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• Increased population structure leads to higher payoff outcomes even when risky.
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a b s t r a c t

Animals can often coordinate their actions to achieve mutually beneficial outcomes. However, this can
result in a social dilemmawhen uncertainty about the behavior of partners createsmultiple fitness peaks.
Strategies that minimize risk (‘‘risk dominant’’) instead of maximizing reward (‘‘payoff dominant’’) are
favored in economic models when individuals learn behaviors that increase their payoffs. Specifically,
such strategies are shown to be ‘‘stochastically stable’’ (a refinement of evolutionary stability).

Here, we extend the notion of stochastic stability to biological models of continuous phenotypes at
a mutation-selection-drift balance. This allows us to make a unique prediction for long-term evolution
in games with multiple equilibria. We show how genetic relatedness due to limited dispersal and scaled
to account for local competition can crucially affect the stochastically-stable outcome of coordination
games. We find that positive relatedness (weak local competition) increases the chance the payoff
dominant strategy is stochastically stable, even when it is not risk dominant. Conversely, negative
relatedness (strong local competition) increases the chance that strategies evolve that are neither payoff
nor risk dominant. Extending our results to large multiplayer coordination games we find that negative
relatedness can create competition so extreme that the game effectively changes to a hawk–dove game
and a stochastically stable polymorphism between the alternative strategies evolves. These results
demonstrate the usefulness of stochastic stability in characterizing long-term evolution of continuous
phenotypes: the outcomes of multiplayer games can be reduced to the generic equilibria of two-player
games and the effect of spatial structure can be analyzed readily.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Social behavior occurs across all domains of life, from colonies
of microscopic prokaryotes to swarms of insects and herds of
ungulates, and generates some of the most complex biological
phenomena (e.g., ant supercolonies and human societies). Given
this complexity, understanding the evolutionary forces that shape
social behavior has been a persistent focus of evolutionary theory.
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Much of this focus has been devoted to exploringwhich conditions
are favorable for the evolution of helping behaviors such as
cooperation or altruism in public goods or prisoner’s dilemma
games and their repeated game counterparts.

Although these scenarios are manifestly important, they do
not characterize all situations in which cooperation is useful but
potentially disfavored by natural selection. One such situation
occurs when animals must coordinate their actions to achieve
a mutually beneficial outcome, such as when predators can
cooperate to hunt prey. For example, some populations of wild
chimpanzees hunt colobus monkeys in groups (Boesch, 1994,
2002), and individuals in the group obtain more payoff than those
who do not hunt (Boesch, 1994). This suggests that cooperating in
the hunt may be an evolutionary stable strategy (ESS). However, if
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none of the chimpanzees are hunting, then it does not benefit any
single individual to hunt alone, which suggests that not hunting is
also a candidate ESS.

Social situations can thus havemultiple possible candidate ESSs
and the underlying games are often called ‘‘coordination games’’
(Binmore, 2007) or ‘‘stag hunt games’’ (Skyrms, 2001) given their
similarity to a scenario described by the philosopher Jean-Jacques
Rousseau (Crawford, 1991). In the classic description of the stag
hunt, hunters must cooperate to hunt stag, a valuable prey item,
but can also hunt hare, easier but less valuable prey, on their own.
The inherent dilemma in the stag hunt and other coordination
games is that individuals may not coordinate on hunting stag or
whatever strategy provides the highest payoff for all individuals
at the ESS (also known as a ‘‘payoff dominant’’ strategy). Thus,
the evolutionary problem is to determine what biological circum-
stances, if any, yields an evolutionary dynamic that lead to the pay-
off dominant outcome.

Because there are two candidate ESSs in the stag hunt game, the
evolutionary dynamics of hunting hare or stag will depend on the
history or initial conditions of the process, and in a very large pop-
ulation local fitness maxima (ESS points) will tend to determinis-
tically attract the evolutionary dynamic. However, random effects
introduced by mutations and genetic drift occurring in small pop-
ulations may allow the population to escape from one local equi-
librium and to shift towards the other peak. Previous work shows
that this exploration process resulting from the interaction of mu-
tation, selection, and drift will often find local fitness peaks that are
‘‘risk dominant’’ (Harsanyi and Selten, 1988), even if such peaks are
not payoff dominant and do not provide the highest payoff to all in-
dividuals (Blume, 1993; Ellison, 1993; Kandori et al., 1993; Young,
1993). A focal strategy is risk dominant over an alternative strategy
when an individual obtains more payoff from the focal strategy on
average given it has no information about which of the two strate-
gies its partner will choose. When the effect of mutation and drift
become very small, this stochastic exploration process results in
the population residing at the less ‘‘risky’’ peak nearly all the time,
and this peak is consequently called ‘‘stochastically stable’’ (Fos-
ter and Young, 1990). In the case of a coordination game or stag
hunt, this would suggest that individuals would always hunt hare
instead of stag if hunting hare were less risky regardless of how
much meat a stag might yield.

Despite the importance of demographic and genetic population
structure in the evolution of public goods, its effect on the evo-
lution of social dilemmas in coordination games under continu-
ously varying strategies is almost entirely unexplored. The primary
goal of the present paper is to incorporate genetic structure and
relatedness into an explicit stochastic model for the evolution of
such strategies. In order to do this, we will extend the concept of
stochastic stability used in evolutionary game theory to continu-
ous phenotypes in structured populations. We find that positive
relatedness leads to a greater opportunity for the payoff dominant
strategy to be selected instead of the risk dominant one; that is,
more relatedness tends to favor more reward rather than less risk.
We extend this model to n-player interactions and derive novel re-
sults on how the evolution of coordination works as interaction
groups increase in size. Specifically, we find that negative relat-
edness, which translates to intense competition between kin, can
change the nature of the game itself when interaction groups are
large. Instead of the evolution of risk dominant strategies, nega-
tive relatedness in such groups results in the evolution of a strate-
gic polymorphism, which is the result of effective hawk–dove type
interactions. Thus, we find that natural selection does not simply
result in the evolution of less risky strategies; instead, it can select
alternative high payoff strategies when relatedness is positive and
can create stochastically stable polymorphisms when relatedness
is strongly negative.
2. Model

2.1. Biological assumptions

2.1.1. Population setting
We consider a group structured population of constant and fi-

nite size NT = Nnd, where nd is the number of groups and N the
number of individuals in a group. The spatial structure of the popu-
lation may follow a variety of schemes, such as the island model of
dispersal (Wright, 1931), the standard isolation-by-distancemodel
of population genetics where individuals (or groups) live on a lat-
tice (Malécot, 1975), or a hierarchically clustered model such that
individuals are grouped into families, families into villages, villages
into clans, and so on (Sawyer and Felsenstein, 1983).

The individuals in the population may be iteroparous or semel-
parous, but we leave the exact details of the life history and pop-
ulation structure (i.e., the dispersal kernel) unspecified as it does
not affect our analysis. All thatmatters is that interactions between
individuals can occur at a local scale, among group members or
among nearest neighbors on a lattice, instead of occurring at ran-
dom in the whole population.

2.1.2. Social interactions
We assume that the individuals in the population participate

in a social game where they must select one of two actions, r or
p. The probability that individual i chooses, or ‘‘plays’’, action r is
denoted by zi. We assume that the payoff (taken here to be average
fecundity relative to a baseline) to individual i when meeting
individual j that plays action r with probability zj is given by

f (zi, zj) = 1 + zi

zjR + (1 − zj)S


+ (1 − zi)


zjT + (1 − zj)P


, (1)

where R can be thought of as the reward for mutual cooperation,
S the sucker’s payoff, T the temptation to defect, and P the pun-
ishment for mutual defection. When R > T and P > S, the pay-
off structure represents a coordination or stag hunt game (Skyrms,
2001), so that interacting individuals have an incentive to both play
either r or p.

2.1.3. Evolutionary dynamics
Our aim is to derive the long-term evolutionary dynamic of

the play probability z in the population. To do this, we assume
that the phenotype z is determined by a single genetic locus
with a continuum of possible allelic effects (Kimura, 1965; Bürger,
2000). We also make the standard assumption of evolutionary
game theory, adaptive dynamics, and inclusive fitness theory
that the stochastic dynamics of z allow for only two segregating
alleles at a time, a resident allele and a mutant allele (e.g.,
Eshel, 1996; Hammerstein, 1996; Metz et al., 1996; Eshel et al.,
1998; Geritz et al., 1998; Rousset, 2004; Champagnat et al., 2006;
Champagnat and Lambert, 2007). This assumption is justifiable if
the per capita mutation rate µ to new alleles is small relative to
the total population size (specifically when µNT log(NT) ≪ 1;
Champagnat et al., 2006; Champagnat and Lambert, 2007). It
has its origin in population genetics where it has been widely
applied in molecular evolution to evaluate substitution rates (e.g.,
Kimura, 1971; Gillespie, 1991) and used to evaluate the steady-
state fitness landscape in the absence of social interactions (Iwasa,
1988; Gillespie, 1991; Sella and Hirsh, 2005; Sella, 2009).

In order to evaluate how selection, drift, and mutation interact
in the presence of social interactions in a populationwith onlymu-
tant and resident alleles, we look at individuals carrying a mutant
allele to play action r with probability z + δ in a population where
resident (wild-type) individuals play action r with probability z.
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Hence, δ is the phenotypic deviation in the play probability bymu-
tant individuals. The values of δ are drawn from a symmetric dis-
tributionwithmean zero, whichmeans thatmutations do not tend
to push the phenotype in one direction or another.We assume that
δ is small (weak selection) so that the evolutionary dynamics can
be evaluated to first order in δ. With all these assumptions and re-
gardless of the kind of population structure, the probability density
function p(z, t)of observing a populationmonomorphic for pheno-
type z at time t on an long-term evolutionary time scale satisfies
the diffusion equation

∂p(z, t)
∂t

= −µσ 2NT
∂

∂z
[S(z)p(z, t)] +

µσ 2

2
∂2

∂z2
[p(z, t)] , (2)

where σ 2 is the variance in the mutation step size (variance in δ),
and S(z) is the derivative of the fixation probability of a single mu-
tant with respect to δ evaluated in a population where the resi-
dent trait z is at fixation (i.e., δ = 0; see Lehmann, 2012, Eq. (4)).
The term S(z) determines the mean change in the phenotype at
that point and determines the direction of selection in a popula-
tion fixed for z. Fluctuations around the mean path are described
by the second term in Eq. (2).

The term S(z) can be thought of as a ‘‘selection gradient’’ and
canbe expressed as an inclusive fitness effect as it provides a demo-
graphically explicit version of Hamilton’s (1964) inclusive fitness
effect for finite populations (Rousset, 2004; Rousset and Ronce,
2004; Rousset, 2006). The inclusive fitness effect is a relatedness
weighted sum of the effects of individuals expressing the mutant
behavior on the expected number of offspring of individuals carry-
ing the mutant allele. Relatedness captures the frequency of mu-
tant–mutant interactions, which result from local correlations in
allele frequency in different groups in the population. In the ab-
sence of such interactions, a panmictic population for example,
S(z) reduces to the selection gradient used in the adaptive dy-
namics literature for finite populations (Champagnat and Lam-
bert, 2007, p. 5; for a proof see Lehmann, 2012, Eq. (A-24)). In the
limit of large population size (NT → ∞), S(z) becomes pro-
portional to standard phenotypic selection gradients used in evo-
lutionary game theory, adaptive dynamics, and inclusive fitness
theory (Rousset, 2004).

2.2. Stationary, convergence, and stochastically stable states

In the infinite time limit (t → ∞), the forces of selection,
mutation, and drift acting on the evolving phenotype eventually
balance each other out to yield a stationary probability density of
observing phenotype value z, p(z) = limt→∞ p(z, t). The stan-
dard solution of the diffusion equation in (2) in this limit and with
reflecting boundaries can be written as (Karlin and Taylor, 1981;
Ewens, 2004; Gardiner, 2009)

p(z) = K exp [2NTφ(z)] , (3)

where K denotes a normalizing constant,

φ(z) =


S(z)dz. (4)

The function φ(z) is a so-called potential function since its deriva-
tive with respect to z, S(z), determines the direction of change of
the phenotype (Gardiner, 2009).

The stationary distribution may have several peaks (maxima)
and valleys (minima). We call the set of all peaks C. These peaks
correspond to phenotypes that are more likely to occur in the long
run than their neighboring phenotypes in trait space. Because the
stationary distribution is monotonically increasing as a function of
φ(z), the set of the highest peaks of the stationary distribution,
M ∈ C, can be obtained directly by maximizing the potential:
M = {y : φ(y) = maxz∈Z φ(z)}. The set M includes several
peaks only if they are of exactly equal height. These highest, or
global, peaks are more likely to be observed in the long run of the
evolutionary dynamics than any of the local peaks.

A useful feature of the stationary density p(z) is that its peaks,C,
characterize the convergence stable states (Lehmann, 2012),which
are equivalent to the classic definition of convergence stability
in evolutionary theory (Eshel, 1983; Lessard, 1990; Christiansen,
1991; Rousset, 2004; Leimar, 2009). A convergence stable pheno-
type is one where mutants are selected to invade a population of
residents when their phenotype is closer to the convergence sta-
ble phenotype than the resident phenotype. In terms of the selec-
tion gradient S(z), a convergence stable phenotype z (not on the
boundaries of the trait space) satisfies the conditions S(z) = 0
and dS(z)/dz < 0 (Rousset, 2004), which are equivalent to the
conditions required for z to be a local maximum of p(z), namely
dp(z)/dz = 0 and d2p(z)/dz2 < 0. A convergence stable pheno-
type may also lie on the boundary of the trait space in which case
(if the above condition does not apply) the condition is S(z) < 0
for the lower boundary or S(z) > 0 for the upper boundary, which
corresponds to a boundary maximum for p(z), dp(z)/dz < 0 or
dp(z)/dz > 0. Thus, the more common phenotypes in the station-
ary distribution, C, correspond exactly to the convergence stable
phenotypes obtained from an application of the inclusive fitness
effect or the invasion fitness used in evolutionary theory.

The existence of multiple convergence stable states suggests
that different populations might evolve to different states if these
populations have different initial phenotypes that reside in dif-
ferent basins of attraction. Over long evolutionary time scales,
stochastic forces may shift populations out of the basin of attrac-
tion of one convergence stable state to another, and this peak shift-
ing process equilibrates to the stationary density p(z) such that the
population spends more time at some convergence stable states
than others. A biological and mathematically useful feature of this
peak shifting process is that as stochastic forces become negligible
(population size becomes large), a small set of convergence stable
states (often just one state) remain visited with some frequency
and all other states are unvisited. Specifically, we will say that z is
stochastically stable if

lim
NT→∞

p(z) > 0. (5)

This definition of stochastic stability follows from previous work
in economics and game theory that studies the long run behavior
of populations of game playing agents that update their strategies
from discrete sets using simple learning rules (Foster and Young,
1990; Kandori et al., 1993; Noldeke and Samuelson, 1993; Binmore
et al., 1995; Sandholm, 2010). In thesemodels, a stochastically sta-
ble state is one retaining positive probability in a vanishing noise
limit, which in practice is obtained by either letting population size
become large or mutation rate go to zero (Foster and Young, 1990;
Kandori et al., 1993; Noldeke and Samuelson, 1993; Binmore et al.,
1995; Sandholm, 2010).

In Appendix A, we prove that for our continuously varying state
space, all stochastically stable states satisfy

z ∈ M. (6)

Hence, a stochastically stable state is a global maximum of p(z).
Importantly, the stochastic stable state can be determined from
knowing the selection gradient S(z) alone (Eqs. (4) and (6)).

The result (6) parallels for continuously varying strategies a
standard result for stochastic stability on discrete state spaces (Fos-
ter and Young, 1990; Kandori et al., 1993; Binmore et al., 1995;
Sandholm, 2010). The main message behind the notion of stochas-
tic stability is that it reduces the set of candidate evolutionary
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states to a single point, which is the global maximum of the sta-
tionary distribution. Thus, it gives a unique prediction for the long-
term behavior of the evolutionary dynamics in a population of very
large size. We will now employ this notion in order to analyze the
evolution of the play probabilities in a coordination gamewith and
without spatial population structure.

2.2.1. Fixation probability perturbation
From the preceding section, we know that the crucial quan-

tity we need to calculate in order to understand the long-term
stochastic evolutionary dynamics of the play probability z is the
derivative of the fixation probability with respect to the mutant
deviation δ, namely S(z). In order to evaluate this quantity explic-
itly, we use standard results for the evolution of continuous pheno-
types in structured populations of finite size (Rousset, 2004). Let z•
denote the phenotype of a focal individual in the population (which
could be either mutant or resident) and denote by z0 the average
phenotype of individuals (excluding the focal) in the group of the
focal individual. We also assume that only the focal individual it-
self and its group members (or nearest neighbors on a lattice) can
affect the payoff (fertility or survival) of the focal individual.

With these assumptions, we can write the derivative of the
fixation probability as

S(z) =
k(z)

f (z, z)


∂ f (z•, z0)

∂z•
+ κ(z)

∂ f (z•, z0)
∂z0


z•=z0=z

. (7)

This expression consists of two terms, which can be interpreted as
follows. First, there is the effect of the focal individual on its own
number of offspring produced, which stems from it changing its
own play probability. Second, there is a ‘‘relatedness’’ weighted
effect that a randomly sampled group member (different than
the focal) has on the number of offspring produced by the focal
individual when the group member changes its play probability.

The coefficient κ is a scaled relatedness coefficient that includes
both local competition effects (e.g., Queller, 1994) due to limited lo-
cal resources and global effects due to the finiteness of the popula-
tion, dispersal limitation, and other effects of population structure.
The coefficient κ depends on life cycle parameters (e.g., population
structure, life-historymodes) and can be positive, negative, or zero
within the interval [−1, 1] (Lehmann andRousset, 2010). Likewise,
the constant of proportionality k also depends on life cycle proper-
ties. Under non-Poisson distributed fecundity orwhen the evolving
trait directly affects demographic parameters like dispersal, k and
κ will both depend on z. This can lead to dynamical interactions
between effects of z on payoff and on population structure. While
Eq. (7) is expressed in terms of fecundity effects of social behavior,
it can also be modified to include survival effects. In the general
case, k and κ will both almost invariably depend on survival as it
critically affects the genealogical structure of populations.

The formof the selection gradient (Eq. (7)) follows generally and
mechanically from the assumption of weak selection (neglecting
terms O(δ2), which here also implies additive gene action). This
linearizes the fitness function that determines fixation probabil-
ities (Rousset, 2003, 2004), so that the vital rate v of a focal in-
dividual (fecundity or survival) depends on a linear combination
of the derivatives of v with respect to the phenotype of the focal
and the phenotypes of other homogeneous classes of social part-
ners. Each derivative is weighted by a coefficient that captures the
effect of demographic structure on that type of individual, which
may themselves depend on vital rates (we refer to Rousset, 2004
for details on the general construction of game theoretic models in
spatially structured populations). When there is only one class of
social partner affecting the vital rate of a focal recipient, the fixa-
tion probability can be factored as in Eq. (7) and written in term of
the average phenotype of that class, otherwise one would need to
account for a scaled relatedness coefficient for each class of social
partners (e.g., Lehmann et al., 2007a, Eq. (8)).

The message behind Eq. (7) is that in order to obtain S(z) for
multiplayer games, one essentially needs only to specify the fertil-
ity (or survival) of an individual as a function of its own behavior
and the average of its neighbors. This decomposition of the selec-
tion gradient into perturbations on vital rates occurs explicitly or
implicitly in a large number of previous models of social evolution
in both finite and infinite populations. For instance, in the recent
literature κ is equivalent to the ‘‘potential for altruism’’ of Gardner
(2010, p. 340), the ‘‘potential for helping’’ of Rodrigues and Gard-
ner (2012, Eq. (4)), the ‘‘compensated relatedness’’ of Grafen and
Archetti (2008, p. 696), the scaled relatedness of Van Dyken (2010,
Eq. (4)) and Akcay and Van Cleve (2012, p. 258), the ‘‘σ0’’ of Alger
and Weibull (2012), or the ‘‘σ ’’ of Tarnita et al. (2009) and Allen
et al. (2013). More generally, κ has been evaluated under a large
class of life history and demographic scenarios. In Appendix B, we
present various examples of κ and k values for the classical island
and isolation-by-distance models of population structure of finite
size for both fecundity and survival effects; because κ critically af-
fects the selection pressure on z, we summarize the analytical re-
sults for κ in Table 1. For a more comprehensive presentation of
howan expression like Eq. (7) relates to different demographic sce-
narios in populations of very large total size, we refer to Lehmann
and Rousset (2010).

Given the diversity of possible life history conditions in natu-
ral populations, we assume that κ is a fixed parameter and analyze
the evolution of the play probability z. We thus assume that both
k and κ do not depend on the evolving trait and remain nonzero
when population size becomes large (NT → ∞); in practice, this
implies that we focus on social traits with fecundity effects where
fecundity is either Poisson distributed or infinitely large, as is as-
sumed in many evolutionary analyses.

3. Analysis

3.1. Pairwise coordination game

3.1.1. Stationary distribution
Substituting the payoff function (1) into the fixation probability

perturbation (Eq. (7)), we have

S(z) =
k

f (z, z)


S − P + zD + κ [T − P + zD]


(8)

where D = R − S − T + P . There are three potential local stable
states: (i) z = 1where individuals choose action r with probability
1; (ii) z = 0 where individuals choose action r with probability 0;
and (iii) a mixed strategy where individuals choose action r with
the intermediate value

z∗
=

P − S + κ(P − T )

(1 + κ)D
, (9)

which is obtained by solving S(z∗) = 0. The mixed strategy z∗ is
plotted in the left panel of Fig. 1. When κ = 0, the mixed strategy
is the standard one from two-player games in infinite populations
with deterministic dynamics, and when κ = −1/(NT − 1) it
reduces to the mixed strategy for finite panmictic populations
(Schaffer, 1988; Wild and Taylor, 2004).

Substituting Eq. (8) into Eq. (4) produces the potential function

φ(z) =
k
2
[(1 + κ) log (X(z)) − (1 − κ)Y (z)] (10)

where

X(z) =
1 + P + (R − P)z − Dz(1 − z)

1 + P
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Table 1
κ coefficients for different demographic and life-history assumptions (see Appendix B for a derivation). The parameterm represents the migration rate between groups. The
demographic parameters (s,m, N, nd) can be tuned so that κ takes values in [−1, 1] across the different examples. Social interactions affect either fecundity or survival as
indicated.

Scaled-relatedness coefficient κ Case

−
1

NT−1 Interaction among all members in a panmictic population, whether semelparous or iteroparous and whether social effects are
on fecundity or survival.

−
1

NT−1 Interactions within groups in an arbitrarily structured homogeneous population with semelparous reproduction and large
offspring number (Wright–Fisher process with only fecundity effects).

−
1

N−1 Interactions within groups in an arbitrarily structured homogeneous population with semelparous reproduction and population
size regulation before dispersal.

(1−m)−2/nd
[N+(1−m)]−2/nd

Interactions within groups in an island model of dispersal with iteroparous reproduction and one death per generation (Moran
process with fecundity effects).

−
1

NT−1 Interactions within groups in an island model of dispersal with iteroparous reproduction and one death per generation (Moran
process with survival effects).

q−[2q/nd+m/(Nnd)]
m(Nnd−1)/(Nnd)+q(N+nd−2)/nd

Interactions within groups and group fission at rate q with competition between groups to form the next generation.
m−2k/nd

k(2−m)−2k/nd
Interactions among k-nearest neighbors on a lattice under stepping-stone dispersal and iteroparous reproduction (Moran
process with fecundity effects).

−
1

NT−1 Interactions among k-nearest neighbors on a lattice under stepping-stone dispersal and iteroparous reproduction (Moran
process with survival effects).

s[2−m(1+s)]/2−(1+s)/nd
N+s[2−m(1+s)]/2−(1+s)/nd

Interactions within groups in an arbitrarily structured homogeneous population with weak migration (m ≪ 1), iteroparous
reproduction, and survival probability s of an individual to the next generation (fecundity effects).

−
(1−s)[2−m(1+s)]/2+(1+s)/nd

2N−(1−s)[2−m(1+s)]/2−(1+s)/nd
Interactions within groups in an arbitrarily structured homogeneous population with weak migration (m ≪ 1), iteroparous
reproduction, and survival probability s of an individual to the next generation (survival effects).
Fig. 1. Value of the mixed strategy z∗ when κ = 0 for n = 2 players (left panel, obtained from Eq. (9)) and n → ∞ (right panel, obtained from the interior fixed points of
Eq. (C.3)). Values of R and P are fixed, S is varied from 0 to P , and T is varied from 0 to R. Red colors denote z∗ > 1/2 and blue z∗ < 1/2. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
Y (z) =
2(T − S)

V


tan−1


R − P − D(1 − 2z)

V


+ tan−1


P − R + D

V


(11)

with V =

4(1 + P)(1 + R) − (2 + S + T )2. Using this expres-

sion for φ(z) in Eq. (3) allows us to study the long-term probability
that the population is fixed for play probability z.

3.1.2. Stochastic stability
In the case of a coordination game (R > S and R > T , where,

without loss of generality, we further set R > P), there are two
convergence stable states (z = 1 and z = 0, whereby C =

{1, 0}), and we are interested in whether populations tend to have
phenotypes that choose action r more often than p, or vice versa.

We borrow the terminology of Fudenberg et al. (2006) and say
that action r is ‘‘favored’’ when it is chosen more often than p,
which implies that E[z] > 1/2 under the stationary distribution,
where E[z] =

 1
0 zp(z) is the mean phenotype. In the limit as

population size becomes very large (NT → ∞), the favored
strategy is ‘‘selected’’ in the sense that the probability density
becomes a delta function located at one of the convergence stable
states, either z = 1 when r is selected or z = 0 when p is selected.
The selected strategy is the stochastically stable state of the system.
In the case of a coordination game, z = 1 is stochastically stable
when φ(1) > φ(0) and z = 0 is stochastically stable when
φ(1) < φ(0).
From Eq. (10), we have φ(0) = 0, and z = 1 is thus a
stochastically stable state ifφ(1) > 0. Exponentiating both sides of
this inequality, using Eq. (10), and noting that X(1) = (1+R)/(1+

P), playing only action r (z = 1) is the stochastically stable state if
1 + κ

1 − κ


log


1 + R
1 + P


> Y (1). (12)

Hence, holding everything else constant, the larger the value of κ ,
the more likely it is that the action r is stochastically stable. Since
the payoffwhenboth individuals choose r is higher thanwhen they
both choose p (i.e., R > P), larger values of κ make it more likely
that the payoff dominant action is stochastically stable.

3.1.3. Payoff vs. risk dominance
While individuals are better off in terms of the number of off-

spring produced when everybody expresses the payoff dominant
action r , this does not mean that evolution proceeds towards that
action. It has been repeatedly shown that when individuals learn
to play actions in stochastic models, the dynamics do not proceed
towards the payoff dominant action (Young, 1993; Kandori et al.,
1993; Fudenberg and Harris, 1992; Ellison, 1993); this implies the
existence of a social dilemma in coordination games. Rather, the
condition for an action to be stochastically stable in these models
is that it is risk dominant.

If players are unsure of the strategy of their partner and assign
a probability 1/2 to each of their partner’s actions, the expected
payoff of playing the risk dominant action exceeds that of playing
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Fig. 2. Expected value of z under the stationary distribution given in Eq. (10) for a coordination game (R = 2, S = 0.5, P = 1.5, and where T varies along the x-axis).
Different dashed and colored lines indicate different values of κ where κ takes the values −0.9, −0.5, −0.1, 0.0, 0.1, 0.5, and 0.9 and increases from short to long dashes
(from purple to red or from left to right). For values of T to the left of the vertical dashed black line, action r is both payoff and risk dominant, while for values of T to the
right r is payoff dominant and p is risk dominant. The solid black line indicates the stochastically stable state predicted by Eq. (13); that is, the panmictic populationmodel of
Fudenberg et al. (2006) which corresponds to κ = 0 in our formulation. In the region between the vertical solid and dashed black lines, action p is thus stochastically stable
while being both payoff and risk dominated. The stochastically stable states predicted by Eq. (12) are given in the lower right panel. Decreasing the value of κ below zero
thus increases the region where the stochastically stable action is payoff and risk dominated. Large κ values causes the payoff dominant action to be stochastically stable
even if it is risk dominated. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
the payoff dominant action (Kandori et al., 1993; Binmore et al.,
1995). In the context of a single population whose evolutionary
dynamic is described by the replicator equation (Taylor and Jonker,
1978; Hofbauer and Sigmund, 2003), the risk dominant action is
the one with the larger basin of attraction. The size of the basins
of attraction is determined by the value of the mixed strategy z∗

(obtained by solvingS(z∗) = 0),which is unstable (i.e.,S′(z∗) > 0)
under the replicator dynamics for the payoffs of a coordination
game. The action with the larger basin of attraction is then the one
farther from z∗. In terms of the payoffs, this means that action p is
risk dominant over action r if T −S > (R−P)(1+κ)/(1−κ) (i.e. if
z∗ > 1/2 from Eq. (9)). The higher the value of T , the more likely
action r is to be risk dominated. In terms of hunting stag (action
r) or hunting hare (action p), the value of T can be interpreted
as tuning the intensity of interference of individuals hunting stag
on those hunting hare, which may occur when stag hunters are
likely to destroy burrows of hares or frighten them away. When
T is increased, there is less interference of hunting stag on hare
hunting and the latter becomes less risky. This can be seen visually
in the left panel of Fig. 1, where r is risk dominant for z∗ < 1/2 and
p is risk dominant for z∗ > 1/2.

Unlike the learningmodels in game theory, models grounded in
population genetics have not always found that the risk dominant
action is stochastically stable. For example, using a population
genetic approach based on the Moran model for panmictic
populations (Moran, 1958), Fudenberg et al. (2006) showed that
neither the risk nor the payoff dominant action is stochastically
stable for some parameter values. In Fudenberg et al., action r is
stochastically stable if

R log(R) − S log(S)
R − S

>
T log(T ) − P log(P)

T − P
(13)

(Theorem 2 part b.3 of Fudenberg et al., 2006). Fig. 2 shows this
condition (black line) for the case where the strategy r is payoff
dominant: R = 2, S = 0.5, P = 1.5, and T varies along the x-axis.
Values of T greater than the vertical dashed black line indicate the
p strategy is risk dominant, whereas r is risk dominant for T to the
left of the line. The figure shows that action p is stochastic stable
for values of T between the solid and dashed black vertical lines
despite being neither risk nor payoff dominant.

By evaluating the mean play probability, E[z], from the station-
ary distribution (Eq. (10)), we can evaluate whether or not risk
dominance is the condition for stochastic stability in our contin-
uous phenotype model and how that changes as a function of the
scaled relatedness coefficient κ . In Fig. 2 in the fourth line from the
left (κ = 0), we graph the mean phenotype E[z] obtained from
the stationary distribution (Eq. (10)) with the potential function
for the coordination game (Eq. (3)). As population size increases,
it is clear that our model reproduces the qualitative result of Fu-
denberg et al. (2006). However, the region of T in which action p
is stochastically stable despite being neither payoff nor risk domi-
nant is smaller than predicted by Eq. (13). Although our approach
takes only first-order effects of selection into account, Fudenberg
et al. (2006) do not make this simplifying assumption. This sug-
gests that the quantitative difference is likely to be explained by
the fact that Fudenberg et al. (2006) consider pure strategies, while
ourmodel consider the evolution ofmixed strategies,which entails
that third-order genetic associations do not affect the dynamics.
Nevertheless, the qualitative concordance indicates that even just
first-order effects of selection are able to capture this important
effect of finite population size and drift on coordination games.

The reason for this generic difference between risk dominance
based on the deterministic replicator equation and stochastic sta-
bility is that the stochastic dynamics take into account not only the
size of the basin of attraction of a strategy but also the ‘‘expected
speed of the flow’’ (Fudenberg et al., 2006) at each point of the state
space, which is determined by the magnitude of S(z) (Eq. (2)). To
see how the magnitude of S(z) indicates that a stochastically sta-
ble phenotype may not be risk dominant, we plot in Fig. 3 S(z)
along with its definite integral φ(z) (Eq. (4)) for parameters that
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Fig. 3. Selection gradient S(z) given by Eq. (8) (top panel) and its definite integral
φ(z) (bottom panel) for a semelparous panmictic population with NT → ∞ (k and
κ given by Eq. (B.1)) where R = 2, P = 1, and the S and T values are given in
the plots; these parameter values imply that R + S > T + P , which means r is
risk dominant (and payoff dominant). Although for the (S, T ) = (0.15, 1.1) and
(S, T ) = (0.55, 1.5) lines, playing r is risk dominant, we see that the selection
gradient S(z) takes more negative values (on the left of the graph) than positive
values (on the right), which entails thatφ(1) < 0 so that r is stochastically unstable.
The opposite trend is observed for the (S, T ) = (0.95, 1.9) line in which case
φ(1) > 0 and r is stochastically stable.

make action r risk dominant. Even though action r is both risk and
payoff dominant in the plots (i.e., has a larger basin of attraction),
|S(0)| > |S(1)| for (S, T ) = (0.15, 1.1) and (S, T ) = (0.55, 1.5),
which suggests for these parameters that selection against action r
when it is played infrequently is stronger than selection for r when
played frequently. This results in very strong selection against ac-
tion r when rare and causes φ(1) < 0 for these values of (S, T ),
and consequently action p to be stochastically stable. For (S, T ) =

(0.95, 1.9), selection for r when played frequently increases
enough relative to selection against r when played infrequently
that φ(1) becomes positive and r becomes stochastically stable.

Fig. 2 also shows that increasing κ increases the range of values
of T under which action r is stochastically stable. This can be
understoodbynoting thatwhen a focal individual increases its play
probability for action r , its neighbors are also likely to do so, as
already alluded to above. This correlated effect, which stems from
individuals having genes with similar effects on play probabilities
due to relatedness, increases the selection pressure for z = 1.
From Eq. (8), one can infer that increasing κ both increases the
region of the state space where z is selected for (on average)
and the probability that z increases when playing r is selected
against. Increasing κ thus tilts the balance in favor of the payoff
dominant action, and this occurs regardless of how it otherwise
affects the game (see Eq. (12)). Hence, for large values of κ , the
payoff dominant strategy is very likely to be selected for even if
it is strongly risk dominated. For negative values of κ , the opposite
trend is observed (Fig. 2).

3.2. n-player coordination game

3.2.1. Game structure
Wehave considered so far only pairwise interactions. However,

social interactions often occur betweenmore than two individuals.
Thus, we may ask how the previous results concerning two-player
coordination games change as the number of players increases.
Though general n-player games are difficult to analyze because
they can exhibit complex dynamics and equilibrium structures
(e.g., Motro, 1991; Bach et al., 2006; Gokhale and Traulsen, 2010;
Peña, 2012), n-player interactions are considerably simpler using
the population genetic assumptions described above (i.e., weak
selection andweakmutation relative toNT). Specifically, to the first
order in δ, we can still consider z• to be the probability that a focal
individual plays action r , while z0 is the play probability of action
r by a randomly sampled individual socially interacting with the
focal individual. Hence, the payoff of the focal individual can still
be written as a function of only z• and z0 (and Eq. (7) still holds),
and the only difference with the previous situation is that the focal
now interacts with n− 1 other individuals, where each may play r
with probability z0.

We assume that when the focal individual chooses action r , it
obtains payoff R if all other n − 1 individuals also choose r . For
every one of the n−1 other individuals who instead choose action
p, the payoff of the focal individual, R, is decreased by a factor
γ < 1. In terms of hunting stag, this means that the likelihood of
catching stag decreases as the participation in hunting decreases,
and when γ = 0, the stag can only be caught if all n group
members participate in the hunt. We also assume that when the
focal individual chooses action p, it obtains payoff P if all other n−1
individuals choose p, and for every one of then−1other individuals
that chooses action r when the focal individual chooses action p,
the focal individual’s payoff P is scaled by a factor λ. In terms of
hunting hare, this means that the likelihood of finding hares is a
decreasing function of individuals hunting stag when λ < 1 and is
increasing as a function of the number hunting stag when λ > 1
(less competition for finding hares from those who hunt stag).
When λ = 0, hares can be found only if all individuals participate
in hare hunting. These assumptions lead to the expected payoff

f (z•, z0) = 1 + Rz• (z0 + γ (1 − z0))n−1

+ P(1 − z•) (λz0 + 1 − z0)n−1 (14)

(see Eqs. (C.1)–(C.2) in Appendix C). In order to make the two-
player and n-player games easily comparable, we choose γ =

(S/R)1/(n−1) and λ = (T/P)1/(n−1), which ensures that the payoffs
to the focal are the same regardless of the number of players when
the play probabilities z• and z0 are either zero or one. This means
that, regardless of n, the focal obtains payoff 1 + R when it and its
partners always plays action r, 1 + S when it always plays r and
its partners always play p, and so on. This also ensures that Eq. (14)
simplifies to Eq. (1) for the case of two players (n = 2) regardless
of the play probabilities.

Substituting the payoff function (Eq. (14)) into the selection gra-
dient (Eq. (7)) allows us to study the evolution of the play proba-
bility in the n-player coordination game in the presence or absence
of population structure. Obtaining the stationary distribution p(z)
using the selection gradient is quite difficult analytically as it ap-
pears to involve the roots of n-th order polynomials. We thus pro-
ceed numerically to obtain the stationary distribution of z and
integrate the stationary distribution to obtain themean phenotype
E[z]. Before presenting these results, we generalize the definitions
of payoff and risk dominance to n-player interactions.

3.2.2. Payoff vs. risk dominance
In n-player interactions, payoff dominance naturally general-

izes from the two-player case in that strategy r is payoff dominant
over strategy p if R > P . In order to characterize risk dominance,
we determine the mixed strategy z∗ for κ = 0 (see Appendix C):

z∗
=

P
1

n−1 − S
1

n−1

R
1

n−1 − S
1

n−1 − T
1

n−1 + P
1

n−1
, (15)
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which simplifies to the correct mixed strategy for the two-player
case. Given this value of z∗, action r has a larger basin of attraction
and is risk dominant when

R
1

n−1 + S
1

n−1 > T
1

n−1 + P
1

n−1 . (16)

As the number of players grows very large and n → ∞, z∗ be-
comes

z∗
=

log(P) − log(S)
log(R) − log(S) − log(T ) + log(P)

(17)

and the condition for r to be risk dominant becomes RS > TP . This
is equivalent to saying that r is risk dominant when the geometric
mean payoff of r is higher than that of p when the focal individual
assumes its n − 1 partners will either all choose r or p with equal
probability. The difference in the n → ∞ and n = 2 risk domi-
nance conditions is due essentially to the assumption above that
the deviations of the actions of the social partners from the action
of the focal affect the payoff of the focal multiplicatively (see Ap-
pendix C).

Fig. 4 plots the mean play probability E[z] for NT = 500 for
n = 2, 5, 50, and n → ∞ using the same payoffs as in Fig. 2.
For more than two players and κ = 0, we see that the region
in which action p is selected for even though it is neither payoff
nor risk dominant disappears. Rather, a small region appears for T
larger than the threshold given in (16) for which p is risk dominant
but r is still selected. This suggests that the benefit of payoff
dominant strategies may increase as the size of the interaction
group increases.

As in the two-player case, Fig. 4 shows that increasing κ > 0
increases the range of T for which the action r is stochastically
stable; this is true even as the number of players grows very large.
A different pattern emerges however for strongly negative values
of κ . Once there are more than two players, Fig. 4 suggests that
a threshold value of κ < 0 exists for which sufficiently small T
results in neither action, r or p, being selected in the long run.
Rather, an intermediate value of the play probability is expected,
0 < E[z] < 1. In order for an intermediate value of z to be selected,
neither z = 0 nor z = 1 can be stochastically stable, which means
that the mixed strategy z∗ must be stochastically stable. From (6),
we know that z∗ must also be convergence stable, which means
dS(z)/dz|z=z∗ < 0.

The switch in the stability of the mixed strategy z∗ as κ de-
creases indicates a change in the underlying game structure as κ
is varied. The mixed strategy in a coordination game without pop-
ulation structure (κ = 0) is an evolutionary repeller (i.e., not con-
vergence stable) and separates the basins of attraction for the two
boundary phenotypes, playing actions r and p with probability 1,
respectively. When the mixed strategy becomes stable as κ de-
creases, the boundary strategies become unstable and the result-
ing game has the structure of a two-player hawk–dove (Maynard
Smith and Price, 1973) or snowdrift game (Sugden, 1986). This can
been in Fig. 5, which shows the location and stability of the mixed
strategy z∗ and the stability of the boundary phenotypes, z = 0 and
z = 1. Formore than two players and T = 0.25, we see that: (i) the
mixed strategy is stable for values of κ close to −1 and the bound-
aries z = 0 and z = 1 are repelling; (ii) the mixed strategy disap-
pears for a window of κ < 0 and z = 1 becomes attracting; and
(iii) themixed strategy reappears as an unstable point for κ & −0.5
and z = 0 becomes attracting. This thus covers the generic two-
player two-action game structures (e.g., Weibull, 1997); namely
scenario (i) results in a hawk–dove type interaction, (ii) is a game
with a dominant strategy, and (iii) is a coordination game.

As T increases further (T = 1.25 in Fig. 5), this sequence of
game structures changes. Values of κ less than −0.5 result in the
stability of z = 0 and instability of z = 1, which create a prisoner’s
dilemma interaction. As κ increases above about −0.5, the mixed
strategy z∗ appears as an unstable point resulting in a coordination
game. As κ continues to increase, z∗ decreases, which means the
basin of attraction of r increases and at some point r will become
stochastically stable.

4. Discussion

Building from previous work on the evolution of continuous
phenotypes in finite populations in evolutionary biology (Rousset,
2004; Champagnat and Lambert, 2007; Lehmann, 2012) and the
effect of stochastic forces on the selection of strategies in games
(Foster and Young, 1990; Blume, 1993; Ellison, 1993; Noldeke and
Samuelson, 1993; Kandori et al., 1993; Young, 1993; Fudenberg
et al., 2006), we have extended the concept of stochastic stability
to continuously varying strategies. This enabled us to show how
genetic relatedness (scaled to take local competition into account)
generated by spatial structure and the size of interaction groups
can effect the evolution of behavior in coordination games. Specif-
ically, we find that the usual notion that selection results in the
evolution of risk dominant strategies, regardless of whether they
are payoff dominant, is only a special case for a specific value of re-
latedness. In general, positive relatedness (low local competition)
increases the range of payoff values under which the payoff dom-
inant strategy can evolve so that it can evolve even when it is not
risk dominant. In contrast, negative relatedness (high local compe-
tition) results in more cases where the strategy that is not payoff
dominant can evolve, even when it is not risk dominant. In large
interaction groups (n-player games where n is large), this pattern
holds except that negative relatedness can generate so much lo-
cal competition that the outcome of the interaction resembles a
hawk–dove or anti-coordination game in that a stable polymor-
phism between the two strategies emerges.

In game theory, stochastic stability has become a widely used
approach because it reduces the number of potential solutions to a
game (Nash equilibria) and provides a unique prediction for long-
term evolution. Without such a mechanism to select among equi-
libria, which equilibrium is likely to be observed depends on initial
conditions, which are often impossible to measure in real world
scenarios (biological, economic, or otherwise). Using evolutionary
metaphors to construct learning rules that determine how indi-
viduals change their actions over time, game theory models show
that the stochastically stable action is the risk dominant one, both
in panmictic populations (Kandori et al., 1993; Young, 1993) and
in populations with spatial structure (Blume, 1993; Ellison, 1993).
This stands in contrast to the results found here and in Fudenberg
et al. (2006), where risk dominance is not equivalent to stochas-
tic stability. A likely reason for this discrepancy is that in learning
models, mistakes (the analog of mutation) cannot propagate in a
population stochastically by faithful ‘‘reproduction’’. In stark con-
trast, a single mutation can lead to a population transitioning from
one fitness peak to another owing to the interaction between selec-
tion and genetic drift. The probability of these transitions is taken
into account in our model by the fact that the long-term distribu-
tion of phenotypes depends on the integral of the selection gra-
dient (the ‘‘speed’’ of phenotypic change) over the whole range of
possible phenotypes (see Eqs. (3) and (4)).

The key feature of coordination games, multiple ESSs and the
problem of selection among the alternative adaptive peaks that
they generate, has been underemphasized in the biological study
of social behaviors. However, this phenomenon has long been ap-
preciated in evolutionary theory, which has studied how popu-
lations evolve from one peak to another (i.e., ‘‘peak shifting’’ or
‘‘valley crossing’’). This problem was emphasized in the shifting
balance theoryWright (1931, 1932), which suggested the accumu-
lation of complex adaptations can be catalyzed by population sub-
division. This view is often contrasted with one often attributed to
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Fig. 4. Expected value of z for the n-player coordination game with NT = 500 for the same values of κ as in Fig. 2. The number of players n is given above each plot. The
payoffs are the same as in Fig. 2. T values to the right of the vertical dashed line indicate the strategy p is risk dominant (see Eq. (16)); r is risk dominant for values of T to
the left of the dashed line.
Fig. 5. The solid lines denote the mixed strategy value, z∗ , calculated by solving S(z∗) = 0 with the κ value given on the x-axis and the number of players in the first row
for each column (Eq. (C.3)). Payoffs are the same as Fig. 2 except that T is given in the left column for each row. Black solid lines indicate an unstable mixed strategy where
dS/dz > 0, and gray lines a stable mixed strategy with dS/dz < 0. The boundaries of the trait space, z = 0 and z = 1, are shown with dotted lines and their colors are
black when S > 0 and the trait increases near them or gray when S < 0 and the trait decreases near them. Given these conditions, the black arrows aid in showing how the
selection gradient would change the value of the play probability z under a deterministic dynamic.
R. A. Fisher that adaptation occurs most easily in large well-mixed
populations (Coyne et al., 1997;Wade and Goodnight, 1998; Frank,
2012). In light of these contrasting views, much of the work on this
problem has focused on exploring the role of (effective) popula-
tion size and genetic architecture (strength of epistasis or valley
depth or ‘‘ruggedness’’, mutation rates, and recombination rate) on
the rate of valley crossing (Barton and Rouhani, 1987; Iwasa et al.,
2004;Weinreich and Chao, 2005; Handel and Rozen, 2009;Weiss-
man et al., 2009; Lynch and Abegg, 2010; Weissman et al., 2010;
Jain et al., 2011). Generically, this works suggests that the rate of
valley crossing increases with population size as long as the val-
ley is not too deep (Weissman et al., 2010). This pattern is consis-
tent with our stochastic stability results that predict the long-term
evolution of the highest fitness peak in the limit of very large total
population size (expression (6)).
One key feature of our analysis is the extension of a two-
player coordination game in a structured population to n-players.
We find that varying the scaled relatedness κ can lead to novel
evolutionary outcomes (e.g., a stochastically stable polymorphism
for highly negative relatedness) that are analogous to outcomes
from other two-player games (e.g., the hawk–dove game). Our
n-player interaction setting is a multiplayer matrix game, the
study of which has been gaining interest in evolutionary biology
(e.g., Motro, 1991; Bach et al., 2006; Hauert et al., 2006; Souza
et al., 2009; Pacheco et al., 2009; Archetti, 2009; Gokhale and
Traulsen, 2010; Peña, 2012; Kurokawa and Ihara, 2013). A general
result from this work is that n-player matrix games have more
complex dynamics than their two-player analogs. For example,
many models study n-player social dilemmas where a threshold
number of cooperators is needed for the production of group
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benefits (Bach et al., 2006; Archetti, 2009; Pacheco et al., 2009)
or for sharing the costs of such production (Souza et al., 2009).
Typically, these models find that no cooperation is stable for
benefit to cost ratios (b/c) below a certain threshold. Above this
threshold, no cooperation is still stable, but two new polymorphic
equilibria appear, one unstable and one stable. With too few
initial cooperators, the population evolves towards no cooperation,
whereas for a sufficient initial fraction, the frequency of cooperator
reaches the stable polymorphism. Unlike these threshold games,
the dynamics in our n-player game is directly analogous to one of
the three generic two-player game types (games with a dominant
strategy, a hawk–dove game with an interior stochastically stable
state, and a stag hunt game with an interior unstable state)
depending on the value of κ . This is ultimately due to the fact that
there is (almost surely) a unique stochastically stable state. Thus,
stochastic stability allows us to make a simple prediction for how
spatial structure affects the evolutionary outcome independently
of other nonlinearities in an n-player game.

Our analysis is another example in a significant body of work
(see Frank, 1998 for standard examples) that illustrates how mul-
tiplayer games can be analyzed only in terms of pairwise (scaled)
relatedness. This is ultimately due to the fact that small phe-
notypic deviations (small δ values) imply additive gene action
(Rousset, 2004), which allows one to track the gradual change
of mixed strategies by evaluating Hamilton’s inclusive fitness ef-
fect (Hamilton, 1964). By contrast, in the analysis of pure strate-
gies, fitness differences between the mutant and resident can
involve nonlinear genetic effects, which requires the calcula-
tion of at least triplet relatedness coefficients in spatially struc-
tured populations (Lehmann et al., 2007c; Tarnita et al., 2009;
Ohtsuki, 2010, 2012; Taylor and Maciejewski, 2012). Such pay-
off nonlinearities can produce complex dynamics, particularly
in the case of n-player games. We find, however, that we can
recover the same qualitative stochastic stability results for pan-
mictic populations as that obtained from an analysis of pure strate-
gies (see Section 3.1.3), and it would be interesting to investigate
whether this result also holds for structured populations. More
generally, it would be relevant to compare the qualitative out-
comes of continuous and pure strategies across identical games as
a concordance would allow a focus on continuous (mixed) strate-
gies. An evolutionary analysis of continuous strategies is both sim-
pler and maybe also more realistic since many, if not most, traits
are quantitative (Lynch and Walsh, 1998).

As evolutionary models of behavior accumulate biological real-
ism (e.g. large interaction groups and complex population struc-
tures), it becomes increasingly difficult to derive predictions
simple enough to compare to real world data. Part of this difficulty
arises from the possibility of multiple fitness peaks (multiple equi-
libria in games), which can exist even in simple social interactions.
Although predicting how evolution proceeds in multipeaked land-
scapes is very difficult in general, the concept of stochastic stabil-
ity provides a simple answer for the case of very large populations.
In combination with standard results from evolutionary biology,
stochastic stability can generate a simple and unique prediction
for how behaviors evolve, even in populations with complex spa-
tial structures and demographies where genetic relatedness may
be important. We used these results to analyze the evolution of
coordination games in groups of arbitrary size in this work, but all
two-player or multiplayer game structures are amenable to such
analysis. Thus, futurework should be able to completely character-
ize the effect of population structure on the equilibria of n-player
games and how this effect interacts with the size of the interaction
group.
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Appendix A. Stochastically stable states

Here, we show that any stochastically stable state z belongs to
M, which is defined as the set of points maximizing the potential
φ(x): M = {y : φ(y) = maxz∈Z φ(z)}. In order to demonstrate
this, we use the function
1φ(z) = φ(z) − max

z∈Z
φ(z), (A.1)

where 1φ(z) = 0 for z ∈ M and 1φ(z) < 0 for z ∉ M
(Sandholm, 2010). With this, we can write exp [2NTφ(z)] =

exp [2NT1φ(z)] exp [2NT maxz∈Z φ(z)] and substituting this into
p(z) from (3) gives

lim
NT→∞

p(z) = lim
NT→∞

exp [2NT1φ(z)] r
l exp [2NT1φ(y)] dy

, (A.2)

where l and r are, respectively, the left and right boundaries of the
phenotypic state space.

Suppose that z ∈ M. Thus, limNT→∞ p(z) = limNT→∞

 r
l exp

[2NT1φ(y)] dy
−1 since 1φ(z) = 0. If we assume that there

are only a countable number of convergence stable states (M is
countable), the integral in the denominator converges to zero as
NT → ∞ and limNT→∞ p(z) = ∞.

Now, suppose that z ∉ M. For convenience, we rewrite
limNT→∞ p(z) as

lim
NT→∞

p(z) =
1

lim
NT→∞

 r
l exp [2NT (1φ(y) − 1φ(z))] dy

. (A.3)

Given that S(y) is continuous, which means that φ(z) and 1φ(z)
are continuous, there exists an open interval around any m ∈ M,
called ϵm = {ϵ−, ϵ+} with l ≤ ϵ− < ϵ+ ≤ r , where 1φ(y) −

1φ(z) = φ(y) − φ(z) > 0 for all y ∈ ϵm. Thus,

lim
NT→∞

=

 ϵ+

ϵ−

exp [2NT (1φ(y) − 1φ(z))] dy = ∞,

which means that the denominator of (A.3) is equal to infinity and
limNT→∞ p(z) = 0.

Putting together the z ∈ M and z ∉ M cases, we can conclude
that, asNT → ∞, the distribution p(z) consists of equal sized point
masses at the points z ∈ M and zero elsewhere.

Appendix B. Effect of population structure on κ and k

Here, we illustrate how different values of κ and k in Eq. (7)
describe different levels of population structure and different
underlying demographic assumptions in our model of local social
interactions.

Let us first assume that evolution occurs in a panmictic pop-
ulation with semelparous individuals (synchronous reproduction
where all individuals reproduce and die at the same time; that is,
theWright–Fisher reproductive scheme; Ewens, 2004). In this sce-
nario, social behaviors affect only the fecundity of individuals and
one has

κ = −
1

NT − 1

k =
NT − 1
NT

. (B.1)

(Rousset, 2004, Eq. (7.21)). The negative value of κ stems from
the fact that in a panmictic population, ∂ f (z•, z0)/∂z0 measures
an increase in competition faced by the offspring of the focal
individual with offspring of individuals affected by the behavior
of the focal. The offspring of the focal compete with such offspring
with probability 1/(NT − 1) so that −1/(NT − 1) can be thought
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of as the relatedness among competing offspring in the population.
The value κ = −1/(NT−1) actually holdsmore generally, whether
reproduction occurs under the Wright–Fisher, Cannings, or Moran
process and in the latter two cases whether social behaviors
affect the fecundity or survival of adults (Lehmann and Rousset,
2012, Eqs. (9) and (11) by setting t = 0, k = 0,H = 0, and δ0,0 = 0
because social effects are on patch neighbors only).

Suppose now the population consists of nd groups each with N
individuals, and migration occurs at ratem according to the island
model of dispersal under aWright–Fisher reproductive protocol. In
this case, κ and k are also given by Eq. (B.1), but where NT = ndN
(Rousset, 2004, Eq. (7.21)). Hence, population structure does not
affect the direction of evolution of the trait, a result first established
analytically by Taylor (1992) in a population of infinite size (NT →

∞). When regulation occurs before dispersal in such a structured
population, then Eq. (B.1) still applies but with NT = N (Eq. (A.7) of
Lehmann and Rousset, 2010, substituted into Eq. (6.23) of Rousset,
2004).

On the other hand, for a Moran reproductive protocol for an
island model of dispersal with fecundity effects, one has

κ =
(1 − m) − 2/nd

[N + (1 − m)] − 2/nd

k =
[N + (1 − m)] − 2/nd

N2nd
(B.2)

(Lehmann et al., 2007a, Eq. (32) pre-multiplied by 1/(Nnd)). Hence,
for a Moran process, the migration rate affects the selection
pressure, and the higher the migration rate, the lower the value
of κ .

When the payoff function (Eq. (1)) affects the survival probabil-
ity s of individuals (instead of the fecundity), one has for the finite
island model

κ = −
(1 − m)(1 − s) + 2s/nd − (1 + s)/n2

d

N (2 − m(1 − s) − 2/nd) − (1 − m)(1 − s) + (1 + s)/n2
d − 2s/nd

k = s

1 −

(1 − m)(1 − s) + 2s/nd − (1 + s)/n2
d

N (2 − m(1 − s) − 2/nd)


, (B.3)

which is a situation where κ tends to be always negative. Hence,
individuals should decrease the survival of neighbors.

Whenwhole groups formpropagules by splitting at a rate q that
compete against each other and where individuals within groups
migrate between groups at a ratem, one has

κ =
q − [2q/nd + m/(Nnd)]

m(Nnd − 1)/(Nnd) + q(N + nd − 2)/nd

k =
m(Nnd − 1) + Nq(N + nd − 2)

2Nnd(m + Nq)
(B.4)

(Lehmann et al., 2007b, Eqs. (A.20)–(A.42)), which can be made
arbitrarily close to onewhen themigration rate tends to zero (m →

0) but groups compete against each other (q > 0). However, when
q → 0, one obtains κ = −1/(ndN − 1) since competition occurs
only at the level of the local group. Computing the expression 1/κ
gives Eq. (34) of Traulsen and Nowak (2006).

One can also take z0 as the average phenotype of the nearest
neighbors of a focal individual when individuals live on the nodes
of a lattice (N = 1) and interact in a pairwise manner. In this
case, under a Moran process of reproduction with stepping-stone
dispersal at a rate m to the k-nearest neighbors and fecundity
effects of social behavior, one has

κ =
m − 2k/nd

k(2 − m) − 2k/nd

k =
nd(2 − m) − 2

n2
d

, (B.5)
(Lehmann et al., 2007a, Eq. (32) pre-multiplied by 1/(Nnd)). For
m = 1 and k = 2, the expression 1/κ then provides Eq. (4.4) of
Ohtsuki and Nowak, 2006 for their ‘‘death–birth’’ process.

Finally, we consider interactions within groups in an arbitrarily
structured homogeneous population with iteroparous reproduc-
tion and survival probability s of an individual to the next gener-
ation. If one assumes strong population structure (m ≪ 1), then
regardless of the dispersal kernel one has for fecundity effects

κ =
s[2 − m(1 + s)]/2 − (1 + s)/nd

N + s[2 − m(1 + s)]/2 − (1 + s)/nd

k = (1 − s){1 + s[2 − m(1 + s)]/(2N) − (1 + s)/(Nnd)}, (B.6)

(Lehmann and Rousset, 2012, Eq. (A.53), where for this model
S(z) = τ•∂ f (z•, z0)/∂z• + τ0,0∂ f (z•, z0)/∂z0 in terms of the
components of Eq. (A.53) and where the ‘‘1’’ in τ0,0 needs to be
suppressed to account for the fact that ∂ f (z•, z0)/∂z0 measures the
effects of others). In the case of survival effects, we have for strong
population structure

κ = −
(1 − s)[2 − m(1 + s)]/2 + (1 + s)/nd

2N − (1 − s)[2 − m(1 + s)]/2 − (1 + s)/nd

k = s{1 − (1 − s)[2 − m(1 + s)]/(4N) − (1 + s)/(2Nnd)}. (B.7)

(Lehmann and Rousset, 2012, Eq. (A.55) where for this model
S(z) = τ•∂ f (z•, z0)/∂z• + τ0,0∂ f (z•, z0)/∂z0 in terms of the
components of Eq. (A.53) and where the ‘‘1’’ in τ0,0 needs to be
suppressed to account for ∂ f (z•, z0)/∂z0 measuring the effects of
others).

Appendix C. n-player interactions

In order to derive intuition for the n-player case, we extend
the two-player coordination game to n players in the following
simple way, which is allowed by our trait substitution model
assumptions (namely,weak selection andmutation,withmutation
much weaker than effective selection strength; see Champagnat,
2006). Suppose that when the focal individual chooses action r , its
payoff is altered by a factor γ for every one of the other n − 1
individuals who chooses action p. When the focal chooses action
p, its payoff is altered by a factor λ for every other individual
who chooses action r . We assume that the other individuals in
the population each independently choose action r with the same
probability z0 (i.e., the other individuals have average phenotype
z0, which matches the assumption of previous work, Motro, 1991;
Bach et al., 2006). If γ and λ alter payoffs multiplicatively, the
expected payoff of a mutant individual who chooses action r is

1 + R
n−1
x=0


n − 1

x


γ x(1 − z0)xzn−1−x

0

= 1 + R (z0 + γ (1 − z0))n−1
= 1 + RMr(z0)n−1, (C.1)

and the expected payoff of the focal individual when it chooses p
is

1 + P
n−1
x=0


n − 1

x


λxzx0(1 − z0)n−1−x

= 1 + P (λz0 + 1 − z0)n−1
= 1 + PMp(z0)n−1. (C.2)

If the focal individual chooses action r with probability z•, then,
using Eqs. (C.1) and (C.2), its payoff is given by Eq. (14) in the main
text. We set γ = (S/R)1/(n−1) and λ = (T/P)1/(n−1) so that the
pure-strategy outcomes match the two player case; i.e., the focal
obtains payoff 1+Rwhen it and all its partners always play r, 1+S
when it always plays r and its partners always play p, 1 + T when
it always plays p and its partners always play r , and 1 + P when
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it and its partners always play p. This also results in Eqs. (C.1) and
(C.2) simplifying correctly for the two-player case (n = 2) for pure
and mixed strategies.

Given the payoff in (14), we can derive the fixation probability
perturbation S(z) by substituting Eqs. (C.1) and (C.2) into the
selection gradient in (7):

S(z) =
k

f (z, z)


RMr(z)n−1

− PMp(z)n−1
+ κ(n − 1)

×


Rz


1 −


S
R

 1
n−1

Mr(z)n−2

− P(1 − z)

×


1 −


T
P

 1
n−1

Mp(z)n−2


. (C.3)

We can then integrate S(z) numerically using Eqs. (3) and (4) to
obtain the expected value of z at stationarity, which is plotted in
Fig. 4.

In order to calculate the mixed strategy Nash equilibrium, z∗,
of the n-player game, we determine when the expected payoffs of
using actions r and p are equal, which is equivalent to determining
when the payoff of the focal individual is independent of z• (Motro,
1991; Bach et al., 2006). For κ = 0, this occurs when

RMr(z∗)n−1
= PMp(z∗)n−1. (C.4)

Solving for z∗, we obtain Eq. (15) in the main text. As is described
in themain text, we can then use the location of themixed strategy
to determine which equilibrium, z = 1 or z = 0, is risk dominant.

In generating Eqs. (C.1) and (C.2), we could alternatively assume
that γ and λ alter payoff in an additive way so that γ x is replaced
by 1 + γ x in (C.1) and λx is replaced by 1 + λx in (C.2). We again
choose γ and λ such that pure strategy payoffs match the two-
player case regardless of n. This yields γ = (S − R)/(R(n − 1))
and λ = (T − P)/(P(n − 1)). When these values of γ and λ are
used to generate the payoff of a focal individual, the equivalent of
Eq. (14), the resulting expression simplifies to the two-player case
in Eq. (1). Thus, additive n-player interactions generate the same
long-term results as two-player interactions.
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