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In view of its heterogeneity, schizophrenia needs new diagnostic tools based on mechanistic biomarkers that would allow early
detection. Complex interaction between genetic and environmental risk factors may lead to NMDAR hypofunction, inflammation
and redox dysregulation, all converging on oxidative stress. Using computational analysis, the expression of 76 genes linked to
these systems, known to be abnormally regulated in schizophrenia, was studied in skin-fibroblasts from early psychosis patients
and age-matched controls (N= 30), under additional pro-oxidant challenge to mimic environmental stress. To evaluate the
contribution of a genetic risk related to redox dysregulation, we investigated the GAG trinucleotide polymorphism in the key
glutathione (GSH) synthesizing enzyme, glutamate-cysteine-ligase-catalytic-subunit (gclc) gene, known to be associated with the
disease. Patients and controls showed different gene expression profiles that were modulated by GAG-gclc genotypes in
combination with oxidative challenge. In GAG-gclc low-risk genotype patients, a global gene expression dysregulation was
observed, especially in the antioxidant system, potentially induced by other risks. Both controls and patients with GAG-gclc high-risk
genotype (gclcGAG-HR) showed similar gene expression profiles. However, under oxidative challenge, a boosting of other
antioxidant defense, including the master regulator Nrf2 and TRX systems was observed only in gclcGAG-HR controls, suggesting a
protective compensation against the genetic GSH dysregulation. Moreover, RAGE (redox/inflammation interaction) and AGMAT
(arginine pathway) were increased in the gclcGAG-HR patients, suggesting some additional risk factors interacting with this
genotype. Finally, the use of a machine-learning approach allowed discriminating patients and controls with an accuracy up to
100%, paving the way towards early detection of schizophrenia.
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INTRODUCTION
Schizophrenia (SZ) is triggered by a first psychotic episode which
often follows a period of several months during which patients
may suffer from poorly specific symptoms. Among young people
with an at-risk mental state (ARMS), only a small proportion will
transit to full-blown psychosis. Therefore, a better identification of
those at true risk of developing a first psychotic episode is crucial
to set up early intervention strategies. In this context, there is a
need for novel mechanism-based biomarkers that would allow a
better understanding of the pathophysiology and improve
identification of ARMS young people.
Intensive research from the last decades suggests that the

etiopathogeny of SZ involves both environmental and genetic risk
factors, interacting early during brain development. Many
environmental factors, that were shown to increase the risk for
SZ [1–3] may induce oxidative stress and inflammation, leading to
brain maturation impairments [4–6]. Moreover, GWAS data point

to various polymorphisms, that confer higher risk for SZ, in
immune, antioxidant and NMDAR related genes [7, 8]. Therefore,
one hypothesis of interest is that these genetic and
environmental-induced risk factors lead to NMDAR hypofunction,
redox dysregulation and inflammation [9–18], all converging on
excessive oxidative stress, which affects, among others, the
maturation of GABAergic parvalbumin expressing interneurons
(PVI) [4, 19], critical for cognition.
Among the genetic risk associated with SZ, a polymorphism in

the gene of the key synthetizing enzyme for the major non-
enzymatic antioxidant glutathione (GSH), the glutamate-cysteine
ligase-catalytic subunit (gclc), was found to be associated with the
disease, conferring a genetic vulnerability to redox imbalance
[9, 10]. Individuals bearing a high number of the GAG trinucleotide
repeat in the gclc gene (“High-risk” genotype) showed decreased
GSH level in the prefrontal cortex (PFCx) [11] as well as decreased
GCL activity and protein level after an additional oxidative
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challenge in their fibroblasts [9]. Furthermore, a metabolomic
study revealed abnormal regulation of the GSH related metabo-
lites after an additional oxidative challenge, as well as increased
oxidative-induced lipid damage in fibroblasts of early psychosis
(EP) patients carrying the “High-risk” genotype [12].
Here, we used a computational analysis approach to investigate

the differences of SZ-related gene expression profile in fibroblasts
from EP patients and age-matched controls, with the GAG-gclc
genetic vulnerability to redox dysregulation and an additional pro-
oxidant challenge, that stimulates the antioxidant defenses
[13, 14] and mimics an additional environmental challenge that
may interact with the genetic vulnerability background. Our aim
was to identify (1) the role of a genetic background of vulnerability
(GAG-gclc polymorphism) to redox dysregulation on different
pathways in patients, (2) pathways that may be altered by other
risk factors (genetic or environmental) in patients and (3) potential
protective pathways that may be induced in controls bearing the
same genetic vulnerability to redox dysregulation. Overall, this
pathway analysis may lead to a specific biological profile of gene
expression that would discriminate between patients and controls.

MATERIAL AND METHODS
Subjects recruitments
EP patients were recruited from the Treatment and Early Intervention in
Psychosis Program (TIPP), a 3-year specialized program for patients aged
between 15 and 35 years old who met the threshold criteria for psychosis
according to the Comprehensive Assessment of At-Risk Mental States
criteria) [20, 21]. More information is presented in the Supplementary.

Fibroblasts culture and treatment
Fibroblasts from skins biopsies of EP patients and age-matched healthy
controls were prepared as previously described [9, 12]. In order to
minimize heterogeneity in our samples, only males were included in this
study. Culture of fibroblasts from the 4 groups (N= 15), namely GAG-gclc
low-risk (LR) controls, GAG-gclc high-risk (HR) controls, GAG-gclc LR
patients and GAG-gclc HR patients, were cultured in parallel until their
5th cell passage and then treated for 18 h either with tert-
butylhydroquinone (tBHQ) at 50 µM, to induce an oxidative stress, or with
vehicle alone (dimethyl sulfoxide (DMSO), 0.05% final). After treatment,
cells were harvested with trypsin for 3 min, collected for centrifugation
(10min at 1000 × g) and washed with PBS. For RNA extraction, cells were
frozen as pellet. For GCL activity, cells were frozen in 1ml of PBS.

RNA extraction
Total RNA was extracted form fibroblast pellet with the NucleoSpin RNA kit
(Macherey-Nagel). RNA quality and integrity were evaluated with the RIN
method (Agilent RNA 6000 Nano Kit) such that all samples have a RIN
numbers greater than 8.

Gene expression Fluidigm
Gene expression was measured with the Pair Delta Gene assays and
reagents with EvaGreen dye using a Fluidigm BioMark Genetic Analysis
Platform at Georgia Institute of Technology, Atlanta, USA. Gene expression
was normalized to 6 housekeeping genes (Supplementary Table 1).

GCL activity
GCL activity was performed with an in-house method as described
previously [9]. Briefly, a fluorescence-based microtiter plate assay was used
to measure GCL activity, determined as the difference between GSH
synthesis in unblocked and buthionine sulfoximine (BSO)-blocked wells
per minute and per milligram of protein. Samples of interest are analyzed
in the presence of a master-mix containing 400mM Tris pH8, 40 mM ATP,
20 mM L-glutamic acid, 2 mM EDTA, 20mM sodium borate, 2 mM serine,
40mM MgCl2, with or without BSO (15mM). The reaction starts when
2mM cysteine is added to the wells and incubated for 45min at 37 °C. The
reaction is stopped with 5-sulfosalicylic acid (200mM) and proteins are
precipitated to isolate the GSH. The level of GSH is measured with the
addition of 10mM Naphthalene-2,3-Dicarboxaldehyde (NDA) that yields a
fluorescent signal in contact of thiols.

Computational analysis
Statistical and computational analysis were performed using R studio, JMP
and Matlab software. The sample size was chosen according to our
previous study conducted on metabolomic analyses on fibroblasts of the
same cohort [12]. Data were tested for normality of distribution and
homogeneity of variance with the Shapiro-Wilk Test and Bartlett test
respectively (with acceptance value of p > 0.05 for both). Then, a two-way-
ANOVA analysis with 3 factors was used to reveal group (patient or
control), genotype (GAG-gclc HR and LR) or treatment (tBHQ and DMSO)
effect for each gene expression, corrected for multiple comparison. A PCA,
followed by a factorial analysis with a parsimax rotation, and a multivariate
correlation matrix, with multiple correction, were estimated. To facilitate
the interpretation of components coming from the initial PCA analysis, we
relied upon using a rotation procedure. Among other rotation methods,
the Parsimax criteria [22] is targeted toward a simple structure that serves
as a proxy to facilitate a biological interpretation of the two axes. A
discriminant analysis was done using the 2 or 4 groups, followed by the
Support Vector Machine (SVM) algorithm. More details are described in the
Supplement.

RESULTS
Following the hypothesis of an interaction between the redox
balance, inflammation and NMDAR inducing GABAergic inter-
neurons impairments (Fig. 1A), we analyzed by fluidigm the
expression of 76 genes related to these system (Fig. 1A;
Supplementary Table 1), which were previously shown to be
linked to SZ (Fig. 1A; Supplementary Table 1). In the redox system,
antioxidant defenses, such as the GSH [11, 15] and the
thioredoxine/sulfiredoxine (TRX/SRX) system [16] were investi-
gated, as well as Nrf2, Keap1 and Hif1, the master transcription
factors that regulate them [17, 18, 23, 24]. Regarding the
inflammatory pathways [25, 26], the master transcription regulator
NFkB/IkB and their downstream effectors, cytokines and cell-
adhesion molecules [27–30] were chosen for the analysis but also
genes related to the extracellular matrix modulation, such as
matrix metalloproteinases (MMPs) [31, 32] and enzymes involved in
collagen formation/degradation. The complement system, which
was recently shown to be involved in SZ pathophysiology [33–35]
was also added to this inflammatory pathway. For the interaction
between the redox and the inflammatory systems, we also
investigated some specific mechanism-related pathway such as
the receptor for advanced glycation end-product (RAGE) that has
been linked to GABAergic impairments in EP patients and induces
a feedforward loop of oxidative stress and inflammation in an
animal model of SZ [36]. The arginine pathway was also explored,
as being involved in the nitric oxide formation, aldehyde
detoxification but also in inflammation and NMDAR modulation
[12, 37–39]. Finally, some genes related to the consequence of
these pathways on GABAergic interneurons maturation were
added to the analysis, such as BDNF pathway [40–42] and NKCC1/
KCC2 system, which is involved in the early maturation of
parvalbumin expressing interneurons [43–45].

Patients display an altered antioxidant and inflammatory
response that is modulated by the GAG-gclc polymorphism
Gene expression changes were analyzed using a three-way-
ANOVA analysis with 3 factors, namely, the treatments (T: tBHQ vs.
DMSO), the groups (Gr: patients vs. controls) and the genotypes
(G: HR vs. LR).
For the antioxidant defenses pathway, as expected, tBHQ

treatment induced a significant response, with mostly an
upregulation (Fig. 1B) [9]. We confirmed the decreased gclc gene
expression in the HR (Fig. 1B, Supplementary Fig. 1A) [9] under
both DMSO and tBHQ conditions. Noteworthy, the txn gene
expression was increased in the HR as compared to the LR,
suggesting a compensation of this antioxidant system over the
GSH system (Fig. 1B, Supplementary Fig. 1B). Overall, patients
showed a significant decrease in the antioxidant genes expression
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at basal level but also after tBHQ treatment (Fig. 1B, Supplemen-
tary Fig. 1A, B).
Some inflammatory genes also responded to the tBHQ treatment

(Fig. 1B, Supplementary Fig. 2A, B) as well as the matrix extracellular
proteinases (MMP) and the collagen formation/degradation system

(Fig. 1B, Supplementary Figs. 3A and 4C), showing the tight
interaction between oxidative stress and inflammation [28].
Comparing between patients and controls, gene expressions were
mostly decreased in patients, showing the alteration in inflamma-
tory response and extracellular matrix regulation.

↓

↓
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Finally, the BDNF and the NKCC1/KCC2 systems were regulated
by the treatment and by the group effect (patient vs control)
(Fig. 1B, Supplementary Fig. 4A, B).
For all pathways investigated, the GAG-gclc polymorphism

modulated the different responses in both patients and in
controls, highlighting the important role of this genetic back-
ground for redox vulnerability.
We further explored the antioxidant impairments by measuring

GCL activity in the fibroblasts of patients/controls, HR/LR. GCL
activity was significantly increased by the tBHQ treatment with a
significant effect of the HR/LR genotype (Fig. 1C). As previously
shown in fibroblasts of chronic SZ patients [9], GCL activity was
decreased in the HR, highlighting the functional consequence of
the GAG-gclc polymorphism (Fig. 1C).

The gene expression profile of GAG-gclc HR controls is similar
to patients
We used a PCA to highlight the biological pathways that
contributed the most to the differences between the 8 groups
(N= 15, total of 120 samples, 76 genes).
PC1 and PC2 contributed for 27.2% and 12.2% of the variability

(Supplementary Fig. 5A), but were not associated with biologically
relevant differences. Therefore, to ensure a better interpretation,
the data were rotated with the orthogonal parsimax criteria so
that the obtained factor1 represented mostly the response to
tBHQ treatment (Fig. 2A, Supplementary Fig 6A), and the factor2
represented the different groups of patients and controls, with the
genotype (Fig. 2A, Supplementary Fig 6A). In the highest
contributors to factor1 and factor2, we found one or two genes
from each different pathway, that represented and separated the
most the different groups (Fig. 2A, Supplementary Table 3,
Supplementary Figs 6 and 7).
By looking first at the general position of each group treated

with DMSO or tBHQ on the PCA analysis, we found that under
DMSO condition, the LR controls and the LR patients were clearly
separated, while the HR controls and the HR patients overlapped
(Fig. 2A). The response to tBHQ showed different signatures for
the LR and HR individuals (both patients and controls). The initial
position under DMSO and the difference induced by tBHQ lead to
well separated position after treatment in the both LR patients
and controls (Fig. 2B, light orange and light blue arrows) while the
HR controls and patients converge to an overlapping position
(Fig. 2B, deep blue and red arrows). Of major interest, after tBHQ,
the HR controls and the LR and HR patients overlapped
completely, while the LR controls were completely separated
from the other groups (Fig. 2A). Thus, cells from HR controls show
multiple overlap with LR and HR patients under tBHQ and are
different from cells from LR controls.
The factor1 and factor2 revealed the genes and related pathways

that contributed most to the group separation, and more interest-
ingly, their relative expression among groups. We found that tBHQ
treatment induced an overall increase in the antioxidant defenses,
which was more pronounced in the LR controls (Fig. 2A). Indeed, the
HR individuals as well as the LR patients failed to increase Nrf2 (nfe2l2)

and GSH related genes (gclm, gsr and slc7a11) at the same level as the
LR controls, but increased the TRX/SRX system (txn and srxn1),
suggesting a compensatory mechanism. The inflammatory pathway
(tnfrsf1a, rela) and collagen degradation/formation (prep, p4ha1,
lta4h) were increased in the LR controls after tBHQ stimulation,
suggesting their contribution to the normal tBHQ response (Fig. 2A),
which was less pronounced in the HR subjects and in the LR patients.
Moreover, after tBHQ treatment, several MMPs (adam17, adam10,
adamts1 and mmp14) were differentially regulated in the LR controls
compared to the other groups. Finally, the endogenous soluble form
of RAGE (es-ager) was increased in the LR controls, compared to the
other groups, after tBHQ stimulation, as a potential protective
mechanism to prevent full RAGE gene expression (Fig. 2A)
Together, these results show that LR patients and LR controls

are very distinct, probably reflecting the effect of risk factors not
related to Gclc (Fig. 2B). In contrast, HR controls are very similar to
patients, in particular after tBHQ treatment (Fig. 2B), suggesting
that they engage compensatory mechanisms that prevent the
development of the pathology.

Different regulatory profile between patients and controls in
interaction with the genetic risk for redox dysregulation
We investigated pathway regulation underlying the differences or
similarities between patients and controls, by performing a
multivariate analysis with a correlation matrix, assuming that
correlation may reflect the regulation between different pathways.
Each gene was correlated to all the others under the DMSO and
tBHQ conditions separately or together (Fig. 3A).
In the LR controls, tBHQ treatment elicited a positive correlation

in gene expression of the antioxidant systems (Fig. 3B), as
expected. Interestingly, positive correlations were also found
between the antioxidant system and the inflammatory systems, as
well as between the antioxidant system and the collagen and
arginine pathways (Fig. 3B), highlighting the important role of the
redox balance in the regulation of these cellular processes.
The HR controls showed increased overall positive correlation

under DMSO condition, as compared to LR controls, suggesting some
regulatory compensatory processes taking place at basal level due to
their genetic background (Fig. 3C). Among them, increased correla-
tion between the antioxidant/GSH and the other pathways suggests a
major role of the redox regulation. Of note, the RAGE pathway was
negatively correlated with all other pathways in the response to
tBHQ, a signature only found in the HR controls (Fig. 3C).
Compared to LR controls, the LR patients presented a

completely different profile, showing a high increase in overall
positive correlations under DMSO conditions, a slight increase in
overall positive correlations under tBHQ, and a further increase in
the positive correlation in the response to tBHQ (Fig. 3D). This
profile being different between patients and controls, without the
GAG-gclc polymorphism, implies other pathological processes
independent of this specific genetic risk.
In contrast, the HR patients did not display correlation under

DMSO conditions, nor an increase thereof after tBHQ treatment,
despite their genetic vulnerability background that may lead to

Fig. 1 General scheme of hypothesis-driven gene selection in different pathways and the corresponding boxplots of selected gene
expression. A Genes selected based on the hypothesis that redox dysregulation, neuroinflammation and NMDAR hypofunction act in a
feedforward loop of processes to converge on oxidative stress, which affects parvalbumin expressing interneurons during their maturation as
a core pathophysiological mechanism in SZ. Genes that were shown to be altered in SZ, were selected in 10 different pathways, namely the
antioxidant pathway, the GSH related pathway, inflammation, the complement, the collagen synthesis/degradation, MMPs, RAGE, arginine
metabolism, BDNF and GABAergic maturation. The protein name is represented in this scheme and corresponding gene name is established
in Supplementary Fig. 1. B Boxplot of selected genes, after a two-way-ANOVA analysis with 3 factors, the treatment (T: tBHQ and DMSO), the
status (Gr: patient or control) and the genotype (G: GAG-gclc HR and LR). Genes from different pathways were found to be significantly
different between patients and controls, and the GAG-gclc polymorphism was found to modulate the different responses in patients and in
controls, which highlight the important role of the genetic background for redox vulnerability. C GCL activity was significantly decreased in
the HR genotype patients and controls, highlighting the functional consequence of the GAG-gclc polymorphism. Data are expressed as mean
± s.e.d. (N= 15) *P < 0.05; **P < 0.01; ***P < 0.001.
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increased oxidative stress. This suggests an impaired response to
oxidative challenge (Fig. 3E), potentially linked to the disease.
In general, every single group shows a particular correlation

profile, suggesting the intervention of regulatory processes related
to the GAG-gclc polymorphism in HR patients, to other risk factors in
LR patients, or to protective mechanism in the HR controls.

Discriminant analysis highlight pathways involved in HR
controls protection and pathological conditions in patients
In order to highlight the pathways involved in the differences
between all 4 groups, we first performed a discriminant analysis to
compare two-by-two the different groups under DMSO and tBHQ
conditions.

LR controls vs LR patients (Fig. 4A). This first comparithe
hypothesis of an interaction beould differentiate between
patients and controls not carrying the GAG-gclc polymorphism.
Although these groups are not genetically predisposed to a
redox dysregulation linked to the GAG-gclc polymorphism, the
antioxidant genes (nfe2l2/keap1, gclm, gsr and sod2) were
nonetheless discriminative as they were decreased in patients,
suggesting that risk factors other than the GAG-gclc polymorph-
ism may induce a redox dysregulation in these patients.
Moreover, NFkB (nfkb), as well as some MMPs (mme and timp1)
were also found to play a role in this segregation and were
decreased in patients, emphasizing the contribution of inflam-
matory mechanisms.

Fig. 2 Factorial analysis with rotation to visualize the pathways that are differentially regulated in patients and controls. A Graphic
representation of the 4 groups (LR CT, HR CT, LR PA, HR PA) under DMSO (D) and tBHQ (T), and a table of the genes of each pathway that were
the highest contributors to the rotated factor1 and factor2. B Graphic representation of GAG-gclc LR and HR genotype separated, with their
corresponding vectors of response to tBHQ, showing the similarities or differences between patients and controls with the same genotype
(GAG-gclc).
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HR controls vs HR patients (Fig. 4B). The next comparison gave an
insight into potential protective pathways (present in controls, but
not in patients), but also highlighted pathways induced by other
risks in interaction with the GAG-gclc polymorphism that could
lead to the disease condition (present in patients but not in

controls). In both DMSO and tBHQ conditions, HR controls
displayed increased antioxidant (nfe2l2, srx, gclm, gsr) and
inflammatory (nfkb, mif) gene expression levels, as compared to
HR patients. This suggests that despite the same genetic
vulnerability towards redox dysregulation as HR patients, HR
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controls display antioxidant protection that differentiates them
from the patients. Of interest, agmatinase (agmat) was increased
in patients as compared to controls. Furthermore, the RAGE
pathway (full ager and es ager) was increased in patients after
tBHQ treatment.

LR controls vs HR controls (Fig. 4C). Exploring the potential
protective mechanism in the controls bearing the GAG-gclc
polymorphism, we compared LR and HR controls. Among the
genes that discriminated the most both groups, the antioxidant
system was decreased in the HR controls as compared to LR
controls, especially after the tBHQ treatment, in line with the
genetic vulnerability to oxidative stress of HR controls. Moreover,
the RAGE pathway (full ager and es ager) and some MMPs (timp1,
adam10, adamts1 and mmp14) also participated to this discrimi-
nation, suggesting their interaction with the GAG-gclc
polymorphism.

LR patients vs HR patients (Fig. 4D). The discriminant analysis on
the LR and the HR patients was performed to point out the
pathways related to the GAG-gclc risk, but also to reveal some
pathways related to other risks, in order to stratify sub-groups of
patients. The discrimination was mostly driven by the RAGE
pathway and agmatinase (agmat), which were increased in the HR
patients. This suggests a link between the GAG-gclc genetic risk
and these specific genes.
Together, this discriminant analysis revealed novel pathways

differentially expressed in patients and controls, linked to GAG-
gclc polymorphism. In particular, in LR patients we found a redox
dysregulation that was not related to the GAG-gclc polymorphism,
suggesting a role of other risk factors. Moreover, HR controls
displayed an effective compensatory antioxidant system, such as
the TRX/SRX, potentially providing a protective mechanism.
Noteworthy, our analysis revealed RAGE and AGMAT as underlying
the pathological conditions, especially in HR patients.

Machine-learning-based discrimination between patients and
controls
A major challenge in psychiatry is the development of biomarkers
that would help to identify individuals who would benefit the
most from an early and specific intervention. In the context of SZ,
it is crucial to improve the discrimination, among ARMS
individuals, between those who will convert or not to psychosis.
A first step in that direction is the evaluation of the power of our
gene expression set to discriminate between EP patients and
controls.
A discriminant analysis on all groups together was performed to

find the best split of the data based on four preselected groups of
interest. By analyzing all the genes from all groups treated with
DMSO or tBHQ, 3 canonical components were sufficient to fully
discriminate between the four groups (i.e., LR and HR controls, LR
and HR patients; Fig. 5A). The genes that constitute the 3
canonical components are listed in Fig. 5B. The canonical
component 1 maximized the discrimination between controls
and patients, while the canonical component 3 discriminated the
LR vs the HR (Fig. 5A).

Following this promising discriminant capacity, we used a
machine-learning approach to test the predictive value of the
present set of gene expression data. We used the SVM algorithm
to optimize the difference between patients and controls
considering the GAG-gclc polymorphism. The SVM algorithm
applied to all individuals and using the 76 genes, but without
assigning the genotype, reached an accuracy of 96% to
discriminate between patients and controls, with a sensitivity of
96.6% and a specificity of 93.3% (Fig. 5C), with one patient and
two controls being misclassified. When the genotype of each
individual was inserted in the algorithm, the accuracy reached
98%, with only one control being misclassified (Fig. 5C). Then, we
applied the same algorithm but using the 20 most discriminant
genes and the genotype information. This analysis gave the same
results as the previous one, giving an accuracy of 98% (Fig. 5C).
However, by taking into account the 30 most discriminant genes
and the genotype information, the accuracy reached 100%, as all
subjects were classified in the right group (Fig. 5C). This highly
promising results show that by selecting a mechanism-based set
of genes, patients can be discriminated from controls at the early
stage of the disease.

DISCUSSION
In the present study, we aimed at investigating pathways involved
in SZ pathology, related or not to the GAG-gclc polymorphism, as
well as the potential protective mechanism in controls carrying
the same genetic risk for redox dysregulation. We also tested the
possibility that these pathways may contribute to a genetic
signature enabling the identification of patients. We found that
the gene expression profile of HR controls was similar to the
profile of patients, except for their increased capacity to
compensate the GSH system dysregulation by boosting other
antioxidant systems such as the TRX/SRX system and the
antioxidant defense master regulator Nrf2, which may confer a
protection against the pathology. In patients without the GAG-gclc
genetic risk for redox dysregulation (LR), other risk factors induced
a global gene expression dysregulation, affecting especially the
antioxidant system. The HR patients failed to regulate their
antioxidant system under both basal and pro-oxidant conditions,
which may underlie their pathological condition. The discriminant
analysis on sub-groups revealed that RAGE and AGMAT were
increased in HR patients, suggesting additional risks related to
inflammatory and arginine pathways in interaction with this
genotype. Finally, our machine-learning approach predicted
patients status with an accuracy up to 100%.
The PCA and the correlation matrix completed each other to

reveal interesting profiles of patients and controls in interaction
with the GAG-gclc genetic risk: In the absence of the GAG-gclc
polymorphism genetic risk for redox dysregulation (LR), the
controls and the patients showed a distinct profile under baseline
and oxidative challenge conditions. In the PCA, their response to
the tBHQ was similar, but their gene expression pattern at basal
level was different, leading to a different expression level under
stress conditions. This suggests that risk factors different from the
GSH deficit genetic risk induce a global gene expression

Fig. 3 Correlation matrix with multiple correction to investigate the regulation of the various genes between pathways, under DMSO or
tBHQ conditions, and in the response to tBHQ. A Schematic representation of the color meaning for DMSO or tBHQ conditions, and in the
response to tBHQ. Each gene was correlated to all the others in the DMSO and tBHQ condition separately, highlighted by the blue color when
the correlation is negative and red when it is positive. Two genes can be negatively correlated under DMSO condition, but positively
correlated under tBHQ treatment. In order to evaluate the response to tBHQ, correlations between genes were also investigated by looking at
the correlation of the values of DMSO and tBHQ on the same graph. When tBHQ induced an upregulation of the two genes, the correlation
was positive (red), while the correlation was negative (blue) when tBHQ induced a downregulation. Correlation matrix for the 4 groups,
namely B the GAG-gclc- LR controls (LR CT), C HR controls (HR CT), D LR patients (LR PA) and E HR patients (HR PA). All groups show a different
correlation profile, suggesting some regulatory processes related to the GAG-gclc HR polymorphism in patients, other risk factors in LR
patients, but also protective mechanism in the HR controls.
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Fig. 4 Discriminant analysis to compare two-by-two the different groups under DMSO and tBHQ conditions. A Discriminant analysis on
GAG-gclc LR patients (LR PA) and controls (LR CT) to identify pathways that would differentiate between patients and controls, independently
of the GAG-gclc risk. B Discriminant analysis on GAG-gclc HR patients (HR PA) and controls (HR CT) to identify potential protective pathways,
but also highlight pathways induced by other risks in interaction with the GAG-gclc polymorphism that would lead to the disease.
C Discriminant analysis on GAG-gclc LR (LR CT) and HR (HR CT) controls to investigate the potential protective mechanism in the controls
bearing the GAG-gclc polymorphism. D Discriminant analysis on GAG-gclc LR (LR PA) and HR (HR PA) patients to point out the pathways related
to the GAG-gclc risk, but also to reveal some pathways related to other risks, in order to stratify sub-groups of patients. Genes that are
contributing the most to the discrimination are showed in the corresponding tables.
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dysregulation in the LR patients at baseline (DMSO). The
correlation matrix corroborates this hypothesis, as increased
correlation level between various systems was found to be
present in LR patients at baseline.
The HR genotype confers a vulnerability to oxidative stress, as

the GCL gene expression and activity are reduced (Fig. 1B, C) and

GSH level is decreased [9, 11]. Indeed, the PCA showed that both
controls and patients with the HR genotype had a similar response
to tBHQ and a similar profile of gene expression under DMSO and
tBHQ conditions. However, the HR controls increased their
regulatory mechanism, as observed in the correlation matrix
under DMSO, suggesting that despite their genetic predisposition
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towards decreased GSH, they are able to regulate other
antioxidant defenses. Therefore, the HR controls have a better
regulation of the redox system, which protects them from the
genetic vulnerability to oxidative stress. Although the HR patients
showed similar gene expression profile than the HR controls under
baseline and oxidative conditions in the PCA analysis, the
correlation matrix did not reveal increased correlations between
the different pathways. This lack of regulation may be key in the
pathological process in this sub-group of patients. Indeed, the
redox dysregulation associated with this genetic predisposition for
GSH deficit is not compensated and may contribute to the disease
in the HR patients. Interestingly, the difference in profile between
LR and HR patients highlights the important role of the GAG-gclc
polymorphism in stratifying patients.
The PCA analysis highlighted some interesting pathway that

were differentially regulated in patients and controls, in interac-
tion with the GAG-gclc genetic risk (Supplementary Figs. 6 and 7).
Among them, the GSH and the TRX/SRX systems were differen-
tially activated between the LR controls and the other groups.
These systems are complementary, and compensate each other
[5]. While the Gpx/Gred system reduces ROS using GSH as co-
factor, the SRX reduces ROS through the peroxiredoxin (PRX)/TRX
system [46]. As the HR show both decreased expression and
activity of the key synthesizing enzyme GCL, leading to decreased
GSH levels, a compensation with the TRX/SRX system is required
to re-establish the redox homeostasis [16]. The PCA also
highlighted the role of inflammation, MMPs and collagen
formation/degradation. Inflammation is tightly linked to oxidative
stress, as ROS can induce pro-inflammatory pathways, while NFkB
and Nrf2 interact with each other [28, 47]. This interaction is
supported here, as tBHQ stimulation modulates the inflammatory
response, and is altered in patients and in the HR controls. Among
the inflammatory effect, MMPs can be activated to induce pro-
inflammatory mediators, but also extracellular matrix degradation,
such as the perineuronal net, which is the specialized extracellular
matrix enwrapping PVI, known to play a critical role in sensory
perception and cognition [4, 48]. Different MMPs were already
suggested to be involved in SZ pathophysiology [49, 50]. Collagen
is also linked to MMPs and inflammation, as collagen degradation
can be mediated by some MMPs and their degradation products
or collagen accumulation can activate inflammatory mediators
[31, 51, 52]. Thus, collagen dysregulation, inflammatory markers
and MMPs seem to play an important role in the differences
between patients and controls, as well as in their response to
tBHQ. Interestingly, alteration in the extracellular matrix composi-
tion was found in a metabolomic analysis on fibroblasts of EP
patients from the same cohort used in our study [12], thus
corroborating our results.
As the PCA and the correlation matrix indicated different profiles

of all groups, we further investigated the precise mechanisms that
may underlie these differences, using a discrimination analysis of
sub-groups. This approach allowed us to assess specific questions
regarding a protective effect in HR controls or potential pathways
that are induced by other risk factors leading to the disease. By
comparing the LR controls and the LR patients, we found that
antioxidant genes were downregulated in patients, independently
of the GAG-gclc risk factor. Other pathways, such as inflammation

and the MMPs were also found to be related to the difference
between patients and controls, which give insight into other risk
factors that may lead to these impairments. Interestingly, the
comparison of the HR controls and the HR patients stressed the role
of RAGE and AGMAT in HR patients. As both controls and patients
have the same genetic risk, RAGE and AGMAT increase in patients
may be induced by other genetic and/or environmental risk factors,
in interaction with the GAG-gclc polymorphism that occurred in
patients only. In line with these results, we previously found an
important role of RAGE shedding by MMP9 in EP patients, as
increased RAGE shedding was associated with decreased PFCx
GABA level, especially in HR patients [36], reflecting excitatory/
inhibitory imbalance. In this context, RAGE seems to be a signature
of the sub-groups of patients displaying a genetic risk towards
increased oxidative stress. AGMAT is involved in the hydrolyzation
of agmatine into putrescine in the arginine degradation cycle. The
arginine pathway has been shown to be altered in SZ [53], andmore
specifically the agmatine, a neurotransmitter and modulator of
synaptic transmission, was found to be increased in the blood of SZ
patients [54, 55]. Noteworthy, agmatine was shown to block the
NMDAR activation [39, 56], linking the NMDAR hypofunction to the
arginine pathway. Therefore, our findings suggest a role for AGMAT
in relation to the genetic risk for redox dysregulation in EP patients,
linking the arginine pathway to the redox balance.
Finally, a machine-learning approach enabled us to investigate

the predictive value of our list of genes for a diagnostic purpose.
Machine-learning is now an emerging tool in psychiatry [57–59]
and was used in several imaging studies to discriminate patients
from controls, based on brain structure and connectivity [60–65]
or brain activity [66]. In order to highlight potential mechanisms
that are involved in the pathophysiology of SZ, many studies have
also investigated gene expression profile by microarray or RNAseq
analysis on peripheral blood cells or fibroblasts from SZ patients
[67–72]. These studies revealed interesting differences in genes
belonging to the cell cycle, apoptosis and metabolism, which are
the pathways that are predominantly expressed in blood cells and
fibroblasts [68, 70, 71]. Noteworthy, a specific profile of gene
expression was able to predict the response to antipsychotic
treatment in first episode patients, using machine-learning
approach, in the same line as our study [72]. In the present study,
by choosing some representative genes in selected pathways, we
proposed a hypothesis-driven gene expression analysis that
allowed to reveal brain related mechanism underlying the
differences between patient and controls. Interestingly, the
information about the genetic risk for GSH deficit (HR and LR)
gave more power to the discrimination by the machine-learning
method. More strikingly, a profile of the 30 most discriminant
genes could identify patients with an accuracy of 100%, which is
unique, to our knowledge. Still, the major limitation of our study is
the small sample size (N= 30). Therefore, this approach needs
further validation with an independent and larger cohort in order
to generalize this approach for the development of a personalized
output to enhance the prediction accuracy of clinical measures
and to develop early intervention strategies.
In conclusion, our computational approach based on the

expression of genes related to hypothesis-driven pathways
highlighted some mechanisms involved in the early

Fig. 5 A discriminant analysis on all groups together found the best split of the data based on preselected groups and a machine-
learning approach identified patients and controls. A Representation of the discriminant analysis between groups, in 2D and 3D. By entering
into the analysis all the genes from all groups treated with DMSO or tBHQ, 3 canonical components were able to fully discriminate LR controls,
HR controls, LR patients and HR patients. B The list of genes which composed the canonical 1, 2 and 3. The canonical 1 discriminates between
patient and controls, while the canonical 3 discriminates between the GAG-gclc HR and LR. C SVM algorithm optimized the difference
between patients and controls using the 76 genes but without considering the GAG-gclc polymorphism LR/HR genotype, using the 76 genes
and the genotype, using the 20 most discriminant genes and the genotype, and finally using the 30 most discriminant genes and the
genotype. Accuracy, specificity and sensitivity (with the number of misclassified patients and controls) to discriminate between patients and
controls are indicated in the table and in the graph of the ROC curve for the different analysis.
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pathophysiology of SZ. We found specific signatures converging
on oxidative stress even in patients not carrying the GAG-gclc
genetic risk for redox dysregulation. In contrast, we identified
compensatory antioxidant mechanisms that protect the controls
bearing the same genetic risk. Moreover, agmat and rage gene
expressions were involved only in HR patients, revealing its
interaction with other risk factors such as inflammation. Finally, we
could predict the SZ status with an accuracy up to 100%. Thus, by
combining machine learning with a well-chosen set of genes, we
identified novel disease-related pathways and obtained a highly-
accurate approach to identify patients at the early stage of the
disease. In turn, this approach may improve early detection and
intervention for the disease.
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