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1. INTRODUCTION 

Evolutionary developmental biology ("Evo-Devo") has emerged as one of the most exciting 

areas of biology. It is providing for the first time some answers to long standing questions, 

such as the origin of novelty, sources of phenotypic variation, or the relationships between 

diverse animal body plans. And forcing us to reconsider apparently known answers, such as 

the relation between micro and macro evolution, or the definition of homology (1-6). Diverse 

fields of research have contributed to this success, including of course developmental biology 

and evolutionary biology, but also classical zoology, paleontology, or molecular genetics (7, 

8). Most recently, genome projects from diverse have also brought important insight into the 

evolution of developmentally important genes (9-12). 

 Thus Evo-Devo is by its very nature an interdisciplinary science; and so is 

bioinformatics. We are interested in this chapter in the interface between these two 

interdisciplinary fields. While some bioinformatic studies have implications for Evo-Devo, 

and some Evo-Devo studies (especially analyzing genome sequences) make use of 

bioinformatics, this interface has been rather neglected up to now (see also 13). 

 One field where Evo-Devo has been motor in posing questions that may be answered 

using bioinformatics is the study of whole genome duplication. Although suggestions of the 

importance of duplication in evolution have been recurrent (14), the main evidence in support 

of this theory came in the 1990's from the study of Evo-Devo. Most notably the discovery of 

four Hox gene complexes in human and mouse, compared to only one Hox complex in many 

invertebrates, such as the fruit fly (15). This was rapidly suggested to be consistent with an 

hypothesis of two rounds of genome duplication at the origin of vertebrates, suggested by 

Susumo Ohno in a book (16) which provided the classical framework for the study of genome 

duplication. Ohno suggested that mutation of existing genes cannot generate new functions 

without risking loss of the original function, whereas duplication creates redundancy of this 

original function, allowing one copy to diverge and adopt a new function. Thus the 

divergence of orthologs (homologs diverging after speciation) would be conservative, 

whereas the divergence of paralogs (homologs diverging after duplication) would allow for 

the evolution of novelty. This idea has become mainstream in comparative genomics (e.g. 

17). Ohno also suggested that these duplications could be linked to the "complexity" of 

lineages such as vertebrates, an appealing idea in light of the duplications of Hox complexes 

(key regulators of animal development), but one which has proven difficult to test. Especially 
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that the position of mammals as the apex of such "complexity" was short lived, with the 

discovery of seven Hox complexes in the zebrafish (18). 

 Genome duplication, although rare, as emerged as an important factor in genome 

evolution. Genome scale evidence first came, surprisingly, from the simple yeast 

Saccharomyces cerevisiae, with the discovery that the yeast genome was tiled by non 

overlapping duplicated blocks (19). Further studies in yeast established comparative mapping 

on duplicated and non duplicated species as the best way to prove and date whole genome 

duplication (20). In addition to yeast, evidence for ancient whole genome duplications has 

notably been found in Arabidopsis thaliana (21, 22), cereals (23), teleost fishes (24, 25), and 

paramecium (26). Finally, a combination of comparative mapping and phylogeny has 

provided support for Ohno's (16) hypothesis of two whole genome duplications at the origin 

of vertebrates (27-29). More recent tetraploids are also known in various vertebrate lineages 

(30). 

 We will first present results on the use of sequence analysis, notably phylogenetics, 

which shed some light on questions from Evo-Devo. In a second part, we will present 

ongoing research to model more complicated anatomical and developmental data, to provide a 

bioinformatic platform for Evo-Devo studies. 

 

2. THE EASY PART: THE EVOLUTION OF GENE SEQUENCES 

2.1. Rapid Overview of Bioinformatics involved 

The basic task in relating sequence evolution to developmental biology is finding genes of 

interest, listing all their homologs, and determining their phylogenetic relationships. To study 

their evolution, we may also be interested in functional classification, and in evidence for 

selective pressure. For example, a change in selective pressure on some sites may be evidence 

for a change in function of the protein. 

 The first task can be considered in two manners: we may start with candidate genes, 

and search for their homologs, or we may start by determining homologs genome-wide, and 

use the result of this analysis to select genes of interest. In both cases, a key step is identifying 

homologs by sequence similarity. This is a topic abundantly treated elsewhere, but we need to 

note here that many genes of interest in Evo-Devo are characterized by short conserved 

domains which may be difficult to identify in standard scans using e.g. BlastP (31). 

Transcription factors such as the Hox, bZIPs or bHLHs are thus best identified by the careful 

use of Hidden Markov Models (e.g. 32), and are often missed in large scale scans for 
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homologs. An interesting exception to this is the nuclear hormone receptor superfamily, 

whose members can be readily thanks to their ligand binding domain of approximately 200 

amino acids (33, 34). 

 The topic of genome duplication raises that of the distinction between orthologs and 

paralogs (17, 35). The theoretically correct way to do this is through phylogenetic inference, 

although numerous alternative methods have been proposed. We will not treat these methods 

in detail here, but note that we use likelihood methods systematically (e.g. PhyML, 36). While 

the most common use of phylogenies in such studies will be to start with the target genes, and 

analyze their phylogeny, in some case we perform the reverse task. For this, we rely on 

existing databases of gene trees, such as TreeFam (37) or the databases of the PBIL (38-40), 

combined with tree reconciliation tools (41). The latter allow us to specify a topology and 

search for all gene trees (or sub-trees) which match it. Thus we can identify all genes which 

were retained in duplicate after whole genome duplication in fishes, but not duplicated in 

tetrapodes, specifying also species or lineages in which gene loss is allowed or forbidden. 

 

2.2. The Importance of Duplication and Loss 

2.2.1. Why don't flies have retinoic acid receptors? 

Nuclear hormone receptors (or nuclear receptors, NRs) are transcription factors which are 

specific to Metazoa (animals). They include receptors of major hormone, such as steroids or 

thyroid hormone. NRs play important roles in many central biological processes, notably 

development (reviewed in 42). A typical example is the group of retinoic acid receptors, 

which includes in human RARα, RARβ and RARγ. RARs mediate the regulation of antero-

posterior expression of Hox genes in vertebrate development by retinoic acid. Whereas the 

Hox are largely conserved between mammals and flies, no ortholog of RAR is found in the 

Drosophila genome. Neither for that matter are orthologs of classical steroid receptors (ERs, 

AR, PR, MR and GR), nor of thyroid hormone receptors (TRs). Moreover, orthologs of these 

genes are not found in nematode genomes either. The steroid receptors are even absent from 

the genome of Ciona intestinalis. In fact, while most of the 48 human nuclear receptors have 

known ligands (hormones or fatty acids), most of the 21 fly nuclear receptors are so-called 

"orphans", without a known ligand. These observations led to the suggestion that most 

liganded nuclear receptors were vertebrate innovations (9, 43). 

 When a sufficient sampling of animal genomes became available, we took advantage 

of the conserved structure of nuclear receptors to search for all homologs, and performed a 
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global phylogenetic analysis of the superfamily (44). By combining this gene tree with the 

known species phylogeny, we can date duplications, but also losses. On a rooted tree, events 

which are closer to the tips are more recent, and events which are closer to the root are more 

ancient. This does not provide an absolute dating (in years), but it does provide a relative 

dating. Thus if we start with human RARs (Fig. 1), we see that all speciations among 

vertebrates (e.g. tetrapode / fish) happened more recently that the duplications that gave rise 

to RARα, β and γ, but that these duplications occurred after the speciation between Ciona and 

vertebrates. Thus these duplications date to the origin of vertebrates. If we go back in time 

before the split between the Ciona and vertebrate RAR orthologs, we find not a speciation 

node, but an older gene duplication which gave rise to RARs and other nuclear receptors. 

When did this older duplication occur? The ROR/HR3 sub-tree includes not only speciations 

among chordates and vertebrate specific duplications, like RARs, but also a speciation node 

between chordates on the one hand, and insects and nematode on the other. In other words, 

the speciation between ecdysozoans and deuterostomes at the origin of bilaterian animals (45, 

46). In the tree, this speciation is clearly more recent that the duplication leading to RARs, 

RORs, and other nuclear receptors. Thus the order of events was the following (Fig. 1): 

duplications leading to proto-RAR, proto-ROR, proto-Rev-erb, and other NRs; then 

speciation between ecdysozoans and deuterostomes. Then, to explain the lack of any RAR 

ortholog in the sequenced ecdysozoan genomes, we must infer that this gene was lost in 

ecdysozoans. Thus, RAR does not appear as a vertebrate innovation, bur rather as an 

ecdysozoan loss. Of note, an RAR ortholog has also been identified in the sea urchin genome 

(47), a deuterostome but not a chordate. 

 

Figure 1 

 

 In the analysis of the whole superfamily, we find this pattern repeating itself: 

vertebrate innovations are invertebrate losses (44). Symmetrically, insect specific genes (e.g. 

E78) are ancestral bilaterian genes lost in the chordate lineage. This pattern has been 

spectacularly confirmed for steroid receptors, with the cloning and characterization of an 

estrogen receptor ortholog from a mollusk (48, 49). Indeed ancestral sequence reconstruction 

shows that the ancestor of bilaterian animals probably had a receptor activated by estrogen. 



 6 

2.2.2. Why do humans have three retinoic acid receptors? 

Flies may not have retinoic acid receptors, but humans have three. RARα, β and γ are 

paralogs, kept from the genome duplications at the origin of vertebrates. All three bind All 

Trans Retinoic Acid, and activate transcription of target genes. Yet they are not redundant. 

Not only have the three copies been kept over 400 MY of vertebrate evolution, but Knock-

Out experiments show paralog-specific phenotypes, mostly affecting development (50). Like 

other nuclear receptors, RARs have a DNA binding domain and a ligand binding domain. The 

latter is about 270 amino acids in RARs, and is composed of 12 α-helices. Of these, 25 amino 

acids in the hydrophobic ligand binding pocket make direct contact with the ligand. The 

binding pockets of the human RAR paralogs differ in three of these 25 positions. They also 

differ in their in vitro binding to different synthetic retinoids, and in the resulting 

transactivation of target genes. 

 To gain further insight into the evolution of these differences, we compared all 

chordate RARs, including vertebrates, amphioxus and tunicates (51). The phylogeny confirms 

the dating of the duplications at the origin of vertebrates, with single copy orthologs in 

amphioxus and tunicates. The amino acid sequence of the ligand binding domain of the RAR 

immediately predating the duplications was predicted using Maximum Likelihood, and 

synthesized. All homologs and the predicted ancestral protein expectedly transactivate with 

all-trans retinoic acid, with similar EC50 values. On the other hand, the ancestral, amphioxus 

and tunicate RARs do not transactivate in the presence of retinoids specific of human RARα 

or γ. They do bind the RARβ specific retinoid, with strong transactivation in amphioxus, 

weaker for tunicate and predicted ancestral. Targeted mutations of the amphioxus RAR show 

that the three positions identified in human are indeed key to the differences in specificity. 

These results suggests that RARβ is closest to the ancestral function, with changes evolving 

by point mutations in the ligand binding pocket in RARα and γ. This is confirmed by limited 

proteolytic experiments, which show that all RARs do bind the β specific retinoid, even when 

it is not sufficient for transactivation. They do not bind the other specific retinoids. 

Interestingly, in situ hybridization shows that the expression pattern of amphioxus RAR is 

most similar to that of RARβ. Thus it appears that after whole genome duplications, one copy 

kept close to the ancestral function, both in terms of sequence and expression pattern, while 

the two others acquired derived characteristics (51). 

 This study focused on differences between paralogs, due to duplication. But it is worth 

noting that we also found differences between orthologs. For example both zebrafish and 
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Xenopus RARγ transactivate with both the α and γ specific retinoids (as established in 

mammals), and indeed have one amino acid in helix H3 which is identical to mammalian 

RARα, not γ  (51). A more general consideration of nuclear receptors shows that functional 

differences between orthologs are not rare when distant organisms are compared. For example 

vertebrate Rev-erbs are orphan receptors involved in circadian cycle regulation (52), but E75, 

their insect ortholog (Fig. 1), is a heme receptor involved in ecdysone regulation (53). Thus 

function may change after duplication, but also between species (see also 54). 

2.2.3. Biased gene loss after whole genome duplication 

After whole genome duplication, duplicate copies of genes may evolve in different manners, 

gaining or losing functions (reviewed in 55). But the most common fate is certainly loss of 

one of the copies. Although this may not seem very exciting in itself, the contrast between 

which genes are lost, and which are kept in double, has emerged as one of the most important 

features of whole genome duplications. The rate of gene loss has been estimated at 88% in 

about 80 Myr since genome duplication in yeasts (20), 70% in ≤86 Myr in Arabidopsis (56), 

and 79% in about 61-67 Myr in cereals (23). By comparing only genes which were mapped to 

chromosomes in Tetraodon fish and human, and whose evolutionary fate could be determined 

by phylogenetic analysis, we obtained a figure of 85% of gene loss after whole genome 

duplication in teleost fishes (57), despite the greater age of the event. These similar figures are 

best explained if most loss occurs rapidly after duplication (58), so that subsequent evolution 

does not change the figure significantly. 

 In an important study, Davis and Petrov (59) showed that slowly evolving genes are 

more likely to be found duplicated. The bias is similar in yeast and in nematode worm, and is 

maintained over evolutionary time, indicating that gene retention was also biased after the 

whole genome duplication in yeast. An important aspect of the work of Davis and Petrov (59) 

was to use estimates of selective pressure which are phylogenetically independent of the 

duplication. We conducted a similar study in fishes (57), and found that these conclusions 

also applied to a more ancient genome duplication, in a vertebrate lineage. The selection 

pressure is measured by the ratio of the number of non synonymous substitutions per site (dN) 

to the ratio of synonymous substitutions per site (dS), between the human and mouse 

orthologs of genes which either lost one copy ("singletons") or did not after the fish whole 

genome duplication (Fig. 2). Using only human - mouse dN to measure the rate of evolution 

of the proteins encoded, we find that non-duplicated orthologs of gene pairs retained after 
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duplication evolve 30% slower. This is comparable to observations for nematode (25%) and 

yeast (50%) genes. 

 

Figure 2 

 

 What is the relevance of these observations to Evo-Devo? First, if whole genome 

duplication has really played a key role in the establishment of the developmental diversity of 

fishes (60, 61) (but see 62), we need to understand its mechanisms as well as possible. 

Second, gene retention may also be biased relative to function, and enrichments in 

communication and developmental genes has been reported in insects, yeasts (63) and 

Arabidopsis (64). In fishes, we found an excess of genes annotated with terms related to 

development and signaling functions (57), which supports the putative link between genome 

duplication and developmental innovations. 

 Second, once the importance of biased gene retention after duplication is established, 

this provides a convenient measure of selective pressures on the genome. We have used this 

to test developmental constraints on genome evolution. Two models have been proposed for 

developmental constraints on morphological evolution. The first, dating back to pre-

Darwinian observations by von Baer (1, 65), is that there is a progressive divergence of 

morphological similarities between vertebrate embryos. More general characters would form 

in early development, which would be highly constrained, while species-specific characters 

would form in late development, which would be more open to innovation. An alternative 

models was proposed more recently (66, 67): the "hourglass model" is based on the 

observation of large morphological diversity in very early development (e.g. blastula). This 

model assumes a constrained stage in middle development, around the vertebrate 

"pharyngula" stage. To evaluate the impact of the constraints postulated by both models on 

the genome, we investigated the pattern of expression during development according to gene 

retention after whole genome duplication. We expect genes which are kept in double to be 

highly expressed at developmental stages which are open to evolutionary innovation, not at 

stages which are highly constrained. These should be characterized by conservatism: no 

duplication, no loss of highly expressed genes (Fig. 3). We also expect a high cost of gene 

loss (e.g. lethal phenotype for gene Knock-Out) in more constrained stages. 

 

Figure 3 
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 By combining a zebrafish time series microarray experiment (E-TABM-33 accession 

from ArrayExpress) with phylogenetic definition of retention or loss after duplication in 

fishes (Fig. 2), we find that genes kept in duplicate are lowly expressed in early development, 

then increase regularly their expression to reach a maximum in late development (Roux and 

Robinson-Rechavi, unpublished). In principle, this could be the result of biased evolution 

after duplication (e.g. duplicate genes evolving lower expression in early development), as 

well as of biased retention and loss. To check this, we used EST data to determine expression 

in mouse development: the orthologs of genes kept in duplicate in fishes are lowly expressed 

in early mouse development. Moreover, the data fit a simple linear correlation, while 

excluding the parabola curve expected from the hourglass model (Fig. 3). The same results 

are obtained contrasting genes kept or lost after whole genome duplications at the origin of 

vertebrates. Finally, gene KO phenotypes are also consistent with decreasing constraints over 

development both in zebrafish and mouse. 

 These results together show that (i) timing of expression during development is a 

strong and conserved constraint on genome evolution; (ii) gene duplication is restricted when 

phenotype is constrained; and (iii) at the genomic level, the traditional "von Baer-like" model 

provides a much better fit than the hourglass model. 

 In conclusion of this section, gene duplication and loss must both be understood to 

clarify the relationship between genome evolution and developmental (thus morphological) 

evolution. 

 

3. DEVELOPING BIOINFORMATIC TOOLS FOR EVO-DEVO 

3.1. Defining homology for bioinformatics 

Homology is one of the most fundamental concepts in biology. It has also generated abundant 

terminological and conceptual discussion (e.g. 68). It was originally defined based on 

similarity of anatomical structures, with emphasis on their relations, thus clarifying that a bird 

wing and a mammalian forelimb are homologous. The term later acquired a historical 

dimension: homologous structures are assumed to derive from a same ancestral structure, to 

which they owe their similarity, whereas analogous structures have converged to similarity 

from different ancestral starting points. This definition can create complex situations, since 

the bat wing and the bird wing are analogous as wings, having converged from an ancestral 

walking limb, but they are homologous as forelimbs, since they derive from the forelimb of 

an ancestral tetrapode. Moreover, different fields of research have developed different 
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operational definitions (69): historical homology, defined by phylogenetic continuity; 

morphological homology, defined by structural similarity; or biological homology, defined by 

similar developmental constraints. Morphologists also define serial homology between organs 

repeated along the axis of a same organism, such as vertebrae (discussed in 70). Since the 

original evolutionary formulations of homology, two fields of research have hugely 

influenced our view of biological diversity and evolution: molecular evolution and Evo-Devo. 

 At the molecular level, homologs between species have been discovered whose origin 

predate the divergence of bacteria and eukaryotes, while inside each species, genomes include 

many families of homologous genes. To clarify this situation, three main types of molecular 

homology are distinguished: orthology, or divergence by speciation; paralogy, or divergence 

by sequence duplication; and xenology, or divergence after gene transfer between species 

(35). Such molecular homology is probably the only type which has been well formalized in 

bioinformatics up to now. 

 Evo-Devo is dependent on definitions of homology both for anatomical structures and 

for genes, and has also brought important new information relative to homology. Some of this 

new information has raised new questions. This is best exemplified by the now classical case 

of animal eyes: if insect eyes and vertebrate eyes are organized in fundamentally different 

ways, they are probably analogs; but if they are determined during development by 

orthologous genes, are they not homologs? Such cases have led to the controversial proposal 

that the presence of key orthologous genes in development suffices to define homology 

(discussed in 71). An attempt to solve this issue is the new term "homocracy", which is 

defined by sharing the expression of the same patterning genes (72). Homocratic structures 

may or may not be homologous; homologous structures are often homocratic, but this is not a 

logical necessity. 

 When defining homology in development, we must also take into account 

heterochrony, changes in the relative timing of development during evolution. For each organ 

homology should be defined at specific developmental stages, which differ between organs. 

For example, the heart develops later in primates relative to rodents, while the ear develops 

earlier, thus changing the timing of development of these organs relative to each other (73). 

This makes it impossible to define homology between developmental stages as a whole in 

many cases, and greatly complicates automatic comparison of embryos between species. 

Moreover, developmental "stages" as defined in the literature are somewhat arbitrary 

divisions of a continuous process. The limits of these divisions may not be consistent between 

species, even without heterochrony. 
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 Despite the importance of homology, little attention has been paid to careful 

implementation in bioinformatics. Notably, few ontologies contain any notion of homology. 

Ontologies are formal representations of a field of knowledge, including terms, definitions 

and relations between the terms (e.g. hydrolase is_a enzyme). They have become an important 

tool in bioinformatics, corresponding to the need to formalize many complex descriptions in 

biology. Some ontologies do provide homology relationships. PATIKA (74), a pathway 

ontology, includes a "homology" relation; in practice it is used to manage paralogy inside 

gene families. Protein homology is defined as a "synonym" in the Molecule role ontology of 

the INOH Pathway Database. The most detailed implementation to our knowledge is in the 

Sequence Ontology (75), which includes a "homologous_to" relation, which is the only child 

of "similar_to", and has three children, "orthologous_to", "paralogous_to" and 

"non_functional_homolog_to". The latter is an interesting formalization of the relation 

between a gene and a pseudogene. The child relation to "similar_to" shows that a 

morphological definition of homology was chosen, whereas the Cell Ontology uses a 

definition of historical homology (76). But in the Cell Ontology the relation is not 

implemented explicitly. Instead, homology is the default for the same term in different species 

(e.g. "muscle_cell" in human and fly); otherwise, several lineage specific terms are created, as 

in "pigment_cell_(sensu_Vertebrata)" and 

"pigment_cell_(sensu_Nematoda_and_Protostoma)". A similar approach is used in the Plant 

Ontology (77). In several ontologies, homology is not defined as a type of relation, but is 

discussed in the definitions. For example, good discussions of anatomical homology, 

including serial homology and analogy, appear in definitions of the ontologies of mosquito 

(78) or corn (79). 

 

3.2. Modeling homology relationships 

To conduct Evo-Devo studies computationally, we need to define homology relationships 

between ontologies describing the anatomy and development of different species. Designing 

such relationships consists in finding correspondences (homology relationships) between the 

concepts (organs) of these ontologies. This problem is a special case of "schema matching", 

or "ontology alignment". Ontology alignment (80) is the process of determining 

correspondences between ontology concepts. Usually, this technique is used to find the 

common concepts present in two ontologies. In the case of anatomical ontologies, the 

concepts to align are not strictly common, but rather, related: a homology relationship is not 

an equivalence relationship. For this reason, classical ontology alignment approaches cannot 
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be applied here: these methods would be misled by the existence of elements of same names 

and related to the same concept, but not homologous (eye of insects and of vertebrates for 

instance), or homologous elements with different names (caudal fin and upper limb for 

instance). This is why in our modified ontology alignment technique (Parmentier and 

Robinson-Rechavi, unpublished) an expert has to manually validate the putative homologs. 

 Our process is a supervised one: at each step, some homology relationships are 

proposed to the expert, who may validate them or not. Computations are made based on these 

decisions, and new propositions are made to the expert. 

 The algorithm starts with a list of pairs, which have identical names. This is based on 

the assumption that two structures that have the same name are likely homologous. For 

example, "optic cup" of ZFIN (zebrafish) (81) and "optic cup" of EHDA (human) will be 

paired, but "optic cup" of ZFIN will not be initially paired with "optic nerve" of EHDA. The 

score of similarity between terms is up weighted by the proportion of common words, and 

down weighted by the frequency of these words (frequent words are less informative, e.g. 

"endoderm"). Moreover, scores are propagated between pairs which are neighbors in both 

ontologies. For example, the score of the "optic cup" pair is added to the score of the "eye" 

pair, as "optic cup" is part of "eye". 

 Each pair is proposed to the expert, in descending order of scores. The expert may 

validate or invalidate the hypothesis of homology, or delay decision. The expert may choose 

to evaluate any number of pairs before triggering an iteration, in which computations are 

performed. Computation creates or extends homology groups. The new homology 

information is propagated through the ontologies. The underlying idea is that if two concepts 

A and B are homologous, then one of the sub-concepts of A is probably homologous to one of 

the sub-concepts of B. Of note, validated homology contributes a significantly higher score 

than name similarity. Propagation is down weighted by the number of sub-concepts, to avoid 

generating many false positives (i.e. all the children of "whole body"). 

 Evaluation of pairs, ordered by total score (base score + propagated score), and 

iteration, are repeated until the expert decides to terminate, or no more pairs are proposed. 

 Our method is implemented in Homolonto (Parmentier and Robinson-Rechavi, 

unpublished), a software that we have developed in Java. Compared to manual alignment of 

the ontologies, Homolonto reduces time considerably, with high sensitivity. Thus aligning the 

zebrafish (ZFIN; 2087 terms) and Xenopus (Xenbase; 480 terms) ontologies took one month 

by hand, but 2 days using Homolonto. The first 213 pairs proposed to the expert (i.e. one day 

of work) were valid at 80%, and contained 91% of all true positives. 
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3.3. Bgee, a database for gene expression evolution 

To be useful for Evo-Devo and other comparative studies, the homology relationships 

determined using Homolonto are implemented in a database, Bgee. This "dataBase for Gene 

Expression Evolution" is being developed to facilitate comparisons of gene expression 

between animal species (http://bgee.unil.ch) (82). 

 To enable large scale gene expression pattern comparison, Bgee must answer three 

conditions: (i) Precise description of the anatomy and developmental stages of each species, 

stored in a computer-understandable way. This is done using existing ontologies, such as 

ZFIN (81). (ii) Comparison criteria between anatomies, developmental stages, and genes. For 

anatomy, this is done using Homolonto. For development, we have developed a small 

ontology of "metastages" which are common to all bilaterian animals, such as "blastula 

part_of embryo". For genes, we use homology predictions from other sources (i.e. Ensembl, 

83). (iii) Integration of expression data in order to know in which anatomical features (spatial 

mapping) and which developmental stages (temporal mapping) genes are expressed. The 

relationships between these types of information are represented in a very simplified manner 

in Fig. 4. 

 

Figure 4 

 

 Concerning developmental stages, we have seen that it is not possible to detail 

homologous stages in a similar way to organs. This is why we developed a simplified 

ontology of metastages. Despite the resulting loss of accuracy, it allows comparison of gene 

expression patterns taking into account developmental time. 

 Concerning expression data, we face two challenges: integrating heterogeneous data 

types (84, 85); and transforming often quantitative data (level of expression) into the 

qualitative information which is standard in typical developmental studies ("expressed" or 

not). The reason to integrate heterogeneous expression data is that they complement each 

other in terms of coverage. For example EST libraries present typically an incomplete picture 

of the transcriptome, but they are available for many species, and allow good identification of 

closely related paralogues. Oligonucleotide microarrays are much more complete, but 

different experiments are difficult to compare, and non model species are not covered. Both 

ESTs and microarrays are usually annotated to coarse anatomical and developmental 

descriptions (e.g. "adult brain"), whereas in situ hybridizations can provide very detailed 
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accounts of gene expression. But in situ hybridization provides limited genome coverage 

(although see 86), is not applicable to humans, and can be more challenging to treat 

automatically than other transcriptome data types (85, 87). 

 Briefly, the basic approach chosen in Bgee is to recode expression data for a gene in 

an organ and developmental stage as "not detected", "expressed with high confidence", or 

"expressed with low confidence". For experiments based on tag counting, such as ESTs, 

SAGE, or MPSS, we have considered a gene as expressed with a high confidence if the 95% 

confidence interval does not include zero (88). For microarray data, a gene is considered 

expressed if the normalized signal is significantly above the background signal. In the future, 

we plan to add information on whether a gene is significantly more expressed in one 

condition than another (e.g. more expressed in muscle than brain), and integrate other types of 

data. 

 The database is developed with mySQL, and currently includes four vertebrate 

species. The website allows users to retrieve information on gene expression by querying the 

database for keywords or gene identifiers, or browsing anatomical or developmental 

ontologies. In addition to species specific or gene specific views, users may view all gene 

families expressed in homologous organs between chosen species, and the complete 

expression information of a gene family across species. All queries may be constrained by 

data type, data quality, and keywords or identifiers. 

 Bgee is a promising tool to enable Evo-Devo studies on a larger scale. We hope it will 

also be useful to put functional genomics studies in a comparative context, and provide a 

platform for integration of anatomical homology information into bioinformatics. 

 

4. CONCLUSION 

The intersection of bioinformatics and Evo-Devo is still relatively small, but holds a large 

potential for bringing the tools of high throughput biology to illuminate our understanding of 

some of the most fundamental questions in biology: the origin of novelty, the role of 

constraints, the importance of loss vs. gain, or the extent of conservation between distant taxa. 

In this chapter, we have discussed briefly two aspects of the integration of bioinformatics and 

Evo-Devo: sequence based analysis, and modeling homology relationships. A third approach 

should be mentioned in conclusion: gene regulatory networks. The characterization of gene 

regulatory networks controlling development is still a recent field (90), and data has proven 

often costly to produce even in one species. It is to hoped that in the future sufficient 
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functional data will be available from a wider array of species. This should allow mechanistic 

yet large scale studies of the control of morphological diversity by the genome. 
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6. FIGURE LEGENDS 

Figure 1: Simplified phylogenetic tree of three groups of nuclear receptors 

Maximum likelihood phylogeny (PhyML (36), JTT model, four rate categories, gamma shape 

parameter and proportion of invariant estimated) of 78 nuclear receptors from the groups 

NR1B (RAR), NR1D (Rev-erb, E75) and NR1F (ROR, HR3). Branch length is proportional 

to substitutions per amino acid site. In blue, the relative timing of key speciation events. In 

red, the relative timing of duplication events. 

 

Figure 2: Comparison of selection pressure on duplicated and singleton genes. 

Schematic phylogenetic classification of genes according to duplication and loss. Tn = 

Tetraodon nigroviridis; Tr = Takifugu rubripes; Hs = Homo sapiens; Mm = Mus musculus. 

dN = number of non synonymous substitutions per site; dS = number of synonymous 

substitutions per site. The arrow represents the unpaired t-test between dN/dS values. 

 

Figure 3: Schematic predictions of two models of developmental constraints on evolution. 

 

Figure 4: Schematic representation of the relationships between types of information in the 

Bgee database. 

Expression data is central to relating genes to anatomical and developmental terms in each 

species. 
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