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Abstract

Motivation: In order to discover quantitative trait loci, multi-dimensional genomic datasets com-

bining DNA-seq and ChiP-/RNA-seq require methods that rapidly correlate tens of thousands of

molecular phenotypes with millions of genetic variants while appropriately controlling for multiple

testing.

Results: We have developed FastQTL, a method that implements a popular cis-QTL mapping strat-

egy in a user- and cluster-friendly tool. FastQTL also proposes an efficient permutation procedure

to control for multiple testing. The outcome of permutations is modeled using beta distributions

trained from a few permutations and from which adjusted P-values can be estimated at any level of

significance with little computational cost. The Geuvadis & GTEx pilot datasets can be now easily

analyzed an order of magnitude faster than previous approaches.

Availability and implementation: Source code, binaries and comprehensive documentation of

FastQTL are freely available to download at http://fastqtl.sourceforge.net/

Contact: emmanouil.dermitzakis@unige.ch or olivier.delaneau@unige.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies have shown that most common

trait-associated variants fall into non-coding genomic regions and

likely alter gene regulation (Maurano et al., 2012; Nica et al.,

2010). This has motivated large-scale studies to catalog candidate

regulatory variants (quantitative trait loci; QTLs) associated with

various molecular phenotypes (i.e. quantitative molecular traits with

a genomic location) across various populations (Lappalainen et al.,

2013), cell (Fairfax et al., 2012) and tissue types (GTEx

Consortium, 2015; Ongen et al., 2014). Mapping QTLs in this con-

text usually consists of finding statistically significant associations

between phenotype quantifications and nearby genetic variants; task

commonly undertaken using linear regressions (GTEx Consortium,

2015). Alternative approaches have also been developed to increase

discovery power by accounting for confounding factors (Fusi et al.,

2012), integrating functional annotations (Gaffney et al., 2012), lev-

eraging allelic imbalance (van de Geijn et al., 2015) or aggregating

measurements across multiple tissues (Flutre et al., 2013). In prac-

tice, this requires millions of association tests in order to scan all

possible phenotype-variant pairs in cis (i.e. variants located within a

specific window around a phenotype), resulting in millions of nom-

inal P-values. Matrix eQTL (Shabalin, 2012) has recently emerged

as a ‘gold standard’ for this task (GTEx Consortium, 2015;

Lappalainen et al., 2013) by taking advantage of efficient matrix

VC The Author 2015. Published by Oxford University Press. 1479

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 32(10), 2016, 1479–1485

doi: 10.1093/bioinformatics/btv722

Advance Access Publication Date: 26 December 2015

Original Paper

http://fastqtl.sourceforge.net/
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv722/-/DC1
Deleted Text: \\Note for CE: Please check the highlighted text\\
Deleted Text: large 
Deleted Text:  [TQ1]
Deleted Text: ``
Deleted Text: ''
Deleted Text: ; GTEx Consortium., 2015
http://www.oxfordjournals.org/


operation implementations to perform the many association tests in

acceptable running times. Due to the large number of tests per-

formed per phenotype, multiple testing has to be accounted for to

assess the significance of any discovered candidate QTL. A first

naive solution to this problem is to correct the nominal P-values for

the number of tested variants using the Bonferroni method.

However, due to the specific and highly variable nature of each gen-

omic region being tested in terms of allele frequency and linkage dis-

equilibrium (LD), the Bonferroni method usually proves to be overly

stringent and results in many false negatives. To overcome this issue,

a commonly adopted approach (Montgomery et al., 2010) is to ana-

lyze thousands of permuted datasets for each phenotype in order to

empirically characterize the null distribution of associations (i.e. the

distribution of P-values expected under the null hypothesis of no as-

sociations). Then, we can easily assess how likely an observed asso-

ciation obtained in the nominal pass originates from the null,

resulting in an adjusted P-value. In practice, performing permuta-

tions in this context requires fast methods able to absorb such sub-

stantial computational loads in reasonable running times. Even

though Matrix eQTL has been used so far in multiple large-scale

studies (GTEx Consortium, 2015; Lappalainen et al., 2013), it still

suffers from a main drawback which makes its practical application

relatively laborious and time consuming: there is no efficient built-in

permutation scheme forcing users to develop their own and there-

fore to use non-optimal multiple-testing correction methods. So far,

a commonly employed permutation strategy relies on performing a

fixed number of permutations per phenotype (1000–10 000) to con-

trol the running times at the cost of accurately assessing the statis-

tical significance of the most strongly associated QTLs. Here, we

present FastQTL, a user- and cluster-friendly QTL mapper, which

improves upon Matrix eQTL by implementing a fast and efficient

permutation scheme in which the null distribution of associations

for a phenotype is modeled using a beta distribution. This allows us

to approximate the tail of the null distribution relatively well using

only few permutations, and then to accurately estimate adjusted

P-values at any significance level in short running times.

2 Methods

2.1 Overview
FastQTL performs linear regressions between genotypes and mo-

lecular phenotypes with or without covariates in order to find the

best nominal association for each phenotype (see Section 2.2). Then,

it can correct for the multiple correlated variants tested via three dif-

ferent permutation schemes: (1) a direct permutation scheme that

relies on a fixed number of permutations (see Section 2.3), (2) an

adaptive permutation scheme which maintains a reasonable compu-

tational load by tailoring the number of permutations to the signifi-

cance of the association (see Section 2.4) and (3) a beta

approximation which models the permutation outcome via a beta

distribution (see Section 2.5). For (1) and (2), an adjusted P-value

per phenotype is calculated as the proportion of null associations

found to be more significant than the nominal one. For (3), we

model this null distribution of most significant P-values for a pheno-

type with a beta distribution, learning the parameters from a few

permutations (typically 100–1000) by maximum likelihood estima-

tion. As a result, we obtain a reasonably good approximation of the

tail of null distribution to estimate small adjusted P-values at any

significance level (i.e. without lower bound). In a final stage, a false

discovery rate (FDR) procedure as implemented in the R/qvalue

(Storey and Tibshirani, 2003) package is used on the set of adjusted

P-values obtained either from (1), (2) or (3) to extract all significant

phenotype-variant pairs at a given FDR, usually chosen to be 5% or

10% (see Section 2.6). All this, plus other optional functionalities,

have been implemented in the FastQTL software package (see

Section 2.7).

2.2 Finding a candidate QTL per phenotype
For simplicity, we will focus on a single molecular phenotype P

quantified in a set of N samples. Let G be the set of genotype dos-

ages at L variant sites located within a cis-window of 6 W Mb of

the genomic location of P. To discover the best candidate QTL for

P, FastQTL measures Pearson product-moment correlation coeffi-

cients between P and all L variants in G, stores the most strongly

correlated variant q [ G as candidate QTL, and assesses its signifi-

cance by calculating a nominal P-value pn with standard significance

tests for Pearson correlation. Note that this is equivalent to testing

for b = 0 in a linear model P 5 bg 1 � with b estimated by least

squares fitting. Of note, this method is also used by Matrix eQTL to

speed up linear regression (Methods 3.1 & 3.2 of Shabalin, 2012).

Then, two multiple-testing levels are accounted for to determine the

whole-genome significance of this nominal P-value and thereby to

consider the corresponding variant q as a QTL: multiple genetic

variants are tested per phenotype and multiple phenotypes are tested

genome-wide. Following common usage, FastQTL uses permuta-

tions to correct for the former (see Sections 2.3–2.5) and FDR esti-

mation to control for the latter (see Section 2.6).

2.3 Direct permutation scheme
The choice of a proper global significance threshold for nominal

P-values is very difficult due to the fact that we test multiple variants

per phenotype, correlated because of LD, across a wide allele

frequency spectrum, while all this varies from one phenotype to an-

other. To account for this, significance of a candidate QTL is as-

sessed via permutations. Specifically, we repeat the cis-window scan

procedure for R random permutations of P, leaving the genotype

data G unchanged to preserve the correlation between variants.

Each time, we store the strongest correlation; the goal is to produce

a sample from the distribution of the strongest correlation under the

complete null hypothesis of no genetic associations. Then, the

observed correlation is compared with this empirical null distribu-

tion to obtain an adjusted P-value characterizing the significance of

the candidate QTL. When very few null correlations are found to be

stronger than the observed one, it means that reaching this correl-

ation level by chance is very unlikely and therefore that the QTL

candidate is likely to be true. More formally, if r correlations in the

null distribution are found to be stronger than the observed, signifi-

cance of the QTL candidate is assessed by calculating the following

empirical adjusted P-value pd of association (Phipson and Smyth,

2010):

pd ¼
rþ 1

Rþ 1
(1)

By definition, such an adjusted P-value cannot be smaller than

1/(R 1 1); meaning that a large number of permutations are needed

to get precise estimates of small adjusted P-values, thereby increas-

ing the computational burden. For instance, reaching P-values of

�10�3 requires thousands of permutations while billions are needed

to get P-values of �10�9. In practice, it is very difficult to go beyond

a few thousand permutations genome-wide with this approach,

which forces us to work with adjusted P-values in the range of 10�3

to 1.0. To alleviate this limitation, we improved the direct
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permutation scheme with two complementary methods (see Sections

2.4 and 2.5).

2.4 Adaptive permutation scheme
From Equation (1), one can see that good estimation of insignificant

adjusted P-values can be achieved with few permutations while

many more are needed to estimate highly significant ones.

Therefore, we implemented an alternative permutation scheme that

adapts the number of permutations to the significance level of the

variant–phenotype pairs (Hubner et al., 2005). The resulting ap-

proach saves time at insignificant hits and invests more for signifi-

cant ones, thereby maintaining a reasonable overall computational

cost. Specifically, this adaptive scheme permutes P until a given

number B (typically 100) of null correlations stronger than the

observed one are found. To prevent this strategy running too long

for the most significant variant–phenotype pairs, the algorithm can-

not perform more than M (typically 100 000) permutations in total.

Then, an adjusted P-value of association for a candidate QTL is

derived using:

pa ¼
min r;Bð Þ þ 1

min R;Mð Þ þ 1
(2)

This strategy still remains unable to provide adjusted P-values

below 1/(M 1 1), though M can scale up to 100 000 in practice and

thus provide good estimations for adjusted P-values down to

�10�5.

2.5 Beta approximation
To provide adjusted P-values at any significance level without actu-

ally performing all required permutations, we developed an approxi-

mation method based on the beta distribution. It is well established

that order statistics of independent uniformly distributed random

variables are beta-distributed (Jones, 2009). Therefore, we hypothe-

sized that the P-values obtained through permutations are also beta-

distributed (Dudbridge and Koeleman, 2004). More formally, the

kth smallest value obtained when independently drawing n times

from the uniform is distributed as:

U � Betaðk;nÞ (3)

In our particular problem, we propose to model the smallest

nominal P-value coming from L tests performed in a permutation

pass as a beta distributed random variable with shape parameters k

5 1 and n 5 L. However, given that nearby variant sites usually ex-

hibit some relatively high degree of correlation (LD), the L tests per-

formed are not independent, implying that the effective number of

tests n is lower than the actual number L of variants in cis. Instead

of fixing the k and n parameters a priori, we use a more flexible ap-

proach in which the parameters are estimated by maximum likeli-

hood (Galwey, 2009). Specifically, we perform R permutations to

generate a null set of P-values {p1, . . . , pR} and then estimate k and

n by maximizing the following log-likelihood:

L k;n j p1; . . . ; pRð Þ ¼ k� 1ð Þ
XR

r¼1

lnpr þ n� 1ð Þ
XR

r¼1

lnð1� prÞ

� Rln
CðkÞCðnÞ

C knð Þ

� �

(4)

Note that this maximization is done using standard numerical

methods implemented in GNU Scientific Library. The underlying

idea of this approach is to characterize the extreme tail of the null

distribution without directly sampling from it, something that

would entail a huge computational burden. Finally, we can approxi-

mate an adjusted P-value pb from the best nominal P-value pn and

from the maximum likelihood (ML) fitted beta distribution with:

pb ¼ PðU � pnÞ (5)

2.6 False discovery rate
Since thousands of molecular phenotypes are tested genome-wide,

an FDR correction is commonly applied. This estimates the propor-

tion of false positive findings, known as the FDR, by comparing the

number of hits declared to the number that would be expected by

chance. The Benjamini–Hochberg (BH) procedure (Benjamini and

Hochberg, 1995) is one way of controlling the number of false posi-

tive results. However, this is too conservative in most of the QTL

studies where we expect a substantial fraction of the phenotypes to

be affected by genetic variants. To account for this, it is recom-

mended instead the use of the FDR procedure described by Storey

and Tibshirani (ST) (Storey and Tibshirani, 2003) which fits particu-

larly well in this context. The ST procedure assumes that the set of

association tests originates from a mixture of both the null and the

alternative hypothesis and estimates p0, defined as the proportion of

hypotheses for which the null is true. Implicitly, the BH procedure

assumes p0 is 1, whereas the ST procedure learns it from the data,

resulting in more statistically significant hits. Of note, the adjusted

P-values provided by FastQTL allow the users to easily apply which-

ever multiple testing correction they favor, from FDR to Bonferroni,

since it provides adjusted P-values well calibrated on the full P-value

range.

2.7 Implementation
FastQTL implements in Cþþ (see Sections 2.1–2.5) to provide an

adjusted P-value per phenotype. An FDR procedure (see Section 2.6)

is then straightforward to apply on the FastQTL output. In addition

to the functionalities described above, FastQTL also implements

some additional useful features worth mentioning here:

(1) To make the method more robust to outliers in the phenotype

data, FastQTL has an option that allows to quantile normalize the

phenotype quantifications prior to any analysis. This ensures that

phenotype quantifications are normally distributed with mean 0 and

standard deviation 1. Quantile normalization is implemented as in

the R/rntransform function of the GenABEL package (Aulchenko

et al., 2007).

(2) Confounding factors such as population stratification and ex-

perimental batch effects have to be considered to prevent spurious

associations. To do so, FastQTL can residualize both the genotypes

and the phenotypes for quantitative and/or qualitative covariates

prior to any association testing.

(3) FastQTL uses standard file formats: genotype dosages and

phenotype quantifications are specified in Variant Calling Format

and UCSC BED format, respectively. All files are required to be

indexed with Tabix (Li, 2011) to enable fast retrieval of specific gen-

omic regions.

(4) To split a genome-wide analysis into non-overlapping chunks

and to run each on a distinct CPU core, FastQTL includes a set of

user-friendly options. It can either split the data into a given number

of chunk (--chunk 12 200 to run chunk 12 out of 200) or focus on a

particular user defined genomic region (--region 20:1-1000000).

The phenotype and genotype data included in the genomic region is

then automatically extracted from the cis-window size and analyzed.

A simple loop going through all possible chunks allows the user to
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submit the full analysis on a compute cluster or server. A FastQTL

example command line to perform a genome-wide analysis is shown

in command 1.

(1) for c in $(seq 1 256); do

(2) fastQTL --vcf genotypes.vcf.gz

(3) --bed phenotypes.bed.gz

(4) --chunk $c 256

(5) --permute 1000

(6) --output results.$c\.txt.gz

(7) done

(8) zcat results.*.txt.gz j gzip -c > results.txt.gz

Command1. This shows the BASH script needed to run a gen-

ome-wide analysis. The genotypes and phenotypes are specified with

--vcf (line 2) and --bed (line 3), respectively. The analysis is split into

256 non-overlapping chunks (lines 1 and 4) and is based on 1000

permutations (line 5). The full outcome is constructed by concate-

nating the per-chunk outcomes (line 8).

3. Results

To perform a comprehensive evaluation of FastQTL, we used RNA-

seq and genotype data produced by both the Geuvadis (Lappalainen

et al., 2013; Supplementary material 1) and the GTEx consortia

(GTEx Consortium, 2015; Supplementary material 2), two of the

largest eQTL studies performed to date. This comprises a total of 10

distinct datasets with between 14 and 35K quantified genes

and 6.8–10.8M variant sites for 83–373 samples (Supplementary

Table 1).

In the context of this study, the two parameters of the beta distri-

bution, k and n, can be interpreted as the rank of the associated vari-

ant and the effective number of independent tests performed in cis,

respectively. We looked at the ML estimate distributions of these par-

ameters across all genes in the GEUV_EUR dataset and find first that

parameter k values tend to center around 1.0, in line with what is ex-

pected for the top variant (Fig. 1a). Second, we find that the param-

eter n values show high dispersion (Fig. 1b) and are consistently

smaller than the actual number of variants being tested in cis (Fig. 1c);

both suggesting that the beta distribution captures well the redundan-

cies between variants, a consequence of LD. This also highlights the

importance of performing permutations instead of using a Bonferroni

correction based on the number of variants, which would result in a

substantial proportion of false negative results.

Then, we checked whether the null P-values coming from permu-

tations are beta distributed again in the GEUV_EUR dataset. To do

so, we (1) stored for each phenotype the best P-values obtained from

1000 permutations as observations, (2) estimated k and n by ML

from the 1000 resulting P-values, (3) simulated 1000 P-values from

the newly parameterized beta distribution as expectations and (4)

compared both observations and expectations to assess their

Fig. 1. (a, b) Density plots of the k and n parameter ML estimates made from 100, 1K, 10K and 100K permutations on GEUV_EUR. (c) A scatter plot of the number

of variant sites tested per gene (cis-window 61Mb of the TSS) against the n parameter ML estimates made again from 100, 1K, 10K and 100K permutations

on GEUV_EUR. (d, e) Quantile–Quantile plots of the best P-values obtained through 1000 permutations (observed) of the GEUV_EUR dataset against simulated

P-values sampled from the fitted beta distributions (expected). Expected P-values are plotted against the observed ones for all genes pooled together in (d) and

for each gene separately in panel (e). (f) The KS test �log10 P-values comparing observations and expectations for each gene. The red line shows the expected

Bonferroni significance threshold when testing 13 703 genes
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goodness-of-fit visually (QQ-plots) and statistically (one sample

Kolmogorov–Smirnov test). Overall, we find very high degrees of

concordance between results; both when pooling all genes together

(Fig. 1d) and also when looking at each gene individually (Fig. 1e).

We only find that the beta distribution is not a good fit for two

genes out of the 13 703 tested (Fig. 1f), these discrepancies are likely

due to the stochastic nature of the simulations made in step (3). All

this shows that the beta distribution is a good fit for the smallest

null P-values generated via permutations and therefore a good can-

didate to model the permutation process outcome.

We next checked that the adjusted P-values produced via beta ap-

proximation are well calibrated by comparing them to those directly

derived from a large number of permutations. We find a very good

concordance on the full P-value range with some deviations within

the expected sampling variation range (Fig. 2a, Supplementary Fig.

1a and b). Of note, the beta approximation provides small adjusted

P-values that are better calibrated than those provided by the direct

method (Fig. 2b, Supplementary Fig. 1c and d) and sometimes not

even accessible (i.e. below the lower bound implied by the number

of permutations); the smallest adjusted P-value estimated using the

GEUV_EUR dataset is in the order of �10�128 (Supplementary Fig.

2). Therefore, we subsequently estimated the number of permuta-

tions that the direct method needs to reach the same level of

calibration as the beta approximation at various significance levels.

To do so, we binned the adjusted P-values obtained from beta ap-

proximations and estimated for each bin, by exhaustive search, the

number of permutations required by the direct method to match the

same sampling variation (Supplementary material 3). We find that

this number drastically increases as small-adjusted P-values are tar-

geted (Fig. 2c). For instance, beta approximations made from 1000

permutations give adjusted P-values of 10�4 as accurately as the dir-

ect approach with �50K permutations.

Then, we looked at the downstream impact of the beta approxi-

mation on QTL discovery. To do so, we first generated an optimal

5% FDR eQTL set for GEUV_EUR by running 100 000

permutations and then measured the sensitivity/specificity ratios of

reasonable FastQTL configurations to recover this optimal set.

Specifically, we run from 50 to 5000 permutations using either

the beta approximation or the direct method to compute adjusted

P-values. We find that using 500–5000 permutations allows us to

approximate well the optimal set (Fig. 2d).

We also find that the beta approximation does consistently bet-

ter than the direct method for the same number of permutations,

especially when few permutations are used (50 or 100). As a conse-

quence, using 500 permutations with the beta approximation, for

example, has the same accuracy to recover the optimal set as the

Fig. 2. (a, b) Scatter plots of the adjusted P-values obtained from 1000 permutations via the direct method (in grey) and the beta approximation (in light blue)

against those obtained through the standard permutation scheme with 100K permutations (a) or through the adaptive method with up to 1M permutations (b).

All this was performed on the GEUV_EUR dataset. Adjusted P-values are plotted on both linear (a) and log (b) scales. Expected variation for 1000 permutations is

shown by the 95% confidence intervals in red. (c) The equivalent number of permutations required by the direct permutation scheme to reach the same calibra-

tion as the beta approximation (from 1000 permutations) as a function of the adjusted P-value targeted. The dashed and solid gray lines show the expected accur-

acy of the adaptive permutation scheme that stops when 5 and 10 stronger null signals are found, respectively. (d) The sensitivity–specificity ratio of reasonable

FastQTL runs (beta approximation or direct method with 50–5000 permutations) to recover an optimal eQTL set derived from 100 000 permutations. (e) The

sensitivity–specificity ratio to recover the nine official eQTL sets released by the GTEx consortium using both Matrix eQTL (direct method) and FastQTL (beta ap-

proximation) with 100, 500 and 1000 permutations

Fast and efficient QTL mapper 1483

Deleted Text: -
Deleted Text: 2
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv722/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv722/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv722/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv722/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv722/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv722/-/DC1
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text:  to 
Deleted Text: ,


direct method using 1000 permutations. Interestingly, the beta ap-

proximation using only 50/100 permutations already does very well

at recovering the optimal eQTL set.

Finally, we investigated the speed and accuracy with which

Matrix eQTL (direct method) and FastQTL (beta approximation)

using 100, 500 and 1000 permutations could reproduce the outcome

of the pilot phase of GTEx; a large-scale eQTL mapping study. Of

note, we run Matrix eQTL in the most highly effective setting we

could achieve in order to fully utilize its matrix based design

(Supplementary material 4). Overall, we find that both FastQTL and

Matrix eQTL recapitulate the official eQTL set well, especially as the

number of permutations increases (Fig. 2e). For the same number of

permutations, we find that the closest eQTL set to the official one is

consistently provided by FastQTL. Again, it also performs well even

when only 100 permutations are used to fit the beta distributions. To

process all nine datasets with 1000 permutations, FastQTL requires

�191 CPU hours which is �16 times faster than running the same

number of permutations with Matrix eQTL (Table 1). When using

only 100 permutations, this is reduced to only�33 CPU hours.

4. Conclusion

We present FastQTL, a QTL mapper in cis for molecular pheno-

types that implements a new permutation scheme to accurately and

rapidly correct for multiple-testing at both the genotype and pheno-

type levels. FastQTL has several advantages compared with existing

methods, making it the ideal candidate to map QTLs for the coming

wave of large-scale datasets regrouping many different layers of mo-

lecular phenotypes and near complete collection of variant sites.

First, permutations are modeled with a beta distribution, parameter-

ized from a relatively small number of permutations. This results in

accurate adjusted P-values which could not be feasibly obtained by

standard or adaptive permutation analysis; for example down to

10�128 in the Geuvadis dataset. In practice, having well-calibrated

adjusted P-values on the full range (0, 1) is of crucial importance to

(1) estimate the number of tests made under the null (quantity

underlying efficient FDR correction methods) and to (2) meta-

analyze multiple QTL studies together. Second, the beta approxima-

tion behaves well enough with only 100 permutations to rapidly

assess the impact on the analysis of important parameters such as

cis-window size and covariates like the number of PEER factors

(Stegle et al., 2012). And finally, FastQTL is fast (�16� faster than

Matrix eQTL for the same number of permutations) due to an effi-

cient implementation of linear regressions, optimized Cþþ code, ef-

ficient permutation schemes and rapid data retrieval from indexed

files, while remaining user and cluster friendly. To summarize,

FastQTL provides better adjusted P-values than the best method so

far, Matrix eQTL with a direct permutation scheme, while being sig-

nificantly faster. In addition, FastQTL also provides a modular base

onto which new functionalities are being implemented, such as fine

mapping of causal variants, conditional analysis to discover multiple

independent QTLs per phenotype and interaction analysis to dis-

cover sex or disease specific QTLs.
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