978 (-) 0.893 (-) 0.999 (0)

AR 0.750 (0.42) 0.859 (0.32) 0.944 (0.01) 0.832 (-) 0.505 (-) 0.979 (0)

Table 7.2: Figures of merit for the automatic change detection methods for the

Brüttisellen 2 dataset - The most accurate and the second most accurate are outlined in

bold and italic, respectively.

ever, for the couples Ker. Diff. RBF - SVM and Diff. Lin. - Diff. RBF the differences

in the selected run (an average performance of Ker. Diff. RBF ) are too close to make

general conclusions.

Greek island. For these experiments, 100 samples (50 per mode) compose the pseudo-

training set. As for the previous case, the smallest set reaching the plateau in accuracy is

reported. The numerical performances illustrated in Table 7.3, indicate that the Diff. Lin.

approach performed better than its nonlinear counterpart, thanks to an improved detection

rate. However, its standard deviation is higher, indicating that in one or more runs the

algorithm converged unevenly to different solutions. The Diff. RBF approach provided

the most stable solution among the proposed methods. Again, nonlinear partitioning of

the difference image in the input space, as for the first case study, did not significantly

improve the change detection process. The Ker. Diff. RBF approach is again the most

accurate among unsupervised methods, confirming the better representation for the change

detection problem. For this method, the κ score increased of a sharp 0.22 κ points with

respect to the Diff. RBF method. The methods used for the comparison showed again

lower accuracy, confirming the complexity of the scene composed by a large region of

water, strongly clustered in the spectral domain, and by changes related to a small patch

of burned forest. The approach of [Celik, 2009a], even with a smaller accuracy, provided

less missed detections and more false alarms than the CVA. This is also visible in the ROC

curves reported in Figure 7.4(c). SVM are again the best approach, suggesting that the

use of the labels to fit a separating boundary obviously improves the detection rate. This

contrast when exploiting supervision may be caused by a slightly multi-modal distribution

for the class of changes, not harming the SVM.

The change maps shown in Figures 7.3, Greek Island (a)-(f), clearly illustrates the

strength of the proposed approach: by using nonlinear clustering and in particular by

adopting the better representation provided by the Ker. Diff. RBF, small deviations to

the unchanged class can be clustered as such, making the detection of large deviations,

corresponding to changes, more accurate. In this case, both the CVA and the method of

[Celik, 2009a] suffered from the not normalizable differences that appeared on the island,

that make the standard difference image and the magnitude suboptimal due to ambiguity

in the representation. Therefore, methods relying solely on the magnitude are supposed
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Figure 7.3: Change maps for the three different datasets using the proposed

automatic kernel-based framework - For each dataset, the maps correspond to: (a) the

Diff. Lin approach, (b) the Diff. RBF, (c) the Ker. Diff. RBF, (d) the CVA, (e) the approach

proposed by Celik [2009a] and finally (f) refers to the map obtained by SVM.
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Diff. Lin. Diff. RBF Ker. Diff. RBF CVA [Celik, 2009a] SVM

OA 86.54 (1.24) 85.57 (0.37) 88.77 (1.3) 77.84 (-) 76.90 (-) 99.44 (0.47)

κ 0.607 (0.04) 0.573 (0.01) 0.793 (0.02) 0.516 (-) 0.503 (-) 0.818 (0.02)

AUC 0.964 (0) 0.958 (0) 0.968 (0) 0.872 (-) 0.894 (-) 0.979 (0)

AR 0.484 (0.04) 0.448 (0.01) 0.582 (0.03) 0.310 (-) 0.286 (-) 0.818 (0.02)

Table 7.3: Figures of merit for the automatic change detection methods for the

Greek Island dataset - The most accurate and the second most accurate are outlined in

bold and italic, respectively.

to provide worse results than other approaches, as the latter fully exploit the information

content of the data. The map issuing from the SVM is again the most accurate, with the

lowest deviation from one map to the other.

7.4.2 The cost function

As introduced previously, the final outcome of many kernel methods strongly depends

on the hyperparameters of the kernel function, here optimized by the geometrical loss

described in Section 7.2.3. Recall that the proposed cost function can be adopted for any

kind and number of kernel functions, since it relies only on distances.

In this part, we study the properties of the cost function proposed, by analyzing it

when applied to the Gloucester dataset. As illustrated in the Figure 7.5, the minimization

of the proposed cost function corresponds to the correct kernel parameters in terms of

accuracy, as illustrated by the figures of merit for the three different case studies. For

the optimization in the Diff. RBF case (illustrated in Figure 7.5(a)), the fitted values are

around the average Euclidean distance of the pixels of the difference image in standard

scores, corresponding to 2.43. By observing the plot of the distances related to the cost

function, the role of the RBF bandwidth is understandable, since it relates directly to

distances. For small σ values the clusters are not separable, since mapped in a space
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Figure 7.4: ROC curves for the three datasets used in the automatic change

detection experiments - (a) Gloucester, (b) Brüttisellen 2 and (c) Greek Island.
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Figure 7.5: Unsupervised cost function example - It depicts a single random run on the

Gloucester dataset: (a) line search of kernel bandwidth for the Gloucester case study, input

space difference image setting, and (b) grid search of the difference kernel parameters. In (a)

the minimum corresponds to σ = 2.2. In (b) the white circle indicates the minimum of the

cost function, corresponding to θsingle = 1.9, θcross = 1.3.

where their shape is arbitrary and the average distance to the center is maximal (equal to

1 for the Gaussian RBF function), they lead to a situation of overfitting. Moreover, the

distance between the two centers is 0, making low sigma values become bad candidates

for the clustering step. In this case, the similarity is underestimated and each pixel is

similar only to itself. For larger hyperparameters, the similarity is overestimated and the

clusters are mapped again very close one to each other (distance between clusters near 0)

in small punctual clusters (average distance near 0). The optimal separability between

clusters indicated by the minimum of the cost function is reached when the parameter is

in the range of the average Euclidean distance, correctly encoding the local similarities of

the samples. The hyperparameter minimizing the function is close to the one producing

the best trade-off between distance of the centers and compactness of the clusters.

For the difference kernel approach, the training set pixels at t1 are distant on the

average 1.81 between themselves, while at t2 1.99. The optimal RBF bandwidth of the

single time kernels is of 1.9, respecting the average distance among samples. For the

cross-kernels, different values are automatically chosen depending on the dataset and the

covariance between times. For the Gloucester case study, smaller parameters (with respect

to the single-kernel ones) are often selected. The surface of the cost function value in

Figure 7.5(b) indicates that, for the difference kernel approach, an optimal separability is

reached (the cost function is lower than 0 for the chosen combination) and the empirical

analysis carried out in the next paragraphs indicates that the situation is optimal also in

terms of the accuracy provided by the cluster representatives retained.

115



7. Unsupervised change detection

7.4.3 Cluster separability

To better understand the influence of the mapping function within the partitioning scheme,

Figure 7.6 illustrates the distance of each pixel to the two estimated cluster centroids.

Recall that in KkM algorithm the exact coordinates of the centers are not retrievable,

but exact distances from them can be obtained easily, as depicted by Equation (7.2).

To cluster data, the centroids are used as an approximation of the coordinates of the

true center, since they are the samples closest to the cluster mean in the RKHS. In this

case, the distance from the representative is encoded in two different ways: the first is to

compute the distance between the samples belonging to the difference image in the original

input space after the projection into the RKHS, while the second evaluates the distance

of the centroids to the pixels of the difference image computed directly into the RKHS.

As introduced in Chapter 4, this should provide a better representation of the data, in

particular since it is assumed that the relationships between the multi-temporal data are

linearized in the RKHS. The actual average distances of the samples to each centroid and

the distance between centroids can be used as a measure of the cluster separability, as for

the cost function presented above.

The distances to the means of the estimated components of the mixture of univariate

Gaussian distributions (the CVA case) are illustrated in Figure 7.6(a) as well as the map

issued from the thresholding and the corresponding estimated κ statistic. In Figure 7.6(b)

and Figure 7.6(c) the distances to the centroids by using respectively the Diff. RBF

and the Ker. Diff. RBF are shown. Note that, since the algorithms work distances

computed in different spaces, the estimated final centroids may also differ. The advantages

of using the difference image computed in the RKHS appears clearly by observing the

improved contrast in the values of the flooded region. For the cluster corresponding to

changed regions the distances of the pixels to their representatives are low. In parallel, the

separation with respect to the other centroid is larger and consequently it corresponds to a

generalised improvement in the clustering solution. This uniformity in estimating correctly

the cluster related to unchanged pixels is the reason of the strong decrease of false alarms

when compared to the Diff. RBF of Figure 7.6(b). For this method the two clusters

are less separable, generating a large number of field patches incorrectly clustered. As an

example, note the differences for the unchanged areas visible in the upper right and lower

right parts of Figure 7.6(b)-(c) respectively. In these areas, the Diff. RBF provides noisy

outcomes and, as in the region between the two arms of the river, gives worse results than

the CVA. However, globally, it yields less false alarms. These observations further support

the intuition issuing from the experiments on the three datasets, i.e. nonlinear models

strongly improve the accuracy of the change detection thanks to a better delineation of

unchanged pixels.

116



7.5 Conclusions

CVA Diff. RBF Ker. Diff. RBF

c
=

1
c

=
2

M
a
p

κ = 0.527 κ = 0.757 κ = 0.825

(a) (b) (c)

Figure 7.6: Separability of clusters in the input space and in the RKHS - In (a) the

distances and the map of the CVA, running in the original input space, while in (b) the Diff.

RBF approach, relying on the difference image mapped to the RKHS. Finally, (c) depicts the

process of computing and clustering the difference image directly into RKHS, the Ker. Diff.

RBF. In the first row the distance to the “change” cluster representative is illustrated, while

in the second the distance to “no change” centroid is mapped. The corresponding map as well

as its estimated κ statistics are shown in the third row. For each method, colors are scaled so

that relative distances within a dataset are comparable.

7.5 Conclusions

This Chapter presented an automatic kernel-based approach to unsupervised change de-

tection. By exploiting a proper initialization, the kernel k-means partitioning algorithm is

used to estimate the centroids representing the clusters of interest, namely, changed and

unchanged regions. The main issue related to the estimation of the kernel hyperparame-

ters has been tackled by encoding a geometrical criterion, favouring dense and far clusters,

into a function showing the minimum when this convenient geometrical representation is

achieved. Kernel hyperparameters enforcing this profitable situation are then utilized to

partition the whole bi-temporal image and to consequently generate the change map.

When estimating the similarity between pixels composing the difference image in the

feature spaces (the Ker. Diff. RBF approach) performances are much better than simply

clustering the original difference image using either linear or nonlinear models. This

indicates that a better representation can be obtained by considering simultaneously single-

and cross-time relationships among the pixels composing the multi-temporal scenes. As a

consequence, the decrease in false alarms rate is stronger, as the use of separate kernels

better depicts the nature of the change detection problem: single time kernels observe the
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similarity of the pixels at the single times separately. For a same couple of samples, a

different value of these kernel functions indicates that a change probably occurred. Cross-

time kernels quantify the similarity of the same pixels but across the two acquisitions,

indicating if both samples have changed (thus regularizing possibly large values of both

single time kernels) or if only one pixels changed. Moreover, the cross-kernels account

also for global differences between the acquisitions, such as illumination conditions and

slightly different atmospheric situations. Even though the approach may seem complex,

no user intervention is required, and the partitioning of large images (the Gloucester flood

dataset is composed by 1,234,608 pixels) can be achieved in a couple of minutes, by using

no particularly efficient implementation.

Further research might be spent to investigate spatial contextual relationships and their

influence in kernel-based change detection. By exploiting the composite kernel framework

exploited in this Chapter, contextual and multi-scale approaches [Bovolo, 2009] can be

included in the process by combining the specific kernel functions, as proposed in [Camps-

Valls et al., 2006, 2008] or in [Tuia et al., 2010a]. Furthermore, kernel functions encoding

different aspects of the problem (e.g. single-time information, cross-information, cross-

spatial, spectral-spatial) can be built depending on the user requirements, the type of

changes and their direction (class type), allowing the application of this change detection

system to large VHR images, in which the exploitation of the spatial context is crucial to

solve these complex scenes.
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Chapter 8

Statistical alignment for change

detection using nonlinear feature

extraction methods1

This Chapter presents two approaches for relative radiometric normal-

ization. Section 8.1 introduces to the general task or relative alignment.

In Section 8.2 we consider an approach matching unchanged pixels from

the multi-temporal images through the use of the kernel PCA. In Sec-

tion 8.3, an extension of the former approach for heterogeneous domains

is presented. This method allows the computation of the difference image

without renouncing to any available information, even when using im-

ages from different sensors. Finally, Section 8.4 draws some concluding

considerations.

8.1 Adjusting radiometric differences

In this Chapter we propose two methods for relative radiometric normalization for change

detection in remote sensing images. These methods may be utilised as a preprocessing step,

that has to be applied before change detection algorithms. As introduced in Section 2.3.3,

there exist different methods to transform the data prior to the analysis, so that unchanged

samples are the most similar among themselves. We recall the use of physical models to

retrieve pixels absolute reflectance values, not needing additional relative compensations.

However, as introduced in Chapter 2, the use of such models is costly and require a large

amount of prior information. Due to their simplicity and good performance, statistical

methods matching the pixel distributions from the two images are gaining interest. The

underlying assumption is that for unchanged pixels the statistical distribution generating

the data is the same, and the occurred shifts are only due to external factors that can be

1This Chapter is based on the following publications: [Volpi et al., 2012a], [Volpi et al., 2013a] and

[Volpi et al., 2013b]. See Section 1.3.3 for the details.
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compensated and corrected by an alignment approach. In other words, we can state that

the pixel density shifted, while conditional distributions of unchanged areas remain the

same on both images, i.e. p(xt1 |yl) = p(xt2 |yl) [Quiñonero-Candela et al., 2009].

Among the different methods aiming at aligning the image distributions, we recall

the use of the widely applied histogram matching, introduced in Section 2.3.3. Despite

of it is simplicity, histogram matching completely disregards the multi-variate nature of

remote sensing images, the band covariance and higher order statistics when matching

the distributions. To this end, Inamdar et al. [2008] proposed an approach matching the

multi-variate image histograms. Moreover, depending on the type and size of changes, one

may want to manually select unchanged regions to perform the statistical alignment, in

order to not contaminate the relative matching with changed pixels. Another widely used

family of methods, to which the approaches presented in this section may be related, are

the (multi-variate) linear regressions, aiming at predicting the values of the second image

pixels starting from those of the first, on the basis of some examples of unchanged areas

[Heo and Fitzhugh, 2000; Singh, 1989]. A last approach aiming at matching the multi-

variate values of the remote sensing images rely on the graph matching strategy [Conte

et al., 2004; Tuia et al., 2013a]. In this case the goal is to match the pixels living on the

manifold of each image by local shifts of the data cloud.

However, in both cases, the involved relative normalization may hardly accommodate

all the differences that do not correspond to changes, in particular if those are large. In

particular, seasonality effects, shadows and different illumination conditions may introduce

not normalizable differences or enforce nonlinear relationships, for instance by occlusions,

between the multi-temporal images [Theiler and Perkins, 2007]. In this sense, methods

relying on image differencing, that despite the enticing simplicity is a delicate operation,

are prone to fail or to provide suboptimal change maps if the aforementioned issues are

not specifically addressed. Even if image histograms are matched, such not normalizable

radiometric differences introduce disturbances in such representation. As a consequence,

the ambiguity problem of the difference image may be enforced increasing the overlap

of the “change” and “no change” class distributions, making the detection of absolute

transitions more difficult.

In the following, we propose two methods: the former aligns unchanged pixels values on

the direction of maximal variance using the PCA. The issues related to the nonlinearity

of the data samples in the temporal component of the images are solved by adopting

the kernel extension, i.e. the kernel PCA (kPCA). The second considers the problem

of change detection with different (optical) sensors. To this end, the kernel canonical

correlation analysis (kernel CCA, kCCA in short) is adopted.

8.2 Relative radiometric normalization using kernels

As introduced in Section 5.4, feature extraction methods in change detection systems may

be used in two different ways: (i) by enhancing explicitly the signal of the changed classes,

possibly using some available examples and then thresholding the component explaining
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the most of the changes [Gianinetto and Villa, 2007; Gómez-Chova et al., 2012; Marchesi

and Bruzzone, 2009; Nielsen and Canty, 2008], or (ii) by applying a feature extraction /

regression methods to perform a relative radiometric normalization and detect changes in

a separate step [Heo and Fitzhugh, 2000; Nielsen, 2002, 2007; Singh, 1989]. In this Section,

we propose an approach to perform a (nonlinear) statistical alignment of the unchanged

areas, by adopting a framework issuing from the domain adaptation literature [Pan and

Yang, 2010; Pan et al., 2011; Quiñonero-Candela et al., 2009]. These last approaches may

be categorised in the feature-representation-transfer family, whose aim is to learn a new

latent representation for the datasets in which tasks may be transferred from one domain

to the other without losing performance.

By following the above literature, we exploit the kPCA [Schölkopf et al., 1998; Shawe-

Taylor and Cristianini, 2004] to find a common mapping of the images, where the diver-

gence between the probability distributions of unchanged pixels is reduced.

8.2.1 The kernel principal component analysis

The kPCA is the dual version of the PCA, that aims at finding a rotation of the data

that maximizes the variance of the projections Xw, under an orthogonality constraint

w′w = 1. For a centred data matrix X ∈ Rn×d (i.e. with a mean equal to 0), the PCA

can be defined in its primal form as:

arg max
w

(Xw)′(Xw)

w′w
=

w′X′Xw

w′w
=

w′Sw

w′w
, (8.1)

where S is the scatter matrix (unnormalized variance) of the data in X. As for the kFDA

in Chapter 6, the ratio is optimized by the direction and not by the norm of w. It is

possible to reformulate the Rayleigh ratio in Equation (8.1) by exploiting that w′w = 1

simply as:

arg max
w

w′Sw

s.t. w′w = 1. (8.2)

In this case, note that the only difference to kFDA is the constraint w′Nw = 1, that

imposes the orthogonality in the anisotropic metric defined by N [De Bie et al., 2004].

Since N corresponds to the within class scatter, this reduces to constrain the solution to

lie in the direction of the minimal within class variance. For the PCA, N = I, which makes

the w follow the direction of the maximal variance. Practically, the PCA can be easily

oriented by replacing the identity matrix in the orthogonality constraint with some positive

definite matrix. For instance, by adding the noise covariance w′Snoisew = 1, we obtain

the minimum-noise-fraction transformation (or noise oriented PCA) for uncorrelated noise

(diagonal Snoise) or correlated (full Snoise) [Green et al., 1998; Mika, 2002].

By introducing the Lagrange multipliers, Equation 8.2 can be rewritten as:

L(w,λ) = w′Sw − λ(w′w − 1). (8.3)
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8. Feature extraction for change detection

At the optimality the derivative with respect to the parameters vanishes:

∂L

∂w
= 2Sw − 2λw = 0, (8.4)

which can be solved easily by the following system of linear equations, the symmetric

eigendecomposition:

Sw = λw (8.5)

where w are the weight vectors of the projection of the data samples into the directions of

maximal variance (eigenvectors) and λ is a diagonal matrix of eigenvalues corresponding

to the value of the objective function (the scaled variances).

To obtain the kernel formulation, Equation 8.5 is transformed to the dual problem,

by replacing w with the expansion X′α, and by left-multiplying with X. This gives the

following:

Sw = λw

SX′α = λX′α

XSX′α = λXX′α (8.6)

XX′XX′α = λXX′α

The Gram matrix XX′ contains all the dot products of samples xi and xj , as illustrated

in Chapter 4. The X can be replaced by their counterparts containing all the mapped

samples to the RKHS, as X→ Φ. The kernel trick can be directly applied, to obtain the

nonlinear PCA as a symmetric eigenvalue decomposition [Schölkopf et al., 1998]:

ΦΦ′ΦΦ′α = λΦΦ′α

K2α = λKα. (8.7)

If K is full rank, we can left multiply by K−1 to obtain:

Kα = λα. (8.8)

Note that here we assume a centred kernel matrix, as described in Section 4.2.2. If K

is not full rank, we can still solve Equation (8.8) and ignoring the null space of K. The

eigenvectors projecting the data to this null space do not contribute to the final directions

of variance, since the null space is orthogonal to the subspace spanned by projected samples

[De Bie et al., 2004]. Note that, up to a normalization factor, XwH = XX′α = Kα =

λα, relating again primal and dual forms in kernel methods. If vectors composing the

rotation matrix α are scaled to unit length, then ‖wH‖2 = (X′α)′(X′α) = αXX′α =

αKα = αλα = λ. Conversely, to obtain a unit length primal vector wH, as stated in

Equation (8.2), the vectors in α are scaled using the corresponding eigenvalue, as 1/
√
λj .

Finally, the projection of a test sample x into the kernel principal component space

w′Hφ(x) =
∑n

i=1 αik(xi,x) = Ktα, where Kt is the kernel matrix evaluating the sim-

ilarity between training and testing samples. Data can also be represented by a lower
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8.2 Relative radiometric normalization using kernels

dimensional set of features, more suitable to a direct pixelwise comparison. As in stan-

dard dimensionality reduction techniques, by computing the full kPCA rotation matrix

α = [α1 α2 . . .αn], we obtain a number of eigenvectors equal to the size of the kernel

Gram matrix. However, by already dropping the eigenvectors corresponding to the null

space of K, or to the eigenvalues equal to 0, the data may be rotated to a space with

α = [α1 . . .αq] corresponding to the q largest eigenvalues.

8.2.2 Multivariate alignment for change detection

Instead of analysing directly a multi-temporal composition, as in DMC schemes, the fea-

ture extraction method is exploited to find a common projection for pixels coming from

both images. Specifically, the common subspace is obtained by applying the kPCA on

a subset of samples from the two images simultaneously (the learning set). These ex-

amples are sampled at the same geographical coordinates of both images and represent

unchanged areas. Pixels are stacked element-wise (pooled, in contrast to variable-stacking)

as X′ = [x1
i x2

i ]
n
i=1, to obtain a 2n×d matrix composed of 2n samples of d spectral channels

(n pixels from each image).

The directions representing the axes of maximal variance (of unchanged samples) for

both sets are then used as new uncorrelated bases for rotating the two images. Once these

bases have been computed, the images are mapped independently using the common pro-

jection matrix, to obtain two datasets showing unchanged samples with maximally similar

sample values. Note that the physical meaning of the images is no longer maintained.

The choice of the nonlinear PCA with respect to its linear counterpart is motivated

by the fact that the kPCA is much more flexible in extracting (nonlinear) structures

from the data. PCA simply finds a rotation around the mean of the data matching

the axes of maximal variance in the input space, and does not guarantee an increase

in superposition of the unchanged samples distribution. In the proposed setting, the

alignment is performed by using pixels coming from areas that have not changed between

the acquisitions, which mutually belong to the same spectral class. This choice ensures

that after the projection these samples have a closer value in the transformed space. In

change detection terms, this means that the representation obtained by subtracting the

transformed images becomes more reliable, since pixels belonging to unchanged areas

are very likely to be grouped around low values observing a better deviation of changed

samples. As a consequence, separability increases. However, note that if the classes present

in the bi-temporal images are the same, meaning that changes are due to differences in

the geographical locations of classes (i.e. no novel spectral class appears), the proposed

approach may work also by sampling randomly pixels on the image. In this case, no matter

where classes appear, their coordinates would occupy approximately the same regions of

the spectral space (if compared to sampling couples of pixels), and the kPCA step does

not change significantly. One should only ensure that the all the classes present in the

image are sufficiently represented in the data matrix X.
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8. Feature extraction for change detection

(a) (b) (c)

Figure 8.1: Statistically aligned images using the kPCA appraoch - The reprojected

data in a false RGB color composite, with principal components illustrated in decreasing

eigenvalue order (R: first, G: second and B: third kernel principal component). (a) 1987 and

(b) 1991 transformed images, (c) ground truth of changes.

8.2.3 Experimental setup

In these experiments, the Greece fires multi-temporal images have been used (see Ap-

pendix C.7). Data are projected into the first 3 principal components for illustration

purposes, and are depicted in Figure 8.1(a)-(b). As term of comparison, changes we are

looking for are illustrated in Figure 8.1(c). To ensure fair comparisons, the standard

difference image has been computed after histogram matching.

To assess the suitability of the proposed alignment approach, the difference of the first

principal components and the standard difference image are used as inputs for different

change detection methods: the CVA and the supervised one-class support vector domain

description (SVDD) [Tax and Duin, 2004] (both linear and nonlinear). This last approach

consists in finding, during the training, a hypersphere with a minimum radius length

containing all the unchanged samples. During the test step, SVDD attributes the class

“changed” to pixels lying outside the hypersphere and “unchanged” to those lying inside it

[Tax and Duin, 2004]. The SVDD models the “unchanged” class boundaries by exploiting

only some labels from this class. Changed pixels are detected by thresholding the decision

function allowing a given fraction of outliers.

To perform kPCA, a Gaussian RBF kernel has been used. The bandwidth σ has been

set as the median Euclidean distance among pixels randomly chosen in the entire image

(20% of the available pixels). To estimate the projection matrix, 200 samples are chosen

in a supervised way from unchanged areas (100 samples per date at the same coordinates).

The same pixels are then used to train the SVDD methods using either the transformed

or the original difference image, respectively.

Note that the selection of samples for computing the kPCA can be easily extended to

be unsupervised by using a pseudo-training sampling criteria (see Chapter 7). To ensure

the best possible performance of the change detectors, both the threshold on the CVA
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Figure 8.2: kPCA-based statistical relative radiometric normalization - Unchanged

pixels represented with (a) Original DN values, (b) after histogram matching and (c) after

kPCA-based normalization.

magnitude and SVDD hyperparameters (the rejection rate and the kernel width for the

nonlinear RBF SVDD) are tuned in a supervised way by using 100 independent validation

coordinates, equally belonging to changed and unchanged classes. An exhaustive line/grid

search by cross-validation has been adopted. Note that since the kernel principal projec-

tions are scaled differently than the original pixel/bands values, the kernel width in the

RBF SVDD has been re-estimated. However, automatic and efficient methods to estimate

the kernel width exist (e.g. [Khazai et al., 2012]). The retained dimensionality of the

projections is varied from 2 to 5 and the best change maps are presented.

Estimated Kappa statistic (κ) is used on an independent and common test set (∼60’000

pixels from Figure C.7(c)) to compare performances. Average scores obtained after 10

independent realizations of the training set are presented in the following.
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Figure 8.3: Scatterplot of the difference image without and with kPCA alignment

- (a) Scatterplot of the difference of the NIR-R bands and (b) scatterplot of first 2 kernel

principal components difference.

8.2.4 Results

The data transformation Figure 8.2(a)-(c) illustrates the main properties of the pro-

posed transformation. Figure 8.2(a) represents a cross-scatterplot of the NIR-R-B bands

(selected from the 6 original channels) in their original space, for the class “no change”

(couples of pixels at same spatial coordinates are selected). Figure 8.2(b) illustrates the

same samples after histogram matching. It appears clearly that the means are better

aligned. However, small differences still persist and in particular in the data covariance,

since as introduced in Section 8.1 the cross-relationships of the data are not explicitly taken

into account. Also, by looking at the uni-temporal histograms (R-R and NIR-NIR), small

differences in the mode are visible. Finally, in Figure 8.2(c), the proposed kPCA-based

alignment is illustrated. Even if following a more complex distribution the scatterplots of

the no change samples show a better alignment. This is due to the kPCA, that in this

case consider higher order relationships based on covariance structures in possibly infinite

dimensional RKHS.

By disregarding the raw data (we assume that is always possible to perform histogram

matching), the benefits of the transformation are illustrated in Figure 8.3. Although

empirically the distribution of unchanged samples seems the same, roughly N(0, 1) since

the datasets have been transformed to standard scores, the changed samples tend to be

scattered farther. In particular, the separation from unchanged samples by the SVDD

hypersphere or simply by thresholding the unidimensional magnitude (the distance of the

difference samples from the origin, CVA) becomes easier.

In Figure 8.4, the above scatterplots are translated into the spatial domain. The

magnitude of the difference image in Figure 8.4(a) corresponds to the standard difference

image (after histogram matching). Changes are clearly visible, but a large amount of
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8.2 Relative radiometric normalization using kernels

(a) (b)

Figure 8.4: CVA magnitude for the histogram matched data and using the kPCA-

based alignment - (a) CVA magnitude after histogram matching and (b) kPCA-based dif-

ference image magnitude of the first 3 kernel principal components. Note that the colours are

rescaled so that are comparable between the two magnitudes.

spurious noise affects the rest of the image, in particular for the samples belonging to

unchanged areas. Figure 8.4(b) depicts the magnitude of the difference image after kPCA

projection: changes are still clearly visible, even if they possess a larger range of values,

but still more easily discriminable thanks to the large reduction of the background noise.

Some artefacts such as the image striping are still visible, but note that the approach has

not developed to reduce image noise (if striping can be considered as such). The new

representation seems more appropriate for change detection for two main reasons: firstly,

the kPCA alignment considers the relationships between the samples in a multi-variate

manner, while the standard histogram matching does not. Secondly, in computing the

magnitude in Figure 8.4(b), only 2 principal components are used, in contrast to the 6

spectral channels used for the magnitude in Figure 8.4(a). Even if the dimensionality

of the original data is not too large, the `2-norm used to compute the magnitude of the

transformed data is less affected by the noise in each channel, that inflates the magnitude

of the vector even for unchanged samples. The kPCA allows to work in a lower dimensional

space, ending up with a less noisy magnitude image. To be fair in the visualization, note

that few aberrant values (outliers) have been removed from the CVA by rescaling the

colours. The same outliers were not present in the kPCA-based transformation.

Numerical accuracies Change map accuracy plots are illustrated in Figure 8.5. The

CVA approach on the transformed image produced homogeneous κ scores along different

dimensions of the projection. The average score is κ = 0.362, which is 0.072 higher than

the average CVA accuracy applied to the original difference image. The change maps

in Figure 8.6(a) illustrate the CVA applied on both types of difference images: in the

transformed space, CVA provided less stable but often more accurate results, in particular

thanks to a lower false alarm rate. It is worth mentioning that the hit rate of the CVA
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Figure 8.5: Change detection accuracies for the kPCA-based relative normaliza-

tion - Dashed lines correspond to the methods in the original input space (standard difference

image), while the solid lines correspond to the methods applied on the difference image after

kPCA relative radiometric normalization.

performed on both types of difference image is high. Regarding the SVDD approaches, the

linear SVDD (Lin. SVDD) performed clearly better when considering, the transformed

difference image, but only the two first aligned components. It results in an average

increase of performance of 0.07 κ with respect to the original difference image model. It

is worth mentioning that the Lin. SVDD model acts very similar to the CVA: it fits a

spherical separating boundary around the ‘no change’ class. However, note that, similarly

to SVM, the SVDD formulation allows for slack variables accounting for training errors.

For this reason, the SVDD may be more robust in terms of generalization accuracy, since

the separating sphere is not influenced by outliers and noise. This could explain the

much higher accuracy of the Lin. SVDD with respect to the CVA. When considering the

nonlinear RBF SVDD, the improvements are again very clear: the RBF SVDD applied

to the transformed image (by retaining 2 principal components) performed 0.12 κ better

than when applied on the standard difference image, with a κ = 0.428 for the aligned RBF

SVDD and κ = 0.310 for the standard RBF SVDD, respectively.

The maps in Figure 8.6(a)-(c) illustrate the average reduction of false detections by

adopting the proposed transformed difference image. They are illustrated in the same scale

as the ones in Figure 7.3, Section 7.4.1, that is, white corresponds to pixels always detected

as “change”, while black characterize the ones always classified as “unchanged”. The

colours in between, from purple to yellow, indicates the number of times the corresponding

pixel has been classified as “changed”.

For the CVA, illustrated in Figure 8.6(a), it is clearly visible that the detection of false
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Figure 8.6: Sum of 10 change maps for the original histogram matching and kPCA

relative normalization - Sum-of-change maps for the (a) CVA, (b) linear SVDD and (c)

RBF SVDD, with the first row corresponding to results on the histogram matched data while

on the second row the images adjusted with the proposed kPCA-based radiometric alignment,

by retaining 2 dimensions. The brighter the pixel is, the more often it has been detected as

changed.
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changes is generally reduced by considering the aligned images. Note that the CVA on

the original dataset produced different outcomes, i.e. it has a standard deviation, since

the validation sets used to fit the threshold have been varied along the iterations. Recall

that this small validation set is the same adopted also for the SVDD-based approaches.

The same observations may be made for the Lin. SVDD and for the RBF SVDD, for

which using the transformed space produced less false alarms. On the average, the latter

approach improves the most and in a more stable manner with respect to the growing

dimensionality of the transformed space.

8.2.5 Discussion

In this case study, we have presented a strategy to align the common information carried

by unchanged pixels. By aligning what has not changed, changes tend to be more distin-

guishable. In all the experiments, the accuracy of the detection in the transformed space

is superior to the one obtained with the direct difference image analysis, independently

from the dimensionality retained or the method used. Experiments indicated that for the

tested dataset, the maximal accuracy occurs when retaining two dimensions for computing

the transformed difference image. It has been also observed that, when considering more

than 10 dimensions, the change detection accuracy decreases under the baseline, that is

the method applied in the original space. The noise present in high frequency components

contaminates the transformed difference image.

On the other hand, the tested system showed high variance of the final accuracy. This

is probably due to the difficulty of sampling, at each run, pixels providing the same in-

formation. In particular, when selecting randomly the unchanged pixels used to learn

the kPCA transformation and to train the SVDD, the ground cover classes represented

may vary from one draw to the other, influencing the projections and the change de-

tection outcome. To solve this issue, regularization penalizing the spatial variability of

the multi-temporal signal may be considered. Another solution could be sampling using

some additional information, such as unsupervised initializations, to obtain informative

samples but keeping working with small matrices, or to sample much larger regions if the

computational power is not an issue.

Moreover, the way of combining the temporal component of the images can also be

criticized. For large shifts in the distribution of each image, the obtained aligned features

may be suboptimal, since the projections to the directions of the pooled maximal variance

may largely differ to the ones of the single time images. For these reasons, in the next

Section we present an approach developed specifically to solve these issues. It aims at

(i) maximizing the correlation of the projections between the unchanged samples inde-

pendently, instead of projecting data onto the common maximal variance direction; (ii) it

accounts for a regularization term favouring smooth projections following the geometrical

nature of the data (the manifold) and (iii) it is able to work with data with different input

spaces (e.g. images from multiple sensors).
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8.3 Multi-sensor alignment for change detection

8.3 Relative alignment for change detection in heteroge-

neous sources

As the Earth observation technologies evolve, a new processing trend is observed in the

recent years. To fully exploit all the remote sensing data that has already been collected

and will continue to be gathered by future missions, studies involving multi-source imagery

are starting to receive attention in the community. Multi-source and multi-modal acqui-

sitions are nowadays standard sources of information, but their systematic assimilation in

real world systems is still limited by the complexity and ad-hoc nature of the most of data

fusion methods [Gao et al., 2006].

In this Section, we propose a method able to align heterogeneous data sources, i.e.

for images with different spectral channels, and to perform change detection exploiting

the derived images in a successive step. Specifically, we look for joint mappings of the

original data sources that maximize the correlation between unchanged pixels at both

dates. To this end, we use the regularized non-linear kernel CCA [Bach and Jordan, 2002a;

Hotelling, 1936]. Manifold regularization using the graph Laplacian has been considered

to find projections that respect well the manifold structure of the data [Belkin et al., 2006;

Blaschko et al., 2011]. Also, it allows to relax problems related to small sample conditions,

since it allows to select pixels randomly from all the image, and reduce overfitting issues, by

penalizing complex projections. The performance of the proposed semi-supervised kernel

CCA (SSkCCA) is illustrated through a challenging example using Landsat images.

8.3.1 Paired multi-view learning and regularized canonical correlation

analysis

Canonical correlation analysis. The CCA is a multi-view learning method developed

to study the relationships between two paired datasets, composed by two different sets of

features (views) describing the same examples [Hotelling, 1936]. The aim of the CCA is

to find joint projections wk, for each group of features k, by minimizing the angle among

the mapped vectors Xkwk, with k ∈ {1, 2}. This corresponds to the maximization of

the cosine between the mapped vectors, or, equivalently, of the correlation between the

projected vectors as:

arg max
w1,w2

cos(∠(X1w1,X2w2)) =
(X1w1)′(X2w2)√

(X1w1)(X1w1)
√

(X2w2)(X2w2)
(8.9)

=
w′1X

′
1X2w2√

(w′1X
′
1X1w1)

√
(w′2X

′X2w2)

=
w′1S12w2√

(w′1S11w1)
√

(w′2S22w2)

where X1 ∈ Rn×d1 and X2 ∈ Rn×d2 are the two data matrices of the bi-temporal sets (time

t1 and t2, d1 6= d2) of the mean-centred multi-variate coregistered pixels. The matrix Skq
is the empirical scatter between views k and q.
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By setting the norm of the projected features to be unit in Skk (w′1S11w1 = 1 and

w′2S22w2 = 1), this optimization can also be seen as the minimization of the (Mahalanobis)

distance among projections [Kuss and Graepel, 2003].

Similarly to the FDA and the PCA, the Lagrangian formulation of this constrained

optimization problem is, with the two Lagrangian multipliers λ1 and λ2, as:

L(w1,w2, λ1, λ2) = w′1S12w2 −
1

2
λ1(w′1S11w1 − 1)− 1

2
λ2(w′2S22w2 − 1), (8.10)

by remarking that 1
2w′2S11w1 + 1

2w′2S11w1 = 1. At the optimality, we have ∂L/∂w1 = 0

and ∂L/∂w2 = 0:

{
∂L
∂w1

= S12w2 − λ1S11w1 = 0⇒ S12w2 = λ1S11w1

∂L
∂w2

= S21w1 − λ2S22w2 = 0⇒ S21w1 = λ2S22w2.
(8.11)

Since w′1S11w1 = w′2S22w2 = 1 and using what observed in Equation (8.11), λ1 = λ2

and S12w1 = λS11w1 = λS22w2 = S21w1. We can then reformulate the problem as:

S12w1 + S21w1 = λ(S11w1 + S22w2), (8.12)

or, in matrix form, as:

(
0 S12

S21 0

)(
w1

w2

)
= λ

(
S11 0

0 S22

)(
w1

w2

)
. (8.13)

This system of equations can be solved as a generalized eigenvalue decomposition [De Bie

et al., 2004; Shawe-Taylor and Cristianini, 2004]. The projections of the variables Xk into

the space in which the correlation is mutually maximized are called canonical variates

[Hotelling, 1936], and the projection in this space is performed simply as in the definition

of the problem in Equation (8.9), Xkwk. Note that corr(X1w1,X1w1) = w′1S12w2 =

λ1w
′
1S11w1 = λ2w

′
2S22w2 = λ, indicating the correlation of the projections is equal to

λ. Thus, the larger the eigenvalue, the largest the correlation between the considered

projections.

Kernel canonical correlation analysis (KCCA). To obtain the standard two-set

kCCA algorithm, the primal in Equation (8.13) is replaced with its dual by plugging
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wk = X′kαk, and by left multiplying by

(
X1 0

0 X2

)
:

(
0 S12

S21 0

)(
w1

w2

)
= λ

(
S11 0

0 S22

)(
w1

w2

)

⇒
(

0 X′1X2

X′2X1 0

)(
w1

w2

)
= λ

(
X′1X1 0

0 X′2X2

)(
w1

w2

)

⇒
(

X1 0

0 X2

)(
0 X′1X2

X′2X1 0

)(
X′1α1

X′2α2

)

= λ

(
X1 0

0 X2

)(
X′1X1 0

0 X′2X2

)(
X′1α1

X′2α2

)
(8.14)

⇒
(

0 X1X
′
1X2

X2X
′
2X1 0

)(
X′1α1

X′2α2

)

= λ

(
X1X

′
1X1 0

0 X2X
′
2X2

)(
X′1α1

X′2α2

)

⇒
(

0 X1X
′
1X2X

′
2

X2X
′
2X1X

′
1 0

)(
α1

α2

)

= λ

(
X1X

′
1X1X

′
1 0

0 X2X
′
2X2X

′
2

)(
α1

α2

)

The kernel trick can be applied, replacing the XkX
′
k terms with a centred kernel matrix

Kkk of inner products between the mapped data matrices Φ1 and Φ2, obtaining:(
0 K11K22

K22K11 0

)(
α1

α2

)
= λ

(
K11K11 0

0 K22K22

)(
α1

α2

)
. (8.15)

Note that this problem is not regularized. When performing kCCA it should be preferred

to work with a regularized solution, in order to avoid trivial or degenerate solutions on

the training samples, consequently leading to poor projections for test data. To see this,

we can rewrite the kernel CCA problem as:

arg max
α1,α2

α′1K11K22α2√
(α′1K11K11α1)

√
(α′2K22K22α2)

. (8.16)

As for Equation (8.9), the denominator can be scaled so that (α′1K11K11α1) = 1 and

(α′2K2K2α2) = 1. In this case, if Kkk it is full rank (e.g. by using a Gaussian kernel),

we derive from the first part of the system in Equation (8.15) that α1 = 1
λK−1

11 K22α2 and

thus, replacing for the second view, K2
22α2 = λ2K2

22α2. This holds for all the solutions α2,

with λ = 1. Consequently, regularization is really needed to avoid such perfect correlation

among the projections that would result in an overfit of the data.
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Regularization of Equation (8.16) can be performed by adding a term Ω(f) = ‖wH
k ‖2

(Tikhonov regularizer) at the denominators, penalizing large norms of wH
k . By transform-

ing again the weight vectors wH
k in their dual form X′kαk, this results in:

arg max
α1,α2

α′1K11K22α2√
(α′1K11K11α1) + γα′1K11α1

√
(α′2K22K22α2 + γα′2K22α2)

=
α′1K11K22α2√

α′1(K11K11 + γK11)α1

√
α′2(K22K22 + γK22)α2)

(8.17)

The canonical variate for a test sample x in view k is f(x) =
∑

i αik(xi,x). In matrix form,

this is expressed as Kkαk, where Kk represents the kernel matrix evaluating the similarity

between training and test samples in view k and αk is the corresponding collection of the

leading q eigenvectors [α1
k, . . . ,α

q
k].

8.3.2 Semi-supervised relative alignment via manifold regularization

To obtain a fully regularized version of the kCCA, the expression of the generalized canoni-

cal correlation problem in Equation (8.13) is considered [Bach and Jordan, 2002a]. Instead

of maximizing the correlation of the projection of only the two disjoint feature sets, the

mutual correlation of k blocks can be maximized simultaneously, thus generalizing the

CCA to multiple sets [Kettenring, 1971].

The problem is formulated starting from:

arg max
wk

cos(∠(
∑
kq

Xkwk,Xqwq)) =

∑
kq(Xkwk)(Xqwq)∑

k

√
(Xkwk)(Xkwk)

√∑
q(Xqwq)(Xqwq)

(8.18)

=

∑
kq w′kSkqwq∑

k

√
(Xkwk)(Xkwk)

√∑
q(Xqwq)(Xqwq)

If we limit ourselves to the two set case of the above formulation, this results in optimizing:(
S11 S12

S21 S22

)(
w1

w2

)
= (1 + λ)

(
S11 0

0 S22

)(
w1

w2

)
. (8.19)

Equation (8.19) allows a more flexible formulation of the CCA enforcing the desired reg-

ularization. The above expression is readily kernelized from Equation (8.18):(
K11K11 K11K22

K22K11 K22K22

)(
α1

α2

)
= λ

(
K11K11 0

0 K22K22

)(
α1

α2

)
. (8.20)

Finally, by exploiting all the relationships illustrated above, we can solve the problem in

Equation (8.17), ending up in:(
K11K11 + R11 K11K22

K22K11 K22K22̃ + R22

)(
α1

α2

)
=

λ

(
K11K11 + R11 0

0 K22K22 + R22

)(
α1

α2

)
, (8.21)
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where R is the regularization, defined before as Ω(f) = ‖w‖2.

In this work, we consider a semi-supervised extension of the kCCA (SSkCCA), allowing

the projection vectors to account for the geometrical distribution of the data, thanks to a

manifold regularization [Belkin et al., 2006]. By changing the regularization that brings

to Equation 8.17, we can see that, as for other methods illustrated in this Thesis, we can

penalize differently the projection vectors. Again, for instance, we might adopt directly

‖α‖2 to obtain small dual weights bringing to Rkk = γIkk.

Belkin et al. [2006] proposed a complete framework to achieve solution that vary

smoothly when moving between close samples on the manifold. Their proposition is that

the function that maps to the manifold, say f , should be smooth and vary only a little

for samples being close on the data manifold. As stated in [Belkin et al., 2006], the reg-

ularizer should enforce small ‖∇f(xi,xj)‖2 = ‖∇fij‖2, thus penalizing projections that

maps samples lying close on the manifold far one to each other. Equivalently, we want to

penalize solutions evaluated on close samples that vary rapidly, to enforce the manifold

(or smoothness) assumption of semi-supervised learning (see Chapter 3.4.2). By letting

the weights qij indicate if samples xi and xj are neighbours (i.e. 1 of they lie among the

kNN neighbours, 0 otherwise), the following penalization functional may be defined by

approximating the Laplace-Beltrami operator:

n∑
ij

qij (f(xi)− f(xj))
2 =

n∑
ij

qij
(
f(xi)

2 + f(xj)
2 − 2f(xi)f(xi)

)
=

n∑
i

qijf(xi)
2 −

n∑
ij

qijf(xi)f(xj)

=fi(
n∑
i

qij −
n∑
ij

qij)fj = f ′(G−Q)f = f ′Mf . (8.22)

where M is the empirical graph Laplacian, computed as M = G − Q. Here, G is the

degree matrix, the sum of the rows of Q in the diagonal, that in turn is the adjacency

matrix between samples xi and xj indicating if they are neighbours. Finally, by adopting

the projection function of the kCCA, i.e. f(x) = Kα, we can rewrite the Equation 8.22

as ‖∇f‖ = ‖∇Kα‖ = α′K′MKα. Summing up, we can include this additional manifold

regularizer in Equation (8.21), with Rk̄k̄ = γKk̄k̄+δKk̄k̄Mk̄k̄Kk̄k̄, with hyperparameters γ

and δ to be tuned, controlling the penalization of large norms of wH
k and the deformation

by the graph Laplacian respectively. Note that the subscript k̄ indicates the expanded

training set X using samples chosen randomly from the kth view, resulting in a set Xk̄ ∈
R(ns+u)×d. The kernel Kkk̄ contains the evaluations between Xk and Xk̄ The graph

Laplacian has been estimated using standard kNN links [Belkin et al., 2006]. A similar

formulation of the regularizer leading to the Laplacian SVM [Belkin et al., 2006] has

been adopted for remote sensing image classification purposes in [Gómez-Chova et al.,

2008], verifying the intuitions that by penalizing highly varying solutions Kα an improved

generalization may be obtained.
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The final formulation of the semi-supervised kernel CCA is:(
K1̄1K11̄ + R1̄1̄ K1̄1K22̄

K2̄2K11̄ K2̄2K22̄ + R2̄2̄

)(
α1

α2

)
=

λ

(
K1̄1K11̄ + R1̄1̄ 0

0 K2̄2K22̄ + R2̄2̄

)(
α1

α2

)
, (8.23)

Thanks to this double regularization, the solution favors small norms of wH and at

the same time forces samples lying close on the manifold structure to be projected nearby.

This property results particularly useful in multi-source change detection. Assuming that

pixels lie in a lower dimensional subspace, and that the manifolds coming from heteroge-

neous sources behave similarly (e.g. class distributions), the SSkCCA solutions optimizing

Equation (8.21) promote a solution lying on the geometrical structures and less affected,

thanks to the CCA itself and by the regularization, to overfitting induced by noise and

high data variances.

8.3.3 Heterogeneous alignment for change detection

In contrast to multivariate alteration detection approaches [Nielsen, 2007; Nielsen et al.,

1998], a measure of change as the variance in the projected space is not directly optimized.

A statistical alignment of unchanged samples is optimized instead. Since the eigenvectors

corresponding to leading eigenvalues are retained, it results into a more stable solution, and

the change information can be obtained as the difference of the first q canonical variates.

However, this comes at the cost of obtaining a set of some labelled unchanged pixels.

Experimental setup To test the ability of the proposed system to perform multi-

sensor change detection, we considered four settings using the Greece Island dataset (see

Appendix C.6). First, change detection aligning all the available bands of the bi-temporal

images (without the thermal band) has been carried out, as the baseline indicating per-

formances when disposing of a maximal amount of input information. It corresponds to

bands (1-5,7) of the TM sensor (6 vs 6 bands setting). In the second setting, the Landsat

TM image at t1 is complete, while for the image at t2 only channels 1-3 are retained (6

vs 3 bands). In the third case, the same problem is considered but t2 is composed now

by bands 2-4 of the TM sensor (6 vs 3 bands). A last experiment involving an extreme

alignment, is performed by transforming the original t1 against bands 5 and 7 of the TM

sensor (6 vs 2 bands).

In all the cases, SSkCCA results are compared to those obtained by aligning the

datasets with standard (primal) linear CCA and to those obtained with the original image

after histogram matching (HM). However, this last setup for the spectrally downsampled

images requires the same number of bands. Therefore, in the multi-sensor experiments,

the HM models are obtained by spectrally downsampling of the t1 acquisition to match

the t2 data. It is referred to as REDU hereafter.
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ID Method Dims. κ (std) NMI (std)

LDA + SSkCCA 7 0.86 (0.05) 0.64 (0.08)

LDA + CCA 6 0.86 (0.03) 0.65 (0.04)

LDA + HM 6 0.72 (0.01) 0.44 (0.01)

CVA + SSkCCA 3 0.55 (0.07) 0.26 (0.06)

CVA + CCA 3 0.47 (0.10) 0.23 (0.10)

S
in

g
le

-s
e
n

so
r

6
/
6

(1
-5

,7
)

CVA + HM 6 0.32 (0.05) 0.80 (0.02)

LDA + SSkCCA 3 0.82 (0.02) 0.58 (0.02)

LDA + CCA 6 0.71 (0.05) 0.46 (0.05)

LDA + REDU 3 0.66 (0.01) 0.36 (0.01)

CVA + SSkCCA 2 0.50 (0.17) 0.23 (0.11)

CVA + CCA 3 0.34 (0.04) 0.10 (0.03)

M
u

lt
i-

se
n

so
r

6
/
3

(1
,2

,3
)

CVA + REDU 3 0.28 (0.02) 0.07 (0.01)

LDA + SSkCCA 6 0.90 (0.01) 0.71 (0.04)

LDA + CCA 3 0.78 (0.03) 0.50 (0.04)

LDA + REDU 3 0.70 (0.02) 0.41 (0.02)

CVA + SSkCCA 3 0.60 (0.07) 0.31 (0.08)

CVA + CCA 3 0.44 (0.04) 0.19 (0.04)

M
u

lt
i-

se
n

so
r

6
/
3

(2
,3

,4
)

CVA + REDU 3 0.29 (0.05) 0.07 (0.02)

LDA + SSkCCA 10 0.77 (0.07) 0.51 (0.04)

LDA + CCA 2 0.63 (0.04) 0.33 (0.04)

LDA + REDU 2 0.57 (0.01) 0.27 (0.01)

CVA + SSkCCA 2 0.55 (0.07) 0.26 (0.07)

CVA + CCA 2 0.43 (0.09) 0.26 (0.07)

M
u

lt
i-

se
n

so
r

6
/
2

(5
,7

)

CVA + REDU 2 0.16 (0.03) 0.03 (0.01)

Table 8.1: Relative radiometric normalization in heterogeneous sources, change

detection results - Change detection results using original images and using three settings

simulating heterogeneous images. Here, n = 50 and u = 200.

All kernels are Gaussian RBF with a scale parameter equal to the median distance

among 3000 pixels randomly selected from the corresponding image. To test the sensitivity

to the size of both sets, composed by the samples from the unchanged regions and the

ones added to estimate the regularizer, their number has been varied. For this study, the

regularization parameters have been tuned by cross-validation on the experiment involving

ns = 50 labelled and u = 200 unlabelled samples, resulting in γ = 0.1 and δ = 0.001. The

number of neighbours used to compute the graph Laplacian is 10. Finally, to detect

changes, the standard change vector analysis (CVA) [Bovolo and Bruzzone, 2007] and the

supervised linear discriminant classification (LDA) [Shawe-Taylor and Cristianini, 2004]

are used on the difference image. For the former, 100 randomly selected validation pixels

(50 per class) have been used to tune the threshold of the CVA norm. The same 100
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8. Feature extraction for change detection

pixels have been used to train the LDA. The test set is common to all the experiments,

while the training sets are varied five times to account for stability with respect to random

initializations. Numerical results are assessed by the estimated Cohen’s Kappa coefficient

κ and by the Normalized Mutual Information (NMI) between the predictions and the

corresponding ground truth samples (see Appendix B).

Results and discussions Table 8.1 reports the performances of change detection meth-

ods applied in the settings tested. The number of dimensions used to compute the dif-

ference image are illustrated in the column “Dims.”. They correspond to the dimension

providing the best average accuracy when using 1 to 20 dimensions for the projection of

the aligned images. In Figure 8.9(a)-(b) and Figure 8.10(c)-(d), the complete accuracy

curves are illustrated.

First setting: When using all the available information, SSkCCA + LDA and CCA +

LDA perform very similarly, as depicted by the accuracy scores. The LDA on the original

data after histogram matching performs worse, with a loss of approximately 0.14 κ points.

By observing the CVA performance, which is indicative of the degree of separation of

the classes in the projected space, the proposed SSkCCA + CVA performs around 0.23

κ better than its CVA + HM counterpart. The tested baselines, except for the LDA +

CCA approach, are significantly less accurate than the adopted method.

Second setting: The setting involving the alignment of the original TM data to the

first three channels (roughly corresponding to RGB components), the LDA + SSkCCA

and CVA + SSkCCA performed again very well, with 0.82 and 0.50 κ, respectively. These

accuracies are only slightly inferior to the ones obtained with the full sets. Linear CCA

applied with LDA and CVA performed again significantly better than HM on the reduced

dataset, but with accuracies significantly worse to the ones obtained with a comparison

involving 6 bands on both dates.

Third setting: This experiment provided accuracies surprisingly higher than the ones

obtained on the full images. However, this is only verified for the change detection methods

applied on the transformed images after the SSkCCA alignment. The LDA + SSkCCA

performed 0.04 κ scores better than the full-band alignment counterpart, while the CVA

+ SSkCCA improved by 0.05 κ the accuracy.

Fourth setting: In the last experiment, an extreme situation involving the alignment of

two sets of 6 and 2 variables respectively is illustrated. In this case, the LDA + SSkCCA

accuracy is the worse of all the similar experiments, but recall that here only 2 bands at

t2 are available for the alignment. The CVA + SSkCCA, on the contrary, performed as

in the original 6 vs 6 channel matching, clearly demonstrating that the adopted system is

able to improve the separability of the classes by leveraging all the available information,

from both the spectral and the geometrical distributions.

By looking at the change maps obtained after the SSkCCA-based alignment, the spatial

coherence relates well with the accuracies of Table 8.1. The most accurate maps among

the 5 runs are illustrated in Figure 8.7. From a spatial homogeneity perspective, the best

maps are the one obtained by the SSkCCA on the NIR-R-G set (the third setting).
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Figure 8.7: Change detection maps for the tested SSkCCA alignment approaches.
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Figure 8.8: Dependence on the number of labelled and unlabelled pixels - Per-

formance of the LDA + SSkCCA in the first experiment involving 6 vs 6 bands. Left panel

represents the κ coefficient and right panel its standard deviation for the 5 runs. The maximal

accuracy is represented by the black circle (κ = 0.86).

Figure 8.9(a)-(b) and Figure 8.10(c)-(d) illustrate the sensitivity of the change de-

tection average accuracy to the number of retained dimensions for the SSkCCA-based

alignment methods. While LDA is relatively robust to the number of dimensions, the

CVA suffers large dimensionality. As discussed for the kPCA approach, this is related to

the inflation of the difference image magnitude, worsening the discriminative information.

The higher the discriminative information contained in the sets to be aligned, the more

stable and higher are the accuracy curves.

Figure 8.8 studies the role of the number of labelled (unchanged) and unlabelled pixels

used in the SSkCCA + LDA in the first setting (6 vs 6 bands). For the other experiments,

a similar structure but with higher variance was observed. The method needs a minimal

number of labelled unchanged pixels (typically 20) to find a proper normalization of the

heterogeneous dataset. The contribution of the unlabelled samples is underlined by ob-

serving, for a given ns, the increase of the κ score with respect to the size of u (left panel).

Also the standard deviation greatly decrease as the size of the sets increases (right panel).

For training sets larger than 50 samples from the unchanged regions plus 100 unlabelled

pixels, the accuracy is stable around 0.82-0.84 κ reaching its maximum for ns = 100 and

u = 500 with a κ = 0.86 (and stabilizing for u ≥ 500).

8.3.4 Discussion

The proposed multi-temporal transformation improved the performance of the change

detection process. The benefits of the nonlinear relative normalization appears clearly,

thanks to the regularization on the manifold penalizing noise and outliers, while favouring

smooth solutions. Moreover, depending on the data to which the images are matched

to (e.g. VIS, NIR-R-G, NIR-NIR, etc.) the enhancement of the discrimination by the

proposed alignment technique is further boosted. For instance, by considering a problem

of change detection in vegetated areas, the IR channels may provide a very discriminant

view useful to align properly the other data to information correlated with the event
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Figure 8.9: Accuracy as a function of the dimensionality of the projections - In

(a) experiments involving the alignment of the two complete images. In (b) alignment of the

original data to the VIS set, corresponding to TM bands 1-3.

generating the changes. This is the case of the difference in accuracy of the second and the

third experiment (VIS and NIR-R-G). In this case, the final change detection accuracy is

very high, since it correlates unchanged samples more easily. This suggest that by adding

additional – but relevant – information, the creation of a more discriminant difference

image is possible.

However, to benefit from all the good properties of the presented approach, the free

hyperparameters of the classifiers / detectors should be correctly tuned. In these experi-

ments some labels were available: some unchanged pixels to train the feature extraction

and another small set containing examples from both the classes to tune the hyperparam-

eters. The fitting was possible thanks to cross-validation on the final change detection

error, for both the CVA and the LDA. Optimal regularization parameters and dimension-

ality were easy to obtain in such setting. Note that the Gaussian kernel bandwidth was

set as the median Euclidean distance among a randomly chosen set of samples.
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Figure 8.10: Accuracy as a function of the dimensionality of the projections - In

(c) experiments involving the alignment of the original image to the NIR-R-G (TM bands

2-4). In (d) alignment of the original data to the NIR1-NIR2 (TM bands 5,7) set.

It is worth concluding by pointing out that the change detection step was applied

independently to the transformation, so that the user may adopt its preferred change

detection methods. The latter may rely on the difference of reprojected images or to

the stack of transformed images. This approach allows to implement multi-sensor change

detection approaches by exploiting known and standard change detection systems, by

simply enhancing and matching the input images after a nonlinear transformation.

8.4 Conclusions

In this Chapter we discussed two approaches for the relative radiometric normalization

through the use of nonlinear feature extraction techniques. The former, relying on the

kernel PCA, finds a nonlinear projection on the basis of the variance of a joint set of

unchanged pixels from the bi-temporal images. The images are then mapped into a new
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space, in which data are rotated towards the direction aligning the most.

In the second case, the above mentioned approach is extended to account for better

and more stable projections, by coupling it to a regularization accounting for the geomet-

rical distribution of the data through its manifold. This way, we can use additional pixels

without the need of knowing their label by adding them to the data matrix collecting un-

changed samples. Additionally, the adopted technique explicitly considers the two images

as disjoint sets of variables, i.e. as different views of the same examples (pixels). For this

reason, the approach is able to handle data with different dimensionality by construction

and allowed the computation of an enhanced difference image even if the spectral channels

and spectral information of the original images are not the same. The change detection

step is an independent procedure which enable the user to apply its own preferred change

detection technique, either supervised or unsupervised.

In this Chapter we demonstrated that the change detection algorithm itself is not

the only important issue to consider to obtain an accurate change map. Here, we paid

attention to the creation of a space in which the images were the most comparable, and

allowing an enhancement of standard methods. In all the experiments presented in this

Chapter, the projection of the data into a common subspace improved the detection of

changes by the use of the standard difference image.
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Chapter 9

Conclusions

9.1 A new generation of change detection systems

As discussed along the Chapters of this Thesis, kernel methods have greatly contributed

in remote sensing image processing tasks, by providing flexible and nonlinear solutions to

complex data analysis problems. The range of applications in which these methods may

positively contribute is spreading each year, but up to now only few systematic studies

have been addressed to multi-temporal image processing and in particular to change de-

tection with kernel-based algorithms. This Thesis contributed in a better understanding

of the issues involving multi-temporal analysis and kernel methods, and it constitutes a

step further towards real world implementations of kernel-based change detection systems.

It is also emphasized that many kernel algorithms are obtained by reformulating standard

methods known to work well on real world problems (e.g. PCA, k-means, etc.). However,

a series of issues have first to be carefully addressed, and these may range from the choice

or creation of an adapted kernel function, the optimisation of the corresponding hyperpa-

rameters or the representation of the input data, and they all vary strongly depending on

the considered task.

In this Thesis, we considered one of these tasks: change detection. In particular, the

topic has been studied by attacking the problem from three different perspectives: by

adopting supervised classification models, by reformulating unsupervised clustering and

applying feature extraction algorithms. In most of the experiments aimed at validate

the proposed algorithms, kernel-based methods improved and outperformed the baseline

models found in the literature.

9.1.1 On supervised change detection

Supervised classifiers provide very accurate and exhaustive thematic classification of multi-

temporal datasets. In Chapter 6 we adopted and improved such system by enriching the

input space of the classifier with appropriate spatial and contextual information extracted

from the images. By doing so, we observed that the multi-temporal classification may

be carried out accurately also on VHR images. To handle the higher dimensional data
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spaces, the use of a robust classifier was mandatory. The price of the computational time,

for both the filtering and classification, was consequently high. However, we can fairly

say that for many monitoring tasks the increase in accuracy is worth the computational

price. In addition, for classifiers such as SVM, large scale and fast implementations exist,

and it is likely that the trend continues in the next future, by the constantly increasing

computational power offered by personal computers.

By solving the problems of supervised change detection in VHR data, the addition

of spatial features has been demonstrated to be very beneficial. However, to further

generalise these approaches, the subjective bias caused by the intervention of the user when

selecting the appropriate spatial filters and their parameters should be removed. Recently,

automatic schemes have been developed and provided promising results. In particular, we

mention the multiple and composite kernel frameworks [Camps-Valls et al., 2006; Tuia

et al., 2010a] or automatic feature learning schemes [Tuia et al., 2012]. In both cases, the

classifier optimizes its input space on their contribution to the overall classification, by

either weighting the kernel corresponding to a particular group of features or information

sources, or by selecting the filters and operators improving a large margin separation

between classes.

These systems could be successfully applied for supervised change detection. Promising

future directions rely on the exploitation and inclusion of complementary information

sources into the multi-temporal analysis process, such as radar images, digital elevation

models or spectral indexes. In general, kernel methods offer the tools to perform such

integration.

9.1.2 On unsupervised change detection

In contrast to applications that require powerful methods to correctly exploit complex

and high dimensional input spaces, there is a series of important real world scenarios that

rely on a fast and reliable mapping of the events. Automatic and unsupervised change

detection methods are of paramount importance for post-catastrophe and natural hazard

related applications. In these cases, the methods must be able to provide accurate solutions

within a short time instant, with possibly limited or no user intervention. Moreover, the

changes to be detected may be spectrally ambiguous. This is the case of earthquakes,

where destroyed building are hardly discriminable from the intact ones.

Again, kernel methods provide a robust and simple formulation allowing for automatic,

rapid and accurate change detection. As illustrated in Chapter 7, simple algorithms may

be (re-)formulated using kernels, ensuring the correct modelling of nonlinear relationships

and only requiring a little more computational efforts. A classical domain specific expres-

sion such as the difference image has been reformulated trough the use of kernel functions,

corresponding to a difference image computed in RKHS providing an improved represen-

tation. In this high dimensional space, standard and fast algorithms provide much more

accurate results. Nevertheless, one drawback observed was the increase of the amount of

free hyperparameters to fit. In Chapter 7 this problem has been tackled by proposing a
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heuristic cost function relying on geometrical criteria showing a minimum when the opti-

mal clustering is encountered, thus implicitly defining the set of optimal hyperparameters

to retain.

In future studies, unsupervised and automatic methods should be extended to the

inclusion of ancillary data such as SAR images and digital surface model, in order to

exploit the data complementarity and to improve the change detection with easily available

data. To this end, besides standard approaches to data fusion, the methods proposed in

Chapter 8 may result very useful.

9.1.3 On multi-sensor change detection

The last research topic studied in the Thesis aimed at the statistical alignment of the

distribution of unchanged samples, to improve change detection models based on direct

pixelwise image comparison. In particular, two feature extraction methods have been

studied: kernel principal component analysis and kernel canonical correlation analysis.

The use of the former verified the assumptions that, by mapping the multi-temporal

image into a common subspace, algorithms may benefit of an improved data separability.

The second approach established such alignment on the maximization of the correla-

tion of two mutual projections of the original input images. It allowed, by construction,

the alignment of datasets of different dimensionality, yielding natural multi-source change

detection schemes using standard methods. The tested experimental setting illustrated

promising results even when the number and type of spectral channels employed was dras-

tically different. As for the first method, the images are projected into a common subspace

where unchanged samples are maximally close, and discrepancies in multi-temporal infor-

mation are enhanced for changed areas only.

The accuracy of supervised and unsupervised methods for change detection has been

drastically improved by preprocessing the images exploiting these findings. In this The-

sis, the experiments have been limited to change detection tasks, but the last approach

could be applied for correlating the images to different sources of information, thus re-

sulting in a general purpose data fusion method. The fused information may be used for

subsequent classification, regression or density estimation tasks by letting the user choos-

ing its preferred algorithms. Images can be aligned to other corresponding spatial data,

such as radar images, digital elevation models, precipitation and temperature maps, to

enhance the detection of specific ground cover classes or processes. Further research has

to be deployed in the analysis of the statistical behaviour of real world image fusion with

heterogeneous sources.

9.2 Contributions of the Thesis

The main contributions of the Thesis can be summarized as follows:

• The development of novel insights on the application of kernel-based algorithm to a

variety of problems encountered in multi-temporal image analysis.
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• The adaptation and verification of the use of spatial context into multi-temporal

classification and supervised change detection systems. Such an inclusion resulted

in a scheme well suited for monitoring purposes relying on VHR images.

• The analysis of two kernel-based classifiers for multi-temporal monitoring purposes

in relation to the input space provided.

• The development of an automatic and unsupervised change detection method relying

on kernels. It provides a fast and stable result also in challenging situations with a

small computational effort.

• The development of a cost function for selecting kernel hyperparameters in an un-

supervised partitioning framework, avoiding the user intervention.

• The study of kernel-based feature extraction methods for the improvement of the

statistical alignment between unchanged regions.

• The development of a kernel-based system allowing the projection of multi-source

images into a common subspace, in which standard methods are effective.

9.3 Future perspectives

In change detection As illustrated along the Thesis, kernel methods offer a complete

and robust framework for the analysis of multi-temporal remote sensing images. Although

the methods proposed seem promising, fundamental research is still required to overpass

some issues clearly limiting current change detection techniques. In particular, we may

emphasize the following key points:

Cross the limit of the perfect coregistration. For tasks involving the detection of

novel classes, i.e. in an anomaly detection setting, the strict coregistration is not

required and the methods adopted may work on the pooled datasets. However,

when changes are due only to differences in the spatial location of the same classes

present in both images, the detection has to be performed pixelwise, consequently

suffering from errors due to spatial misregistrations. Usually, a perfect co-registration

is always assumed, and the preprocessing required to obtain errors at pixel level

is costly and time consuming. Recent works have been devoted to study these

issues, e.g. [Bovolo et al., 2009; Theiler and Wohlberg, 2012] and future extension of

change detection algorithms should be able to improve the robustness with respect

to registration errors.

Exploit all the information. As mentioned many times, Earth observation applica-

tions require products of increasing temporal coverage, quality and accuracy. To this

end, the very frequent acquisitions, more and more similar to continuous streams of

remote sensing images, have to be efficiently processed. Since atmospheric conditions

may strongly limit the use of single sensor imagery (e.g. clouds), a logical solution

to overcome these gaps is to use images from multiple sensors. In terms of change

detection algorithms, new methods should be able to efficiently compare images with

different spectral and spatial resolutions and provide maps indicating where changes

occurred. Possibly, to be able to exploit and assimilate the frequent acquisitions,
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algorithms should be able to adapt themselves to the data at hand with minimal user

supervision. Observations issued from the Chapter 8 are very promising, and should

be further considered for an efficient integration of multi-modal data in the change

detection process. In this sense, recently developed fields of multi-view learning and

domain adaptation could provide insights for the implementation of multi-sensor

change detection.

In remote sensing image processing In a more general context, the processing of

new generation remote sensing VHR images is still limited by strong assumptions that

are no longer valid for these images. When we look at VHR data, we can easily extract

infinite amounts of information, by simply looking at the objects, their colours, their spatial

locations, their shape, mutual similarities and so on. On these bases, we may underline

the following key points to improve the methods of remote sensing image analysis:

Generalise from pixels to objects. VHR data are complex, due to their intrinsic multi-

scale nature. To be able to extract relevant information, objects and semantically

coherent regions composing the image should be considered and processed as enti-

ties. Future methods involving the processing of VHR data should switch from a

pixel-based representation to an object-based one. By doing so, a more compact,

meaningful and realistic representation of the image is obtained, while keeping dif-

ferent degrees of scale information and respecting the precise spatial arrangement of

the pixels. For these developments, computer vision approaches could greatly help

for spatially and semantically coherent analyses and understanding of images.

Analyze relationships between objects. By assuming a perfect segmentation, the ex-

traction of the relevant information from the semantically coherent regions needs the

use of adapted analysis methods. To be able to obtain a high level processing, fea-

tures characterizing the objects, such as texture, size, shape, colour, location, edges,

orientation, and, more importantly, the spectral information, should be correctly

considered. To deal with such a newly created feature space, kernel methods offer

many state-of-the-art solutions. In particular, we may mention the use of structured

classifiers respecting class hierarchies, multi-task learning, manifold learning of ob-

jects, data fusion, domain adaptation and multi-view learning. In other words, we

want to transform unstructured and uninformative objects (the pixels) to a struc-

tured and valuable representation, from which extract the information needed to

process the data. By understanding the relationships between objects and correctly

encoding the discriminant characteristics, the need of labelled information may be

strongly reduced and the transfer of information from one task to another one can be

accomplished more easily, thus leading to more general methods of remote sensing

image interpretation.

Only a more strict synergy between the (already strongly related) domains of image

processing, vision and machine learning to the field of remote sensing image processing

and interpretation could bring to a significant improvement in the tools available for the

processing of new generation data.
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Appendix A

The learning sets

When approaching a statistical data modelling problem, one usually takes advantage of

the data samples that dispose at the moment of learning. Here, we give a formal definition

of the different subsets required during the training and assessment of the generalization

ability of a model. In particular, we distinguish between training, testing and validation

sets. Formal explanation of the process in which they are implied, are deemed to Section 3.

Dataset The dataset is a collection of all the available samples, labelled or not. In this

Thesis, we distinguish between the image X and the data matrix X. The two sets of

samples only differ in their organization: while an image X ∈ R(N×M×d) is arranged

into d spectral channels of size M × N pixels each, the data matrix is reshaped so

that X ∈ R(N ·M×d). In each row of X one finds the pixels as x′, while in the columns

the d spectral values for each sample.

Training set The training set Xs is a labelled subset drawn from the original data X, and

it is used to train a model, i.e. estimating model parameters to fit the data. As it will

be detailed in the dedicated sections, in supervised learning we dispose of ns training

pairs {(xi, yi)}ns
i=1, thus (Xs×Ys) ⊂ (X×Y ) ∈ X×Y, corresponding to input-output

couples from their respective spaces (Chapter 6). Otherwise, when disposing only of

samples {xi}ns
i=1 ∈ X one recurs to the use of unsupervised techniques (Chapter 7).

If a situation between the two occurs, the use of semi-supervised models may be

foreseen (Chapter 8).

Test set This set is another disjoint labelled subset of the original dataset (Xt × Yt) ⊂
(X×Y ) ∈ X×Y used to evaluate the generalization accuracy of the final model (an

approximation of the goodness of the model with respect to new samples). A test set

is composed by nt pairs {(xi, yi)}nt
i=1, so that a generalization error can be estimated

and used to rank final models. It is important to point out that the samples of this set

have never been used neither in the training nor in the choice of the hyperparameters.

In this case the test set is independent from the training process of a model, and it

can assess its accuracy with respect to the process generating the data P(x, y).

In remote sensing applications it is often required that this set comes from regions

that are spatially disjoint from the ones producing the training samples. By doing
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so, biases in the estimation of the generalization error due to training-testing spatial

autocorrelation can be avoided. However, since the labelling process is costly, this

requirement is not always fulfilled.

Validation (or development) set The validation set (Xv × Yv) ⊂ (X× Y ) ∈ X× Y is

an additional labelled subset, independent from the training and test sets, used to

estimate the performance of the model f(x) trained on Xs under different hyper-

parametrizations. The lowest validation error defines the hyperparameters that will

be retained for training the final model. However, since labelled data are usually

scarce in real world scenarios, one may not dispose of such set (see Section 3.3).
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Accuracy evaluation

At the end of the change detection process, one must evaluate the goodness of a map

by a measure of performance. On the basis of this score, one is able to decide whether

the map is accurate enough to be used, or simply to rank and compare different models.

It is a good practice to use different scores when evaluating a classification map, since

they provide different insights on the models, in particular for unbalanced problems or

correlated errors. The figures of merit used in this Thesis are based on the comparison

between the predicted and true labels (the ground truth) for the test set, composed by nt
samples. This comparison is made through the use of an error matrix (Confusion matrix,

Table B.1), counting the number of times a true sample has been assigned into the different

predicted classes.

For binary problems, it can be reduced to a 2 × 2 table summarizing the correct

predictions (true positives and true negatives) and the wrong ones (false positives and

false negatives). By exploiting the frequencies of these categories, the following metrics

can be computed:

Overall Accuracy (OA) is expressed as the ratio of correctly classified samples over

the grand total of test pixels, ranging in [0, 1] or expressed in percentages. It has

a straightforward interpretation, but note that OA is biased for unbalanced class

Observed

Class 1 2 · · · c User acc.

P
re

d
ic

te
d 1 n11 n12 · · · n1c n11/

∑
i n1i

2 n21 n22 n22/
∑

i n2i

...
...

. . .
...

c nc1 nc2 ncc ncc/
∑

i nci
Producer acc. n11/

∑
i ni1 n22/

∑
i ni2 · · · ncc/

∑
i nic

∑
i nii/n

Table B.1: Confusion matrix - Observed and predicted classes are compared in order to

establish a prediction accuracy.
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problems (change occurs usually in a fraction of the total image). It is computed as,

for nii correctly detected samples for class i and nt total pixels:

OA =

∑
i=1 nii
nt

. (B.1)

The overall error is defined by 1−OA (or 100-OA[%]). The marginal classwise accu-

racies are denoted as user’s (commission rate) and producer’s accuracies (omission

rates).

Cohen’s Kappa statistic (κ) [Foody, 2004] estimates the agreement between two maps

by compensating the overall accuracy by the chance of random agreement. By this

correction, the effect of large classes is partially compensated. It ranges in [−1, 1],

with values -1 if the models specularly disagree, 0 if the agreements are due to

chance, and 1 if models perfectly match . It is evaluated as:

κ =
p(c)− p(r)

1− p(r) , (B.2)

where p(c) is the agreement rate (the overall accuracy, expressed in [0, 1]) and p(r) is

the agreement due to chance, computed as the product of the class-wise fractions of

correctly detected classes (over nt), plus the product of the fractions of the predicted

classes (over nt).

Rand’s Index was introduced by W. M. Rand in 1971 [Rand, 1971]. It is designed

to penalise correct outcomes due to chance. It ranges in [0, 1], with value 0 for

completely random outcomes and 1 for perfect matches. It is also well suited to

evaluate unbalanced classification problems. It is calculated as:

Rand I =

∑
i nii∑

i nii +
∑

i 6=p nip
, (B.3)

where nii is the number of agreements between the model and the ground truth.

The second term at the denominator counts the number of disagreements.

Normalized mutual information (NMI) is a multi-class measure of agreement rely-

ing on information theory [Cover and Thomas, 1991]. The agreement score is given

by normalizing the mutual information MI(Ŷ , Y ) between the predicted Ŷ and true

Y class assignments, with the average entropy of the independent labellings (true

labels and predicted ones) H(Ŷ ) and H(Y ) respectively. It ranges in [0, 1] and is

very appropriate for unbalanced problems. It is estimated as:

NMI =
MI(Ŷ , Y )

H(Ŷ ) + H(Y )
, (B.4)

ROC curves and AUC. The receiver operating characteristic curve (ROC) and the cor-

responding area under the ROC curve (AUC) are measures used to assess the per-

formance of binary classifiers. The true positive and false positive rates are analysed

by varying the decision threshold and after plotting them on a true positive - false
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positive plane, they result in a curve [Fawcett, 2006]. The area under the curve

is a measure of classification accuracy, and it ranges in [0.5, 1]. It indicates the

performance from random (0.5) to perfect (1).

To further support the ranking of models, statistical significance tests may be needed to

assess whether a difference in accuracy is significant or not. In this Thesis, the statistical

significance is assessed trough the use of the one-tailed McNemar test for related samples,

with a squared test statistic z2 following a χ2 distribution with 1 degree of freedom [Foody,

2004]:

z2 =
(M12 −M21)2

M12 −M21
. (B.5)

where M12 is the number of samples wrongly classified by model 2 but correctly allocated

by model 1, and M21 refers to the inverse situation. The hypothesis of a better accuracy

of model 1 is then compared to tabulated values for different confidence levels. When the

number of test samples is small, one may want to adopt the continuity corrected statistic:

z2 =
(|M12 −M21| − 1)2

M12 −M21
. (B.6)
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Appendix C

Datasets

C.1 Brüttisellen

The Brüttisellen multi-temporal images are a subset of two QuickBird scenes, acquired in

August 2002 and October 2006 respectively. They have been both pansharpened using the

Gram-Schmidt transformation, resulting in approximately 0.7[m] of pixel size. The subsets

have size of 521×1188 pixels, accounting for NIR-R-G-B channels. By visual inspection,

a total of 9 classes have been detected, of which 3 are changed and 6 unchanged areas

(see Figure C.1). The set available for training is composed of 57’587 pixels, while the

spatially independent test set accounts for 58’293 samples.

The changed regions delineate a group of newly constructed houses in a bare soil re-

gion. The scene is challenging since bare soil can partially dissimulate radiometric changes

related to the buildings. Other changes are related to grassland and bare soils, while a

different shadowing causes radiometric differences in unchanged zones. Unchanged areas

represent a typical low density residential surface. The different acquisition times do not

raise issues related to phenological differences (since not modelled). Figure C.1 illustrates

the datasets and the training/testing regions.
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Figure C.1: The Brüttisellen dataset - In (a) 2002 and (b) 2006 datasets. In (c) and (d)

the regions used for training and testing, respectively. In the legend, BS refers to bare soil.
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Figure C.2: The Steinacker dataset - In (a) 2002 and (b) 2006 datasets. In (c) and (d)

the regions used for training and testing, respectively.

C.2 Steinacker

The Steinacker dataset is extracted from the same pansharpened QuickBird from which

the Brüttisellen dataset has been selected. The scenes account for 4 classes related to

ground cover changes and 6 to unchanged areas, both discovered by visual inspection of

the two 784×649 scenes. The set available for training is composed of 52’564 pixels, while

the spatially independent test set accounts for 58’293 samples.

The observed transitions are related to cultivated crops (vegetated and not) and to

the construction of new buildings over a cultivated crop showing both grass and bare soil

covers. Also, the construction site in the lower right corner has been completed. The rest

of the image presents differences due to the sun elevation level and small changes due to

urban dynamics. Figure C.2 illustrates the datasets and the training/testing regions.
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Figure C.3: Subsets of the Landsat TM James River flooding - (a) 2005 and (b)

2011 acquisitions. In (c) location of the frames used for visual validation of the results (see

Figure 6.4 for the 4 details); and (d) the ground truth locations used to numerically validate

the outcomes.

C.3 Missouri flooding

The James River is a tributary of the Missouri River, South Dakota, USA. In summer

2011 significant rainfalls affected the region and the river rose above the flood stages,

inundating the alluvial valley. Damages to cultivated crops were reported due to the rise

of the water table level and to the heavy precipitations. The National Aeronautics and

Space Administration (NASA) reported that in some points the flooded river reached the

kilometer wide1. Both images used in this study have been acquired by the Landsat TM

sensor, providing images with a spatial resolution of 30[m]. A subset of size 2800×2100

pixels covering the James River has been retained from the original data. The pre-event

image has been acquired in May 19th, 2005 and the post-event image depicts the situation

on June 5th, 2011, shortly after the flooding. The set available for training is composed

of 47’162 pixels, while the spatially disjoint test set is composed of 80’282 pixels. This

dataset is challenging since small differences in phenology and crop rotation introduce land

cover changes that are of no interest for the flood mapping task. The ‘not flooded’ class

includes consequently all the uninteresting changes. By observing the river path, valley

morphology and structure, no significant changes occurred between the two acquisitions.

1http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=50901
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C.4 Gloucester flooding

(a) (b)

(c)

Figure C.4: The Gloucester subset - (a) 1999 and (b) 2000 acquisitions along with the

ground truth, in (c). Changes are labelled in white while red refers to unchanged areas.

C.4 Gloucester flooding

This dataset consists in a subset of the image provided for the 2009 IEEE GRS-S data

fusion contest [Longbotham et al., 2012]. The bi-temporal dataset is composed of two

3-bands SPOT XS images of size 712×1734, in the range NIR-R-G. They come with a

spatial resolution of 20[m]. The scenes were acquired before and after a flooding event

occurred in Gloucester (UK), in 2007. The ground truth for the changed class is composed

of 103’702 pixels, while 97’769 are available for the unchanged class. The change detection

problem consists in correctly mapping the flood extent. The task is challenging since the

scene presents many changes due to crop rotation and the spectral information available

for modelling is low.
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(a) (b) (c)

Figure C.5: The Brüttisellen 2 dataset - (a) 2002 and (b) 2006 acquisitions along with

the ground truth, in (c). Changes are labelled in white while black refers to unchanged areas.

C.5 Brüttisellen 2 dataset

This bi-temporal dataset is a subset of a couple of pansharpened QuickBird images (NIR-

R-G-B) of a neighborhood of Zurich (Switzerland), acquired respectively in August 2002

and October 2006 (as for the other Brüttisellen data, Section C.1). Their size is 362×598,

and represent general changes related to urban dynamics and in particular to the con-

struction of a group of familiar houses. The spatial resolution of the images is of about

0.7[m], making the problem of change detection hard due to high variances of the class of

pixels, as well as general differences caused by illumination differences. The ground truth

for the changed class includes 12’309 pixels, while 204’167 are available for the unchanged

one.
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C.6 Greek island forest fire

(a) (b) (c)

Figure C.6: The Greek Island dataset - (a) 1987 and (b) 1991 acquisitions along with

the ground truth, in (c). Changes are labelled in white while red refers unchanged areas.

C.6 Greek island forest fire

This dataset is a portion of two Landsat TM images of a small island in Peloponnese,

Greece, acquired respectively in 1987 and 1991 respectively. The scenes are 444×300

pixels, with a spatial resolution of 30[m]. Prior to analysis the low resolution thermal

band has been removed, resulting in 6 bands. The change detection problem consists in

delineating a post-fire region on the north-west flank of the island. The ground truth for

the changed class is composed of 7’274 pixels, while 19’256 are available for the unchanged

class. Train and test samples are selected randomly among the two class labels.
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(a) (b) (c)

Figure C.7: Greece fires dataset - (a) 1987 and (b) 1991 acquisitions along with the

ground truth, in (c). Changes are labelled in white while the remaining black pixels refer to

unchanged areas.

C.7 Greek fires dataset

This dataset is a portion of two Landsat TM images acquired over the Peloponnese,

Greece, in 1987 and 1991 respectively. The region has been struck by fires in 1989, 1990

and 1991. The scenes are 783×711 pixels, with a spatial resolution of 30[m]. Prior to

analysis the low resolution thermal band has been removed, resulting in 6 bands. The

change detection problem consists in delineating a 4 different post-fire regions, showing

diverse re-vegetation situation. The ground truth for the changed class is composed of

10’457 pixels, while 564’256 are available for the unchanged class.
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and J. Malo. Remote sensing image processing, vol-

ume 5 of Synthesis Lectures on Image, Video, and

Multimedia Processing. Morgan & Claypool Pub-

lishers, 2011. 23

G. Camps-Valls, J. Muñoz-Maŕı, L. Gómez-Chova,
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L. Gómez-Chova, J. Amorós-López, E. Izquierdo-
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L. Gómez-Chova, E. Izquierdo-Verdiguier, J. Amorós-
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X. Chen, and G. Bareth. Rice monitoring with multi-

temporal and dual-polarimetric TerraSAR-X data.

International Journal of Applied Earth Observation

and Geoinformation, 21:568–576, 2013. 22

B. Kunkel, F. Blechinger, R. Lutz, R. Doerffer, and

H. van der Piepen. ROSIS (reflective optics system

imaging spectrometer) - a candidate instrument for

polar platform missions. In J. S. Seeley and S. C.

Bowyer, editors, Society of Photo-Optical Instru-

mentation Engineers SPIE, pages 134–141, 1988. 18

M. Kuss and T. Graepel. The geometry of kernel canon-

ical correlation analysis. Technical Report 103, Max

Planck Institute for Biological Cybernetics, 2003.

132

H. Kwon and N. M. Nasrabadi. Kernel RX-algorithm:

A nonlinear anomaly detector for hyperspectral im-

agery. IEEE Transactions on Geoscience and Re-

mote Sensing, 43(2):388–397, 2005. 69, 78

H. Lee. Mapping deforestation and age of evergreen

trees by applying a binary coding method to time-

series Landsat November images. IEEE Transac-

tions on Geoscience and Remote Sensing, 46(11):

3926–3936, 2008. 65

J. A. Lee and M. Verleysen. Nonlinear Dimensionality

Reduction. Springer, 2007. 38, 39

C. Leslie and R. Kuang. Fast string kernels using in-

exact matching for protein sequences. Journal of

Machine Learning Research, 5:1435–1455, 2004. 57

S. Lhermitte, J. Verbesselt, W. W. Verstraeten, and

P. Coppin. A comparison of time series similarity

measures for classification and change detection of

ecosystem dynamics. Remote Sensing of Environ-

ment, 115(12):3129–3152, 2011. 64

T. M. Lillesand, R. W. Kiefer, and J. W. Chipman. Re-

mote sensing and image interpretation. John Wiley

& Sons, 2004. 9, 13, 24

X. Long Dal and S. Khorram. Remotely sensed change

detection based on artificial neural networks. Pho-

togrammetric Engineering and Remote Sensing, 65

(10):1187–1194, 1999. 66

N. Longbotham, F. Pacifici, T. Glenn, A. Zare,

M. Volpi, D. Tuia, E. Christophe, J. Michel,

J. Inglada, J. Chanussot, and Q. Du. Multi-modal

change detection, application to the detection of

flooded areas: Outcome of the 2009-2010 data fu-

sion contest. IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing, 9

(6):331–342, 2012. 6, 165

J. MacQueen. Some methods for classification and anal-

ysis of multivariate observations. In 5th Berkeley

Symposium on Mathematical Statistics and Proba-

bility, pages 281–297, 1967. 42, 104, 105

W. A. Malila. Change vector analysis: An approach

for detecting forest change with Landsat. In IEEE

Proceedings of Annual Symposium on Machine Pro-

cessing of Remotely Sensing Data, pages 326–336,

1980. 23

S. Marchesi and L. Bruzzone. ICA and kernel ICA for

change detection in multispectral remote sensing im-

ages. In IEEE International Geosciences and Re-

mote Sensing Symposium IGARSS, volume 2, pages

II–980–II–983, 2009. 71, 121

174



References

S. Marchesi, F. Bovolo, and L. Bruzzone. A context-

sensitive technique robust to registration noise for

change detection in VHR multispectral images.

IEEE Transactions on Geoscience and Remote

Sensing, 19(7):1877–1889, 2010. 23

J. V. Martonchik, C. J. Bruegge, and A. H. Strahler.

A review of reflectance nomenclature used in remote

sensing, remote sensing reviews. Remote Sensing

Reviews, 19(1):9–20, 2000. 14

J.-F. Mas. Monitoring land-cover changes: A compar-

ison of change detection techniques. International

Journal of Remote Sensing, 20(1):139–152, 1999. 23

G. Matasci, M. Volpi, D. Tuia, and M. Kanevski. Trans-

fer component analysis for domain adaptation in im-

age classification. In L. Bruzzone, editor, SPIE Im-

age and Signal Processing for Remote Sensing XVII,

Prague (CZ), volume 8180, 2011. 7

G. Matasci, L. Bruzzone, M. Volpi, D. Tuia, and

M. Kanevski. Investigating feature extraction for

domain adaptation in remote sensing image clas-

sification. In International Conference on Pat-

tern Recognition Application and Methods ICPRAM

2013, Barcelona (SP), 2013. 7

F. Melgani and Y. Bazi. Markovian fusion approach

to robust unsupervised change detection in remotely

sensed imagery. IEEE Geoscience and Remote Sens-

ing Letters, 3(4):457–461, 2006. 68

F. Melgani, G. Moser, and S. B. Serpico. Unsupervised

change-detection methods for remote-sensing im-

ages. Optical Engineering, 41(12):3288–3297, 2002.

68

M. P. Mello, C. A. O. Bernardo Vieira, M. T. Rudorff,

P. Aplin, R. D. C. Santos, and D. A. Aguiar.

STARS: A new method for multitemporal remote

sensing. IEEE Transactions on Geoscience and Re-

mote Sensing, 2013. 64

J. Mercer. Functions of positive and negative type and

their connection with the theory of integral equa-

tions. Philosophical Transactions of the Royal Soci-

ety A, 209:415–458, 1909. 54

G. Metternicht, L. Hurni, and R. Gogu. Remote sensing

of landslides: An analysis of the potential contribu-

tion to geo-spatial systems for hazard assessment in

mountainous environments. Remote Sensing of En-

vironment, 98(2-3):284–303, 2005. 22

S. Mika. Kernel Fisher Discriminants. PhD thesis,

Elektrotechnik und Informatik der Technischen Uni-

versität Berlin, 2002. 75, 77, 121
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