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ABSTRACT 

Adequate characterization of aquifer heterogeneity is critically important for the sustainable 

use, protection, and remediation of groundwater resources. The combined use of hydrological 

and geophysical measurements is arguably the most effective means of achieving this 

objective. In this regard, significant progress has been made on the quantitative integration of 

geophysical and hydrological data at the local scale. However, the extension of such 

approaches to larger, more regional scales remains a major research challenge. In this paper, 

we demonstrate the application of a recently developed regional-scale hydrogeophysical data 

integration approach, which is based on Bayesian sequential simulation, to a field database 

from Quebec, Canada consisting of low-resolution, surface-based geoelectrical measurements 

as well as high-resolution direct-push and borehole-based measurements of the electrical and 

hydraulic conductivities. The results of our study, which involved the integration of data 

along an approximately 250-m-long survey line, confirm that this novel methodology, with 

suitable adaptation, is fully applicable to field data and has the potential of providing realistic 

estimates of the spatial distribution of hydraulic target parameters at the regional-scale. 

Equally importantly, through the generation of multiple stochastic realizations, the 

methodology allows for quantitative assessment of the uncertainty associated with the 

inferred subsurface models, which in turn is essential for interpreting subsequent predictions 

of the flow and transport characteristics of the studied region.  
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1.  INTRODUCTION 

The protection, remediation, and sustainable management of the world’s increasingly fragile 

groundwater resources require adequate models of the spatial distribution of hydraulic 

conductivity as prerequisites for realistic predictions of groundwater flow and contaminant 

transport (e.g., Delleur, 1999; Chen et al., 2001). The hydraulic conductivity is an inherently 

challenging material property to estimate because it varies over many orders-of-magnitude, 

typically exhibits a pronounced degree of spatial heterogeneity, and can in general only be 

measured through dedicated experiments (e.g., Domenico and Schwartz, 1998; Ezzedine et 

al., 1999; Rubin, 2003; Schön, 2004; Butler, 2005). 

Traditionally, the hydrological characterization of aquifers has been based on evidence 

from drill cores, hydraulic borehole logs, and tracer and pumping experiments. Core- and 

borehole-based measurements can provide detailed local information, but such information is 

inherently 1D and spatially sparse in nature, while tracer and pumping experiments tend to 

capture only the gross average properties of the probed subsurface region. Correspondingly, 

there is a large gap in terms of spatial coverage and resolution between these conventional 

hydrological techniques and hence they are, without complementary information, often 

inadequate for characterizing heterogeneous aquifers (e.g., Sudicky, 1986; McKenna and 

Poeter, 1995; Schreibe and Chien, 2003; de Marsily et al., 2005). While geophysical methods 

have the potential of bridging this gap in resolution and coverage associated with traditional 

hydrological measurements, they do in general not exhibit any direct sensitivity to the 

hydraulic conductivity. Moreover, any potential rock physical relationships between 

geophysical parameters and the hydraulic conductivity tend to be site- and scale-specific 

(Purvance and Andricevic, 2000; e.g., Schön, 2004; Lesmes and Friedman, 2005; Hyndman 

and Tronicke, 2005; Linde, 2006). 
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To overcome these complications, a number of strategies have been proposed for 

local-scale aquifer characterization, that is, at lateral distances ranging from approximately 5 

to 50 m, typical involving a combination of core- and/or borehole-based hydraulic 

measurements and high-resolution crosshole tomographic geophysical surveys (e.g., 

Hyndman et al., 1994; Hyndman and Harris, 1996; Chen et al., 2001; Singha and Gorelick, 

2005; Paasche et al., 2006; Dafflon et al., 2009b; Dafflon et al., 2009a; Dafflon et al., 2010; 

Dubreuil-Boisclair et al., 2011; Lochbühler et al., 2013) Most of these local-scale data 

integration approaches are based on geostatistical methods, which are not only well suited for 

assimilating diverse sources of information of varying resolution and hardness, but also offer 

the possibility of constraining the uncertainty of the inferred models. These local-scale data 

integration approaches are reaching a certain degree of maturity. Due to the lack of closely 

spaced boreholes for effective crosshole tomographic imaging, the extension of these local-

scale techniques to larger scales does, however, represent a major and until recently 

essentially unresolved challenge. This is unfortunate since in many, if not most, cases it is at 

these larger scales that the greatest benefits of improved flow and transport predictions can be 

reaped (Domenico and Schwartz, 1998). 

To address this problem, Ruggeri et al. (2013a) recently proposed a novel method for 

the quantitative integration of larger-scale geophysical and hydrological data based on a 

geostatistical technique known as Bayesian sequential simulation or BSS (Doyen and Boer, 

1996). This approach showed significant promise when applied to realistic synthetic data for 

heterogeneous larger-scale aquifer models, but its practical viability remained unproven. 

Some promising, albeit highly preliminary, initial results of the application of this novel data 

integration techniques to real data were recently presented by Ruggeri et al. (2013b) in the 

context of a recent broad-public review. 
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The objective of this paper is to extend and complement the previous work by Ruggeri 

et al. (2013a; 2013b) by rigorously testing this novel data integration approach on a typical 

sub-regional-scale geophysical and hydrological field database. More specifically, we wish to 

explore the method’s capacity and robustness for generating, in a computationally efficient 

manner, realistic conditional stochastic realizations of the larger-scale hydraulic conductivity 

field as well as for assessing the uncertainties of the thus inferred stochastic aquifer models. 

 

2.  METHODOLOGICAL BACKGROUND 

In the following, we briefly outline the methodological foundations of the BSS-based data 

integration approach of Ruggeri et al. (2013a) before proceeding to assess its practical 

potential by applying it to field measurements. The BSS method (Doyen and Boer, 1996) 

allows for the generation of multiple, spatially correlated realizations of some variable of 

interest, referred to as the primary variable, conditioned to (i) spatially extensive 

measurements of a related secondary variable, as provided for example by geophysical 

surveying; and (ii) sparsely distributed measurements of the primary variable, as provided for 

example by borehole data. The following simplified version of Bayes’ theorem forms the 

basis for the technique:  

                   p(An êBn, A1,…,An-1) = c × p(Bn êAn) × p(An êA1,…,An-1),                              (1) 

where A and B denote the primary and secondary variables, respectively, p(•) denotes a 

probability distribution, and c is a normalization constant. Equation (1) is valid under the 

assumption of conditional independence of Bn with respect to A1, A2, ..., An-1 when given An.  

That is, we assume that p(Bn êA1,…, An) = p(Bn êAn).  

As with all sequential simulation procedures, the generation of each stochastic 

realization using BSS is accomplished iteratively, whereby previously simulated values for 

the primary variable at points along a randomly chosen path through the model space are 
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treated as known “data” when simulating this variable at subsequent points (e.g., Goovaerts, 

1997).  Before the simulation begins, the covariance matrix for the primary variable is defined 

based on the horizontal and vertical variograms computed from existing values. In each 

iteration of the procedure, a value for the primary variable at cell n is then randomly drawn 

from the posterior distribution p(An êBn, A1,…,An-1), which is obtained by multiplying the prior 

distribution p(An êA1,…,An-1) with the likelihood function p(Bn êAn). The prior distribution is 

conditional to the measured and previously simulated values of the primary variable in cells 1 

through n-1, and is obtained by simple kriging of those values to obtain a Gaussian 

distribution having the kriging mean and variance. The likelihood function, which expresses 

the range of values for the primary variable in cell n that is consistent with a particular 

measured value of the secondary variable at the same location, is determined from the joint 

probability density p(A,B), which in turn is computed from collocated measurements using a 

non-parametric kernel-based smoothing approach (Silverman, 1986; Wand and Jones, 1995). 

The posterior distribution can be viewed as an updated state of information that accounts for 

the prior and likelihood information at the chosen location. One realization of the primary 

variable is generated when all unknown cells in the model space have been simulated. Quite 

importantly, multiple stochastic realizations can be readily obtained by changing the order of 

the visited cells and repeating the simulation procedure. The latter allows for an assessment of 

the posterior ensemble uncertainty.  

It should be noted that the BSS method is highly flexible with regard to the 

relationship that exists between the primary and secondary variables, in the sense that the 

likelihood is estimated empirically from collocated measurements of these variables. The 

quality of the relationship between A and B is thus reflected in the variability of the output 

stochastic realizations. Also note that, unlike cokriging-based simulation methods, the BSS 

approach does not rely on a generalized linear regression model, which is not an appropriate 
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choice when the relationship between the primary and secondary variables strongly deviates 

from being linear and multi-Gaussian. On the other hand, when these conditions are satisfied, 

approaches such as collocated cokriging could be equally well implemented.  

The hydrogeophysical data integration approach of Ruggeri et al. (2013a), which 

again showed significant potential in the course of its initial testing on synthetic data, consists 

of two key steps, both of which are based on the general BSS methodology outlined above. 

Figure 1 summarizes the overall procedure. In the first step, high- and low-resolution 

geophysical parameter estimates (primary and secondary variable, respectively) are used to 

generate fine-scale realizations of the underlying geophysical property. The aim of this step is 

to effectively downscale the low-resolution geophysical parameter estimates and quantify the 

corresponding uncertainty with regard to the fine-scale grid. In this procedure, the high-

resolution data are considered to be measurements of the geophysical parameter at a small 

number of sparsely distributed borehole locations throughout the aquifer volume. The low-

resolution data, on the other hand, are considered to be a tomographic image obtained through 

the inversion of geophysical survey data, which can be regarded as set of uncertain spatially 

averaged measurements of the “true” subsurface geophysical parameter field. The likelihood 

function is thus estimated from the joint probability inferred from collocated or quasi-

collocated high- and low-resolution geophysical parameter estimates at the borehole 

locations.  

In the second step of the data integration approach of Ruggeri et al. (2013a), borehole 

measurements of the hydraulic conductivity (primary variable) and point-by-point statistics of 

the high-resolution geophysical parameter field derived from the realizations obtained in the 

first step (secondary variable) are used within BSS to generate multiple high-resolution 

realizations of the spatial distribution of the hydraulic conductivity. In other words, after 

stochastically downscaling the low-resolution geophysical parameter estimates, this second 



 8 

step aims at using the geophysical information to condition the fine-scale hydraulic 

conductivity field. The likelihood function in this case is determined from collocated borehole 

measurements of the hydraulic conductivity and the geophysical parameter.  

 

3.  FIELD SITE AND DATA 

The field site considered in this study is located in the municipality of Saint-Lambert-de-

Lauzon, approximately 40 km south of Quebec City, Canada. It consists of a ~12 km2 sub-

watershed surficial granular aquifer over which there exists a decommissioned sanitary 

landfill (Figure 2). The aquifer is semi-confined and made up of Quaternary sediments with a 

thickness ranging from 5 to 20 m. The sediments were deposited in an east-west trending 

littoral environment, which finds its expression in a corresponding spatial variation of the 

sedimentation character. In particular, the aquifer sediments in the eastern region of the study 

area are dominated by medium- to fine-grained sandy deposits, which give way to alternating 

layers of fine sand and silt towards the west (Paradis et al., 2011b). The study area is 

generally flat and groundwater flow is governed by the presence of natural streams and 

drainage networks. The groundwater table is located below a surficial layer of marine clayey 

silt at a depth of ~1-2 m (Bolduc, 2003). Further details regarding the geological setting of the 

site can be found in Paradis et al. (2011b).  

The geophysical and hydrological data considered in this study were acquired in the 

north-eastern part of the St-Lambert site (Figure 2) and consist of 2D estimates of the 

electrical conductivity inferred from surface-based electrical resistivity tomography (ERT) 

along with high-resolution vertical measurements of the electrical and hydraulic 

conductivities. The orientation of the chosen ERT profile, which is 440 m long, is along the 

sedimentary depositional trend of the coastal environment in which sediments composing the 

superficial granular aquifer system were formed. This orientation is therefore optimal to 
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capture the variations in hydrofacies related to different parts of the depositional environment. 

Moreover, a vast variety of additional measurements were available along this profile, most 

importantly of which were observation wells and cone penetrometer data that could be used to 

establish a site-specific relationship between the electrical and hydraulic conductivities. 

The surface-based geoelectrical data were acquired using an Iris Instruments SYSCAL 

Pro resistivity meter with a dipole-dipole acquisition geometry and a minimum electrode 

spacing of 2 m and a maximum electrode spacing of 94 m. The resulting 8394 resistance 

measurements were tomographically inverted on a coarse grid having a constant horizontal 

discretization of 2 m and a variable vertical discretization increasing from 1.0 m to 2.7 m with 

increasing depth. The tomographic inversion was performed using the commercial 

RES2DINV software (Loke, 2012) with regularization imposed through model smoothness 

constraints in the horizontal and vertical directions (Gloaguen et al., 2012). The final RMS 

error between calculated and measured apparent resistivities after 5 iterations was 

approximately 8.7%. Figure 3a shows the entire inverted ERT profile, which is 440 m long by 

20 m deep, whereas Figure 3b shows the central portion considered in this study, which is 

only 267 m long by 9 m deep. To estimate the uncertainty in the electrical conductivity 

estimates shown in Figure 3b, we followed the approach of Alumbaugh and Newman (2000) 

based on the diagonal elements of the calculated model covariance matrix. Figure 3c shows 

the corresponding spatial distribution of the estimated standard deviation for the log10 

conductivity values which, as expected, tend to be relatively high in regions of the subsurface 

that are poorly constrained by the geoelectrical data, most notably in the deeper parts of the 

ERT profile. Note, however, that the estimated uncertainty at depth near the center of the 

profile is significantly less than that towards the edges due to the local absence of the highly 

conductive surficial layer of clayey silt (Figure 3b). 
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High-resolution direct-push measurements of the electrical conductivity were collected 

at five locations (CPT1, CPT2, CPT3, CPT4, and CPT5) along the considered ERT profile, as 

well as at two off-profile locations (P3 and P16) (Figures 2 and 3b). These measurements 

were acquired using a Geotech 605-D cone penetrometer system equipped with a pore 

pressure probe (CPTu) and a soil moisture resistivity (SMR) probe. The SMR probe consists 

of four ring electrodes spaced 3 cm apart (Shinn et al., 1998), the inner two of which are used 

to measure the dielectric permittivity and the outer two of which are used to measure the bulk 

electrical resistivity. The probe operates at a frequency of 1000 Hz to avoid soil polarization 

effects (Paradis et al., 2008). The combined CPTu/SMR probe was pushed vertically into the 

subsurface at a constant rate of ~2 cm/s, which resulted in a vertical spacing of ~2-3 cm 

between the measurements. Multi-level slug test measurements with a vertical spacing of ~15 

cm were also carried out in fully-screened observation wells at locations CPT1, P3, and P16, 

which provided high-resolution estimates of the hydraulic conductivity (Paradis et al., 2011b). 

Quality control on multi-level slug tests was done following the best practices recommended 

by Butler (1998) and included multiple tests with varying initial hydraulic head changes at the 

onset of slug tests. This was done for about 15 tests covering the range of hydraulic 

conductivity values found at the site. The relative heads recorded through time obtained from 

multiple tests were perfectly recovered. A comparison between measurements obtained by 

flowmeter measurements and multi-level slug tests along the same vertical profiles showed 

difference in log10K estimates below 10% (Paradis et al., 2011b). 

 To allow for a direct comparison of the electrical and hydraulic conductivity data, the 

CPTu/SMR probe measurements were decimated to the same 15 cm measurement interval 

(Paradis et al., 2008).   

 

4.  RESULTS 
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4.1 Stochastic simulation of the fine-scale electrical conductivity distribution 

Using the high-resolution direct-push measurements of the electrical conductivity collected at 

locations CPT1 through CPT5 along with the low-resolution ERT-based estimates available 

everywhere throughout the model space (Figure 3b-c), we first used BSS to generate multiple 

realizations of the fine-scale distribution of electrical conductivity conditioned to these data. 

As outlined earlier, a critical component of the BSS procedure is the evaluation of the 

likelihood function p(Bn êAn), which statistically relates the primary and secondary variables. 

This is accomplished by first estimating the joint probability density p(A,B) from collocated 

measurements (Ruggeri et al., 2013a). In that regard, the left-hand column of Figure 4 

compares the SMR- and ERT-based electrical conductivity estimates at locations CPT1 

through CPT5 along the profile. Notice that the overall trend of the SMR-probe data is clearly 

seen in the corresponding ERT-based estimates, which finds its quantitative expression in a 

relatively high correlation coefficient of 0.83. However, we also observe that there is a bias 

between the two curves in each case, in that the magnitudes of the SMR-probe data are 

generally higher than those of the ERT image. We must consider the possibility that edge/skin 

effects around the SMR probe as well as inaccuracies in its calibration have affected the low-

frequency content of the data. There is thus good reason to believe that the low-frequency 

variations of the electrical conductivity are better captured by the ERT image. In view of this, 

we used the low-frequency trend in the ERT image to effectively rescale the SMR-probe data 

before inferring p(A,B). This was done in the wavenumber domain by replacing the very 

lowest frequency components of the SMR-probe data with those from the ERT image 

followed by an inverse Fourier transform back into the space domain. The corresponding 

results are shown in the right-hand column of Figure 4 and indicate that the adopted rescaling 

procedure was effective at removing the bias. Figure 5a shows the joint probability density 

that was subsequently obtained from 196 collocated ERT- and SMR-based conductivity 
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estimates using a kernel-based smoothing approach (Silverman, 1986; Wand and Jones, 

1995).  

The BSS procedure was performed on a 267-m-long by 9-m-deep simulation grid, 

identical in size to Figure 3b, that was uniformly discretized at 0.15 m in order to match the 

spatial sampling interval of the direct-push measurements. This provided high-resolution 

electrical conductivity realizations that honour the large-scale structure imposed by the ERT 

image along with the fine-scale structure of the SMR-probe measurements. Before beginning 

the simulations, we computed the best-fitting vertical variogram model from the high-

resolution data, which was found to be a linear combination of spherical and Gaussian 

functions with vertical correlation lengths of 0.75 m and 5.1 m, respectively, and sill values of 

0.08 and 0.92, respectively (Figure 5b). The corresponding horizontal correlation lengths, 

although not directly constrained by the available data, were quantified based on variogram 

analysis of the structural aspect ratio of the ERT image and found to be 7.5 m for the 

spherical and 100 m for the Gaussian variogram functions (e.g., Gelhar, 1993; Tronicke and 

Holliger, 2005; Dafflon et al., 2009b). Following Ruggeri et al. (2013a), the likelihood p(Bn 

êAn) was evaluated at each iteration from the joint probability density in Figure 5a, taking 

into account the previously inferred uncertainty associated with the ERT image (Figure 3c). 

Accounting for this uncertainty ensures that the output realizations are not overly constrained 

by the ERT image in places where the geoelectrical data provide little information. 

The output realizations generated using BSS have the desired property of honouring 

both the large-scale structure imposed by the ERT image as well as the fine-scale structure 

provided by the borehole electrical conductivity measurements. In addition, they are tied to 

the high-resolution electrical conductivity data at the borehole locations. However, there is no 

guarantee that they will still honour within a suitable degree the original geoelectrical data 

from which the ERT image was derived (i.e., the measured voltages or apparent resistivities). 
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For this reason, an additional step involving gradual deformation can be included after BSS in 

order to generate stochastic realizations that provide an acceptable degree of fit between 

observed and predicted geoelectrical measurements while keeping the large-scale structure, 

ensemble statistics, and covariance properties of the BSS realizations (Ruggeri et al., 2013a). 

Gradual deformation is an optimization procedure by which different stochastic realizations 

of a target parameter are iteratively combined in order to obtain a satisfactory match to a set 

of observed data that depends upon that parameter (Roggero and Hu, 1998; Ying and Gomez, 

2000; Hu et al., 2001; Ravelec-Dupin, 2005). The procedure effectively “deforms” one 

stochastic realization towards another until an adequate match to the data is obtained, while 

preserving through the optimization process the mean, covariance, and fit to the conditioning 

data of the original stochastic model. In this study, we used gradual deformation as a means of 

combining the stochastic realizations of the fine-scale electrical conductivity field generated 

through BSS to create realizations that provided a suitable fit to the original geoelectrical 

measurements at the St-Lambert site, which corresponds to essentially the same  RMS as that 

of the ERT image. The forward simulations of the electrical conductivity data corresponding 

to the fine-scale grid were carried out using a 2D finite-element-based R2 code (Binley and 

Kemna, 2005). The procedure was repeated until 150 of such “optimized realizations” had 

been created.  

Figure 6a-c shows three representative stochastic realizations of the fine-scale 

electrical conductivity field inferred through a combination of BSS and gradual deformation. 

We see that the simulation results appear to honour both the large-scale structure imposed by 

the ERT image as well as the fine-scale structure provided by the borehole measurements. 

The statistical accuracy of the results is further confirmed through comparisons of the vertical 

experimental variogram and histogram obtained from the high-resolution electrical 

conductivity measurements with those calculated from the entire set of 150 stochastic 
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realizations (Figures 5b and 5c). One of the advantages of using a stochastic approach in the 

given context is that the uncertainty of each model parameter can be readily evaluated through 

the ensemble of generated realizations. Assuming that the parameters are normally 

distributed, the point-by-point means and variances can be used to completely describe the 

marginal distributions, as proposed by Doyen and Boer (1996) and Gastaldi and Roy (1998). 

However, in our case, the Gaussian assumption is not warranted and thus using such an 

approach would be largely meaningless. This is shown in Figures 7a and 7b, where we see 

substantial differences between the cumulative distribution functions computed for two model 

parameters located at [x = 109.5m, z = 0.45m] and [x = 160.5m, z  = 2.1m] with those 

corresponding to the Gaussian distributions obtained from the ensemble mean and variance at 

these locations. For this reason we display in Figure 6d the point-by-point estimates of the 

5th-95th inter-percentiles of the set of 150 electrical conductivity realizations to best visualize 

uncertainty. Notice in these images that a greater degree of variability is present in the central 

part of the profile and also at depth, as evidenced by a larger difference between the 5th and 

95th percentiles at these locations. At first glance, the observation of greater variability in the 

central part of the profile would appear to be in contrast with the lower uncertainty in the ERT 

image in this region (Figure 3c). It is, however, a consequence of the fact that joint probability 

density function in Figure 5a predicts greater uncertainty in the fine-scale conductivity values 

when provided with lower values of the ERT-based conductivity, even if the latter can be 

estimated with high precision.  

 It is important to note that choices made during the production of the ERT image in 

Figure 3 will clearly have an influence on the high-resolution stochastic realizations of the 

electrical conductivity obtained using our BSS procedure. Indeed, the ERT inverse problem is 

highly non-unique and the tomographic images obtained are strongly affected by different 

factors such as the parameterization of the model space and the type of regularization used. 
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As is always the case with geophysical inversion, we must make choices in this regard that 

are most consistent with our existing knowledge regarding the subsurface environment.  

However, it is important to emphasize that the BSS-based integration approach links indirect 

measurements of the electrical conductivity (from the ERT image) to in-situ hydraulic 

conductivity measurements, through their relationship with high-resolution electrical 

conductivity measurements. As a result, all one needs for the approach to work is that there 

exists a certain level of correlation between the low- and high-resolution electrical 

conductivity data. In this perspective, even with a different spatial configuration of the 

electrical conductivity corresponding to a different inversion, the same workflow could be 

applied, as long as a reasonably good correlation between these variables was still observed. It 

is important to note, however, that because the form and uncertainty of the joint relationship 

are determined empirically based on collocated measurements in the Bayesian sequential 

simulation procedure, any issues with having, for example, a different tomographic image 

should be implicitly accounted through the variability of the output realizations.  

 

4.2 Stochastic simulation of the fine-scale hydraulic conductivity distribution  

In a second application of BSS, we next generated high-resolution stochastic realizations of 

the hydraulic conductivity based on the marginal posterior statistics determined from the 

high-resolution electrical conductivity realizations (i.e., point-by-point histograms) and the 

relationship established between these two variables from collocated borehole measurements. 

In doing so, it is important to note that we assume in this study to work within a given 

hydrogeological unit for which the relationship between the hydraulic and electrical 

conductivities is statistically stationary (Prasad, 2003; Cosentino, 2001) and thus does not 

depend on the chosen location within the model domain. Given that the water table was 

located at a depth of 1.5-2 m at the time of the measurements and that the lower boundary of 
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the aquifer is between 8-10 m depth along the profile, this assumption was satisfied by 

restricting the vertical extent of our simulation domain for this application of BSS to between 

2 and 8 m depth. The considered domain was therefore 267 m long and 6 m deep and was 

again discretized at 0.15 m. Figure 8a shows the joint probability distribution that was 

estimated between the hydraulic and electrical conductivities in the corresponding aquifer 

sediments using 130 high-resolution data acquired at well locations CPT1, P3, and P16. 

Before starting the BSS procedure, we computed the best-fitting vertical variogram 

model from the borehole hydraulic conductivity data, which was found to be a linear 

combination of spherical and Gaussian functions having vertical correlation lengths of 0.6 m 

and 3.3 m, respectively, and sill values of 0.5 and 0.5, respectively (Figure 8b). To estimate 

the corresponding horizontal correlation lengths, we again used the aspect ratio inferred from 

the ERT image. The uncertainty associated with the high-resolution electrical conductivity at 

each location, as quantified by the previously evaluated marginal distributions for each cell of 

the model space, was taken into account during evaluation of the likelihood based on the joint 

density in Figure 8a. Please note that, as opposed to the stochastic simulation of the electrical 

conductivity, which was conditioned to the high-resolution electrical conductivity 

measurements collected at locations CPT1 through CPT5, we intentionally generated 150 

unconditional realizations of the hydraulic conductivity field in this case to allow for 

validating our results against the hydraulic conductivity measurements made at well CPT1 

(Kelkar and Perez, 2002; Gastaldi and Roy, 1998).  

Figure 9a-c shows three representative stochastic realizations of the fine-scale 

hydraulic conductivity field that were obtained through the BSS procedure. Given the 

structural similarities between these images and Figure 3b, it is clear that the realizations have 

been successfully conditioned by the low-resolution electrical conductivity data. Notice, 

however, that the hydraulic and electrical conductivities are anti-correlated, in the sense that 
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lower hydraulic conductivities are found in regions of higher electrical conductivity and vice 

versa. This results because the joint probability distribution established between these two 

variables exhibits significant anti-correlation (Figure 8a). Comparing the vertical 

experimental variogram and histogram obtained from the high-resolution hydraulic 

conductivity measurements with those calculated from the entire set of 150 stochastic 

realizations (Figures 8b and 8c), we also see excellent agreement, which helps to confirm the 

statistical validity of our simulation results. Figure 9d shows the point-by-point estimates of 

the 5th-95th inter-percentiles calculated from the ensemble of 150 BSS-generated 

realizations. Here, we observe a noticeable degree of variability throughout the entire model 

domain with greater differences between the 5th and 95th percentile images in parts of the 

hydraulic conductivity models constrained by higher values of the fine-scale electrical 

conductivity (Figure 6a-c). This results because the joint relationship in Figure 8a is highly 

uncertain and predicts greater variability in the fine-scale hydraulic conductivity for higher 

values of the electrical conductivity.  

 

4.3 Model validation 

We now seek to validate the output realizations of the hydraulic conductivity field obtained 

through our BSS-based data integration approach with data that were not used in the 

conditioning of these realizations. To this end, we first compare the hydraulic conductivity 

measured along the borehole at CPT1 with the five best predictions provided by the stochastic 

realizations. The corresponding results are shown in Figure 10a, along with 5th and 95th 

percentile bounds obtained from the marginal distributions of hydraulic conductivity along 

the vertical profile based on all 150 realizations. We see in this figure that the measured 

profile of the hydraulic conductivity is well within the 5th and 95th percentile bounds at 
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almost every depth, and that the overall characteristics of the fine-scale variability have been 

adequately captured. 

In addition to comparing our simulations with the measurements of hydraulic 

conductivity acquired along the borehole at CPT1, we have also compared them with 

predictions of hydraulic conductivity obtained using a relevance vector machine (RVM) 

approach based on a combination of CPTu/SMR data at locations CPT4 and CPT5 (Paradis et 

al., 2011a; Paradis et al., 2014). RVM is a powerful machine learning technique that uses 

Bayesian inference for regression and classification tasks (Tipping, 2001). The “machine” 

was first trained on data collected from all boreholes within the study region with collocated 

measurements of the hydraulic conductivity and various CPTu/SMR data, such as sleeve 

friction, tip mechanical stress, dielectric permittivity, and electrical resistivity and then used 

to predict the hydraulic conductivity in locations were only CPTu/SMR data were available. 

Figures 10b and 10c show the corresponding comparison at locations CPT4 and CPT5, 

respectively. Again, for comparison with the RVM-based predictions, we selected five best 

predictions provided by the stochastic realizations. Although it can be seen that our stochastic 

realizations of the hydraulic conductivity generally exhibit more small-scale variability than 

the RVM-based predictions, the qualitative comparison between the estimates obtained by 

these fundamentally different and entirely independent approaches shows good agreement. In 

this context it is particularly interesting and important to note that the low values of hydraulic 

conductivity predicted by the RVM technique between 2 and 3 m depth are well reproduced 

by our stochastic realizations (Figure 10c). For CPT4, the marginal distribution of the 

hydraulic conductivity obtained through the BSS procedure suggests a bimodal distribution 

between 2 and 4 m depth. For this reason, we show two sets of representative stochastic 

realizations drawn from the bimodal ensemble (Figure 10b). Further inspections revealed that 

the bimodal distribution between 2 and 4 m depth is characterized by two “peaks” with 
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probabilities of ~30% and ~ 70% and values ranging between -4.9 and -4.5 log10(K[m/s]) and 

-4.5 and -3.8 log10(K[m/s]), respectively. Quite interestingly, the corresponding RVM-based 

prediction is consistent with the former, less likely range of values (Figure 10b), which, in 

conjunction with the other results, again indicates that the considered data BSS approach is 

capable of producing realistic distributions of the fine-scale hydraulic conductivity through 

the integration of hydraulic and geophysical data typically used for regional-scale studies.  

 

5. CONCLUSIONS 

The purpose of this study was to explore the practical applicability of a recently developed 

data integration procedure to a relatively novel type of geophysical and hydrogeological 

database with the objective of obtaining stochastic realizations of hydraulic conductivity of 

the probed subsurface region of a granular aquifer. The approach consists of a two-step 

Bayesian sequential simulation technique that is targeted to the common case where there 

exist low-resolution, but spatially exhaustive, surface-based or airborne geophysical 

measurements along with high-resolution, but spatially sparse, borehole measurements of the 

governing geophysical parameter as well as the hydraulic conductivity. This novel data 

integration method has the particular advantage of using the larger-scale geophysical 

parameter, together with its inferred uncertainty, to constrain the simulation of the 

corresponding fine-scale geophysical parameter field. This means that the uncertainty of the 

inverted geophysical parameter directly determines the strength with which the simulations 

are conditioned by these data. Moreover, the interrelations between fine-scale geophysical 

and hydrogeological parameters are based on joint probability functions computed from 

collocated measurements, thus avoiding the need of having to specify, explicitly or implicitly, 

any such relationships. Quite importantly, this data integration procedure provides solutions 

in terms of multiple realizations of the target parameter. This characteristic is of great 
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importance because it always allows the assessment of the uncertainty of the corresponding 

predictions.  

 We found that the information regarding the larger-scale subsurface structure, as 

provided by the ERT-based electrical conductivity image, was properly incorporated into the 

stochastic realizations with the smaller-scale stochastic fluctuations realistically 

superimposed. Indeed, the method capitalizes well on the complementarity of the various data 

and constraints, which in turn contributes to the consistency and realism of the resulting 

stochastic simulations. The results indicate that, for the considered case study, our data 

integration approach adequately reproduces the small-scale heterogeneity as well as the global 

trends of the prevailing hydraulic conductivity field. The results of this study also indicate 

that this novel data integration approach is flexible and robust and hence can be expected to 

be applicable to a wide range of geophysical and hydrological data having different spatial 

resolutions, and opens the perspective of allowing for the integration of such data at the 

regional-scale. 
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Figure 1: Schematic outline of the two-step, BSS-based aquifer characterization procedure of 

Ruggeri et al. (2013a). Adapted from Ruggeri et al. (2013b). 
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Figure 2: Location of the St. Lambert study area and the various measurements acquired 

there. The limits of the domain (dashed black line) correspond to the sub-watershed 

underlying the decommissioned St-Lambert sanitary landfill. The black rectangle, which is 

enlarged on the bottom right, contains the 440-m-long geoelectrical profile and five cone 

penetrometer soundings considered in this study. Hydraulic conductivity measurements from 

wells P03 and P16, as well as from another well coincident with CPT1, were also utilized. 

Adapted from Tremblay et al. (2013). 
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Figure 3: (a) Electrical conductivity tomogram obtained from the inversion of surface-based 

dipole-dipole geoelectrical measurements acquired along the profile line shown in Figure 2b; 

(b) Zoom of the region of interest considered in our study, with cone penetrometer sounding 

locations shown in white; (c) Estimated standard deviation for each log10 conductivity value 

in Figure 3b using the method of Alumbaugh and Newman (2000).  
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Figure 4: (Left column) Comparison of high-resolution cone-based electrical conductivity 

measurements at locations CPT1 through CPT5 (red) with collocated estimates of the 

electrical conductivity from the tomographic image in Figure 3a (blue); (Right column) 

Comparison after frequency-domain rescaling of the cone-based measurements (black).  

 

 
 

Figure 5: (a) Joint probability distribution for the low- and high-resolution electrical 

conductivity inferred from 196 collocated ERT and SMR-probe data; (b) Vertical variogram 

and (c) histogram for the high-resolution electrical conductivity measurements at the borehole 

locations (red), versus those corresponding to 150 stochastic realizations of the electrical 

conductivity field obtained using BSS (gray).   
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Figure 6: (a-c) Three stochastic realizations of the high-resolution electrical conductivity field 

obtained using BSS followed by gradual deformation. The BSS procedure was based on the 

low-resolution ERT inversion results (Figure 3), the high-resolution cone-based electrical 

conductivity measurements (Figure 4), and the joint relationship established between them 

(Figure 5a). Cone penetrometer sounding locations are shown in white; (d)  image of the 5th-

95th inter-percentiles for the high-resolution electrical conductivity, respectively, inferred 

point-by-point from all 150 output stochastic realizations. 
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Figure 7: (a and b) Cumulative distribution functions for the high-resolution electrical 

conductivity at model cell locations (x = 109.5 m, z = 0.45 m) and (x = 160.5 m, z = 2.1 m), 

respectively (blue), versus those corresponding to the Gaussian distributions obtained from 

the ensemble mean and variance at these locations (red). 
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Figure 8: (a) Joint probability distribution for the high-resolution electrical and hydraulic 

conductivity inferred from 130 collocated measurements. (b) Vertical variogram and (c) 

histogram for the hydraulic conductivity measurements at the borehole locations (red), versus 

those corresponding to 150 stochastic realizations of the hydraulic conductivity field obtained 

using BSS (gray). 
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Figure 9: (a-c) Three stochastic realizations of the high-resolution hydraulic conductivity (K) 

field, obtained using BSS based on the inferred statistics of the high-resolution electrical 

conductivity field (Figures 6 and 7) and the joint relationship established between the 

hydraulic and electrical conductivities (Figure 8a). Note that borehole measurements of K 

along the profile were not used to condition the realizations, such that these measurements 

could be used for validation purposes;  (d) image of the 5th-95th inter-percentiles for the 

high-resolution hydraulic conductivity, respectively, inferred point-by-point from all 150 

output stochastic realizations. 
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Figure 10: (a) Hydraulic conductivity (K) profile measured at location CPT1 (red) together 

with five K profiles from stochastic realizations showing the best fit with these data in a root-

mean-square sense (blue);  (b and c) K profiles predicted using the RVM technique at 

locations CPT4 and CPT5, respectively (red), along with five profiles from stochastic 

realizations having the best fit with these results (blue). In Figure 10b, five additional 

stochastic profiles are provided as examples of the bimodal nature of the K distribution 

between 2 and 4.5 m depth (green).  In all cases, the 5 and 95 percentile bounds for the entire 

set of K realizations are indicated with dashed black lines.  
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