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The Zen of Python, by Tim Peters 

 

Beautiful is better than ugly. 

Explicit is better than implicit. 

Simple is better than complex. 

Complex is better than complicated. 

Flat is better than nested. 

Sparse is better than dense. 

Readability counts. 

Special cases aren't special enough to break the rules. 

Although practicality beats purity. 

Errors should never pass silently. 

Unless explicitly silenced. 

In the face of ambiguity, refuse the temptation to guess. 

There should be one-- and preferably only one --obvious way to do it. 

Although that way may not be obvious at first unless you're Dutch. 

Now is better than never. 

Although never is often better than *right* now. 

If the implementation is hard to explain, it's a bad idea. 

If the implementation is easy to explain, it may be a good idea. 

Namespaces are one honking great idea -- let's do more of those! 
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What are you looking for? 

All my data… 

Xue Liu 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

That’s a problem… 

Julien Dénéréaz  
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Academic Summary 

 Under any given environment, there are genetic loci required for sustaining life, 

and others which are not. Such defines both gene essentiality, if a gene is required in 

all conditions, and conditional essentiality, if a gene is needed in only some 

environments. 

 As high-throughput essentiality determining methods continue to become 

widespread, so have the conditions and organisms being assayed. Indeed, several 

works have now demonstrated the context dependence of gene essentiality, varying 

not only in regards to specific environments, but also at the strain level. Expectedly, 

such results have highlighted the caveats of primarily screening model organisms 

under standardized laboratory conditions, often dissimilar from their natural niche. 

Insight into these species/strain dependent differences could potentially yield novel 

targetable essential pathways and functions, allowing for greater control of the 

targeted organisms.  

In this thesis we develop new computational pipelines for independently 

processing data from transposon mutagenesis (Tn-seq), and CRISPR interference 

sequencing (CRISPRi-seq) techniques. Both Tn-seq and CRISPRi-seq use pooled 

libraries of mutants to infer gene fitness, however, while the first assesses a cell´s 

ability to survive any individual gene disruption originating from a transposon insertion 

event, the second determines gene fitness based on a cell´s ability to survive gene 

transcriptional repression.  

We respectively apply Tn-seq and CRISPRi-seq to explore gene essentiality in 

Escherichia coli and Streptococcus pneumoniae. We then dwell into the problem of 

lack of phylogenetic conservation of essential genes, and how conditional essentiality 

can emerge in highly specific environments.  

In chapter 2 we present 2FAST2Q, a stand-alone easy-to-use program for 

counting features in FASTQ files. 2FAST2Q solves a recent issue in bioinformatics, 

the lack of an unified versatile program that can filter and extract data from raw 

sequencing files. 2FAST2Q is particularly useful for CRISPRi-seq data, where the 

sequences corresponding to all the individual mutant strains can be counted and 

filtered according to the user needs. 2FAST2Q is also capable of de novo finding 

unknown sequences based on known anchor sequences, a useful feature when 

performing experiments with barcoded mutant strains.  



VIII 

 

In chapter 3 we introduce TnSeeker. TnSeeker is a linux based Python pipeline 

capable of inferring gene essentiality from fastq files originating from Tn-seq 

experiments. TnSeeker uses both the relative transposon distribution, and local GC 

content biases, to determine if any given genetic feature, such as a gene sub-domain 

region, is essential. Such is performed using a conservative approach based on a self-

optimizing threshold defining algorithm: Genes known to be essential across a 

multitude of organisms are used to determine the optimal essentiality defining cutoff 

for the dataset being analyzed, with the threshold being defined as the significance 

value that most accurately recapitulates the known data.  

Using TnSeeker, and Tn-seq, we determined the core-essentialome of 8 E. coli 

strains. We demonstrated that only genes related with protein biosynthesis are 

significantly enriched when comparing essential genes across all E. coli strains. 

Conversely, enrichment for all expected life sustaining functions (DNA and central 

metabolism) is seen when either considering the essentialome of strains by 

themselves, or the pan-essentialome. We discuss that such effect could derive from 

non-orthologous gene displacement, arising from the action of mobile genetic 

elements such as viruses and plasmids. 

In chapter 4 we adapt an arraying technique known as SUDOKU to deconvolute 

the built transposon E. coli UTI89 library. By plating any pooled library, randomly 

picking enough single colonies, arraying them into compartmentalized units, and 

sequencing all compartments as a series of mixed pools, it is possible to backtrack 

any found mutants into their original compartment. Such arrayed libraries allow for the 

permanent storage of individual mutants, and facilitate the massive screening (for 

example for chemogenomics) of new microorganisms. We further enhance SUDOKU 

by allowing it to also function with CRISPRi libraries.  

Finally, in chapter 5, we explore the gene essentiality of the human 

nasopharynx inhabiting opportunistic pathogen S. pneumoniae. S. pneumoniae has 

been shown to be negatively associated with carriage of another common pathogen, 

Staphylococcus aureus. Using CRISPRi-seq, we observe that one general purpose 

efflux pump, SPV 686/7/8 (here renamed as ArpABC), capable of exporting several 

described antibiotics and antimicrobial peptides, is essential at pH 6 only when S. 

aureus is present. We further explore how S. pneumoniae and S. aureus interact when 

present in a human cell matrix, where typical cell wall essential genes of S. 

pneumoniae become not as essential. 
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Such results highlight the impact of studying conditional essentiality, or how 

essentiality changes in regards to different conditions, often drastically different from 

the ones typically used in laboratories. Indeed, throughout this thesis we explore how 

essentiality is a function of the environment, where each lineage of organism is both 

optimally and uniquely adapted to all different scenarios it encounters in its natural 

environment. 

The techniques used in this thesis are only one dimension of the unprecedented 

worldwide ongoing characterization of bacteria. As unparalleled amounts of data 

continue to be generated, we are now closer than ever into fully integrating our 

collective knowledge, and finally take the next step in biology: the full understanding 

and modeling of bacteria, perhaps the simplest most successful organisms in the 

planet.  
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Résumé Académique 

Dans un environnement donné, il existe des locus génétiques nécessaires au 

maintien de la vie, et d'autres qui ne le sont pas. Cela définit à la fois l'essentialité du 

gène, si un gène est requis dans toutes les conditions, et l'essentialité conditionnelle, 

si un gène n'est nécessaire que dans certains environnements. 

Alors que les méthodes de détermination de l'essentialité à haut débit 

continuent de se répandre, les conditions et les organismes testés se sont également 

répandus. En effet, plusieurs études ont maintenant démontré la dépendance au 

contexte de l'essentialité des gènes, variant non seulement en fonction des 

environnements spécifiques, mais également au niveau de la souche. De tels résultats 

ont alors mis en évidence les dangers de cribler principalement des organismes 

modèles dans des conditions de laboratoire standardisées, souvent différentes de leur 

niche naturelle. Un aperçu de ces différences dépendantes des espèces ou des 

souches pourrait potentiellement produire de nouvelles voies et fonctions essentielles 

ciblables, permettant un meilleur contrôle des organismes ciblés. 

Dans cette thèse, nous développons de nouveaux pipelines pour le traitement 

indépendant des données issues des techniques de mutagenèse par transposon (Tn-

seq) et de séquençage d’interférence CRISPR (CRISPRi-seq). Tn-seq et CRISPRi-

seq utilisent des bibliothèques regroupées de mutants pour déduire la forme physique 

des gènes, cependant, alors que la première évalue la capacité d'une cellule à survivre 

à toute perturbation génétique individuelle provenant d'un événement d'insertion de 

transposon, la seconde détermine l’importance des gènes en fonction de la capacité 

des cellules à survivre à la répression transcriptionnelle des gènes. 

Nous appliquons respectivement Tn-seq et CRISPRi-seq pour explorer l'essentialité 

des gènes chez Escherichia coli et Streptococcus pneumoniae. Nous nous attardons 

ensuite sur le problème du manque de conservation phylogénétique des gènes 

essentiels, et comment l'essentialité conditionnelle peut émerger dans des 

environnements hautement spécifiques. 

Dans le chapitre 2, nous présentons 2FAST2Q, un programme autonome facile 

à utiliser pour compter les fonctionnalités dans les fichiers fastq. 2FAST2Q résout un 

problème récent en bioinformatique, l'absence d'un programme polyvalent unifié 

capable de filtrer et d'extraire des données à partir de fichiers de séquençage bruts. 

2FAST2Q est particulièrement utile pour les données CRISPRi-seq, où les séquences 

correspondant à toutes les souches mutantes individuelles peuvent être comptées et 
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filtrées en fonction des besoins de l'utilisateur. 2FAST2Q est également capable de 

trouver de novo des séquences inconnues basées sur des séquences d'ancrage 

connues, une fonctionnalité utile lors de la réalisation d'expériences avec des souches 

mutantes à code-barres. 

Dans le chapitre 3, nous présentons TnSeeker. TnSeeker est un pipeline 

Python basé sur Linux capable de déduire l'essentialité des gènes à partir de fichiers 

fastq provenant d'expériences Tn-seq. TnSeeker utilise à la fois la distribution relative 

des transposons et les biais du contenu GC locaux pour déterminer si un trait 

génétique donné, telle qu'une région de sous-domaine génique, est essentiel. Ceci 

est effectué à l'aide d'une approche conservatrice basée sur un algorithme de 

définition de seuil d'auto-optimisation: les gènes connus pour être essentiels dans une 

multitude d'organismes sont utilisés pour déterminer le seuil optimal définissant 

l'essentialité pour l'ensemble de données analysées, le seuil étant défini comme la 

signification statistique, valeur qui récapitule le plus fidèlement les données connues. 

À l'aide de TnSeeker et de Tn-seq, nous avons déterminé le noyau essentiel 

de 8 souches d'E. coli. Nous avons démontré que seuls les gènes liés à la biosynthèse 

des protéines sont considérablement enrichis lors de la comparaison des gènes 

essentiels dans toutes les souches d'E. coli. À l'inverse, l'enrichissement pour toutes 

les fonctions de maintien de la vie attendues (ADN et métabolisme central) est 

observé lorsque l'on considère soit l'essentialome des souches elles-mêmes, soit le 

pan-essentialome. Nous discutons du fait qu'un tel effet pourrait dériver d'un 

déplacement de gène non orthologue, résultant de l'action d'éléments génétiques 

mobiles tels que des virus et des plasmides. 

Dans le chapitre 4, nous adaptons une technique de mise en réseau connue 

sous le nom de SUDOKU pour déconvoluer la bibliothèque de transposon construite 

E. coli UTI89. En étalant sur plaque n'importe quelle bibliothèque regroupée, en 

choisissant au hasard suffisamment de colonies individuelles, en les répartissant en 

unités compartimentées et en séquençant tous les compartiments comme une série 

de pools mixtes, il est possible de remonter tous les mutants trouvés dans leur 

compartiment d'origine. De telles bibliothèques en réseau permettent le stockage 

permanent de mutants individuels et facilitent le criblage massif (par exemple pour la 

chimiogénomique) de nouveaux micro-organismes. Nous améliorons encore 

SUDOKU en lui permettant de fonctionner également avec les bibliothèques CRISPRi. 
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Enfin, au chapitre 5, nous explorons l'essentialité génétique du pathogène 

opportuniste Streptococcus pneumoniae habitant le nasopharynx humain. Il a été 

démontré que S. pneumoniae est négativement associé au portage d'un autre agent 

pathogène courant, Staphylococcus aureus. En utilisant CRISPRi-seq, nous 

observons qu'une pompe à efflux à usage général, SPV 686/7/8 (rebaptisée ici 

ArpABC), capable d'exporter plusieurs antibiotiques et peptides antimicrobiens 

décrits, est essentielle à pH 6 uniquement lorsque S. aureus est présent. Nous 

explorons plus en détail comment S. pneumoniae et S. aureus interagissent lorsqu'ils 

sont présents dans une matrice cellulaire humaine, et observons que S. pneumoniae 

affiche un besoin réduit de gènes essentiels liés à la paroi cellulaire. 

Ces résultats mettent en évidence l'impact de l'étude de l'essentialité 

conditionnelle, ou comment l'essentialité change en fonction de différentes conditions, 

souvent radicalement différentes de celles généralement utilisées dans les 

laboratoires. En effet, tout au long de cette thèse, nous explorons comment 

l'essentialité est une fonction de l'environnement, où chaque lignée d'organisme est à 

la fois adaptée de manière optimale et unique à tous les différents scénarios qu'elle 

rencontre dans son environnement naturel. Ensemble, ces données peuvent être 

utilisées pour tester de nouvelles cibles antibiotiques, ou même pour déterminer des 

molécules de ciblage spécifiques à une souche/espèce. 

Les techniques utilisées dans cette thèse ne sont qu'une dimension de la 

caractérisation mondiale sans précédent des bactéries en cours. Alors que des 

quantités inégalées de données continuent d'être générées, nous sommes maintenant 

plus proches que jamais d'intégrer pleinement nos connaissances collectives et de 

franchir enfin la prochaine étape de la biologie : la compréhension et la modélisation 

complètes des bactéries, peut-être les organismes les plus simples et les plus 

performants de la planète. 
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Non-Academic Summary 

Under any given environment, there are genetic features required for sustaining 

life, and others which are not. Such definition could characterize what is known as an 

essential, or lethal, gene. Indeed, gene essentiality has been an ongoing topic in 

genetics since its formal humble beginnings in the XX century, when mutations started 

being systematically categorized. Since then, mutations have unfolded the inner 

workings of cells and organisms, and remain, to this day, at the core of most biology 

related fields. Nowadays, mutations can be induced on a genome wide scale, and their 

respective outcomes assayed. Currently, such high-throughput measurements can 

only be efficiently achieved by using variations of either the Tn-seq, or CRISPRi-seq, 

methods. The first relies on randomly integrating transposons into an organism´s DNA 

in such a frequency that all genetic features are disrupted, and thus, non-functional. 

The second is based on using an engineered protein, dCas9, to block any chosen 

genomic feature from becoming active, ultimately resulting in that feature’s non-

functionality. Both methods are done en masse in the way that any genomic feature 

disruption exists within a single cell, in turn existing within a larger pool of all the 

individually disrupted cells: mutants. By simultaneously submitting such different 

mutants to distinct conditions, it becomes possible to determine what features are 

required for survival under any tested environment, as any mutations in any important 

locations will slowly be eliminated from the mutant pool population. The determination 

of what mutations are/not present at the end of the experiment indicates which genes 

are/not essential. Such is accomplished by sequencing all the mutants present in the 

pool and comparing their relative abundance to the same pool of mutants at the start 

of the experiment. 

On chapter 2 we approached how this sequencing data can be demultiplexed 

from the millions of sequences corresponding to the mutants in the pool, into human 

readable data. To this end we developed 2FAST2Q, an intuitive user-friendly computer 

program that can count the abundances of any sequences, and thus of the mutants in 

the pool, using several user-defined filtering steps. We exemplify how 2FAST2Q can 

be used, and how different usage parameters impact downstream analysis. 

In chapter 3 we developed a computational pipeline capable of determining 

essential genes without the need to compare the starting and end populations of 

mutants. Such is possible when using the Tn-seq method by determining where all 

transposons have inserted into in the genome. In a pool of transposon mutants, a gene 
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without transposons in any given gene, but with transposons at a high enough 

frequency in its surroundings, would imply that that gene should also be carrying 

transposons, and that not observing such would mean that cells carrying those 

insertions did not survive, and that that gene is essential. The developed pipeline 

individually determines, for all these cases, and using a self-optimizing algorithm 

based on known essential genes present in most organisms, whether a gene is 

essential or not. Using this method, termed TnSeeker, we determined all the common 

essential genes in a collection of 8 different strains of Escherichia coli. We observed 

that all strains exhibit a reduced overlap in common essentials, with most of these 

being related to protein synthesis. Conversely, other known essential cell functions 

such as DNA maintenance were only present when strains were either considered by 

themselves, and/or as the sum of all. Such phenomenon could potentially be related 

with the evolutionary mobility of essential genes via mobile elements, such as viruses. 

Due to the shuffling of genes across organisms, it is possible for species and strains 

to have essential cell functions performed by different genes, thus reducing any gene 

similarity, and confusing the analysis of shared essential genes. 

Upon creating a pool of mutants, it might be desirable to individually sort them 

and create an individual collection, where single characterized mutants can be used 

in isolation for specific experiments. In chapter 4 we adapted a method, known as 

SUDOKU, to array unknown pooled mutants into known locations within a plate matrix. 

We effectively arrayed one E. coli mutant pooled transposon library into its curated 

isolated single mutant form.  

Finally, in chapter 5, we used the CRISPRi-seq method to explore how the 

human nasopharynx inhabiting opportunistic pathogen Streptococcus pneumoniae 

interacts with another common pathogen, Staphylococcus aureus. We observed that 

one efflux pump, SPV 686/7/8 (here named as ArpABC), previously implicated in the 

detoxification of bactericions (molecules with bactericidal activity), becomes essential 

at pH 6 only when S. aureus is present. Such highlights the impact of studying 

conditional essentiality, or how essentiality changes in regards to different conditions, 

often drastically different from the ones typically used in laboratories. Indeed, 

throughout this thesis we explore how essentiality is a function of the environment, 

where each lineage of organism is both optimally and uniquely adapted to all different 

scenarios it encounters in its natural environment. Together, such data can be used 
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for assaying novel antibiotic targets, which often disrupt cellular essential functions, or 

even be used to determine strain/species specific targeting molecules. 

The techniques used in this thesis are only one dimension of the unprecedented 

worldwide ongoing characterization of bacteria. As unparalleled amounts of data 

continue to be generated, we are now closer than ever to fully integrating our collective 

knowledge and finally take the next step in biology: the full understanding and 

modeling of bacteria, perhaps the simplest most successful organisms in the planet.  
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Résumé non académique  

Dans un environnement donné, il existe des traits génétiques nécessaires au 

maintien de la vie, et d'autres qui ne le sont pas. Une telle définition pourrait 

caractériser ce que l'on appelle un gène essentiel, ou mortel. En effet, l'essentialité 

des gènes est un sujet récurrent en génétique depuis ses modestes débuts formels 

au XXe siècle, lorsque les mutations ont commencé à être systématiquement 

catégorisées. Depuis lors, les mutations ont dévoilé le fonctionnement interne des 

cellules et des organismes et restent, à ce jour, au cœur de la plupart des domaines 

liés à la biologie. De nos jours, des mutations peuvent être induites à l'échelle du 

génome et leurs résultats respectifs mesurés. Actuellement, de telles mesures à haut 

débit ne peuvent être réalisées efficacement qu'en utilisant des variantes des 

méthodes Tn-seq ou CRISPRi-seq. La première repose sur l'intégration aléatoire de 

transposons dans l'ADN d'un organisme à une fréquence telle que tous les traits 

génétiques sont perturbés et donc non fonctionnels. La seconde est basée sur 

l'utilisation d'une protéine modifiée, dCas9, pour empêcher tout gène ciblé de devenir 

actif, et d'entraîner ainsi la non-fonctionnalité de ce gène. Les deux méthodes sont 

effectuées de la manière dont toute perturbation des traits génétiques existe dans une 

seule cellule, demeurant à son tour dans un plus grand pool contenant toutes les 

cellules individuellement perturbées: les mutants. En soumettant simultanément ces 

différents mutants à des conditions distinctes, il devient possible de déterminer quels 

traits génétiques sont nécessaires à la survie dans n'importe quel environnement 

testé, car toute mutation dans n'importe quel endroit important du génome sera 

lentement éliminée de la population du pool de mutants. La détermination des 

mutations présentes ou non présentes à la fin de l'expérience indique quels gènes 

sont essentiels ou non. Ceci est accompli en séquençant tous les mutants présents 

dans le pool et en comparant leur abondance relative au même pool de mutants 

présents au départ. 

Au chapitre 2, nous avons abordé la manière dont ces données de séquençage 

peuvent être démultiplexées à partir des millions de séquences correspondant aux 

mutants du pool, en données lisibles par l'homme. À cette fin, nous avons développé 

2FAST2Q, un programme informatique intuitif qui peut compter les abondances de 

n'importe quelle séquence, et donc des mutants dans le pool, en utilisant plusieurs 

étapes de filtrage de séquence définies par l'utilisateur. Nous illustrons comment 
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2FAST2Q peut être utilisé et comment différents paramètres d'utilisation impactent 

l'analyse en aval. 

Dans le chapitre 3, nous avons développé un pipeline informatique capable de 

déterminer les gènes essentiels sans avoir besoin de comparer les populations de 

départ et d'arrivée des mutants. Cela est possible lors de l'utilisation de la méthode 

Tn-seq en déterminant où tous les transposons se sont insérés dans le génome. Dans 

un pool de mutants transposons, un gène sans transposons dans un gène donné, 

mais avec des transposons à une fréquence suffisamment élevée dans son 

entourage, impliquerait que ce gène devrait également porter des transposons, et que 

ne pas en observer signifierait que les cellules portant ces insertions n'ont pas survécu 

et que ce gène est essentiel. Le pipeline développé détermine individuellement, pour 

tous ces cas, si un gène est essentiel ou non à l'aide d'un algorithme d’auto-

optimisation basé sur des gènes essentiels connus présents dans la plupart des 

organismes. En utilisant cette méthode appelée TnSeeker, nous avons déterminé tous 

les gènes essentiels communs dans une collection de 8 souches différentes 

d'Escherichia coli. Nous avons observé que toutes les souches présentent un 

chevauchement réduit dans les éléments essentiels communs, la plupart d'entre eux 

étant liés à la synthèse des protéines. À l'inverse, d'autres fonctions cellulaires 

essentielles connues telles que la maintenance de l'ADN n'étaient présentes que 

lorsque les souches étaient soit considérées par elles-mêmes, soit comme la somme 

de toutes. Un tel phénomène pourrait potentiellement être lié à la mobilité évolutive 

des gènes essentiels via des éléments mobiles, tels que les virus. En raison du 

brassage des gènes entre les organismes, il est possible que les espèces et les 

souches aient des fonctions cellulaires essentielles exécutées par différents gènes, 

réduisant ainsi toute similitude génétique et perturbant l'analyse des gènes essentiels 

partagés. 

Lors de la création d'un pool de mutants, il peut être souhaitable de les trier 

individuellement et de créer une collection individuelle, où des mutants caractérisés 

uniques peuvent être utilisés isolément pour des expériences spécifiques. Dans le 

chapitre 4, nous avons adapté une méthode, connue sous le nom de SUDOKU, pour 

organiser des mutants inconnus dans des emplacements connus au sein d'une 

matrice de plaques. Nous avons efficacement classé une bibliothèque de transposons 

de mutants E. coli mélangé dans un pool dans sa forme de mutant unique isolé et 

organisé, créant ainsi une collection de mutants individuels. 
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Enfin, au chapitre 5, nous avons utilisé la méthode CRISPRi-seq pour explorer 

comment le pathogène opportuniste Streptococcus pneumoniae habitant le 

nasopharynx humain interagit avec un autre pathogène commun, Staphylococcus 

aureus. Nous avons observé qu'une pompe à efflux, SPV 686/7/8 (rebaptisée ici 

ArpABC), auparavant impliquée dans la détoxification des bactéricides (molécules à 

activité bactéricide), ne devient indispensable à pH 6 qu'en présence de S. aureus. 

Cela met en évidence l'impact de l'étude de l'essentialité conditionnelle, ou comment 

l'essentialité change en fonction de différentes conditions, souvent radicalement 

différentes de celles généralement utilisées dans les laboratoires. En effet, tout au 

long de cette thèse, nous explorons comment l'essentialité est une fonction de 

l'environnement, où chaque lignée d'organisme est à la fois adaptée de manière 

optimale et unique à tous les différents scénarios qu'elle rencontre dans son 

environnement naturel. Ensemble, ces données peuvent être utilisées pour tester de 

nouvelles cibles antibiotiques, qui perturbent souvent les fonctions cellulaires 

essentielles, ou même être utilisées pour déterminer des molécules de ciblage 

spécifiques à une souche ou une espèce. 

Les techniques utilisées dans cette thèse ne sont qu'une dimension de la 

caractérisation mondiale sans précédent des bactéries en cours. Alors que des 

quantités inégalées de données continuent d'être générées, nous sommes maintenant 

plus proches que jamais d'intégrer pleinement nos connaissances collectives et de 

franchir enfin la prochaine étape de la biologie : la compréhension et la modélisation 

complètes des bactéries, peut-être les organismes les plus simples et les plus 

performants de la planète. 
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The quest for artificial mutagenesis 

To understand what essential genes are, and how they are determined, is to 

explore how the discipline of genetics came to be. The landmark paper by Gregor 

Mendel linking hereditarily with ‘particulate units’, and the later rediscovery of his work 

by Hugo de Vries, Carl Correns, and Erich von Tschermak, prompted early XXth 

century biological experimentalists to ponder how external factors could influence the 

natural genetic state of an organism (DeMarini, 2020; Wassom, 1989). Indeed, de 

Vries seems to have predicted the current course of molecular biology when he wrote, 

in 1901:  

 

Knowledge of the principles of mutation will certainly sometime in the future 

enable a fully planned artificial induction of mutations, i.e., the creation of new 

properties in plants and animals. Moreover, man will likely be able to produce 

superior varieties of cultivated plants and animals by commanding the origin of 

mutations. (Vries, 1901)  

 

Initial genetics works progressed slowly as mutation studies relied on visually 

assessing phenotypic variations occurring by natural mutagenesis, an inefficient, 

serendipitous, and slow process. Indeed, it was not until 1927 that the first mutagen, 

the X-ray, was undoubtedly confirmed to increase the mutation rate in Drosophila 

melanogaster, the first widespread genetic model (Muller, 1927). The discovery of the 

mutagenic effects of UV radiation, and the first chemical mutagen, mustard gas, soon 

followed. Artificial mutagenesis was thus achievable, increasing the throughput of 

mutational studies by several orders of magnitude, and ultimately boosting genetic 

research by providing insight into mutation types, genetic recombination, and the 

nature of the ‘particulate units’ – genes themselves (Wassom, 1989).  

Notably, despite the concept of a ‘transforming principle’: the notion that 

bacteria are capable of transferring genetic information (Griffith, 1928); and the 

acceptance that genetic information, and thus genes, reside on the chromosomes 

(Morgan, 1911); many of such works proceeded without the idea of DNA as the cellular 

material controlling inheritance. Indeed, such was only concisely demonstrated in 

1944, when Oswald Avery, Colin MacLeod, and Maclyn McCarty reported the 



 

 
Chapter 1 | 3 

 

[0] 

1 

2 

3 

4 

5 

transformation of unencapsulated Pneumococcus cells into encapsulated cells, by the 

sole addition of DNA (Avery et al., 1944).  

 

Transposon mutagenesis  

By the late 1940’s, X-ray based genetic characterization work in several 

organisms, most notably on D. melanogaster, had led to the description of the 

‘position-effect’1: the concept of a gene’s effect being dependent on its relative position 

in the chromosome (Lewis, 1950). Barbara McClintock, then studying the genetic 

composition of the short arm of chromosome 9 in maize, and intrigued by this non-

organism-specific phenomenon, characterized a new type of ‘position-effect’: 

mutations similar to the ones produced by known mutagens were consistently being 

observed in the same specific locus. Moreover, such events were associated with the 

insertion of ‘chromatin’ adjacent to the locus showing ‘position-effect’ (Mcclintock, 

1950). The first notion of transposon had thus appeared, but it was not until several 

decades later, in the 1970’s, that the word, or concept, would start being widely used 

and understood, particularly when describing the translocation of drug-resistance 

elements from prokaryotic plasmids and bacteriophages (Berg et al., 1975; Dougan & 

Sherratt, 1977; Heffron et al., 1975; Kleckner et al., 1975; Kleckner et al., 1977; 

Ptashne & Cohen, 1975).  

Currently, transposons are defined as mobile DNA delimited by terminal 

inverted repeats, which are used by transposases to mediate their own 

transposition between nonhomologous insertion sites. Transposases are thus 

enzymes capable of mediating the excision and reintegration of a transposon. 

Transposon replication can either be ‘cut-and-paste’, if the sequence is removed to a 

new locus, or ‘copy-paste’, if a new sequence is copied to a new place, while 

maintaining the original transposon insertion site (Craig, 1997; Reznikoff, 1993; 

Sandoval-Villegas et al., 2021).  

Of particular early importance are the transposable element 10 (Tn10), 

encoding a tetracycline resistance marker, from which the tetR inducible system 

 
1 At the time, ‘position-effect’ seemed to encompass several different phenomena, 

however, the described effect in regards to the white/red phenotype in D. melanogaster are 
now known to be mostly derived from gene silencing due to a change in the position of a gene 
due to chromosome translocation (position-effect variegation) (Elgin & Reuter, 2013) 
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originates (Beck et al., 1982; Kleckner et al., 1975); and Tn5, containing a kanamycin 

resistance marker (Berg et al., 1975; Berg et al., 1982).  

Groundbreaking work by Nancy Kleckner et al. was perhaps the first described 

instance of a transposon based whole-genome mutagenesis assay. Using a 

bacteriophage as the delivery vector of Tn10 into Salmonella, several independent 

transductants were isolated, collected, and screened for different auxotrophic 

mutations. The resulting auxotrophic mutants were in line with those obtained when 

performing the standard chemical mutagenesis assay, proving that transposons are 

capable of randomly inserting into many different genomic sites, and of causing gene 

loss of function phenotypes. However, the biggest fundamental difference between 

transposon and chemical mutagenesis was the relative easier method of transposon 

insertion mapping, and thus of gene characterization using at-the-time methods. The 

existence of known constant transposon sequences, and the carriage of an antibiotic 

marker, implied that homology, restriction mapping, and selection could now be used 

to more easily further study, move or delete known/unknown loci (Kleckner et al., 1975; 

Kleckner et al., 1977). Tn10 insertion sites, however, were readily shown to not be as 

randomly distributed into the genome as the Tn5 generated ones. The same was also 

observed for other contenders: Tn3, Tn9, and phage Mu. Tn5, also due to its early 

characterization and high insertion frequency, thus became the preferred transposon 

when performing transposon mutagenesis. Indeed, by the mid 1980’s, Tn5 

mutagenesis, aided by the recently invented nucleotide sequencing (Maxam & Gilbert, 

1977; Sanger et al., 1977), had already been performed in several different bacterial 

species, and helped map dozens of new genes and functions (de Bruijn & Lupski, 

1984). 

However, despite the existence of several well characterized transposons, 

random transposon mutagenesis was still a technique not easily transposed to non-

model bacteria. In the case of Mycobacteria and several Gram-positive bacteria, the 

use of species-specific transposons, often not available and not having the same 

manipulation conveniences as the now easily engineered Gram negative transposons, 

was usually required. The long expected breakthrough arrived in the late 1990’s, with 

the development of in vitro transposition using the horn fly Haematobia irritans 

transposon Himar1 (Lampe et al., 1996). Himar1, inserting only into TA sites, had 

previously been demonstrated to be able to transpose in both insects and protozona, 
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suggesting a broad spectrum of use. Moreover, Himar1 in vitro transposition requires 

the presence of only a single protein. These factors were quickly adapted for the 

development of an improved transposon mutagenesis assay, GAMBIT, firstly applied 

in Haemophilus influenzae and Streptococcus pneumoniae (Akerley et al., 1998), and 

then in Mycobacteria (Rubin et al., 1999). This assay was probably the first where a 

transposon high insertion saturation was required for gene essentiality inference, and 

the first resembling modern transposon mutagenesis assays. GAMBIT allowed for the 

easier mapping of essential loci by leveraging PCR with an anchored chromosomal 

primer and a transposon specific primer, with the length of all fragments being 

determined by electrophoresis. If the insertion of transposons did not cause loss of 

viability in a particular locus, a sequential increase in PCR fragment length, 

corresponding to the continuous detection of transposons increasingly further from the 

anchor primer, should be seen. If the transposon landed on a non-viable locus, a gap 

in this continuously increasing PCR length map would be detected, and the locus 

would be deemed essential. This contrasted with at-the-time transposon methods for 

detecting genes with non-viable mutations, which relied on the selection and isolation 

of conditional essential mutants, or required wild type complementation (Akerley et al., 

1998). 
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Essential genes 

At this point in time, gene essentiality inference across all domains of life using 

different methods greatly accelerated, so a clearer definition on this topic is required 

before proceeding further. As initially described in 1961 by Salome Gluecksohn-

Waelsch: 

 
In bacteria, a mutation is considered lethal if growth and survival of the mutant 

organism cannot be achieved by manipulation of the environment. If, on the other 

hand, it is possible to devise environmental conditions which permit the organism 

to survive, the mutation becomes ‘viable’ and therefore may be called a ‘conditional 

lethal’ mutation. (Gluecksohn-Waelsch, 1961, p. 2) 

 

60 years later the concept remains mostly unchanged: An essential (lethal) 

gene is a gene whose disturbance, in any given environment, causes either serious 

growth impairment or cell death. Or, in a broader sense: Under any given environment, 

there are genetic loci required for sustaining life, and others which are not. 

 

The next-generation sequencing booster 

The early 2000’s brought about major efforts in full genome sequencing, and in 

the generation of complete gene-deletion mutant collections/libraries in model 

organisms like Escherichia coli and S. cerevisiae (Baba et al., 2006; Giaever et al., 

2002; Tong et al., 2001). The assembly of double gene-deletion libraries quickly 

followed, permitting the high-throughput analysis of genetic interactions such as 

synthetic lethality (Butland et al., 2008; Tong et al., 2001; Tong et al., 2004; Typas A, 

2008). These and similar methodologies allowed a peak of unprecedented detail into 

gene essentiality. However, to this day, mass application of these techniques remains 

unfeasible for most organisms.  

Contemporary to the first gene-deletion mutant collections, microarrays, a 

method by which the amount of specific DNA sequences can be quantified based on 

fluorescence, had start to gain popularity (Schena et al., 1995). By hybridizing the 

fluorescently labelled transposon bordering sequences against known sequences, 

normally from specific chromosomal loci, microarrays allow for the relative differential 

quantification of said sequences between different conditions. More abundant 
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transposon mutants would result in higher intensity fluorescent signals, and vice versa. 

By using known sequences from loci of interest where each sequence was nested 

within a micro array format, the simultaneous individual assessment of the relative 

fitness of hundreds of genetic loci, from transposon mutagenesis experiments, was 

finally achievable.  

Such breakthrough had thus allowed, for the first time using what could be 

considered a high-throughput format, the genome wide level characterization of 

condition specific bacterial adaptations. Eventually, several variations of this 

combination of saturating transposon mutagenesis with a microarray readout were 

developed. In 2001, TraSH (transposon site hybridization) appeared (Sassetti et al., 

2001), in 2004, MATT (Microarray tracking of transposon mutants) (Salama et al., 

2004), and in 2007, GAF (genomic array footprinting) (Bijlsma et al., 2007), with 

several works subsequently leveraging these, or other method variations, for novel 

gene essentiality and pathway discovery (Chan et al., 2005; Girgis et al., 2007; Joshi 

et al., 2006). 

The first decade of the XXIst century brought about new sequencing 

technologies. Indeed, the advent of next-generation sequencing (NGS), following the 

‘first-generation’ Sanger method, has brought significant experimental paradigm shifts 

in biology. For the first time, millions of nucleotide base pairs could be automatically 

sequenced in a few days, generating what is currently known as ‘big-data’. To handle 

such developments, bioinformatics was pushed to the forefront of biology. Indeed, by 

providing general sequencing analysis pipelines, or by handling ‘big-data’ via custom 

made software, bioinformatics is increasingly becoming more and more entwined with 

biological advances (Barba et al., 2014). In chapter 2, we explore these methods 

further by presenting 2FAST2Q, a sequencing data counting program (Bravo et al., 

2022). 

 Despite the relative success of microarrays, the ever decreasing cost of NGS 

soon enabled another revolution by allowing the microarray part be skipped, and 

further increasing  throughput. Indeed, several NGS based transposon mutagenesis 

methods, collectively known as Tn-seq, emerged in 2009: High-throughput INSeq 

(Goodman et al., 2009); High-throughput insertion tracking by deep sequencing’ 

(HITS) (Gawronskia et al., 2009); Transposon directed insertion-site sequencing 

(TraDIS) (Langridge et al., 2009); and Transposon sequencing (Tn-seq) (Gawronskia 



 

 
Chapter 1 | 8 

 

et al., 2009; Goodman et al., 2009; Langridge et al., 2009; van Opijnen et al., 2009). 

Similar to the microarrays, these allowed for unparalleled genome-wide gene 

essentiality and fitness studies in a wide range of species, under virtually infinite 

different conditions, but eventually in a more streamlined and cheaper format (Chao 

et al., 2016; Deutschbauer et al., 2014). Tn-seq is described in detail in chapter 3, but 

the overall procedure is similar to the previously mentioned GAMBIT method, although 

with the PCR fragments undergoing NGS, instead of being assessed by 

electrophoresis (figure 1).  

 

 

 

Figure 1 | Basic Tn-seq method schematic.  

Adapted from Cain et al. (Cain et al., 2020)   
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The CRISPR revolution  

 It has been a long-standing goal in biology to induce precise targeted mutations 

easily and reliably in the genome of any organism. The basis for such a method was 

serendipitously discovered in 1987 in E. coli (Ishino et al., 1987), and independently 

found in several different bacteria/archaea species in subsequent years. However, it 

was not until 2002 that it was recognized as a distinct class of element, and 

appropriately named as Clustered regularly interspaced short palindromic repeats, 

CRISPR (Jansen et al., 2002).   

 Further works soon discovered that some regions (spacer regions) of CRISPR 

had similarity with some sequences of bacteriophages/plasmids, and that several 

genes in the system, the CRISPR-associated (Cas) genes, were involved in CRISPR 

activity. Later comparative genomics analyses demonstrated that CRISPR-Cas is a 

Prokaryotic acquired immunity system against invading viruses and plasmids, similar 

to the Eukaryotic RNA interference system (Ishino et al., 2018; Makarova et al., 2006). 

It is now known that CRISPR-Cas can recognize and cleave DNA via the concerted 

action of double-strand break inducing Cas protein(s), and the homology-based 

targeting of RNAs. Upon infection of a host by foreign DNA, sequences known as 

protospacers are acquired from this DNA and introduced into the bacterial genome at 

the CRISPR locus as a spacer sequence. These protospacers are sourced from 

regions flanked by protospacer adjacent motifs (PAM), a 2-5bp long sequence that 

varies across bacteria. Upon subsequent infections, the host can use the expressed 

sequence from these spacers as guidance for Cas mediated DNA cleavage, thus 

avoiding re-infection. As the host does not display a PAM sequence adjacent to the 

spacer, activity against self, and thus cell death, is bypassed. CRISPR-Cas is 

therefore considered to be a form of inherited bacterial acquired immunity. Several 

types of CRISPR-Cas systems exist, however, the type II CRISPRi-Cas9 from 

Streptococcus pyogenes is probably one of the simplest. It consists of a three-

component system between Cas9, a single multi-functional effector, and two RNAs: 

CRISPR RNA (crRNA), the spacer; and the trans-activating crRNA (tracrRNA), that 

links Cas9 with the crRNA (Ishino et al., 2018; Jinek et al., 2012a; Kozovska et al., 

2021; Zhang et al., 2021). 

 In 2012, the mentioned CRISPR-Cas9 system was for the first time adapted in 

short succession by 3 independent groups for gene engineering (Cong et al., 2013; 
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Jinek et al., 2012b; Mali et al., 2013). In this case the system was further simplified 

into a 2 component system by linking both crRNA and the tracrRNA into a single 

molecule, named single guide RNA (sgRNA). By modifying the sequence of this 

sgRNA, it is possible to direct the Cas9 into cleaving the DNA at any given permissible 

locus, creating double-strand-breaks (DSB), and inducing the cellular repair 

mechanisms. Depending on whether a donor DNA template is provided 

(artificially/naturally) or not, DSB are either repaired by non-homologous end joining 

(NHEJ), resulting in genomic deletions, or homology directed repair (HDR), leading to 

precise substitutions (Kozovska et al., 2021). Despite revolutionary in the Eukaryotic 

field, where gene manipulation and editing remained troublesome, such 

accomplishments were not as groundbreaking in bacteria, where simple homologous 

based methods were already in use. Moreover, most bacteria lack the NHEJ system, 

with Cas9 chromosome cleavage often resulting in cell death (Cui & Bikard, 2016). 

 

CRISPR(i-Seq): Another mutagenesis method, or a worthy successor?  

 Observations that mutations in the Cas9 nuclease domains resulted in 

inactivation of DNA cleavage whilst maintaining DNA binding (Jinek et al., 2012b), 

quickly prompted the development of CRISPR interference (CRISPRi) (Bikard et al., 

2013; Qi et al., 2013). 

CRISPRi uses a nuclease inactivated (dead) Cas9 (dCas9), in conjunction with 

a designed sgRNA, to repress the expression of targeted genes by blocking the 

binding of DNA binding proteins such as RNA polymerases. By having dCas9 

expression and/or the sgRNA under the control of an inducible promoter, the obtained 

knockdown is both inducible and reversible. Through modulation of the time at which 

a knockdown is created, CRISPRi can in this way enable the study of essential genes, 

whose knockout is lethal, and thus difficult to study using other methods. 

It has recently become feasible to synthesize large sgRNA libraries that target 

all permissible loci in a genome. Upon introducing these sgRNA en masse into an 

organism expressing dCas9, a pooled CRISPRi library is obtained. Theoretically, each 

individual cell in this pool will then display a different sgRNA, and thus be able of 

having a knockdown for the sgRNA targeted locus (figure 2). When submitting the 

CRISPRi mutant pool to a selective pressure, such as sub-inhibitory concentrations of 

antibiotic, cells will compete locally based on the fitness effect of the knockdowned 
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locus. Over generations, a worse cell fitness will result in lower amounts of that same 

mutant and thus of the sgRNA, and vice-versa. At the end of the challenge, all the 

sgRNAs in the pool are sequenced by NGS and counted. In chapter 2, we explore the 

sgRNA counting process in detail with the python program 2FAST2Q. Finally, 

differential analysis is performed comparing different conditions of the same CRISPRi 

mutant pool, including induced vs. non induced, resulting in a relative fitness value for 

every mutant in the library. (Bock et al., 2022; de Bakker et al., 2022; Liu et al., 2017; 

Peters et al., 2016; Rousset et al., 2021). In chapter 5, the method CRISPRi-seq 

(CRISPRi coupled with NGS, as described (de Bakker et al., 2022)) is used to examine 

the interactions between Streptococcus pneumoniae and competing species. 

 

 

 

Figure 2 | CRISPRi-seq library.  

dCas9 is used to prevent RNA polymerase DNA binding at the sgRNA binding place in the 
presence of an inducer (IPTG). By having multiple sgRNAs, it is possible to create a pooled 
library where each mutant targets a different locus.  
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CRISPRi-seq Vs. Tn-seq: Different tools for different jobs 

Several methods (or variations of such) currently exist for assaying essentiality 

and genetic interactions: the creation of pure gene knock-out libraries such as the 

KEIO collection (Baba et al., 2006); knock-down strategies such as CRISPRi-seq 

(Bikard et al., 2013; de Bakker et al., 2022); and high-density transposon mutagenesis 

(Tn-seq) (Gawronskia et al., 2009; Goodman et al., 2009; Langridge et al., 2009; van 

Opijnen et al., 2009). Among these, the two latter leverage pooled mutant libraries in 

conjunction with next generation sequencing (NGS) to determine loci essentiality in a 

high-throughput manner. Depending on the setup, both these techniques are able to 

detect changes in mutant fitness, and track gene essentiality shifts over time for any 

given experimental condition, and thus conditional essentiality (de Bakker et al., 2022; 

Gallagher et al., 2020; Liu et al., 2017). However, unlike Tn-seq, where essential 

insertions are random and disappear from the initial population over time not allowing 

their relative fitness to be easily measured, CRISPRi-seq is inducible and reversible 

by default. This behavior permits the systematic measurement of all target genes 

fitness, essential or not, without loss. Moreover, due to requiring de novo sgRNA 

design, CRISPRi-seq can be used to create tilling libraries, targeting only genes of 

interest and thus reducing costs. However, when performed using a high enough 

saturation library, Tn-seq has the potential to assay essentiality over smaller loci. 

Indeed, the essentiality of small genome areas such as promoters, intergenic regions, 

and protein domains can be determined this way using a properly engineered 

transposon cassette, at the cost of requiring more transposon insertions and thus a 

larger sequencing capacity (Cain et al., 2020). Such a screen is harder to implement 

using CRISPRi due to the requirement for large libraries without off-target sgRNAs 

(careful design is needed), a PAM sequence, and the possible existence of cofounding 

polar effects. This latter arises from dCas9 blocking the transcription of multiple genes 

that might be transcribed as single transcripts, such as operons (Liu et al., 2017; Qi et 

al., 2013; Zhang et al., 2021).  

Due to being based on the absence/presence of random insertions, Tn-seq data 

analysis is often case dependent, requiring convoluted data analysis. These pitfalls 

and current state-of-art are described in detail in chapter 3 and 4. CRISPRi-seq, due 

to being more systematic, especially when using reduced libraries with one sgRNA 
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per gene, have a (by comparison) simplified analysis procedure (see chapter 2 and 

5).    

The transposon intrinsic ability to target all cellular DNA, including extra 

chromosomal DNA, together with its reduced cost and easiness of implementation, 

places Tn-seq as an ideal first line screen tool in the study of novel genes across 

multiple uncharacterized species and strains. The CRISPRi-seq more expensive 

setup can then be used as a follow-up technique in selected organisms, or for selected 

pan-genome genes, to study essential gene fitness or as a cross-validation method.   

As described, gene essentiality/lethality assaying techniques have defined 

genetics since its inception. Now, as biology moves past model organisms, embraces 

high-throughput condition testing, and enables the analysis of large interaction 

networks, such assays continue to be adapted and relevant. Indeed,  an increasing 

body of literature demonstrates the plasticity and context dependence of gene 

essentiality, dramatically varying not only between different species, but also at the 

strain level, for any same condition (Carey et al., 2018; Coe et al., 2019; Poulsen et 

al., 2019; Rancati et al., 2018; Rosconi et al., 2022; Rousset et al., 2021). Ultimately, 

in-depth insight into how essentiality shifts across different conditions and organisms 

enables not only the identification of novel biotechnologically relevant gene functions 

and antimicrobial targets, but also helps further the quest for finding a minimal life 

sustaining genome (for any given condition). 
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Thesis Outline 

 From the early days of relying of natural mutation, to the current era of large-

scale custom made mutant libraries, gene essentiality continues to be a relevant 

biological puzzle. Throughout this thesis, we explore this issue using complementary 

state-of-the-art methods: Tn-seq and CRISPRi-seq. With both approaches relying on 

NGS, we first present a sequencing data analysis program: 2FAST2Q. 2FAST2Q is a 

versatile and intuitive standalone program capable of extracting and counting feature 

occurrences, such as sgRNAs and bar-coded transposons, from sequencing files 

(Chapter 2). In chapter 3, we built pooled transposon mutant libraries for 8 E. coli 

strains, and developed a novel self-optimizing non-transposon-specific pipeline 

capable of inferring gene essentiality from transposon insertions. We present the 

respective benchmarking, the resulting E. coli pan-essentialome, and strain-specific 

essential genes. We further utilized one of these transposon libraries, from strain 

UTI89, and adapted a pooled library arraying technique known as SUDOKU to 

deconvolute this library into its arrayed format (chapter 4) (Anzai et al., 2017; Erlich 

et al., 2009). Moreover, we modified the technique in conjunction with 2FAST2Q to 

work with CRISPRi libraries, and randomly bar-coded transposons. Regarding this 

latter, we also demonstrate the uses and pitfalls of using such method to infer gene 

fitness, in our previously built libraries. Finally, in chapter 5, we leverage CRISPRi-

seq methods to study Streptococcus pneumoniae gene essentiality in a competing 

environment with both Staphylococcus aureus, and/or human nasopharynx cells. We 

demonstrate genes that are beneficial in such conditions, and elaborate on their 

possible modes of action.  
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Abstract 

 The increasingly widespread use of next generation sequencing protocols has 

brought the need for the development of user-friendly raw data processing tools. Here, 

we explore 2FAST2Q, a versatile and intuitive standalone program capable of 

extracting and counting feature occurrences in FASTQ files. Despite 2FAST2Q being 

previously described as part of a CRISPRi-seq analysis pipeline, in here we explore 

in detail the program’s functionality, and its broader applicability and functions. 

2FAST2Q is built in Python, with published standalone executables in Windows 

MS, MacOS, and Linux. It has a familiar user interface, and uses an advanced custom 

sequence searching algorithm. 

Using published CRISPRi datasets in which Escherichia coli and 

Mycobacterium tuberculosis gene essentiality, as well as host-cell sensitivity towards 

SARS-CoV2 infectivity were tested, we demonstrate that 2FAST2Q efficiently 

recapitulates published output in read counts per provided feature. We further show 

that 2FAST2Q can be used in any experimental setup that requires feature extraction 

from raw reads, being able to quickly handle Hamming distance-based mismatch 

alignments, nucleotide wise Phred score filtering, custom read trimming, and 

sequence searching within a single program. Moreover, we exemplify how different 

FASTQ read filtering parameters impact downstream analysis, and suggest a default 

usage protocol.  

2FAST2Q combines easiness of use and versatility to offer an all-around single-

step FASTQ sequence extraction tool. It efficiently processes not only CRISPRi-seq / 

random-barcode sequencing datasets on any up-to-date laptop, but also handles the 

advanced extraction of de novo features from FASTQ files. We expect that 2FAST2Q 

will not only be useful for people working in microbiology but also for other fields in 

which amplicon sequencing data is generated. 2FAST2Q is available as an executable 

file for all current operating systems without installation and as a Python3 module on 

the PyPI repository (also available at https://veeninglab.com/2fast2q). 

  

https://veeninglab.com/2fast2q
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Introduction  

Next generation sequencing (NGS) has drastically changed the landscape of 

experimental biology, not only by helping to characterize cellular networks to an 

unprecedented level, but also by generating vast quantities of data. Typical NGS data 

generated by Illumina sequencing is delivered in the form of a so-called FASTQ file: a 

text file that contains the inferred DNA sequences with their respective quality scores, 

typically existing in a compressed form with the extension *.fastq.gz. However, as 

newer sequencing platforms become available, so do the sequencing file types. For 

example, Oxford Nanopore sequencers store their data in FAST5 format, which 

requires conversion to FASTQ before any traditional downstream sequence analysis 

can be performed. More than the file itself, the compression format can also vary: 

DRAGEN ORA (.ora) is currently being rolled out by Illumina as an alternative to the 

standard .gz format. Nonetheless, despite these constant advancements, FASTQ 

remains the standard format, in large part probably due to the current convergence of 

NGS analysis programs to mainly accept .FASTQ as first input. In time, however, data 

requirements might change and lead to the need of either further pre-analysis format-

exchange programs, or the rewrite of current bioinformatics core programs.  

Currently, dozens of tools exist for FASTQ file analysis, however, as big data 

handling becomes an increasingly needed skill in biology, so does the demand for 

versatile user-friendly applications. With NGS becoming simpler and widespread, so 

must its respective data processing. There is, therefore, a need for intuitive, 

reproducible, and versatile tools that can handle the sometimes overwhelming initial 

raw data processing steps.  

NGS applications often require features to be extracted and counted from 

FASTQ files for downstream analysis. Several analysis tools and scripts exist for 

systematic reverse genetic screens, such as CRISPRi-seq (Liu et al., 2021), and 

random-barcode sequencing (RB-Seq) (Cain et al., 2020; Wetmore et al., 2015). 

However, at the moment, such pipelines tend to overspecialize into CRISPR/Cas9 

workflows, be complex, or require informatics skills beyond the average user (Li et al., 

2014; Liao et al., 2019; Winter et al., 2016; Winter et al., 2017). A notable example, 

MAGeCK, allows for both feature counting and downstream feature differential 

analysis (Li et al., 2014). MAGeCK, due to being primarily optimized for this latter, has 

some caveats regarding more complex feature extractions procedures. Indeed, when 
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dealing with mismatches or dynamic read trimming/feature extraction it requires the 

installation of 3rd party command line only software such as bowtie2 and/or cutadapt. 

Current more user friendly approaches such as CRISPRAnalyzeR and PinAPL-Py are 

also limiting in throughput in regards to searching and returning reads with specific 

sequences, especially when considering sequence mismatches, nucleotide wise 

Phred score filtering, and dynamic sequence search using multiple sequences of 

variable length (Spahn et al., 2017; Winter et al., 2017). This is particularly important 

in the cases where a user wants to control these processing parameters to easily 

extract and count know/unknown variable location/length sequences from their 

experimental setup. As such, when such advanced requirements are needed, it is the 

current standard to create custom made pipelines for handling the specifics of the 

experiment, normally in conjunction with bioinformatics tools such as Trimmomatic, 

cutadapt, and/or Bowtie2 (Bolger et al., 2014; Langmead & Salzberg, 2012; Martin, 

2011). This assumes bioinformatics, sequencing, and programing knowledge, 

requiring weeks or months of time to implement from scratch for the average user, 

with the alternative being outsourcing the data processing. This latter requiring either 

extra funds, or the right willing colleague.  

Here, we explore 2FAST2Q, a fast and versatile FASTQ file processor for 

extracting and counting sequence occurrences from raw reads. 2FAST2Q requires no 

installation by default (when using the executables), and works in all common 

operative systems. 2FAST2Q has been previously published as part of a CRISPRI-

Seq protocol, however, in this work we further elaborate on the program’s 

functionalities (de Bakker et al., 2022). We demonstrate novel applications and provide 

an in-depth description of 2FAST2Q. As a proof of concept, we show that 2FAST2Q 

efficiently and reliably counts single guide RNA (sgRNA) features in FASTQ files 

originating from published prokaryotic and eukaryotic CRISPRi-seq experiments. 

Moreover, we explore alternative 2FAST2Q functions, and how these can be used for 

any de novo sequence searching, or for extracting and counting any kind of sequences 

from FASTQ files using advanced search and filtering methods. 
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Results 

Developing 2FAST2Q 

A major goal when doing targeted (amplicon) sequencing is to know the 

abundance of each target within a sample. To that end, we wrote the Python-based 

tool called 2FAST2Q (Figure 1). 2FAST2Q is able to efficiently extract, align, filter, and 

count DNA sequences from standard FASTQ files in a single step. 2FAST2Q also 

performs mismatch sequence searching, nucleotide Phred score quality filtering, 

dynamic sequence search and trimming (including double sequence search), and 

automatically loads and detects FASTQ (.gz compressed or not) files. The program 

also exists as an easy-to-use intuitive executable version for MS Windows, macOS, 

and Linux, requiring no installation. Alternatively, 2FAST2Q is also available as a 

Python3 package in the PyPI repository, and can be installed with the “pip install 

fast2q” command. As input, 2FAST2Q requires only a FASTQ (.gz compressed or not) 

file, and, when reference feature sequences exist (i.e.: sgRNAs, barcodes), a .csv file 

with all the lookup DNA sequences. As an output, 2FAST2Q returns an ordered .csv 

file with all the raw feature counts per condition, as well as quality control statistics 

(Figure 1B-C). 2FAST2Q contrasts with other current methods by being easy to setup 

and intuitive to use (Figure 1A), while simultaneously maintaining advanced 

configuration settings such as efficient mismatched sequence searching, and quality 

filtering. 2FAST2Q is thus able of going beyond traditional CRISPRi experimental 

setups, handling any kind of feature extraction, know or unknown, from FASTQ files.  

 

Counting features using 2FAST2Q 

An important feature of performing CRISPRi-seq or RB-seq is to obtain reliable 

counts of each sgRNA or barcode, for any experimental condition. When using 

2FAST2Q in “counting mode”, (i.e.: for CRISPRi-seq, or sequence barcode counting), 

it can be used to quickly obtain an absolute feature sequence count from FASTQ files. 

Moreover, it might also be of interest to extract all features existing before/in-

between/after a given sequence. 2FAST2Q has an “extract and count mode” for this 

occasion, where the program doesn’t require the input of any feature sequences, and 

will retrieve the count of all found read sequences. In both instances, the program can 

search for any feature by either specifying a starting read position, or by providing 

upstream and/or downstream constant search sequences. The feature length must be 
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specified, except in the latter, where variable sized sequences can be retrieved and/or 

aligned to (Figure 2). 

 

 

Figure 1 | 2FAST2Q interface, and outputs.  

A) All program parameters are given by interacting with 2FAST2Q user interface. 2FAST2Q 
outputs two .csv files; a raw read count file for all samples (B), and a file with each sample 
statistics (C). Each independent file is considered to be a sample, and the file name the sample 
name. 

 

Benchmarking 2FAST2Q 

2FAST2Q was initially benchmarked against a published CRISPRi-seq dataset 

comprising 479M reads dispersed over 118 FASTQ files (Rousset et al., 2021). In this 

study, Rousset et al. examined which genes are essential in Escherichia coli under 

different environmental conditions using CRISPRi-seq (Rousset et al., 2021). 

2FAST2Q was used to find an alignment and count the occurrence of each feature 

from a list of 11,629 sgRNAs across all the 118 files. When only considering perfect 

alignments between a feature and a read, 2FAST2Q was able to output the final 

compiled sgRNA count table in 7 min on a personal desktop computer (33s per sample 

distributed over 10 parallel cores). For comparison, the same files and parameters 

were also input into MAGeCK. Despite its faster individual file processing speed, its 

lack of inbuilt sample multiprocessing resulted in a total run time of 23 min. Moreover, 

MAGeCK fails to return an organized file for all combined samples, leaving the user 
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with the individual count files for each sample (118 in this case). MAGeCK also 

requires explicit indication of all the FASTQ files to be processed, a time consuming 

step which 2FAST2Q performs automatically, unless indicated. When comparing the 

read counts returned from both 2FAST2Q and MAGeCK, a perfect correlation (r=1) 

was observed for all features (supplementary figure 3), indicating similar read counting 

accuracy. 

 

Figure 2 | 2FAST2Q pipeline.  

2FAST2Q requires only .fastq.gz (or .fastq) files as input. When in alignment mode, a csv file 
with all the features must also be provided. 2FAST2Q performs all described steps 
automatically and without requiring external software. Trimming parameters, filtering scores, 
and mismatch tolerances can be easily adjusted using 2FAST2Q graphic interface. 
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When allowing for 1 mismatch in the sgRNA search count, the total 2FAST2Q 

run time only increased by 2min, to 9min. Under these program conditions, this 

corresponds to a more than 40x speed improvement over the use of similar purpose 

standard search functions, such as the Python regex module match function ("Python 

Software Foundation, Python Language Reference, version 3.7, Available at 

http://www.python.org,"). For mismatch searching, MAGeCK requires the use of 

Bowtie2, and respective setup, and was thus not used for further benchmarking.  

Using the same dataset published by Rousset, F. et al. (Rousset et al., 2021), 

we assessed the impact of different initial 2FAST2Q parameters on both absolute 

feature counts, and on downstream data analysis. When not using any Phred-score 

filtering (Q≥0), and not allowing for any mismatches, we were able to fully recapitulate 

the reported total read counts/sgRNA for all conditions (Figure 3E) (supplementary 

tables 1 and 2). However, high-quality read length has been reported to improve 

Illumina sequencing results interpretation (Bokulich et al., 2013). We therefore 

implemented a filtering for nucleotide wise Phred-scores (Q), where all the sequenced 

nucleotide scores corresponding to the found feature read location are required to be 

above an indicated threshold. As expected, filtering using Q≥30, indicating a 0.1% 

probability of a nucleotide sequencing mistake, lowers the amount of reads/sgRNA. In 

some cases, by more than 1 order of magnitude (Figure 3G). However, when 

considering the millions of reads generated by a typical sequencing experiment, the 

presence of mismatches in high quality reads is a likely event (any length of 20 

nucleotides with Q≥30 have, at most, a 2% chance of having a mismatch: 0.001 * 20 

= 0.02). We then also added a feature mismatch search where a read is considered 

valid if it unambiguously aligns to a single feature for any number of considered 

mismatches, thus retrieving more high quality reads, especially from lower overall 

quality sequencing runs. Allowing for mismatches expectedly increased the number of 

reads/feature (Figure 3A, 3C, 3I and 4A), without significantly sacrificing total run time 

(Figure 4B) (supplementary tables 3 and 4). As an extreme benchmark case, we 

allowed for the same number of mismatches as the feature length (20bp) (Figure 3I-

J). In practice, these parameters mapped any read to its closest feature, meaning the 

sequence that unambiguously differs the least from the read. This is performed by an 

inbuilt safety mechanism, where if more than one feature possible matches the read 

at the lowest amount of allowed mismatches (i.e. 1), the read is always discarded, but 

otherwise kept. In regards to the Rousset, F. et al. dataset, which is on average of high 
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quality, these parameters recovered on average 3% more reads/sgRNA (Fig 4A). 

However, it is conceivable that the use and outcome of these parameters varies 

depending on the experimental setup and user requirements, requiring careful 

consideration before proceeding to downstream data analysis. In here, we report only 

on the possibilities of 2FAST2Q functionalities.  

 

Higher stringency parameters can aid in biological discovery 

We used the Jupyter notebook analysis pipeline published by Rousset, F. et al. 

(Rousset et al., 2021) to assay how these different read processing scenarios impact 

downstream analysis. Using the different read count tables directly outputted by 

2FAST2Q, we calculated and compared the median gene scores as defined by 

Rousset et al. (essentially, the median of the log2 fold change for each feature in all 

experimental replicates) for the LB medium and gut microbiota medium (GMM) 

conditions. Using more stringent criteria than Rousset, F. et al. (a gene is considered 

significant if it has an absolute gene fold change ≥ 4, instead of ≥ 3.5), we compared 

how different Phred-scores and mismatch filtering criteria influenced downstream 

analysis, namely how these criteria influence gene score calculations, and thus gene 

essentiality (Figure  3B, 3D, 3F, 3H, and 3J). 

We observed a higher stringency for the 2FAST2Q parameters of 1 mismatch, 

and base pair quality filtering of ≥ 30 (Fig 3B), with fewer genes being considered 

essential for any given condition with these criteria than with the criteria that 

recapitulate the published data (0 mismatches allowed, and no Q consideration) 

(Figure 3F). As expected, different read filtering criteria resulted in fold change 

differences, and consequently in differences in the genes considered essential for 

these conditions. What criteria to use would depend on the specifics of each individual 

experiment. The default 2FAST2Q parameters uses Q ≥ 30, while allowing up to 1 

mismatch (representing for any 20 basepair (bp) sequence, a 5% bp deviation error 

with, at maximum, a 2% chance of any nucleotide being wrongly sequenced). As 

shown in Figure 3, although the default setting of 2FAST2Q give slightly fewer 

significant hits, they were all also reported by Rousset et al. It is also conceivable for 

a user to be interested in aligning all reads to their closest matching feature. Like 

mentioned before, this is possible by setting the total amount of mismatches to the 

same length of the feature. Once again, we intend only to demonstrate the range of 
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uses of 2FAST2Q. Ultimately, the biological relevance of which parameters to choose 

is left upon the user. 

 

Figure 3 | Absolute read counts/sgRNA for the Rousset, F. et al. dataset MG1655 
LB 1 condition (Rousset et al., 2021).  

The total read counts using different 2FAST2Q mismatch and/or quality filtering inputs 
are plotted against those reported by Rousset, F. et al. Pearson correlation for each 
plot is also shown. Plots B, D, F, H and J were generated using an adaptation of the 
published Jupyter notebook analysis pipeline, and highlight the significant genes 
(absolute fold change ≥ 4 in one condition and ≤ 1 in the other) when using different 
2FAST2Q input parameters. green: fold change < 4 in GMM media, and > -1 in LB; 
blue: fold change < 4 in LB media, and > -1 in gut microbiota medium (GMM);  
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2FAST2Q dynamically performs FASTQ feature extraction 

Under certain experimental setups, the extraction of features from FASTQ files 

might require the use of a dynamic trimming and search function (i.e.: when the 

location and/or size of the feature differs from read to read) (Fig 2). In this case, a 

delimiting search sequence of any length (up and/or downstream of the feature) can 

be provided. Similar to feature mismatch search, an arbitrary number of mismatches 

can also be indicated for the search sequence-based trimming, as well as a minimum 

Phred-score. 2FAST2Q will search each read for the indicated sequences, returning 

the correctly trimmed read for further processing, and bypassing the need for more 

complex tools such as Trimmomatic and Bowtie2. As a proof of concept, we used a 

published CRISPRi-seq dataset by Wei et al. (Wei et al., 2021), where dynamic read 

trimming was required. In this study, a CRISPRi screen was performed using Vero-E6 

cells (kidney epithelial cells from an African green monkey) infected with SARS-CoV-

2 to identify host genes important for viral replication (Wei et al., 2021). In this dataset, 

the location of each feature was at a variable location within the read. 2FAST2Q 

dynamic trimming allowed each read to be independently trimmed based on the 

relative location of the found search sequences, thus always returning the correct 

feature location. Using this method, we submitted 6 FASTQ files (SRR14668185 - 

SRR14668190) for 2FAST2Q processing. As search sequence we used a 10bp 

upstream constant sequence (CGAAACACCG), allowing for 1 mismatch search error 

in this sequence. We used the provided list of 84,953 sgRNA sequence features, and 

ran 2FAST2Q (Q≥30, 0mismatches). 2FAST2Q simultaneously processed all 6 

samples, comprising 324M reads, within 8 minutes on a standard desktop PC (data 

not shown). This result corresponds to a slowdown of only 22% (speed comparisons 

were determined using processed reads/second) when compared with the non-

dynamic feature extraction process, such as the one we used for the same parameter 

2FAST2Q run with the Rousset, F. et al. dataset (Rousset et al., 2021) (Q≥30, 

0mismatches).  

Recently, Bosch et al. published a CRISPRi-seq experimental setup with 

variable length sgRNAs (Bosch et al., 2021). In this case, both the trimming of each 

read and the length of each sgRNA need to be considered read by read. This is a 

feature, to our knowledge, beyond easy implementation in any of the programs 

mentioned in this work. Once again, 2FAST2Q was also able to extract, count, and 
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align all the found features in a Mycobacterium tuberculosis dataset (SRR13734827), 

to the provided 96,700 long sgRNA file, this time using 2 delimiting constant search 

sequences (upstream: GTACAAAAAC; downstream: TCCCAGATTA), while allowing 

for 1 mismatch in each. The returned variable length sequence between the two 

constant search sequences was used for perfect match alignment against the sgRNAs 

(data not shown). When compared with the non-dynamic extraction process used by 

2FAST2Q in the Rousset, F. et al. dataset, a slowdown of 44% was observed, also in 

line with what was observed for the Wei et al. dataset. 

As the sequence search algorithm uses a similar process to the one used for feature 

alignment mismatch, a similar speed improvement over standard Python functions is 

also obtained. Together, these benchmarks demonstrate that 2FAST2Q is a versatile 

and quick computational tool that can extract relevant features and counts from 

FASTQ files. 

 

Figure 4 | Read/sgRNA distribution and runtime analysis of 2FAST2Q with 
different mismatch parameters and algorithms.  

Data analysis was performed on the Rousset et al. “UTI89_T0” fastq sample (Rousset et al., 
2021) when submitted to 2FAST2Q analysis with either 0, 1, or 20 mismatches (and Phred 
score ≥ 30). Increasing mismatches allows for greater read recovery by matching a given read 
to its closest matching (and thus most likely) feature. A) The median reads/sgRNA increased 
from 182 to 187, and then to 196, when considering 0,1, and 20 mismatches, respectively. B) 
2FAST2Q runtime analysis demonstrates the efficiency of real time creation of pre-processed 
failed/passed read hash tables (see methods) vs. the “no hash” method, where each read is 
always processed de novo for mismatches.  
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Discussion 

FASTQ files are the current standard sequencing output file format. 

Considering that new sequencing based differential analysis based experimental 

techniques emerge on an almost monthly basis, the need for easy-to-use, versatile 

and efficient programs specifically designed for extracting and counting features form 

FASTQ files is pressing. We thus developed a fast and intuitive tool for counting 

sequence occurrences in FASTQ files. We have recently implemented 2FAST2Q in 

our CRISPRi-seq pipeline and have found it useful in the first step of data analysis (de 

Bakker et al., 2022). However, in here we describe novel 2FAST2Q functionalities and 

explore the program’s parameter versatility, which cover most current user 

applications that require the extraction and counting of specific feature sequences, 

such as CRISPRi-seq, RB-Seq, and general amplicon-seq. Despite only handling 

single-ended FASTQ files at the moment, the processing of paired-ended files is 

possible by running two separate instances of 2FAST2Q. The program will 

automatically compile all samples at the end if all intermediary files of the first run are 

copied to the output folder of the second instance while processing. However, if a 

feature spans both reads, and both reads from the paired-ended are to be analyzed 

as a single contiguous read, a pre-process step of read merging (for example using 

PEAR) is recommended. The resulting merged reads can be input into 2FAST2Q as 

normal. 

Depending on the desired output, current methods might require users to 

handle several different software pipelines in order to extract and filter relevant data 

from FASTQ files. However, 2FAST2Q is a standalone program that can, in a single 

step, efficiently and quickly perform nucleotide wise quality filtering, mismatch 

sequence searching, de novo feature extraction, and sequence occurrence counting. 

2FAST2Q outputs an individually compiled, easy to interpret, excel readable .csv file 

with all the ordered feature counts per sample, alongside a file with relevant sample 

statistics. 

2FAST2Q fully recapitulated the feature counts independently returned by 

MAGeCK, and reported by Rousset, F. et al., for all conditions when using the same 

filtering criteria. 2FAST2Q was also successful at extracting features starting at 

different positions per read when using a published dataset of a CRISPRi screen on 

eukaryotic cells that were infected with SARS-CoV-2 (Wei et al., 2021). 2FAST2Q 
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inbuilt search functions also allow for more complex experimental setups. For 

example, recent work by Bosch et. al applied CRISPRi-seq with variable length 

sgRNAs to identify conditionally essential genes in M. tuberculosis (Bosch et al., 

2021). By providing up and downstream search sequences, 2FAST2Q was able to 

extract and count these sgRNAs in a single-step. In the case of experiments with more 

than one feature per read, such as with dual barcode sequencing, or dual CRISPRi-

seq, it is conceivable that 2FAST2Q could also be used, taking into account that the 

parameters need to be adjusted to capture different features per read each time, and 

by compiling the data at the end.  

Besides being able to align and count provided features in FASTQ files, 

2FAST2Q is also able to extract and count all unique read sequences when in “extract 

and count mode”. In this case, all different sequences that fulfill the required 

parameters are returned, with any possible mismatches being accounted as distinct 

sequences.  

As experiments that produce large datasets (>1GB) become more widespread, 

the need for versatile, fast, and easy to use software that handles raw data becomes 

more sought out. It is thus our hope that 2FAST2Q can contribute to facilitate the 

processing of the large amounts of sequencing data originating from NGS studies. 

Here, we explored and benchmarked 2FAST2Q, a tunable novel Python3-

based program capable of single-step quality filtering, read feature searching, 

extraction, and feature counting in FASTQ files. 2FAST2Q exists as a standalone 

program, not requiring any installation whatsoever when using the executable files, 

and as a Python module available at the PyPI depository. We demonstrated how 

2FAST2Q can be used for the processing of FASTQ files originating from different 

experimental setups, and how it handles different input parameters to adapt to most 

conceivable datasets requiring feature counting. 2FAST2Q is an intuitive program, that 

we believe can streamline sequencing data feature extraction for most users, without 

the need for advanced bioinformatics setups, or the use of multi-step complex 

pipelines. 
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Methods 

Installation and code availability: 

All 2FAST2Q executable files can be downloaded from zenodo: 

https://zenodo.org/record/5410822. The code, usage instructions, and test datasets 

are available on GitHub: https://github.com/veeninglab/2FAST2Q. 2FAST2Q is also a 

Python package, and can be accessed on PyPI: https://pypi.org/project/fast2q/. When 

using the executable version on MS Windows or MacOS, no further installation is 

required and a double click on the executable should suffice. For a more in depth 

description, please see the online tutorial on https://veeninglab.com/2fast2q. 

2FAST2Q is fully implemented in Python3. 

 

Usage considerations: 

All indicated 2FAST2Q running times were performed on a desktop PC with a 

12 core 3.7GHz processor, and 32GB of RAM. However, 2FAST2Q runs on any up-

to-date desktop or laptop. When using 2FAST2Q without mismatch search (perfect 

alignment only), sample processing should be in the order of seconds or minutes. 

When using the mismatch search, it is possible for 2FAST2Q analysis to take several 

minutes per sample. When processing more than one sample, 2FAST2Q will 

automatically parallelize all analyses by distributing each sample per available 

processor core.  

2FAST2Q fast sequence mismatch search function was possible due to the use 

of Python numpy (Harris et al., 2020) and numba (Lam et al., 2015) modules. An 

advanced and in-depth tutorial on 2FAST2Q parameters is available on GitHub and 

PyPI. 

 

2FAST2Q algorithm 

When initialized in standard feature count mode, 2FAST2Q will automatically 

handle all compressed or uncompressed FASTQ files, and create a hash table for all 

supplied sequence features. 2FAST2Q will then forward all samples for parallel 

processing, which can be monitored via a progress bars (supplementary figure 1). 

Each FASTQ file is sequentially read, saving RAM space. The individually loaded 

reads are submitted for trimming based on the indicated parameters, either using a 

https://github.com/veeninglab/Crispery
https://pypi.org/project/fast2q/
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fixed position, or a dynamic search. The first assumes the presence of a fixed feature 

length in the same location for all reads. The second requires one or two search 

sequences. When one sequence (either up or downstream) is provided, 2FAST2Q will 

search the read until the sequence is found, and return the adjacent predetermined 

sized feature (again, either up or downstream). When two sequences are used, 

2FAST2Q will return any feature within the found search sequences. The location and 

feature length parameter can thus be ignored in this latter scenario. A sequence 

mismatch search can also be performed.  

Following read trimming, the Phred-score corresponding to each nucleotide of 

the trimmed sequence is considered. If any of the scores is below the indicated 

parameter threshold, the read is discarded.  

If the read passes quality control, depending on the user input, the found feature 

is either retuned, or an alignment against the input features is attempted. Feature 

alignment is performed using either mismatch search or not. By default, 2FAST2Q will 

always first check for a perfect match. Perfect matching uses hashing, directly 

comparing all features to the read sequence using hashing runtime complexity. When 

dealing with mismatches, 2FAST2Q will perform sequence search based on a faster 

custom made search algorithm. At first, all feature/search sequences are converted to 

their numerical binary form, subsequently reducing them to integer8 format using 

numpy. Sequence mismatches are counted by tracking the non-zero result positions 

of subtracting both sequences. 2FAST2Q mismatch search is therefore based on a 

Hamming distance calculation. As simple numpy constructs, arithmetic operations can 

be easily processed using the Python Numba module njit decorator. Therefore, all 

2FAST2Q search functions are pre-compiled and effectively run at much faster speeds 

(supplementary figure 2). All read sequences searches, and features mismatch 

alignments are performed using this approach, allowing all search operations to run 

faster than standard Python code. Moreover, reads that fail to safely align, within the 

given parameters, to any of the provided features, are stored and used for quick 

hashed based comparison. The same is performed for reads that align with 

mismatches. By performing the much faster hashed comparison, this feature avoids 

the slower de novo mismatch search for previously seen same sequence reads. 

Runtime is thus decreased, paradoxically maintaining sample processing time as file 

size increase. “Already seen read” hashing is especially useful with datasets 

comprising dozens of different independent samples from the same sequencing run 
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(see results). In this case, the generated failed/passed read hash tables for each 

sample are compiled and used as a seed to the next batch of samples. Each new 

sample thus takes advantage of the already processed reads in a previous sample, 

avoiding reprocessing the exact same read several times.  

A Python dictionary with a class feature count is used to keep track of all found 

aligned sequences. When no feature file is provided (i.e. when running in 

“Extractor+Counter” mode), all found read sequences are returned and counted. Each 

FASTQ file will originate a unique output file. At the end of the analysis, all samples’ 

files are compiled into a single file, which can be readily used for downstream 

applications.  
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Supplementary 
 

 

Supplementary figure 1 | 2FAST2Q parallel sample processing screen. 

 

 

 

 

 

 

Supplementary figure 2 | 2FAST2Q Hamming distance-based mismatch search 
algorithm.  

When dealing with mismatches, 2FAST2Q will preemptively convert all the input feature 
sequences into their respective binary integer format using 8bits encoding. This step ensues 
faster downstream processing, decreases RAM usage, and allows mismatches to be 
calculated by a simple subtraction performed at machine code speed. 
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Supplementary figure 3 | Absolute read counts/sgRNA for the Rousset, F. et al. 
dataset UTI89 T0 condition (Rousset et al., 2021).  

The total read counts were obtained using MAGeCK (y axis) and 2FAST2Q (x axis). Pearson 
correlation is also shown. 
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Abstract 

 
In this work we explore how different transposon sequencing (Tn-seq) data 

analysis approaches and methodologies influence gene essentiality inference. We 

performed Tn-seq in 8 different E. coli strains and developed a novel general purpose 

bioinformatics pipeline, termed TnSeeker. TnSeeker operates at the gene domain 

level, determining gene essentiality from any kind of Tn-seq dataset, while 

automatically compensating for transposon-insertion sequence biases, and self-

optimizing essentiality calling thresholds from a user defined set of essential genes. 

TnSeeker is also able to determine strand-specific differential transposon insertions, 

enabling the study of opposite orientation expression effects. We demonstrate that 

TnSeeker uses a stringent approach, avoiding classifying genes that are too small to 

be statistically evaluated for any given library saturation. TnSeeker is also capable of 

determining essentiality at the sub gene level, being capable of self-arranging gene 

domain sizes according to their respective transposon insertion frequencies, and 

inferring essentiality regions. 

Besides using the built transposon libraries, we further benchmarked TnSeeker 

with independent Streptococcus pneumoniae, Mycobacterium tuberculosis and 

Pseudomonas aeruginosa Tn-seq datasets, and compared its performance against a 

naïve method and other popular tools in the field. Finally, we used TnSeeker to 

evaluate the essentialome of the 8 E. coli strain collection, exploring the positive 

correlation of pan-essentialome size with number of analyzed strains, and the 

convergent tendency of the core-essentialome. 
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Introduction 
  

The construction of a saturated transposon mutant library is normally initiated 

by introducing a randomly inserting engineered transposon cassette into the genome 

of an organism of interest, and thus disrupting the insertion site via the creation of a 

truncated product. If such disruption proves lethal, no insertion is observed at that 

location and the gene is inferred to be essential. An antibiotic resistance marker is 

usually carried in the transposon cassette for selection. However, a transcription 

terminator might not be included to allow transcription to read-through, reducing polar 

effects (Wetmore et al., 2015). In some cases, the transposon marker promoter can 

drive the over-expression of downstream genes. If these genes are essential or display 

fitness advantages, the insertion is then selected for. Such observations are relatively 

rare, apparently being mostly associated with toxin-antitoxin systems (Hutchison et al., 

2019). Similarly, transposons with outward-facing promoters (inducible or not) have 

also been used, creating a system capable of examining gain-of-function mechanisms 

by overexpression of nearby genes (Christen et al., 2011; Coe et al., 2019).  

In prokaryotes, the Tn5 (Berg et al., 1975) or Mariner transposases (Rubin et 

al., 1999) are frequently used for library building as both are capable of efficient “cut-

and-paste” transposition, while simultaneously displaying low insertion specificity 

(Larivière et al., 2021). Mariner transposons differ from Tn5 by their ability to target 

TA/AT dinucleotides only, with Tn5 displaying no sequence specificity, despite 

exhibiting some preference for GC-rich sites (Brian Green et al., 2012). In literature, 

Mariner based strategies are normally preferred over Tn5 as saturation of all TA sites 

is more easily achieved with fewer mutants, while maintaining an equal distribution of 

reads across all insertion sites. Tn5 preference for GC hotspots might also lead to 

biased insertion patterns and, consequently, biased read distribution across the 

genome, resulting in larger transposon libraries being needed.  

Transposon-based gene essentiality inference is ultimately determined by the 

number of insertions per genetic site of interest. The higher the number of expected 

insertions, the smaller a locus needs to be to accurately determine essentiality. 

Mariner transposon methods are consequently at a disadvantage in regards to 

assaying the essentiality of smaller genes. For example, in Escherichia coli there is on 

average >30 TA sites per 1kb of genome (on average, only 3% of the genome can be 

directly evaluated), with high GC genes having lesser putative sites. Under these 
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circumstances statistical power is an issue, with Mariner transposons capping at the 

loci resolution of 200bp for Vibrio cholerea in one example (Chao et al., 2016; Chao 

et al., 2013). Tn5 transposons are therefore advantageous over their Mariner 

counterpart when higher essentiality resolution is required, albeit at the cost of 

requiring larger libraries and increased sequencing capacity. 

Depending on the target species and available tools, the transposition process 

is usually done by either conjugation or transformation. In the first, a suicide plasmid 

carrying a transposase and transposon system is commonly used. When conjugated 

into a non-permissible host (i.e. not able to replicate the plasmid), the plasmid-

expressed transposase will transpose the transposon into the host genome without 

copying itself. Plasmid loss over generations, together with transposon-positive 

selection, will then ideally lead to the creation of a pooled single transposon insertion 

carrying population (Bouhenni et al., 2005; Rubin et al., 1999). Regarding 

transformation, purified transposase is often used to integrate, in vitro, a transposon 

cassette into the purified DNA of the target organism. The transposon carrying DNA 

is then transformed back into the organism, and selected for (van Opijnen et al., 2009). 

Whichever the method, during the selection phase, genes required for survival that 

have been disrupted by the transposon insertion will start to be depleted from the 

library: creating the baseline essential gene pool. Recently, Gallagher et al. have 

developed ‘transformation transposon insertion mutant sequencing’ (TFNseq), 

enabling the tracking of transposon insertions in genes immediately after 

transformation, effectively following their loss during subsequent growth, and 

monitoring the speed at which baseline essential genes are formed (Gallagher et al., 

2020). This phenomenon therefore implies the existence of a 3rd class of essentiality: 

fitness genes. These are genes whose classification (essential or non-essential) 

depends on the amount of elapsed generations, and on their ability to compete in the 

pooled population, in any given environment (Langridge et al., 2009; Lluch-Senar et 

al., 2015; Miravet-Verde et al., 2020). Maria Lluch-Senar et al. have previously 

demonstrated this effect in Mycoplasma pneumoniae, having determined the optimum 

number of cell generations for essentiality analysis in the specified laboratory 

conditions (Lluch-Senar et al., 2015). 

Following selection, the pooled transposon library is ready to use and can be 

submitted to different conditions for assaying conditional essentiality. After DNA 

extraction and sequencing library building, next-generation sequencing (NGS) of the 
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transposon border yields the flanking DNA sequence, allowing for transposon mapping 

onto the organism’s genome. Based on literature, Tn-seq analysis can then be 

subdivided into two major methods: comparative Tn-seq, and ‘snapshot’ Tn-seq. 

When doing comparative Tn-seq-based assays, the reads originating from all 

transposon insertions are differentially compared across conditions, and a gene is 

deemed essential/fitness if it has significantly less reads than in the control condition 

(Helmann et al., 2019; van Opijnen et al., 2009). Sufficient coverage in all conditions, 

and in all insertion sites, is therefore paramount to achieve statistical significance. 

Considering as example a prokaryotic transposon library with 100,000 insertions, 

obtaining enough read coverage to overcome inherent biases such as genes with a 

low frequency of insertion sites or reduced read numbers might require extensive 

amplicon sequencing, and thus be outside the scope of usability for most users (for an 

average read coverage of 150 reads, 15M reads would be needed for one sample 

alone).  

With ‘snapshot’ Tn-seq, insertions can be binary classified into absent or not, 

with essentiality being determined based on the relative local frequency of these. Non-

essential features typically display a significantly higher insertion ratio than essential 

ones, and these latter exhibit less insertions than what is expected by chance alone 

(Cain et al., 2020). Significantly less sequencing coverage is thus needed than 

comparative Tn-seq, allowing for increased throughput. ‘Snapshot’ Tn-seq, however, 

poses its own issues, requiring more complex data analysis methods to discern 

essentiality from a static map of transposon insertions. To a certain degree, several 

published programs/methods have taken different approaches to tackling some of 

these problems. Indeed, although based on the simple concept of presence/absence 

of transposon insertions, Tn-seq data analysis remains elusive without any “one-fits-

all” pipeline. Despite the existence of multiple Tn-seq normalizations, methods, and 

tools, there is little understanding of when to use one over another (Barquist et al., 

2016; Chao et al., 2016; DeJesus et al., 2015; DeJesus & Ioerger, 2013, 2016; Emily 

C. A. Goodall et al., 2018; Larivière et al., 2021; Miravet-Verde et al., 2020; Nlebedim 

et al., 2021; Pritchard et al., 2014; Rahman et al., 2022; Solaimanpour et al., 2015; 

Zomer et al., 2012). It is also unclear how different data treatments and approaches 

influence essentiality determination, especially when considering different biological 

and experimental conditions (Miravet-Verde et al., 2020). Firstly, there is the combined 
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effect of the transposase and the organism themselves, with possible biases being 

introduced based on local genome factors, such as GC content, or on transposase 

insertion hotspots. Secondly, one must consider the existence of fitness genes, with 

essentiality determination being dependent on several factors: the number of 

generations elapsed since library inception, and thus differential mutant clearance time 

from the population; the longevity of any given gene product, and its cellular 

abundance; and the possible detection of dead cells with deleterious insertions, 

increasing the chance of false positives. Thirdly, when preparing the sequencing 

library it is possible for biased and/or chimeric PCRs to happen, respectively falsely 

increasing the relative abundance of any given insertion, or leading to the miss-

mapping of transposon insertions (Miravet-Verde et al., 2020; Wetmore et al., 2015). 

Lastly, further biases can also be introduced into the system by the user itself, by either 

being over or under stringent with the sequencing quality control, genome alignment 

parameters, and essentiality determination method (Laehnemann et al., 2016; 

Nicholas A Bokulich et al., 2013). Moreover, further confusion is added when 

considering essential (and non-essential) genes typically display insertions in the N- 

and C- terminal regions, while also possibly having non-essential gene/protein 

domains, and/or yet unresolved lethal transposon insertions.  

Considering all these factors, how is it then possible to confidently label a gene 

as essential? A naïve approach would be to determine if the insertions appear in a 

frequency lower than the one observed across the genome, and if so, call the gene 

essential. In this case, there would then be a skew towards smaller insertion-free 

genes. A more complex method could normalize such insertions to gene length, or 

even ignore insertions at both ends of a gene. Such considerations, however, still 

leave the question of how to proceed in genes that display “some” insertions, and what 

and where these “some” insertions are. Does the frequency of these in the population 

matter (i.e. is an insertion with more reads than another relevant)? Does transposon 

orientation relative to gene influence essentiality? Also, more than genes, is it possible 

to examine essentiality as a function of genomic loci (i.e. gene domains, small non-

coding regions, or intragenic regions)? Several works have examined different parts 

of these questions over the years. For example, in 2011 Beat Christen et al. used their 

own custom made approach to determine the essentiality of Caulobacter crescentus 

non-coding elements, alongside non-essential domains of essential loci (Christen et 

al., 2011). This was based on finding significant insertion free gaps in genes, and was 

https://www.embopress.org/action/doSearch?ContribAuthorRaw=Christen%2C+Beat
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tailored to their own experimental data. More recently, A. S. M. Zisanur Rahman 

defined “essential domain-containing” genes in Burkholderia cenocepacia, where the 

essentiality of gene ‘sub domains’ could also be assayed (Rahman et al., 2022), albeit 

also using a homemade approach. Indeed, custom approaches to Tn-seq analysis are 

the norm in the field, but several generalizing programs do exist. A noteworthy mention 

is TRANSIT, a multi-option program capable of inferring essential genes directly from 

sequencing data (DeJesus et al., 2015). TRANSIT offers several parameters and 

claims to handle both Himar and Tn5 data, however, the question remains on the best 

method to choose, and how to define a threshold for calling a certain gene essential, 

especially in the ‘fitness gene’ cases?  

Here, we developed TnSeeker, a novel ‘one-fits-all’ pipeline towards general 

Tn-seq data analysis. TnSeeker is able to automatically define an essentiality 

threshold from “gold set” genes, and can adjust its calculation to any kind of 

transposon and genome content bias. Moreover, it can also assess possible 

preferences in transposon orientation relative to gene and evaluate loci at the sub 

domain level. To benchmark TnSeeker, we generated saturating Tn5 libraries for 8 

different strains of Escherichia coli and determined their respective pan-essentialome 

(shared essential genome). 
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Results 
 

The pKMW7 Tn5 vector successfully creates random transposon libraries in E. 

coli natural isolates 

Using the randomly barcoded pKMW7 Tn5 transposon suicide vector library 

(Wetmore et al., 2015), we performed a pilot transposon mutagenesis assay in 34 

natural isolate strains, and determined the respective transformation efficiency by CFU 

counting. The strains for which transposon library saturation could be efficiently 

achieved (22 out of 35 tested had a conjugation/electroporation transformation 

efficiency >= 10-6) were short-listed into 8 in such a way that phylogeny distribution, 

pathogenic/commensal diversity, and environmental niche differences were 

maximized (Supplementary table 1).  

 

Table 1 | Summary of the built pilot transposon libraries.  

The transposon library corresponding to BW25113 was sequenced twice. Library size 
corresponds to the total number of collected mutants following selection by plating. 

 

Based on the calculated transposon mutagenesis efficiencies, initial transposon 

libraries were built for 3 strains to obtain a total number of mutants in the 100,000 – 

200,000 range (theoretically, an insertion every ~31bp). Despite obtaining such CFUs, 

we discovered the real number of unique transposon insertions (same chromosome 

position and orientation) to be only around 20% of the total library size (table 1). 

Furthermore, only 4,784 insertions were in common between the 2 sequencing runs 

of the same BW25113 library, suggesting suboptimal sequencing coverage. As 

expected, mapping parameters and read quality filtering influenced the number of 

found unique transposon insertions, with no quality control (MAPQ≥0, Phred≥0) 

returning on average 15% more unique insertions than the chosen filtering parameters 

(table 1; see methods). To better limit sequence and alignment errors, and thus 

Strain 
Unique insertions  
(MAPQ≥40, Phred≥10) 

Unique insertions  
(MAPQ≥0, Phred≥0) 

Library size 
(CFUs)  

BW25113 #1 38,906 44,353 180,000 

BW25113 #2 14,649 17,354 180,000 

IAI 16 23,689 27,894 110,000 

IAI 33 16,205 18,977 96,000 
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possibly bias downstream insertion location analysis, we opted for the more stringent 

filtering method. It is noteworthy that inherent differences in strain growth dynamics 

probably influenced Tn5 insertion distribution due to a distinct number of total 

generations, thus introducing biases into any downstream comparisons 

(supplementary figure 1).  

In order to better control the number of elapsed generations upon library 

building, and therefore minimize any arising biases from differential transposon site 

clearance across all transposon libraries, a new transposon mutagenesis method was 

adapted from the one employed by Wetmore et al. (Wetmore et al., 2015). Essentially, 

following conjugation, transposon mutant selection is directly performed in liquid 

media, instead of overnight on a solid agar surface, under continuous exponential 

growth until 30 generations pass, upon which the library is frozen. Using this method, 

new libraries with total mutant CFU > 1M were constructed (table 2).  

Despite the larger library sizes, the total number of recovered unique insertions 

was still 10-15% of total CFUs. In the case of the BW25113 strain (the larger library) 

an insertion was observed every 18bp (every 1.4bp was the theoretical expectation). 

Read and insertion distribution analysis showed Tn5 integration over the entire 

genome, albeit with low coverage (median < 1 read per million [RPM] per insertion), 

with sporadic insertions capturing large amounts of reads (12,545 RPM as the extreme 

value). No major differences in insertion frequency were observed between the 

positive and negative DNA strands across all libraries, but an enrichment in both was 

observed around the origin of replication, probably arising from multifork DNA 

replication (figure 1 and supplementary figure 2). Tn5 nucleotide insertion bias 

analysis of all libraries also revealed no strain or Tn5 mutagenesis method differences. 

In fact, independently of the used transposon library building experimental method 

(plated Vs. pooled), Tn5 displayed significantly more affinity for dinucleotides starting 

with G/C than expected by random chance (figure 1B). 
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Table 2 | Summary of the transposon libraries built during this study. 

Total and unique genes available in the E. coli 909 strain panel were determined based on the 
work of Galardini et al. (Galardini et al., 2017). In here, unique genes are genes that do not 
exist in the other used strains. Unique essential genes correspond to genes that are uniquely 
essential in only 1 of the libraries, having explicitly been deemed non-essential in the 
remaining 7 libraries (or not existing) (supplementary table 2). Genes too small for statistical 
inference (“Genes too small for assaying”) in any of the libraries were not considered. These 
correspond to genes for which there is no confidence in essentiality prediction (see methods). 
Only read alignments with a nucleotide Phred-score ≥10, and mapping quality (MAPQ) ≥ 40 
were considered to be valid. When appropriate, the insertion sites of the same library, 
independently sequenced several times, were merged together for essentiality calculations. 
All libraries were built using antibiotic selection in liquid media for exactly 30 generations. 

Strain 
Total 
genes 

Unique 
Genes 

Essential 
genes  

(% total w/o 
N/A) 

Unique 
Essential 

Genes 
(w/o N/A) 

N/A 
(Genes too 

small for 
significance) 

Unique 
insertions 
(MAPQ>=40, 
Phred>=10) 

Library 
size 

(CFUs)  

BW25113 4,313 432 
267 

(6.5%) 
45 202 257,952 3,240,000 

UTI 89  4,839 665 
257 

(5.5%) 
21 131 251,437 1,396,000 

IAI 33  4,562 645 
219 

(5.2%) 
27 472 58,071 2,065,000 

Nissle 
1917  

4,589 497 
220 

(5.5%) 
55 561 93,436 288,300 

IAI 16 4,481 661 253 (6%) 14 264 70,096 5,369,000 

IAI 13 4,391 449 
159 

(3.9%) 
2 321 98,372 8,850,000 

NRG 857 
C 

4,542 531 
103 

(2.4%) 
5 302 157,533 2,460,000 

EcoR-63 4,573 481 
211 

(5.9%) 
29 1,022 32,917 1,947,000 
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Figure 1 | Tn5 library bias analysis.  

A) Read distribution (reads per million [RPM]) across the chromosome. Different contigs are 

indicated by different background shades. In the case of A2, such correspond to the 

chromosomal DNA and a plasmid. Number of reads and insertions in the positive and negative 

DNA strand, per bin of 50,000 bp, are indicated by the red/blue lines. Density plot represents 

the read abundance per insertion. Origin of replication is located at position 4,052,525 for 

UTI89 and 3,936,725 for BW25113. A1) BW25113 strain. A2) UTI89 strain. B) Chromosome 

dinucleotide Tn5 insertion bias in the current experimental setup, compared to genome bias. 

The first 2 bp for all libraries following the Tn5 insertion were used for calculation (plated 

method: table 1; pooled method: table 2). C) Total insertions per gene per gene length were 

calculated (disregarding insertions in the first and last 10% of a gene), and their distribution 

plotted. Density (y-axis) refers to kernel density estimation, and is therefore dependent on the 

units of the used data. A probability can be obtained by integrating the density over a given 

range (x-axis), which sums to 1. C1) Only the density for the BW25113 and UTI89 libraries is 

shown. C2) Density comparison between libraries with different Tn5 saturations. 
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The misleading issue of genes without transposon insertions: why experimental 

and local genomic context matters. 

Insertion normalization per gene length demonstrates the existence of 2 distinct 

groups of genes: those without insertions, and those with. The range of the number of 

normalized insertions in genes with insertions decreases the less insertions a library 

has, whilst increasing the number of zero-insertion genes (figure 1C1 and 1C2). We 

used this latter phenomenon as a naïve statistical control attempt at inferring essential 

genes, where all genes without insertions between the first and last 10% of a gene 

were deemed essential. Using this method, the number of inferred essential genes is 

shown to be inversely related with library size, rendering this approach unreliable for 

most of the built libraries where hundreds or thousands of essential genes were 

returned (supplementary figure 3A). Indeed, despite recapitulating previously 

described BW25113 essentials to a great degree (>90% cumulative overlap with 3 

independent datasets) (supplementary figure 3B), such approach requires large 

transposon libraries to be accurate, while still seemingly still missing several essentials 

(lower precision). This is due to the assumption that all genes without any insertion 

are essential, thus not considering the role of mixed genes (genes with essential and 

non-essential domains); unresolved essential insertions; relative transposon 

orientation biases; the absence of normalization for gene GC content, overall 

transposon insertion frequency; and the lack of an adequate definition of a statistically 

significant threshold for deeming a feature essential. Such problems seem to persist 

in our datasets even when using more sophisticated alternative methods like the 

TRANSIT program, or ANUBIS. Indeed, both returned more than 600 essential genes 

(DeJesus et al., 2015; Miravet-Verde et al., 2020) (supplementary figure 3C and 3D). 

To address these issues, we developed a novel Tn-seq analysis pipeline, named 

TnSeeker.  
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Figure 2 | TnSeeker pipeline.  

Reads are processed based on the existence of an input transposon sequence using a 
custom-made algorithm similar to 2FAST2Q (chapter 1), and mapped to the bacterial genome 
using Bowtie2. Iterative sub-feature subdividing then proceeds, with significance being 
determined at each stage. Ultimately, an optimal domain size and significance threshold is 
chosen based on the recapitulation of the essential and non-essential genes of a reference 
gold set. 
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TnSeeker uses a high-confidence conservative approach for inferring essential 

domains 

TnSeeker infers essentiality by combining linear density (insertions per unit of 

genome) with a modified gene specific sliding window approach, while performing self-

optimizing thresholding based on a gene gold set. Transposon sequence insertion 

biases are also automatically compensated according to the local nucleotide 

distribution.  

TnSeeker exists as a Python3 package pipeline, requiring Bowtie2 to be 

installed (and callable) for sequence alignments (Langmead & Salzberg, 2012). The 

program consists of two main parts: 1) Read trimming based on the existence of a 

transposon sequence, followed by read alignment which ultimately results in the 

creation of a TnSeeker-specific formatted insertion table used as input for; 2) The 

essentiality inference program that returns a fully annotated table with the essentiality 

classification of every feature, sub-domain, and domain-specific transposon direction 

bias (figure 2) (see methods). Moreover, TnSeeker is also capable of simultaneously 

extracting transposon barcode sequences and associating them with specific 

transposon locations, while determining their uniqueness and abundance in the overall 

pool, a feature explored in detail in chapter 4.  

TnSeeker’s key method is its ability to automatically determine an optimal 

genomic window size to subdivide all the genomic features into. This is performed for 

each gene by iterating through increasingly larger windows, calculating the probability 

of the observed transposon insertions being smaller than expected by chance for each 

such domain (whilst adjusting for transposon nucleotide bias), and then iterating again 

through different essentiality probability thresholds until an optimum is found (see 

methods). This latter is calculated from the true positive/negative gene recall of every 

such parameter combination, and then the iteration restarts. These true 

positive/negative essential genes are here defined as the ‘gold set’ genes, and consist 

of an user defined set of genes that are supposed to be either essential (positive), or 

mostly non-essential (negative), in any bacterial species (see methods). This 

thresholding process can be visualized via receiver-operator curves (ROC), where, for 

each domain size and probability threshold, the optimal point that maximizes true 

positive and minimizes true negative genes can be inferred from. Indeed, the optimal 

curves for all the built libraries in this study, plus 3 others from different studies, are 
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shown in figure 3B, with figure 3A displaying the linear density distribution of the 

optimal domain window size for strains BW25113 and UTI89. By comparing with the 

naïve approach distribution shown in figure 1C, it’s possible to observe how 

subdividing each gene creates a more discrete linear density distribution. As this latter 

is closely related with the abovementioned probability of transposon insertion, it is thus 

easier to automatically iterate and determine a threshold at which a given domain with 

a given linear density is deemed essential of not. Conversely, it is also possible to 

determine genes or domains that either are, or become too small to be statistically 

assayed. These consist of features that, for any given linear density, no statistical 

significance can possibly be determined considering the reduced size of the feature 

relative to the observed library transposon saturation. Such features are deemed by 

TnSeeker as limbo genes (or ‘too small to be assayed’), as they cannot be confidently 

classified as either essential or non-essential. Most of the current Tn-seq methods 

seem to not take into consideration such possibility, thus skewing essentiality in favor 

of smaller genes, especially at lower library saturations. TnSeeker is in this regard 

conservative, as it will avoid classification of ambiguously essential features, thus 

minimizing false positives at the cost of increased limbo genes. Such can be observed 

in figure 3C, where the effect of library saturation on the percentage of returned 

essential genes is much smaller for TnSeeker than for the naïve method (where every 

gene with 0 transposon insertions is considered essential). This is further highlighted 

in figure 3F, where the different combinations of essentials overlap returned only by 

other programs/methods (TRANSIT, ANUBIS, and naïve) for the same BW25113 Tn5 

library is increased when the limbo genes are included. A similar increase is also 

observed in the interaction overlap between all programs except TnSeeker and the 

independent dataset by Koo BM. et al. (Koo et al., 2017). Both these factors indicate 

that TnSeeker indeed avoids classification of a certain category of genes, and that 

such genes tend to be overrepresented essentials in other programs, while not 

necessarily being true essentials due to their lower overlap with other methods. For 

example, TRANSIT returned an excess of method-specific essentials, whilst not 

resulting in greater accuracy (compared with the remaining methods consensus). In 

fact, ROC analysis interestingly demonstrates that the true-negative rate was on par 

with the stringent naïve approach, despite this latter’s better sensitivity (figure 3D). A 

similar effect is also seen when comparing TnSeeker with essential genes published 
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in other datasets (figure 3E), with the differences between these different methods and 

libraries also being evident in the ROC analysis (figure 3D). In the case of the Goodall 

ECA et al. dataset (Emily C. A. Goodall et al., 2018), the ratio of true negatives is 

higher than the true positives, further reinforcing the effect that data analysis, in this 

case the choice of the gold set genes, can have on essentiality inference (see 

methods).  

Interestingly, only 12 genes were uniquely assigned as essential in BW25113, 

while being labelled as non-essential in the remaining datasets (figure 3E). Among 

these, 4 of them are directly related with anaerobic and nitrogen metabolism (ydgN, 

fnr, glnG and glnD) (supplementary table 3), possibly more revealing of the conditions 

the library was incubated on, and not deeming any further in-depth study. 
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Figure 3 | Outcomes and comparisons for distinct essentiality methods.  

A) Optimal TnSeeker divider domain linear density distribution for all the built Tn5 libraries 
strains, highlighting BW25113 and UTI89, the highest saturation strains. B) Optimal ROC for 
all analyzed transposon libraries in this study. For each strain, and for a given domain size, 
the line indicates how changes in the significance thresholding impacts essentiality gold set 
recapitulation. The reference gold set of true positive and true negative genes were obtained 
as mentioned. C) Analysis on how library saturation impacts the number of essential genes 
when using the naïve approach, and the conservative TnSeeker method. D) ROC plot with 
the optimal domain size/significance threshold point indicated. Naïve Vs. TnSeeker method 
comparison are indicated for all analyzed transposon libraries in this study (including a 
Mycobacterium tuberculosis set (Carey et al., 2018), a S. pneumoniae set (Liu et al 
MolSystBiol 2017) and a Pseudomonas aeruginosa set (Poulsen et al., 2019)). ROC was also 
determined for different published datasets of BW25113. E) Venn diagram comparing the 
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essential genes obtained using different datasets (Emily C. A. Goodall et al., 2018; Koo et al., 
2017; Price et al., 2018; Rousset et al., 2021), with TnSeeker. Rousset F. et al. used a 
CRISPRI library instead of a transposon. F) Venn diagram comparing the essential genes 
returned by TnSeeker, TRANSIT (DeJesus et al., 2015) (Tn5Gaps), and ANUBIS (Miravet-
Verde et al., 2020) (Poisson) for the built BW25113 library, and an independent dataset by 
Koo BM. et al.. * indicates the number of overlapping genes when including genes deemed 
too small to be assayed by TnSeeker in the comparison. When possible, all comparisons were 
performed using standardized gene annotation names. Genes without such names were 
discarded. 

 

 TnSeeker was further benchmarked with 3 independent transposon libraries 

originating from Streptococus pneumoniae (Jan Willem Veening lab, unpublished), 

Pseudomonas aeruginosa (Poulsen et al., 2019), and Mycobacterium tuberculosis 

(Carey et al., 2018). Regarding the two latter, essentials returned by TnSeeker were 

compared to the essentials from TRANSIT, and the consensus from the OGEE 

database (Gurumayum et al., 2021) (supplementary figure 5A and B). In both cases, 

TnSeeker optimized the accuracy return rate of true essentials above the naïve 

method (figure 3B and D). In M. tuberculosis, only 2 genes were not in common with 

the remaining datasets, contrasting once again with the TRANSIT method (506 

differentially essential genes). For P. aeruginosa, a larger heterogeneity across all 

datasets was observed, possibly indicative of the organism larger genome and the 

higher saturation library (> 200.000 insertions), where the essentiality of more genes 

can be assayed. In fact, only 21 out of 5771 genes were deemed too small to be 

assayed, whereas in BW25113 the number was 202 out of 4313. 

 The dataset for S. pneumoniae was directly compared with previously 

published datasets from both Tn-seq and CRISPRi experiments (supplementary figure 

5C). As this latter examines essentiality at the operon level, we report essentiality at 

both the operon and gene level.  
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TnSeeker infers domain level transposon orientation biases 

 Besides inferring essentiality, TnSeeker also examines biases in transposon 

insertion direction relative to gene orientation. For domains/genes with large amounts 

of insertions, such feature indicates if there is a negative bias towards having 

transposons oriented in a certain direction. Therefore, similar to how the significant 

lack of transposon insertions indicates a non-random event (such as an essential 

domain), so does the non-random distribution of transposon orientations over a certain 

domain indicate some kind of transposon orientation dependent significant bias.  

By examining strain BW25113, around 1000 non-essential gene domains were 

significantly skewed in regards of transposon orientation (FDR corrected p-value <= 

0.01). 88% had a transposon orientation bias towards the same orientation of the 

gene, indicating that in the majority of the cases an opposite gene strand transposon 

insertion was either not occurring due to local genomic context factors, or resulting in 

cell death.  

 Open reading frame prediction (ExPASy) of the 2 most heavily biased 

transposon genes in BW25113 (table 3 [ydiY and ybhI]) revealed alternative coding 

sequences (a 68 amino acid (a.a.) long sequence for ydiY, and a 25 a.a. for ybhI), 

albeit without canonical E. coli shine-Dalgarno sequences. ydiY was also the most 

significantly transposon orientation-biased gene for the UTI89 strain, whilst being in 

the top hits of Nissle 1917. Curiously, ydiY is directly upstream (and in the opposite 

strand) of pfkB II, a gene encoding an alternative enzyme in the glycolysis pathway. 

This orientation bias could thus be related to possible lethal disturbances on this gene. 

Another possibility could be the existence of a non-annotated essential gene between 

these two genes. 

Despite reporting a large number of biases, relative insertion position analysis 

revealed, for most cases, an evenly spaced distribution of opposite insertions across 

the genes, with the biases originating from domains with highly concentrated same 

orientation insertions (figure 4), and thus unlikely to be of biological significance.  
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Table 3 | Top 8 most significant genes with a bias in transposon orientation in 

the BW25113 Tn5 library strain. 

Total Tn 
insertio

ns 
Gene Description 

Orientat
ion 

ratio 
(+/total) 

Orientation 
p-value 

Gene 
orien
tatio

n 

Gene 
name 

111 
acid-inducible putative outer 

membrane protein 
0.0089 6.76x10-31 - ydiY 

138 
putative outer membrane 

protein 
0.0780 1.90 x10-25 - yiaT 

255 
putative mannitol-specific PTS 
enzymes: IIB component/IIC 

component 
0.1839 8.28 x10-24 - 

NT120
04_22
_0287

4 

395 
putative sigma-54-interacting 

transcriptional activator 
0.2523 2.91 x10-22 - ygeV 

117 
putative LuxR family 

transcriptional regulator 
0.8916 5.79 x10-21 + yqeH 

83 
dTDP-glucose 4%2C6 

dehydratase%2C NAD(P)-
binding 

0.0595 1.88 x10-17 - rfbB 

363 
putative Zn-binding 

dehydrogenase 
0.2727 3.13 x10-17 - yggP 

72 putative transporter 0.9324 1.49 x10-16 + ybhI 
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Figure 4 | Distribution of transposon insertion orientation for the top 8 most 
orientation biased genes in strain BW25113. 

For each gene, the orientation and relative location of every transposon is indicated. Arrow 
direction indicates the transposon orientation relative to the gene (blue arrow: same direction; 
red arrow: opposite direction). Blue and red curves indicate the relative density distribution of 
the same colour parameters, respectively. Gene names and relative genome orientation are 
indicated in the titles. 

 

Tn-seq reveals a broad E. coli pan-essentialome 

Essentialome analysis of all the built Tn5 libraries revealed a core-essentialome 

(genes considered to be essential in all strains) of 70 genes (figure 5A), and a pan-

essentialome (genes considered to be essential in at least 1 strain) of 664 genes 

(12.5% of which are hypothetical proteins) (figure5B). No correlation between the pan-

essentialome and the phylogenetic distance was observed at the strain level, unlike 

with the pan-genome, which clustered based on phylogeny (supplementary figure 6).  

We did not remove duplicated genes from this analysis due to the risk of 

ignoring possible essential genes, thus incurring the risk of over-reporting rather than 

under-reporting. Nonetheless, we determined that most of such genes are associated 

with transposons and bacteriophages, corresponding to 6.7% of the pan-genome, 
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6.3% of the pan-essentialome, and 0% of the core-essentialome. The most frequent 

reasoning for ignoring such genes is the possible biases arising from imprecise read 

mapping due to similar chromosome sequences, the presence of transposon 

coldspots (areas recalcitrant towards accepting transposon insertion events), and/or 

their mobile nature (not being in the genome anymore, and thus creating a false 

transposon free region). Indeed, several of these are unique essentials in the strain 

BW25113, having the highest number of unique essential genes, higher than the 

similarly saturated library UTI89 (table 2 and supplementary table 2) (comparison with 

lower saturating libraries might induce biases due to a higher number of limbo genes, 

so direct comparison was not attempted). Closer inspection of such genes revealed 

these to be mostly related with transposases and other mobile sequences, with only 

15 not being related with these elements. 6 others were possibly duplicated genes as 

they shared the same putative function (Rhs family toxin). These were thus likely false 

essentials, bringing the total number of unique BW25113 essential genes to 9.  

When removing all the prophages and other mobile elements from all the 

unique essentials across all strains, the total number of strain unique essential genes 

decreased from 198 to 159. We nonetheless report all these instances as the causes 

for these genes’ essentiality (or lack of) might require consideration on a strain-by-

strain basis, and consequently should not be easily dismissed.  

Both the pan-genome and pan-essentialome size increased following a 

rarefaction curve model. Conversely, the core-essentialome started to plateau even 

after the combination of any given 3 strains (figure 5C1 and 5C2). A curve was fitted 

for all 3 different datasets and the theoretical asymptotic maximum determined to be 

13 strains (~700 genes) for the pan-essentialome, 15 for the pan-genome (~10.000 

genes), and 6 for the core-essentialome (~70 genes).  

Clusters of Orthologous Genes (COG) enrichment analysis of the core-

essentialome only revealed significant enrichment for genes involved in translation, 

such as ribosome biogenesis (Figure 5D1, category J). Moreover, and surprisingly, in 

the pan-essentialome genes related to transcription were significantly depleted (figure 

5D1, category K), with mostly central metabolism and cell replication pathways being 

enriched. In both datasets, genes of unknown function, or yet still unlabeled, were also 

significantly depleted. At the strain level, similar patterns were observed for the 

essentialomes of the 8 analyzed strains (supplementary figure 4).  
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No significantly differential COGs were detected when considering only the 

strain specific essential genes. However, a closer examination revealed that 28% of 

these were labeled as hypothetical proteins, and 20% were annotated as part of a 

mobile genetic element, such as transposons or prophages. Interestingly, some iron-

transport related genes were found, such as the genes encoding the iron enterobactin 

transporter FepA and FepG on strain IAI33, the ferric iron-catecholate transporter on 

Nissle 1917, and the ferrous ion transporter EfeO on IAI 16. Other lipid-related 

transporters were also detected. Moreover, several virulence genes related to 

adhesion, protease, and toxin production were also found. However, due to the low 

saturation of some of these libraries, their incompletely sequenced genome (only 

BW25113 and UTI89 have a complete assembled genome), or even the possible 

existence of plasmids that can vanish from the population, caution is required when 

considering all strain dependent essentialomes. 
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Figure 5 | E. coli Pan & Core essentialome.  

A) Heatmap plot of the core essentialome for all the built transposon libraries. A gene was 
deemed ‘core’ if it was classified as essential by TnSeeker (getting a classification of 
esssential’, ‘likelly essential’, or ‘probably essential’) in all the 8 analyzed transposon libraries. 
B) Heatmap plot of the pan-essentialome for all the built transposon libraries. A gene was 
considered to be part of the pan-essentialome if it was considered essential in, at least, 1 
strain. C) Effect on the essentialomes of progressively considering the pooled essential genes 
of an increasing number of strains. The data was obtained by performing 100 independent 
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random sampling events of the essential genes of all 8 library combinations. Data fitting and 
extrapolation was performed using the Python library scipy curve_fit function to adjust the data 
to a polynomial function. C1) Core and pan-essentialomes. C2) Pan-genome. D) COG 
enrichment analysis for the built 8 Tn5 E. coli libraries (see methods for nomenclature 
description). D1) core-essentialome. D2) pan-essentialome. 
 
 

TnSeeker data exploration reveals species and strain specific biases at the gene 

essentiality level 

Gene orientation analysis revealed no significant strand bias for essential 

genes in both the BW25113 and UTI89 strains. No relation between gene essentiality 

and GC content was also observed, and the correlation between GC content and 

transposon insertion location has already been previously addressed (figure 1B). 

Essential genes displayed a slight preference for regions closer to the origin of 

replication (ORI). In the BW25113 strain, essentials were 20% (median of relative 

gene location) closer to the ORI than non-essentials. A similar result was observed for 

UTI89 (16% closer), P. aeruginosa (13%), and M. tuberculosis H37Rv (18% closer). 

Regarding S. pneumoniae D39V, essentials were actually 12% further from the ORI 

when compared with the expected location of all genes (49% when using CRISPRi 

data from Xue Liu et al. (Xue Liu et al., 2021)). Notably, D39V has the smallest genome 

(~2 Mb). 

A positive bias in both read coverage and transposon insertion density was also 

observed towards the chromosome origin of replication, with negative bias at the 

terminus side (figure 6A, B, C, and D). In the case of BW25113, a sharp increase is 

seen at around position 2,750,000 of the chromosome. No known plasmids or 

significant mobiles elements are known to match this region in the used strain, and 

such result is possibly indicative of an unknown experimental artifact.  

Besides chromosomal DNA, Tn-seq is also able to evaluate the essentiality of 

exogenous elements such as plasmids. Indeed, the UTI89 strain harbors a plasmid 

with 130 genes of which one, albeit a transposase, was deemed essential by 

TnSeeker.  
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Figure 6 | Strain signature plots.  

Genome mapped diagram of the library differences in regards to transposon insertions and 
reads, strain GC content, gene distribution, and essential gene abundance. Each parameter 
was discreetly calculated by subdividing the genome into bins of 10Kbp and by computing the 
local median. The genome medians were calculated for comparison and are indicated as 
concentric circles represented by the same colour as the parameter they refer to. A) this study 
BW25113. B) This study UTI89; C) Streptococcus pneumoniae (Jan Willem Veening lab, 
unpublished). D) Mycobacterium tuberculosis (Carey et al., 2018) 
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Discussion 

The advent of NGS and other high-throughput techniques such as Tn-seq have 

moved gene essentiality genetic studies beyond model organisms and optimal 

laboratory conditions, into the pan-genome era. We are now able to better explore the 

apparent paradox of reduced core-essentialomes, and the variability of the pan-

essentialomes. Indeed, each strain carries its own signature essentialome, smaller 

than the sum of all, and bigger than the common overlap.  

In this work we built transposon libraries for 8 E. coli strains and developed a 

novel Tn-seq analysis program, termed TnSeeker. TnSeeker uses a self-optimizing 

stringent approach to infer gene and domain essentiality, better recapitulating true 

positives while minimizing possible false positives, and avoiding the classification of 

large number of genes as essential. This latter was observed to be specifically true in 

lower saturating libraries when compared with other methods. TnSeeker performs 

such task by implementing ‘limbo genes’: genes whose essentiality cannot be 

determined for a given transposon library saturation. Moreover, essentiality inference 

is optimized based on a list of known essential and non-essential genes that 

should/not be present, to some degree, in the assayed strain (gold set genes). The 

outcome of TnSeeker will therefore vary depending on the genes used for validation, 

and on their conserved annotation across strains. To limit such biases, we used a list 

of representative well characterized essential gene names from several bacterial 

species (inferred core-genome from OGEE). Future versions of TnSeeker would 

benefit from homology-based comparison for such task, mitigating miss-annotation 

risks.  

Due to the use of a large number of known non-essential genes in the validation 

set, and considering reported strain-to-strain variations in essentiality (including this 

study), the true negative rate is perhaps not as important as the true positive recall 

rate. An example of these variations is exemplified when comparing the reported 

essential genes from Goodall et al. and Koo BM. et al. with our picked gene gold set. 

A large portion of non-essentials were labelled as essential (variation is expected on 

this axis due to the less stringent picking of non-essential genes in the gold set), 

however less than half the expected true positive genes were deemed essential. Such 

variations might be explained by the choice of using the OGEE database for the gold 

set, which relies mostly on published Tn-seq data, where various analysis 
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methodologies are used. Despite these obvious biases, TnSeeker nonetheless 

stringently recapitulated known essentiality not only for E. coli BW25113, but also for 

other species.  

Besides essentiality calling, TnSeeker also examines transposon insertion 

orientation biases. However, the biological significance of such might not be of strait 

forward interpretation. For example, nucleoid proteins have been reported to locally 

influence transposon orientation by mediating strand accessibility and transpososome 

stability during the transposition process (Garsin et al., 2004; Swingle et al., 2004). 

Biases would then reflect, in this case, the influence of these proteins on the 

transposon.  Another hypothesis is related to the transposon cassette itself. The fact 

that in most of the cases the orientation bias is in favor of the gene orientation could 

originate from some toxic effect related with opposite strand gene expression 

continuing from the transposon resistance gene. The orientation bias would then be 

related with orientation lethality, and not with a specific transpososome effect. Such 

could relate with the action of either an antisense RNA, or through negative peptides.  

So named due to their phenotype prevailing over the wild-type (WT) form, 

inactivating it, dominant negative peptides (DNP) can disrupt the function of WT 

proteins by either the creation of WT-DNP non-functional complexes, or by competition 

through substrate titration (Dorrity et al., 2019; Herskowitz, 1987). Gene domains with 

significant transposon orientation biases may thus indicate the existence of DNP 

whose expression causes the loss of cellular viability. Such could be the case of ydiY, 

which we reported to have transposon orientation bias in various strains and a 

conserved local genomic context, pointing towards some local level conserved 

mechanism, or the existence of a yet uncharacterized gene.  

TnSeeker is also capable of calculating essentiality across unassembled 

genomes in different contigs, or plasmids, and merging the results into a single file. 

Indeed, such was performed for most of the strains in this study, with essentiality being 

calculated on a contig basis (supplementary figure 2). However, despite the existence 

of plasmids in at least one strain (UTI89), no further comparisons in this regard were 

possible due to the remaining strains existing only in partially assembled contigs, thus 

making distinguishing between chromosomal DNA and plasmid difficult.   

In 2021, Rousset F. et al. published a CRISPRi-seq screen analysis of 18 E. 

coli strains across multiple conditions, although only focusing on 3,400 common 

genes. Despite a major overlap in essentials for BW25113 in the same media, an 
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overestimation of gene essentiality by Rousset F. et al. was observed, even when 

compared with other methods (figure 3E). Such can possibly be attributed to operon 

effects arising from the CRISPRi method. Indeed, comparative analysis performed 

with the S. pneumoniae D39V dataset revealed a tendency of CRISPRi to classify all 

operon genes as essential if at least one is essential (supplementary figure 5C).  

Despite such discrepancies, similar conclusions are drawn regarding the lack 

of essentialome correlation with phylogenic distance, with correlation only emerging 

when considering all the genes in the strain. This latter is expected as such analysis 

is closely related with how phylogeny is determined. We also reported larger core and 

pan-essentialome sizes, although probably related to the Tn-seq ability to examine all 

possible genetic locations, and thus going beyond the 3,400 features used by Rousset 

F. et al.. We also didn’t remove mobile elements from our analysis, which correspond 

to at least 6% of the pan-essentialome. Such elements, despite the difficulties in 

assaying their true essentiality, might play a role not only in conditional essentiality, 

but in driving gene essentiality evolution. Indeed, an increasing pan-genome might be 

explained in part by non-orthologous gene displacement via horizontal gene transfer 

(NOD-HGT), and consequent changes in gene synteny by gene gain/loss (Forterre, 

1999; Martinez-Carranza et al., 2018; Rousset et al., 2021). The reduced size of the 

core-essentialome, smaller than the smallest strain essentialome, and thus likely 

missing essentials required to support life, is also probably related to such 

phenomenon. In these cases, unrelated proteins/genes perform the same essential 

function in different organisms, albeit using a different sequence, and thus belonging 

only to the pan-essentialome whilst being outside the highly conserved core-

essentialome. Such is supported by COG analysis of the core and pan-essentialome 

(figure 5D1 and 5D2), where metabolic pathways required to support life are seen at 

the pan-essentialome level, but not on the core-essentialome. Curiously, in this latter, 

only ribosome biogenesis related genes are enriched, hinting at these as being the 

only genes that are ultra-conserved, of difficult functional replacement, or least 

submitted to NOD-HGT. 

Tn-seq data analysis is complex, and sensitive to methodological variations at 

all levels. Throughout this study we focused on methodology benchmarking, both by 

building de novo E. coli transposon libraries, and using published datasets. 

Straightforward comparisons, however, despite being required as a validation 
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necessity, are prone to never fully agree between different studies. Caution is thus 

always advised when drawing any hard conclusions from these cases, perhaps being 

more interesting in the future to understand the common overlaps across conditions 

and analysis methods.  

Similarly to recent works (Carey et al., 2018; Coe et al., 2019; Poulsen et al., 

2019; Rousset et al., 2021), in here we highlighted the insight that using different 

strains to assess species level essentiality might have on both finding conserved 

essential pathways, and strain (or species) specific essential targets. 
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Methods 

Strains 

The APA766 strain (harboring the Tn5 library plasmid pKMW7) was a gift from 

Adam Deutschbauer (Wetmore et al., 2015). For culturing APA766, LB was 

supplemented with diaminopimelic acid (DAP) to a final concentration of 300µM, and 

kanamycin (50µg/ml). The E. coli strains Nissle 1917, IAI16, IAI13, IAI33, EcoR-63, 

NRG857C, BW25113, and UTI89 are available in the Ecoref panel (Galardini et al., 

2017) and were routinely cultured in LB media at 37ºC, unless stated otherwise. 

 

Data availability 

 All the sequence, proteome, and annotation data corresponding to the E. coli 

strains Nissle 1917, IAI16, IAI13, IAI33, EcoR-63, NRG857C, BW25113, and UTI89 

was used as is from Galardini et al. P. aeruginosa sequencing dataset was compiled 

from SRR8907313_1 and SRR8907318_2. M. tuberculosis sequencing dataset was 

compiled from SRR12234126, SRR12465951, and SRR12473643. S. pneumoniae 

sequencing dataset was compiled from .sam files available as unpublished Jan-Willem 

Veening Lab data. Any remaining datasets were downloaded from works referenced 

as required. 

 

Transposon Library Building 

An overnight culture of the strain of interest was used for either electroporation 

with pKMW7 or conjugation with the APA766 strain as described by Wetmore et al. 

(Wetmore et al., 2015). Briefly, for the conjugation process, an overnight culture of 

APA766 was diluted to OD578=1.0 and 200µl plated on LB Agar supplemented with 

DAP. After 1h at 37ºC, 200µl of a diluted culture (OD578=1.0) of the strain of interest 

was added to the top of the APA766 culture. Conjugation was performed for 4h at 

37ºC, at which point LB supplemented with Kanamycin (30µl/ml) was added to the 

plate and stirred with a spatula. Serial dilutions were performed at this point for total 

library CFU estimation (to infer the expected library saturation). The mix of either 

conjugated or electroporated cells was diluted to a starting OD578 ~ 0.3-0.01 in LB 

supplemented with Kanamycin (30µl/ml) and grown for 30 generations in continuous 
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exponential phase, at which point the transposon library was frozen at -80C and total 

DNA extracted.  

 

Transposon Library Sequencing 

Total DNA extracted from the built transposon libraries was used as template 

for the nested PCR required to extract the Tn5-chromosome borders, and attach the 

Illumina sequencing adaptors, as described by Anzai et al. (Anzai et al., 2017). Briefly, 

a PCR was performed with the primers Seq_1.transposon and Seq_1.Chrom.1 (Das 

et al., 2005). This latter binds the transposon sequence near its end junction, and the 

first carries a random base pair sequence for randomly annealing to the bacterial DNA 

downstream of the transposon junction. A second parallel PCR was performed using 

Seq_1.Chrom.4, which has a different GC content from Seq_1.Chrom.1.  

 

Table 4 | 1st nested PCR reaction for assembling the Tn5 Illumina library. 

Reagent Amount 

Q5 reaction buffer 5 µl 
Q5 Hot Start Polymerase 0.25 µl 

dNTP's (5µM) 2 µl 
Seq.1.Transposon (10uM) 0.5 µl 

Seq.1 Chrome 1 (run another PCR with Seq.1 Chrome 4 (10uM) 0.5 µl 
DNA (150ng) X 

H2O For 25 µl 
  

Table 5 | 1st nested PCR reaction cycling protocol. 

Temperature (ºC) Time Cycles  

98ºC 5 min 1x 
98ºC 30 s   
30ºC 30 s 6X 
72ºC 1.5 min   
98ºC 30 s   
45ºC 30 s 25X 
72ºC 2 min  
72ºC 5 min 1x 

 

The products of both PCRs, comprised of all transposon borders, were merged 

and cleaned using a PCR cleaning kit (QIAquick PCR purification kit). A final 3rd PCR 

was then performed, indexing each sample as appropriate with an Illumina sequencing 

specific nucleotide sequence present in the ‘Seq_2.Chrom.X’ primers. A mixture of 

primers with increasing number of “N” random base pairs was used. This offsets the 
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PCR sequence thus optimizing sequencing cluster formation by avoiding saturating 

the same reading channel across all sequences. 

 

Table 6 | 2st nested PCR reaction for indexing and assembling the Tn5 Illumina 
library. 

Reagent Amount 

Q5 reaction buffer 10 µl 
Q5 Hot Start Polymerase 0. 5 µl 

dNTP's (5µM) 4 µl 
Mix of Seq.2.Trans_4N/5N/6N/7N (1uM) 0.5 µl 

Seq.2 Chrome X (index primer) (1uM) 0.5 µl 
Purified PCR 5 µl 

H2O For 50 µl 
  

Table 7 | 2st nested PCR reaction cycling protocol. 

Temperature (ºC) Time Cycles  

98ºC 3 min 1x 
98ºC 30 s   
52ºC 30 s 25X 
72ºC 30 s  
72ºC 5 min 1x 

 

The resulting Illumina library was cleaned using SPRIselect magnetic beads 

(Beckman Coulter) (0.8X size restriction) and submitted to multiplexed either single-

ended or pair-ended sequencing (150bp) in a MiSeq or HiSeq 4000 apparatus at 

EMBL GeneCore. 

 

Transposon Library Sequencing Analysis 

 The TnSeeker pipeline processed the data corresponding to all analyzed 

libraries, unless indicated otherwise. Essentially, FASTQ files were trimmed based on 

the existence of a Tn5 border (AGATGTGTATAAGAGACAG) junction and of a quality 

passing E. coli chromosome sequence (Phred-score >= 10 across the length of the 

chromosome DNA sequence). The trimmed reads were then mapped to their 

respective strain FASTA file using Bowtie2 (--very-sensitive-local alignment profile). 

TnSeeker then extracted the location of all the valid transposon-chromosome border 

alignments (filtering based on MAPQ>=40, and the expected FLAG values), as well 

as the 10bp following a given insertion (for later transposon insertion bias frequency 

calculation). When appropriate, the transposon locations of several independent 

libraries were pooled together to increase the resolution of the essentiality calculation.  
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Essentiality Analysis 

 Essential gene analysis was performed by TnSeeker, unless stated otherwise. 

Essentiality is determined by comparing the obtained insertion frequency of a given 

transposon across all combinations of 2-mers (dinucleotides) in the genome (resulting 

in different insertion probabilities for each pair, depending on the used transposon 

insertion bias), with the ones observed for any given domain. Essentiality then is, in 

this case, defined by a domain that has less transposon insertions than the one 

expected by chance over the entire genome. 

To conduct these comparisons, we applied a Poisson-Binomial distribution 

model based on the Python module Poibin, from Mika J. Straka. With these 

considerations, any transposon insertion bias, and both the domain’s individual length 

and nucleotide composition are taken into consideration when calculating essentiality. 

The resulting probability values were FDR corrected using the Benjamini-Hochberg 

procedure. This process was iteratively repeated starting from a domain size 

corresponding to the library saturation (i.e., a domain size corresponding to the 

average insertions per length of genome [for example, if one insertion is expected 

every 10bp, the iteration starts with 10bp size domains]), increasing until the domain 

size was larger than the largest gene. Thresholding was performed, for each domain 

size iteration, by progressively decreasing the significance threshold at which a 

domain is deemed essential, and determining the true-positive and false-negative 

discovery rate from a gold set. The gold set was obtained by combining the common 

overlap of all the genes deemed essential (or not essential for the true negatives set) 

from studies available in the OGEE database for Acinetobacter baumannii, Bacillus 

subtilis, Escherichia coli, Haemophilus influenza, Mycobacterium tuberculosis, 

Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pneumoniae, and 

Vibrio cholerae. 71 genes constitute the true-positive dataset, and 6229 the true-

negatives.  

 

COG enrichment analysis 

The COG terms for the proteome of the analyzed transposon libraries strains 

were obtained using the online version of the eggNOG v5.0 program (Huerta-Cepas 

et al., 2019). A custom-made Python script was used to perform enrichment analysis 
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on the various datasets using a two-sided fisher exact test, with FDR correction. One-

letter abbreviations for the functional categories:  

• J - translation, including ribosome structure and biogenesis;  

• N/A - non-assigned; 

• C - energy production and conversion; 

• O - molecular chaperones and related functions; 

• G - carbohydrate metabolism and transport; 

• E - amino acid metabolism and transport; 

• M - cell wall structure and biogenesis and outer membrane; 

• P - inorganic ion transport and metabolism; 

• K - transcription; 

• R - general functional prediction; 

• H - coenzyme metabolism; 

• N - secretion, motility and chemotaxis; 

• F – Nucleotide transport and metabolism; 

• L - replication, recombination and repair; 

• S - no functional prediction;  

• D - cell division and chromosome partitioning; 

• U – Intracellular trafficking, secretion, and vesicular transport; 

• T – Signal transduction mechanisms; 

• I – Lipid transport and metabolism 

• Q – Secondary metabolites biosynthesis, transport, and catabolism 

• V – Defense mechanisms 
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Table 3 | Primers used in this study. 

 Primer Name Primer Sequence Used Workflow 

Tn5_Transp_Fw GGTAGTAAAGCCGCCCAGGAAG 
Quality control during 

Tn5 optimization 

Tn5_Transp_Rv CCTGCGCCATCAGATCCTTG 
Quality control during 

Tn5 optimization 

Kan_test_Fw ATGAGCCATATTCAACGGGAAACG 
Quality control during 

Tn5 optimization 

Kan_test_Rv CGACTCGTCCAACATCAATACAACC 
Quality control during 

Tn5 optimization 

Transp_LOCALCH

ECK 
CCAATTAACCAATTCTGATTAGAAAAACTCATCG 

Quality control during 

Tn5 optimization 

Nested_Transp_LO

CHEK 
AGAGACCTCGTGGACATCCC 

Quality control during 

Tn5 optimization 

Nested_Rand_Chro

mo 
GGCCACGCGTCGACTAGTCA 

Quality control during 

Tn5 optimization 

Seq_1.transposon CGATGAGTTTTTCTAATCAGAATTGGTTAATTGG Illumina Sequencing 

Seq_1.Chrom.1 GAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNNACGC Illumina Sequencing 

Seq_1.Chrom.2 GAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNNGATAT Illumina Sequencing 

Seq_1.Chrom.3 GAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNNGCTCG Illumina Sequencing 

Seq_1.Chrom.4 GAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNNGACTC Illumina Sequencing 

Seq_2.Transp_4N 
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACAC

GACGCTCTTCCGATCTNNNNCTGCAGGGATGTCCACGAGG 
Illumina Sequencing 

Seq_2.Transp_5N 
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACAC

GACGCTCTTCCGATCTNNNNNCTGCAGGGATGTCCACGAGG 
Illumina Sequencing 

Seq_2.Transp_6N 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACAC

GACGCTCTTCCGATCTNNNNNNCTGCAGGGATGTCCACGAG

G 

Illumina Sequencing 

Seq_2.Transp_7N 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACAC

GACGCTCTTCCGATCTNNNNNNNCTGCAGGGATGTCCACGA

GG 

Illumina Sequencing 

Seq_2.Chrom.1 
CAAGCAGAAGACGGCATACGAGATAACGATGGGTGACTGGA

GTTCAGACGTGTGCTCTT 
Illumina Sequencing 

Seq_2.Chrom.2 
CAAGCAGAAGACGGCATACGAGATAAGCGCAAGTGACTGGA

GTTCAGACGTGTGCTCTT 
Illumina Sequencing 

Seq_2.Chrom.3 
CAAGCAGAAGACGGCATACGAGATAATTGCCGGTGACTGGA

GTTCAGACGTGTGCTCTT 
Illumina Sequencing 

Seq_2.Chrom.4 
CAAGCAGAAGACGGCATACGAGATACAGCTCAGTGACTGGA

GTTCAGACGTGTGCTCTT 
Illumina Sequencing 

Seq_2.Chrom.5 
CAAGCAGAAGACGGCATACGAGATACCTTGGAGTGACTGGA

GTTCAGACGTGTGCTCTT 
Illumina Sequencing 

Seq_2.Chrom.6 
CAAGCAGAAGACGGCATACGAGATACGAAGGTGTGACTGGA

GTTCAGACGTGTGCTCTT 
Illumina Sequencing 
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Seq_2.Chrom.7 
CAAGCAGAAGACGGCATACGAGATACGAGATGGTGACTGGA

GTTCAGACGTGTGCTCTT 
Illumina Sequencing 

Seq_2.Chrom.8 
CAAGCAGAAGACGGCATACGAGATACGTCAACGTGACTGGA

GTTCAGACGTGTGCTCTT 
Illumina Sequencing 

Seq_2.Chrom.9 
CAAGCAGAAGACGGCATACGAGATACGTTCCTGTGACTGGA

GTTCAGACGTGTGCTCTT 
Illumina Sequencing 

Seq_2.Chrom.10 
CAAGCAGAAGACGGCATACGAGATACTCGAGTGTGACTGGA

GTTCAGACGTGTGCTCTT 
Illumina Sequencing 

Seq_1.transp_alt1 ACGCTGCAGGTCGAC Illumina Sequencing 

Seq_2.Transp_4N_

alt1 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACAC

GACGCTCTTCCGATCTNNNNCGGTTGAGATGTGTATAAGAGA

C 

Illumina Sequencing 

Transp_Sanger_1 AGACCGATACCAGGATCTTGC Illumina Sequencing 

Transp_Sanger_2 GAACTGCCTCGGTGAG Illumina Sequencing 

ilu.Seq_2.Chrom.1 
CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTT

CAGACGTGTGCTCTT 
Illumina Sequencing 

ilu.Seq_2.Chrom.2 
CAAGCAGAAGACGGCATACGAGATACACCGGTGACTGGAGT

TCAGACGTGTGCTCTT 
Illumina Sequencing 

ilu.Seq_2.Chrom.3 
CAAGCAGAAGACGGCATACGAGATGCCTGAGTGACTGGAGT

TCAGACGTGTGCTCTT 
Illumina Sequencing 

ilu.Seq_2.Chrom.4 
CAAGCAGAAGACGGCATACGAGATTGGATAGTGACTGGAGTT

CAGACGTGTGCTCTT 
Illumina Sequencing 

ilu.Seq_2.Chrom.5 
CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTT

CAGACGTGTGCTCTT 
Illumina Sequencing 

ilu.Seq_2.Chrom.6 
CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTT

CAGACGTGTGCTCTT 
Illumina Sequencing 

ilu.Seq_2.Chrom.7 
CAAGCAGAAGACGGCATACGAGATGGACTGGTGACTGGAGT

TCAGACGTGTGCTCTT 
Illumina Sequencing 

ilu.Seq_2.Chrom.8 
CAAGCAGAAGACGGCATACGAGATCAGTACGTGACTGGAGTT

CAGACGTGTGCTCTT 
Illumina Sequencing 
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Supplementary 
 
 
 

 

Supplementary figure 1 | Growth curves for the used Tn5 library strains.  

A1) Normalized growth curves. The OD corresponding to the empty control was subtracted at 

each time point, for each strain. All curves were adjusted to start at their respective OD when 

the strain with the lowest OD crosses the value of 0.004 (lower readable value in the used 

instrument). A2) Un-normalized growth curves.  
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Supplementary figure 2 | Tn5 library read/insertion bias analysis.  

Read distribution (reads per million [RPM]) across the chromosome (different contigs are 

indicated by different background shades, ordered from largest to smallest) for BW25113 (A), 

IAI33 (B), EcoR-63 (C), Nissle 1917 (D), IAI13 (E), NRG 857 C (F), IAI16 (G), and UTI89 (H). 

Number of reads and insertions in the positive and negative DNA strand, per bin of 50,000 bp, 

are indicated by the red/blue lines. Density plot represents the read quantity per insertion. 
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Supplementary figure 3 | Naïve approach to gene essentiality inference.  

A) Distribution of essentialome size determined using a naïve approach according to library 

size for all Tn5 libraries in this study. The y-axis represents the average number of bp between 

contiguous transposon insertions, and thus the degree of library saturation. B, C) Comparison 

of essential genes inferred from the BW25113 Tn5 library using a naïve approach with those 

returned from other methods or studies. B) Essentials comparison with Goodall et al., Koo 

BM. et al., Price MN et al. (Emily C. A. Goodall et al., 2018; Koo et al., 2017; Price et al., 2018). 

C) Same as B) but with the essentials returned when using the TRANSIT Tn5Gaps method 

(DeJesus et al., 2015). D) Comparison of the essential genes returned with the naïve method, 

TRANSIT, the Koo BM et al. dataset, and ANUBIS when using the Poisson estimate with the 

same gold set as the ones used by TnSeeker (Miravet-Verde et al., 2020). The ANUBIS 

dataset consists of 605 essential genes, but only 350 are shown due to incompatibilities in 

gene annotations. 
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Supplementary figure 4 | COG enrichment analysis of the essentialome of all 

built Tn5 libraries.  

See methods for COG terms categories description. 
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Supplementary figure 5 | Venn diagram overlapping the essentials inferred 

using TnSeeker, TRANSIT, and the OGEE database (Gurumayum et al., 2021).  

A) Pseudomonas aeruginosa (Poulsen et al., 2019); B) Mycobacterium tuberculosis (Carey et 

al., 2018) C) Venn diagram comparing the essentials inferred from an unpublished 

Streptococcus pneumoniae transposon library (Jan Willem Veening lab), with those from 

Opijnen vT. (van Opijnen & Camilli, 2012), Liu X. et al. 2017 (X. Liu et al., 2017), and Liu X. et 

al. 2021 (Xue Liu et al., 2021). These 2 latter refer to an operon level CRISPRI library. Analysis 

was thus also performed at the operon level for the transposon libraries, with its respective 

overlap being indicated by an *.  
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Supplementary figure 6 | Pan-essentialome phylogeny comparison. 

Heatmap of the A) pan-essentialome B) pan-Genome when discarding genes “too small to be 
assayed” from all strains. Strains were vertically organized based on Pearson correlation of 
shared essentials. B) Phylogeny tree between all 8 analyzed strains in this study. parsnp was 
used for tree construction using default settings (Treangen et al., 2014). 
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Supplementary table 1 | Tn5 mutagenesis efficiency of the strains used to build 

transposon libraries.  

Strains in bold were downstream selected for transposon library building. Efficiency was 
calculated based on an E. coli cell number of 2.66x109 cells per ml at OD600=1. The number 
of CFUs after overnight selection was divided by the initial amount of CFUs. ‘-‘ means that no 
transformants were obtained. ‘N/A’ means that the experiment was not performed. 300ng of 
plasmid DNA were used for electroporation. 
 

Strain 
Tn5 mutagenesis efficiency by 

electroporation 
Tn5 mutagenesis efficiency by 

conjugation 

BW25113 1.4x10-3 1.1x10-4 

UTI 89 - 3.7x10-4 

IAI 33 1.9x10-5 1.1x10-4 

Nissle 1917 3.7x10-6 3.7x10-6 

IAI 16 1.4x10-5 2.8x10-4 

IAI 13 1.9x10-5 4.7x10-4 

NRG 857 C 9.9x10-6 1.5x10-3 

EcoR-63 3.3x10-4 1.0x10-4 

EcoR-39 1.1x10-7 1.2x10-7 

NILS 82 1.6x10-6 N/A 

SEPT362 1.7x10-6 N/A 

HM-345 2.1x10-7 2.2x10-5 

H10407 6.9x10-5 N/A 

IAI63 3.8x10-8 4.6x10-5 

EcoR-42 N/A 5.9x10-6 

HM-346 N/A 1.6x10-7 

HM-341 N/A 3.8x10-7 

EcoR-28 9.7x10-9 N/A 

E2348/69 6.5x10-7 N/A 

DE-COMM-2705 - N/A 

EcoR-70 1.5x10-7 N/A 

NILS 30 1.4x10-6 N/A 

Q42 - 2.9x10-6 

IAI36 1.4x10-5 N/A 

NILS 18 5.2x10-5 N/A 

EcoR-12 1.2x10-4 N/A 

HM-50 1.4x10-4 N/A 

UTI 83972 1.6x10-4 N/A 

HM605 2.5x10-8 N/A 

IAI 80 7.5x10-9 N/A 

NILS 79 7.7x10-6 N/A 

ZG-22.1 2x10-5 N/A 

EC958 - - 

NILS 49 - - 

NILS 34 - - 
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Supplementary table 2 | Unique essential genes per strain.  

Unique essential genes correspond to genes that are uniquely essential in only 1 of the 
libraries, having explicitly been deemed non-essential in the remaining 7 libraries, or not 
existing (the gene did not exhibit sufficient homology in the other strains to be considered 
equal). Uniqueness indicates whether a gene also exists in another strain or not, in this case 
being non-essential in the other strain(s). 
 

Strain Gene Name/ID Functional Description 
Uniquenes
s 

BW25113 NT12004_22_01105 
e14 prophage%3B isocitrate 
dehydrogenase%2C specific for NADP+ 

Unique 

BW25113 NT12004_22_02049 IS3 transposase B Unique 

BW25113 NT12004_22_02920 IS5 transposase and trans-activator Unique 

BW25113 NT12004_22_01957 IS2 transposase TnpB Unique 

BW25113 NT12004_22_03568 
fused 4'-phosphopantothenoylcysteine 
decarboxylase/phosphopantothenoylcysteine 
synthetase%2C FMN-binding 

Unique 

BW25113 NT12004_22_00526 IS3 transposase B Unique 

BW25113 NT12004_22_00339 IS30 transposase Unique 

BW25113 NT12004_22_00646 IS5 transposase and trans-activator Unique 

BW25113 NT12004_22_01434 H repeat-associated putative transposase Unique 

BW25113 minD 
membrane ATPase of the MinC-MinD-MinE 
system 

Non Unique 

BW25113 NT12004_22_01955 IS5 transposase and trans-activator Unique 

BW25113 NT12004_22_03885 translation elongation factor EF-Tu 2 Unique 

BW25113 NT12004_22_03429 IS5 transposase and trans-activator Unique 

BW25113 NT12004_22_03262 translation elongation factor EF-Tu 1 Unique 

BW25113 NT12004_22_02805 IS2 transposase TnpB Unique 

BW25113 NT12004_22_00682 

Rhs family protein%2C putative polymorphic 
toxin%3B putative polysaccharide 
synthesis/export protein%3B putative 
neighboring cell growth inhibitor 

Unique 

BW25113 NT12004_22_01376 IS2 transposase TnpB Unique 

BW25113 NT12004_22_00014 IS186 transposase Unique 

BW25113 NT12004_22_01468 
glutamate decarboxylase B%2C PLP-
dependent 

Unique 

BW25113 NT12004_22_02152 IS5 transposase and trans-activator Unique 

BW25113 NT12004_22_00485 Rhs family putative polymorphic toxin Unique 

BW25113 NT12004_22_00680 Rhs family putative polymorphic toxin Unique 

BW25113 NT12004_22_01378 IS30 transposase Unique 

BW25113 NT12004_22_03521 

Rhs family protein%2C putative polymorphic 
toxin%3B putative polysaccharide 
synthesis/export protein%3B putative 
neighboring cell growth inhibitor 

Unique 

BW25113 NT12004_22_03404 
Rhs family putative polymorphic toxin%2C 
putative neighboring cell growth inhibitor 

Unique 

BW25113 NT12004_22_00569 IS186 transposase Unique 

BW25113 NT12004_22_03145 IS5 transposase and trans-activator Unique 

BW25113 NT12004_22_02980 IS2 transposase TnpB Unique 

BW25113 NT12004_22_01306 IS5 transposase and trans-activator Unique 
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BW25113 NT12004_22_00352 IS2 transposase TnpB Unique 

BW25113 NT12004_22_00291 IS3 transposase B Unique 

BW25113 NT12004_22_01137 adhesin Unique 

BW25113 NT12004_22_00361 IS3 transposase B Unique 

BW25113 NT12004_22_01476 putative oxidoreductase Unique 

BW25113 NT12004_22_03879 glutamate racemase Unique 

BW25113 NT12004_22_00248 IS5 transposase and trans-activator Unique 

BW25113 NT12004_22_01991 IS5 transposase and trans-activator Unique 

BW25113 rhsE Rhs family putative polymorphic toxin Non Unique 

BW25113 NT12004_22_04187 IS30 transposase Unique 

BW25113 NT12004_22_01000 IS3 transposase B Unique 

BW25113 NT12004_22_02356 IS186 transposase Unique 

BW25113 NT12004_22_00685 putative transposase Unique 

BW25113 NT12004_22_04178 IS2 transposase TnpB Unique 

BW25113 NT12004_22_00538 IS5 transposase and trans-activator Unique 

BW25113 paaH 
3-hydroxyadipyl-CoA dehydrogenase%2C 
NAD+-dependent 

Non Unique 

ECOR-63 group_1690 hypothetical protein Non Unique 

ECOR-63 sacA Sucrose-6-phosphate hydrolase Unique 

ECOR-63 NT12079_253_00003 hypothetical protein Unique 

ECOR-63 group_790 Chromosome partition protein Smc Non Unique 

ECOR-63 group_2320 hypothetical protein Unique 

ECOR-63 group_5869 CP4-57 prophage%3B integrase Non Unique 

ECOR-63 group_5922 Sel1 family TPR-like repeat protein Unique 

ECOR-63 group_6381 
fused sensory histidine kinase in two-
component regulatory system with KdpE: signal 
sensing protein 

Non Unique 

ECOR-63 toxA Dermonecrotic toxin Non Unique 

ECOR-63 NT12079_253_04222 putative flagellar export pore protein Unique 

ECOR-63 caeA Carboxylesterase A precursor Unique 

ECOR-63 group_1 hypothetical protein Non Unique 

ECOR-63 group_16546 
DNA adenine methyltransferase%2C SAM-
dependent 

Unique 

ECOR-63 group_6288 hypothetical protein Unique 

ECOR-63 group_3322 hypothetical protein Unique 

ECOR-63 group_627 hypothetical protein Non Unique 

ECOR-63 lgrD 3-oxoacyl-[acyl-carrier-protein] synthase I Non Unique 

ECOR-63 NT12079_253_02089 
putative ABC superfamily sugar transporter 
periplasmic-binding protein 

Unique 

ECOR-63 group_2237 
fused lipid transporter subunits of ABC 
superfamily: membrane component/ATP-
binding component 

Non Unique 

ECOR-63 NT12079_253_04356 
fimbrial usher outer membrane porin 
protein%3B FimCD chaperone-usher 

Unique 

ECOR-63 group_3167 putative multdrug exporter%2C MATE family Non Unique 

ECOR-63 group_6290 hypothetical protein Unique 

ECOR-63 group_16549 
RNA polymerase remodeling/recycling factor 
ATPase%3B RNA polymerase-associated%2C 
ATP-dependent RNA translocase 

Unique 
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ECOR-63 NT12079_253_00216 hypothetical protein Unique 

ECOR-63 cas3 
CRISPR-associated nuclease/helicase Cas3 
subtype I-F/YPEST 

Non Unique 

ECOR-63 NT12079_253_03668 hypothetical protein Unique 

ECOR-63 NT12079_253_04360 putative oxidoreductase Unique 

ECOR-63 group_16547 Serine protease AprX Unique 

ECOR-63 group_392 hypothetical protein Non Unique 

IAI13 NT12110_97_02204 
fused 4'-phosphopantothenoylcysteine 
decarboxylase/phosphopantothenoylcysteine 
synthetase%2C FMN-binding 

Unique 

IAI13 NT12110_97_03898 
e14 prophage%3B isocitrate 
dehydrogenase%2C specific for NADP+ 

Unique 

IAI16 eutA 
reactivating factor for ethanolamine ammonia 
lyase 

Non Unique 

IAI16 NT12113_98_03875 glutamate racemase Unique 

IAI16 NT12113_98_01396 putative selenate reductase%2C periplasmic Unique 

IAI16 group_18548 hypothetical protein Unique 

IAI16 mhpC 
2-hydroxy-6-ketonona-2%2C4-dienedioic acid 
hydrolase 

Non Unique 

IAI16 group_1105 protease%2C ATP-dependent zinc-metallo Unique 

IAI16 group_8515 protein disaggregation chaperone Non Unique 

IAI16 group_18536 hypothetical protein Unique 

IAI16 NT12113_98_02846 
delta(2)-isopentenylpyrophosphate tRNA-
adenosine transferase 

Unique 

IAI16 NT12113_98_02062 
fused 4'-phosphopantothenoylcysteine 
decarboxylase/phosphopantothenoylcysteine 
synthetase%2C FMN-binding 

Unique 

IAI16 group_12787 DNA cytosine methyltransferase Unique 

IAI16 efeO inactive ferrous ion transporter EfeUOB Non Unique 

IAI16 frvB 
putative PTS enzyme%2C IIB component/IIC 
component 

Non Unique 

IAI16 NT12113_98_02782 pyrimidine oxygenase%2C FMN-dependent Unique 

IAI33 group_2005 putative glycosyl transferase Unique 

IAI33 fepA iron-enterobactin outer membrane transporter Non Unique 

IAI33 group_16670 hypothetical protein Unique 

IAI33 group_9432 Mobilization protein A Unique 

IAI33 sucC succinyl-CoA synthetase%2C beta subunit Non Unique 

IAI33 group_7822 MreB assembly cytoskeletal protein Non Unique 

IAI33 NT12130_106_03654 putative flagellar export pore protein Unique 

IAI33 NT12130_106_03136 putative adhesin Unique 

IAI33 mutE Methylaspartate mutase E chain Unique 

IAI33 group_774 hypothetical protein Unique 

IAI33 NT12130_106_04338 succinylarginine dihydrolase Unique 

IAI33 group_16596 hypothetical protein Unique 

IAI33 NT12130_106_03645 methyl-accepting chemotaxis protein II Unique 

IAI33 ydfI 
putative NAD-dependent D-mannonate 
oxidoreductase 

Non Unique 

IAI33 NT12130_106_03739 Rac prophage%3B putative tail fiber protein Unique 

IAI33 group_19383 hypothetical protein Unique 
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IAI33 NT12130_106_00716 
fused 4'-phosphopantothenoylcysteine 
decarboxylase/phosphopantothenoylcysteine 
synthetase%2C FMN-binding 

Unique 

IAI33 group_19381 hypothetical protein Unique 

IAI33 group_3872 
fused lipid transporter subunits of ABC 
superfamily: membrane component/ATP-
binding component 

Unique 

IAI33 yehP VMA domain putative YehL ATPase stimulator Non Unique 

IAI33 hutU Urocanate hydratase Unique 

IAI33 chbC 
N%2CN'-diacetylchitobiose-specific enzyme IIC 
component of PTS 

Non Unique 

IAI33 group_19416 hypothetical protein Unique 

IAI33 fepG iron-enterobactin transporter subunit Non Unique 

IAI33 group_3364 hypothetical protein Unique 

IAI33 NT12130_106_04562 hypothetical protein Unique 

IAI33 ipaH3 E3 ubiquitin-protein ligase SlrP Unique 

Nissle 
1917 

NT12010_146_04377 
long-chain fatty acid outer membrane 
transporter 

Unique 

Nissle 
1917 

group_4672 hypothetical protein Unique 

Nissle 
1917 

group_7966 hypothetical protein Non Unique 

Nissle 
1917 

group_12072 hypothetical protein Unique 

Nissle 
1917 

group_7943 hypothetical protein Unique 

Nissle 
1917 

mtnK Methylthioribose kinase Unique 

Nissle 
1917 

group_5858 Bifunctional protein Aas Unique 

Nissle 
1917 

group_678 Type-1 restriction enzyme R protein Non Unique 

Nissle 
1917 

group_7898 hypothetical protein Unique 

Nissle 
1917 

group_5785 hypothetical protein Non Unique 

Nissle 
1917 

group_2239 Undecaprenyl-phosphate mannosyltransferase Unique 

Nissle 
1917 

iucB N(6)-hydroxylysine O-acetyltransferase Non Unique 

Nissle 
1917 

group_4657 hypothetical protein Non Unique 

Nissle 
1917 

group_1905 
colicin IA outer membrane receptor and 
translocator%3B ferric iron-catecholate 
transporter 

Unique 

Nissle 
1917 

group_424 putative adhesin Unique 

Nissle 
1917 

group_2188 3-oxoacyl-[acyl-carrier-protein] synthase II Unique 

Nissle 
1917 

wcaJ 
colanic biosynthesis UDP-glucose lipid carrier 
transferase 

Non Unique 

Nissle 
1917 

NT12010_146_00364 hypothetical protein Unique 

Nissle 
1917 

group_12109 hypothetical protein Unique 
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Nissle 
1917 

NT12010_146_00726 putative oxidoreductase Unique 

Nissle 
1917 

group_7945 hypothetical protein Unique 

Nissle 
1917 

group_12003 CP4-57 prophage%3B integrase Unique 

Nissle 
1917 

sgcX 
putative endoglucanase with Zn-dependent 
exopeptidase domain protein 

Non Unique 

Nissle 
1917 

group_1397 hypothetical protein Unique 

Nissle 
1917 

group_950 hypothetical protein Non Unique 

Nissle 
1917 

NT12010_146_02098 
fused 4'-phosphopantothenoylcysteine 
decarboxylase/phosphopantothenoylcysteine 
synthetase%2C FMN-binding 

Unique 

Nissle 
1917 

fabF_1 3-oxoacyl-[acyl-carrier-protein] synthase II Unique 

Nissle 
1917 

group_675 Sel1 family TPR-like repeat protein Non Unique 

Nissle 
1917 

group_12098 mannose-1-phosphate guanyltransferase Unique 

Nissle 
1917 

group_3177 hypothetical protein Non Unique 

Nissle 
1917 

group_12144 Rac prophage%3B integrase Non Unique 

Nissle 
1917 

group_2645 hypothetical protein Unique 

Nissle 
1917 

group_7881 sialic acid transporter Unique 

Nissle 
1917 

group_2205 hypothetical protein Unique 

Nissle 
1917 

NT12010_146_00353 
CP4-44 prophage%3B antigen 43 (Ag43) 
phase-variable biofilm formation 
autotransporter 

Unique 

Nissle 
1917 

group_3126 hypothetical protein Unique 

Nissle 
1917 

group_1652 DNA recombination-mediator A family protein Non Unique 

Nissle 
1917 

group_12131 hypothetical protein Unique 

Nissle 
1917 

NT12010_146_01590 hypothetical protein Unique 

Nissle 
1917 

NT12010_146_00718 
CP4-44 prophage%3B antigen 43 (Ag43) 
phase-variable biofilm formation 
autotransporter 

Unique 

Nissle 
1917 

group_775 adhesin Unique 

Nissle 
1917 

group_2244 
Hsp70 family chaperone Hsc62%2C binds to 
RpoD and inhibits transcription 

Non Unique 

Nissle 
1917 

group_12167 hypothetical protein Unique 

Nissle 
1917 

yjhG putative dehydratase Non Unique 

Nissle 
1917 

NT12010_146_00730 
fimbrial usher outer membrane porin 
protein%3B FimCD chaperone-usher 

Unique 

Nissle 
1917 

pelX Pectate disaccharide-lyase precursor Non Unique 

Nissle 
1917 

group_7916 hypothetical protein Unique 
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Nissle 
1917 

group_12184 hypothetical protein Non Unique 

Nissle 
1917 

group_1656 Multifunctional CCA protein Non Unique 

Nissle 
1917 

group_1220 
N%2CN'-diacetylchitobiose-specific enzyme IIC 
component of PTS 

Non Unique 

Nissle 
1917 

group_419 putative fimbrial-like adhesin protein Non Unique 

Nissle 
1917 

group_1917 hypothetical protein Unique 

Nissle 
1917 

group_2250 hypothetical protein Unique 

Nissle 
1917 

fhaB Filamentous hemagglutinin Unique 

Nissle 
1917 

group_1916 Mobilization protein A Non Unique 

NRG 
857C 

NT12016_152_01504 hypothetical protein Unique 

NRG 
857C 

NT12016_152_03918 translation elongation factor EF-Tu 2 Unique 

NRG 
857C 

NT12016_152_01079 
e14 prophage%3B isocitrate 
dehydrogenase%2C specific for NADP+ 

Unique 

NRG 
857C 

NT12016_152_01153 hypothetical protein Unique 

NRG 
857C 

NT12016_152_03569 
fused 4'-phosphopantothenoylcysteine 
decarboxylase/phosphopantothenoylcysteine 
synthetase%2C FMN-binding 

Unique 

UTI89 NT12097_202_02172 
Rac prophage%3B putative DNA replication 
protein 

Unique 

UTI89 NT12097_202_04460 
delta(2)-isopentenylpyrophosphate tRNA-
adenosine transferase 

Unique 

UTI89 NT12097_202_03925 
fused 4'-phosphopantothenoylcysteine 
decarboxylase/phosphopantothenoylcysteine 
synthetase%2C FMN-binding 

Unique 

UTI89 NT12097_202_03610 translation elongation factor EF-Tu 2 Unique 

UTI89 NT12097_202_01469 hypothetical protein Unique 

UTI89 NT12097_202_01151 
colicin IA outer membrane receptor and 
translocator%3B ferric iron-catecholate 
transporter 

Unique 

UTI89 pncB nicotinate phosphoribosyltransferase Non Unique 

UTI89 NT12097_202_01486 hypothetical protein Unique 

UTI89 NT12097_202_00359 hypothetical protein Unique 

UTI89 NT12097_202_01467 hypothetical protein Unique 

UTI89 NT12097_202_01635 hypothetical protein Unique 

UTI89 NT12097_202_02158 hypothetical protein Unique 

UTI89 NT12097_202_01329 hypothetical protein Unique 

UTI89 NT12097_202_00041 hypothetical protein Unique 

UTI89 rdgC 
nucleoid-associated ssDNA and dsDNA binding 
protein%3B competitive inhibitor of RecA 
function 

Non Unique 

UTI89 NT12097_202_03577 translation elongation factor EF-Tu 1 Unique 

UTI89 NT12097_202_02173 hypothetical protein Unique 

UTI89 NT12097_202_01313 hypothetical protein Unique 

UTI89 NT12097_202_03806 
glutamate decarboxylase A%2C PLP-
dependent 

Unique 
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UTI89 NT12097_202_01663 
glutamate decarboxylase B%2C PLP-
dependent 

Unique 

UTI89 NT12097_202_04595 hypothetical protein Unique 
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Supplementary table 3 | Unique essential genes returned by TnSeeker for the 

BW25113 Tn5 library.  

Genes not in common with any of the analyzed datasets (figure 3E)  
Gene Function 

ksgA 
Specifically, dimethylates two adjacent adenosines (A1518 and A1519) in the 
loop of a conserved hairpin near the 3'-end of 16S rRNA in the 30S particle. 
May play a critical role in biogenesis of 30S subunits 

aceE 
Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the 
overall conversion of pyruvate to acetyl-CoA and CO2 

glnD 

in response to the nitrogen status of the cell that GlnD senses through the 
glutamine level. Under low glutamine levels, catalyzes the conversion of the PII 
proteins and UTP to PII-UMP and PPi, while under higher glutamine levels, 
GlnD hydrolyzes PII-UMP to PII and UMP (deuridylylation). Thus, controls 
uridylylation state and activity of the PII proteins, and plays an important role in 
the regulation of nitrogen 

ubiF 2-octoprenyl-3-methyl-6-methoxy-1,4-benzoquinone hydroxylase activity 

ychF 
ATPase that binds to both the 70S ribosome and the 50S ribosomal subunit in 
a nucleotide-independent manner 

fnr 

Global transcription factor that controls the expression of over 100 target genes 
in response to anoxia. It facilitates the adaptation to anaerobic growth 
conditions by regulating the expression of gene products that are involved in 
anaerobic energy metabolism. When the terminal electron acceptor, O(2), is 
no longer available, it represses the synthesis of enzymes involved in aerobic 
respiration and increases the synthesis of enzymes required for anaerobic 
respiration 

ydgN 
Required to maintain the reduced state of SoxR. Probably transfers electron 
from NAD(P)H to SoxR 

pnp 
Involved in mRNA degradation. Catalyzes the phosphorolysis of single-
stranded polyribonucleotides processively in the 3'- to 5'-direction 

rpoN 
Sigma factors are initiation factors that promote the attachment of RNA 
polymerase to specific initiation sites and are then released 

mnmE 
Exhibits a very high intrinsic GTPase hydrolysis rate. Involved in the addition 
of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of 
certain tRNAs, forming tRNA- cmnm(5)s(2)U34 

rep 
it can initiate unwinding at a nick in the DNA. It binds to the single-stranded 
DNA and acts in a progressive fashion along the DNA in the 3' to 5' direction 

glnG 

Member of the two-component regulatory system NtrB NtrC, which controls 
expression of the nitrogen-regulated (ntr) genes in response to nitrogen 
limitation. Phosphorylated NtrC binds directly to DNA and stimulates the 
formation of open promoter- sigma54-RNA polymerase complexes 
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Abstract 

Decades after its inception, transposon mutagenesis continues to enable high-

throughput genetic analysis of model and non-model organisms alike. Classic 

protocols, however, are typically laborious when applied to more than a few tens of 

conditions, or when the isolation of single mutants is required.  

In here, we implemented random barcode Tn-seq (RB-Tnseq) in 7 different 

Escherichia coli strains. We used a randomly barcoded transposon vector to generate 

saturated barcoded transposon libraries, and cataloged all respective barcode–to-

genomic locations. We found that the majority of the retrieved barcodes were not 

unique, with any given non-unique barcode occurring on average on 15 different 

insertions. Nonetheless, 20 to 50% of all insertions had at least one unique barcode, 

with most genes having at least one uniquely barcoded insertion. Across all random-

barcodes, populations of both low abundance and low nucleotide diversity barcodes 

were found. However, such phenomenon was found to be mitigated by the use of read 

cutoffs across different technical replicates. This suggests random barcodes are only 

optimally recapitulated at certain read abundances, with low diversity forms potentially 

arising from sequencing artifacts. 

Following the creation of the randomly barcoded transposon libraries, we 

optimized and applied the DNA SUDOKU arraying protocol to the UTI89 library. By 

using a semi-robotized approach, such method allows the deconvolution of mutants 

from a pooled population mixture into an ordered curated library format. Ultimately, 

from a starting population of 50,688 initial colonies, we were able to obtain isolated 

transposon mutants for 3,614 out of a total of 4,998 genes.  

We intend on repooling the obtained condensed library for multiple condition 

testing using high coverage RB-Tnseq studies, which lacked significance in our current 

study. Moreover, we plan on arraying and curating not only other Escherichia coli 

transposon libraries, but also expand to CRISPRi libraries of other bacteria. It is our 

belief that such tools will be able to be used by the larger community, and thus facilitate 

research into novel genes and organisms. 
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Introduction 

Barcodes and Transposons 

 Transposon mutagenesis coupled to next-generation sequencing (Tn-seq) has 

revolutionized experimental biology by allowing the systematic evaluation of gene 

functions in both model and non-model organisms (Deutschbauer A et al., 2011; 

Deutschbauer et al., 2014; van Opijnen et al., 2009; van Opijnen & Camilli, 2013). In 

previous chapters we have explored how such method can be leveraged for essential 

gene inference using what we have defined as ‘snapshot’ Tn-seq. In here, we further 

explore Tn-seq applications by using random barcode Tn-seq (RB-Tnseq) (Wetmore 

et al., 2015). RB-Tnseq was firstly implemented in yeast as DNA Bar-Seq, and only 

later translated into bacteria (Oh et al., 2010; Smith AM et al., 2009; Wetmore et al., 

2015). By introducing random barcodes into each transposon insertion (figure 1A), 

and measuring their relative abundance, RB-Tnseq can determine the fitness of each 

labelled insertion across any type of condition. In practice this implies that the 

sequencing of the barcode-transposon-chromosome region is only required once, to 

associate the found barcodes to the DNA locations. Any later studies using the same 

library need only to aligning and count the recovered barcodes using as reference the 

original library.  

RB-Tnseq therefore diverges from other Tn-seq approaches in the way that it 

requires remarkably less laborious laboratory work and sequencing capacity. Whereas 

the first requires a multi-step process of assembling Illumina libraries following noisy 

transposon-chromosome PCR procedures every time an assay is performed; the latter 

requires only a single-step PCR to amplify the random barcodes for sequencing. This 

increases efficiency in capturing and accurately sequencing barcodes, thereby 

reducing the sequencing throughput needed to obtain significant coverage of all 

barcoded insertions (Helmann et al., 2019; Wetmore et al., 2015).  
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Brave new Sudoku 

 When handling large mutant libraries, it might be advantageous to create 

arrayed sub libraries containing only a specific selection of mutants. For example, by 

selecting only mutants with transposon insertions at the beginning of a gene, it is 

possible to reduce the total amount of mutants from the several hundreds of thousands 

normally obtained from a saturating transposon library, to only ~4,000 (in the case of 

E. coli). Such mutants can then be used as any other arrayed mutant library: as a 

background for systematic phenotypic assays on agar surfaces, chemogenomics, 

synthetic lethality, or any other kind of genomic studies. Moreover, these condensed 

libraries can be pooled again and used for conditional gene essentiality inference in 

any specific condition. This would achieve much higher read coverage when 

compared with their genome wide transposon libraries, overcoming the typical 

bottleneck effects arising from the use of large mutant libraries (Charlesworth, 2009), 

and increasing both analysis efficiency and sequencing throughput. Arraying a library 

collection is also advantageous due to the creation of a catalog. Usually, when 

performing transposon based genetic screens, a few thousands of transposon mutants 

are isolated based on a given relevant characteristic, with the majority later being 

discarded. Such creates the need to randomly re-isolate mutants every time a library 

is used. Moreover, due to the large nature of transposon libraries, either the chosen 

work size is often not representative of all genes, or large amounts of resources are 

wasted in ensuring that all non-essential genes are screened (Baym et al., 2016; 

Gallagher et al., 2013). Considering the impact that popular cataloged mutant libraries 

such as the KEIO collection or the Yeast Knockout Collection had on biology, the utility 

and need for curated small mutant libraries in both model and non-model organisms 

is beyond description.  

 Common approaches for arraying mutants from pooled libraries have normally 

relied on manual laborious work for the individual characterization of mutants. Indeed, 

mutants had to be randomly picked, arrayed, and individually sequenced. When 

considering the large libraries currently obtained by Tn-seq, such an approach is 

unfeasible. A new arraying method, termed DNA SUDOKU due to how it resembles 

the solving of a Sudoku puzzle, emerged as an alternative. Instead of individually 

sequencing all the picked mutants, the mutants can be pooled together, with their 

identity being spatially encoded by use of a 4-dimensional pooling scheme (figure 1B). 
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As only the pools need to be indexed for sequencing, the number of required primers, 

indexes, and overall labor is greatly reduced. When using this method, or similar 

spatial pooling coordinate-based approaches, hundreds of thousands of mutants can 

be sequenced and located using only a few barcodes (Anzai et al., 2017; Baym et al., 

2016; Erlich et al., 2009; Vandewalle et al., 2015). 

DNA SUDOKU can be further streamlined by robotics. Indeed, the use of 

automatic colony pickers and liquid handlers, in conjunction with high-throughput DNA 

extraction and PCR protocols can result in a further 30- to 100-fold improvement in 

both speed and cost. The deconvoluting DNA SUDOKU analysis method can then be 

used for inferring the location of all arrayed mutants (figure 1B, 1C, 1D, and 1E) (Anzai 

et al., 2017; Baym et al., 2016; Schmitz et al., 2021). To this combination of library 

arraying and sequencing methods, we shall henceforth simply refer to as SUDOKU. 

Following arraying and location inference from a pooled collection of hundreds 

of thousands of mutants, the size of the initially arrayed library can then be further 

reduced according to the required needs. For example, a full non-essential gene 

transposon disruption library, with one transposon insertion per gene, would only 

require 10/11 384-well plates for a typical E. coli lab strain: 1 well per gene. With small 

adjustments, SUDOKU can be adapted to function with any kind of genotypic strain 

differences, with applications ranging from transposon libraries, to CRISPRi, to any 

other kind of library with a plethora of distinguishable characteristics.  

In this work, we successfully implemented and applied SUDOKU to the UTI89 

transposon library and explored how such method could be improved. We also further 

built on the RB-Tnseq technique and developed a pilot study using the same E. coli 

strains previously mentioned in chapter 3. Using these, we performed both an in-depth 

analysis of RB-Tnseq, and the required optimizations required for a larger scale 

implementation. Ultimately, we combined both RB-Tnseq with SUDOKU to create a 

curated barcoded transposon gene wide arrayed library, opening the doors to further 

advanced massive screening works and genetics not only in UTI89, but also in other 

organisms. 
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Figure 1 | Overview of DNA SUDOKU and the Tn5 mutagenesis vector  

A) Organization of the used randomly barcoded Tn5 transposon cassette. B) Following the 
creation and arraying of a mutant library, SUDOKU can be carried out following a 
combinatorial pooling method where each pool, composed by different combinations of wells, 
is created, and encoded by PCR with its own index. By following the pooling scheme, any 
given well is only present in any 4 pools, different from well to well, with their respective 
location within the matrix being the only possible intersection of said pools (all the 4 pools 
where sequencing reads are detected). C) Overall schematic of the mutant inference and 
purification step. D) After sequencing and mutant location inference, individual mutants of 
interest can be picked and arrayed into a smaller condensed curated library. E) Re-arraying 
and purification of the mutants of interest can be done several times until a complete curated 
library is achieved. Figures were adapted from Wetmore et al. (A) and Baym et al. (B, C, D, 
and E) (Baym et al., 2016; Wetmore et al., 2015) 
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Results 

The pKMW7 Tn5 vector creates randomly barcoded transposon libraries in E. 
coli. 

 Besides carrying the Tn5 transposon system used to build the transposon 

libraries previously reported in chapter 3, the pKMW7 vector is also randomly 

barcoded: Each individual vector carries a transposon cassette with a random 20bp 

long barcode downstream of the resistance gene, before the Tn5 transposition 

recognition site. All Tn5 libraries created using this system thus carry a randomly 

barcoded transposon insertion (figure 1C).  

For the purpose of performing RB-Tnseq, de novo Tn5 random transposon 

libraries were built for 7 out of the 8 previously used E. coli strains, and the respective 

obtained data analyzed using TnSeeker (chapter 3). TnSeeker further associated all 

transposon insertions with their respective found barcodes, besides also reporting the 

absolute read abundance of each. Using a custom-made Python script, we 

characterized all barcoded insertion events. Genome insertion distribution analysis 

revealed that barcodes were found to be equally distributed across the entire genome, 

revealing a slight bias towards the origin of replication, similarly to what was previously 

shown in chapter 3 (supplementary figure 1). We also report that despite the large 

abundance of different barcodes, apparently more than the total amount of insertions, 

the majority of these are non-unique (each non-unique barcode was on average 

observed in 15 randomly different insertion locations) (table 1 and figure 2).  
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Table 1 | Summary of the transposon libraries used for RB-Tnseq. 

Only insertions with barcodes with at least 3 reads within the first 10% and last 90% of a 
gene were considered. 

Strain 

Total 
barcodes 

Unique barcodes Insertions with 
unique barcodes 

Unique 
insertions 
(MAPQ>=40, 
Phred>=10) 

Library size 
(CFUs) 

BW25113 23,195 13,087 5,118 18,301 300,000 

UTI 89  129,678 28,083 19,578 110,162 300,000 

IAI 33  157,413 37,642 18,840 95,254 181,000 

Nissle 1917  119,803 31,455 9,811 50,927 800,000 

IAI 16 120,716 44,690 18,505 90,468 320,000 

IAI 13 157,195 28,221 9,238 58,713 300,000 

NRG 857 C 949 617 226 6,077 290,000 

  

For strain UTI89, out of 129,678 valid total barcodes, 28,083 uniquely occurred 

once (barcodes uniquely associated with any given single location) (Table 1. See 

methods). Such discrepancy in absolute values is also seen when considering 

unfiltered barcodes (barcodes with at least 1 read, existing in insertions located within 

the first 10% and last 90% of a gene) (supplementary figure 2A, 2B, 2C, and 2D). 

Indeed, in some strains the sum of all unfiltered different barcodes rises to above 1M, 

with some insertions having more than 10,000 different barcodes, and capturing close 

to 1M reads altogether. Such extreme values are also present on the lower side, with 

50% of all insertions having two or less unique barcodes (median of 2 unique barcodes 

per insertion). When considering each insertion, and both unique and non-unique 

barcodes, we can observe 2 independent prevalent barcode forms (nucleotide 

sequences): barcodes that differ following a random distribution, with each position 

having a 3/4 of chance of being the same as any other barcode and thus having a 

Hamming distance of 15 out of 20 (bp); barcodes that marginally differ from these latter 

by only 1 or 2 bp, with a Hamming distance of 1 or 2 out of 20 (figure 2F and 2G). 

Despite such biases at the insertion level, with the existence of multiple barcode forms, 

the unique barcodes across all insertions mostly follow a random distribution in 

sequence, and thus allow for a confident differentiation of barcode-insertion pairs 

(figure 2H). These low abundance and low diversity barcodes nonetheless persist 

even when considering progressively increasing read-cutoffs, with similar outputs 

being shown for read cutoffs of 1, 3, 10, and even 30. From these, the latter returned 

the least amount of low differing barcodes per insertion, albeit at the cost of a reduced 
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number of total barcodes. Similarly, when sorting all the library barcodes by relative 

abundance per insertion (i.e.: the barcode with the most amount of reads in any given 

insertion would be ranked 1 for that insertion), and then plotting the read distribution 

of all these, and then redoing the same for all barcodes ranked 2, and 3, we observe 

the quickest decline in barcode read distribution is between rank 1, and all the others, 

when all barcodes are considered (at least 1 read) (figure1E). Such effect is mitigated 

as the minimum read cutoff for a barcode to be considered in this ranked distribution 

increases. Thus, when considering barcodes with at least 1 read (all), most of the 

insertions with more than 3 unique barcodes only seem to have a single highly 

prevalent form, followed by much less abundant barcodes (figure1E). Increasing the 

read cutoff reduces this discrepancy, possibly indicative of the filtering out of low 

abundance barcodes, the majority, and thus increasing the barcode read distribution. 

As a compromise we decided to only consider barcodes with more than 3 identical 

reads as ‘true’, thus allowing for some maneuverability in the filtering of “false positive” 

barcodes, which should be validated in subsequent experiments. For strain UTI89, 

28,083 barcodes matched these criteria, with on average each gene having more than 

10 unique barcodes (figure 2A, 2B, 2C, and 2D). More stringent read criteria were also 

attempted (using 18 reads [0.3 RPM]), but only 748 barcoded insertions matched 

these criteria. 
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Figure 2 | Differently filtered barcode numbers and read distribution across all 

libraries used for RB-Tnseq. 

For each strain, the distribution of the absolute number of all barcodes and unique barcodes 
is plotted for each insertion (A) or gene (C). The same distribution for reads is also shown for 
insertions (B) or genes (D). E) For each insertion of the UTI89 strain, the unique barcodes 
were filtered based on absolute read numbers using different read cutoffs. For each position, 
the most abundant barcode was ranked 1, and so forth. All barcodes corresponding to any 
given rank were grouped, and their read abundance plotted as a boxplot. Each rank position 
thus represents the distribution of the entire barcoded library, when barcodes with at least 
1,3,10, or 30 reads are considered. F, G) and H) Density distribution of the effect that different 
read cutoffs have on recalling different barcodes as measured by determining the hamming 
distance between any combination of barcodes per insertion. A higher Hamming distance 
signifies a higher barcode diversity, and a small value implies the existence of highly similar 
barcodes. F) Distribution of all unique and non-unique barcodes. G) Distribution of only unique 
barcodes, per insertion. H) Distribution of the comparison of all unique barcodes across all 
insertions. 
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More than meets the eye: barcode sequencing requires ultra-deep sequencing 

for barcode-to-location associations 

 Using the previously uniquely associated barcode-insertion lists for each strain, 

we performed RB-Tnseq with all the built libraries. The libraries were submitted to 7 

different conditions for 8 generations, and sequenced (see methods). Using 2FAST2Q 

(chapter 2) (Bravo et al., 2022), barcode sequences were extracted and counted by 

back aligning to the master barcode lists for location inference. For strain UTI89, the 

largest library by unique insertions, barcodes associated with 3,388 different genes 

were recovered (18±55 unique barcodes per gene). For obtaining differential barcode 

fitness for each insertion, and thus gene, the barcode abundance of each insertion for 

each condition was compared with the basal condition using MAGeCK (Li et al., 2014). 

Despite observing overall differences in read distribution across some of the tested 

conditions, namely between the basal and the exposure to sub inhibitory 

concentrations of doxycycline condition, no significant differential fitness was 

observed for any gene, with the same result being observed when using the more 

stringent barcoded list of more than 18 reads per barcode. This was probably due to 

large differences in the individual fitness of each barcode within each gene, and 

insertion. Such could have been exacerbated by not having replicates as an 

unambiguity factor, and the low read coverage per barcode. Moreover, comparison 

between the aligned barcodes and the total barcodes that can be extracted from each 

sample without alignment, revealed a 10-fold discrepancy in total amount of reads 

(figure 3B1 and 3C1). Such gap was still observed when not performing read filtering 

for any of the master list barcodes (figure 3A1). Thus suggests an incomplete 

sequencing of all the barcodes present in the original library, as new barcodes were 

now found. Such barcodes displayed a median Hamming distance of 15 in all the 

samples, indicating that no low differing barcodes “forms” were found (Hamming 

distance of 15 in a 20bp long DNA segment implies ¾ of the sequence is different, as 

expected by random chance). This might indicate that the low abundance alternative 

barcode ‘forms’ initially found in the original library are possibly an artifact of the 

original sequencing building protocol, as no such barcodes were found in these 

sequencing samples.  

Considering all these factors, the RB-Tnseq performed in this study was 

inconclusive regarding the differential fitness of any barcoded gene. 
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Figure 3 | Recovered reads from the RB-Tnseq for the UTI89 transposon library. 

A1) Absolute number of recovered and aligned reads (‘total reads that passed quality control’) 
for the UTI89 strain when considering all unique barcodes (reads >=1 in the original library), 
across all conditions, A2) PCA of the normalized reads per million (RPM) per condition. A3) 
Hamming distance density plot of all the found barcodes. B1) Same as A1 but considering 
filtered barcodes (reads >=3 in the original library). B2 and B3) Same as A2 and A3 but using 
the barcodes of B1. C1) Absolute number of all recovered barcodes found in the samples, 
independently of alignments with the original library sample. C2 and C3) same as before but 
with the barcodes of C1. 
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Library biases influence the required number of mutants to achieve an all-

encompassing arrayed transposon library 

 Considering the previous success at building saturated randomly barcoded 

pooled Tn5 transposon libraries (table 1; chapter 3: table 2), we proceeded into 

arraying and deconvoluting these into curated collections of single gene transposon 

knock-outs using the SUDOKU method. To this end, as a pilot experiment, we used 

the already built UTI89 strain transposon library described in chapter 3 (chapter 3: 

table 2).  

As the initial process of SUDOKU involves the plating and the random picking 

of library mutants from agar plates, we firstly determined how many colonies would 

need to be isolated from the pooled transposon library to obtain a representative panel 

with a disruption mutant for all theoretically available genes. We first performed a 

simulation assuming an absolute random distribution of transposon insertions across 

the UTI89 genome, with each insertion having an equal chance of being picked for 

arraying. Considering our preference for having mutants with a disruption between the 

first 20% and last 80% of any gene, we determined the final library size should consist 

of 50,000 different colonies to obtain ~75% coverage of all UTI89 genes. Such 

scenario, however, differed from what was later observed upon more in-depth 

sequencing of the used UTI89 transposon library. Indeed, some transposon insertions 

were overrepresented, with a bias towards GC rich content regions also being shown 

(chapter 3). A new simulation was thus performed using the skewness seen in the 

original library as a baseline parameter. Under these circumstances, the expected 

number of mutants for the final picked library size of 50,000 was determined to only 

encompass around 50% of all genes. As the mutants picked vs. suitably disrupted 

genes curve started to saturate at a library size 50,000 mutants, we proceeded with 

the SUDOKU arraying method using the 50,000 (total of 50,688) as the total mutant 

target for the arrayed library (figure 4). 

 



 

Chapter 4 | 114 

 

 

Figure 4 | Colony picking simulation for the used UTI89 transposon library. 

A) Colony picking simulation for UTI89 assuming random transposon insertions with equal 
chance of being picked. B) Simulation using as assumption the same insertion distribution 
present in the UTI89 transposon library used for the SUDOKU arraying method. The vertical 
dashed grey line indicates the chosen library size of 50,000 mutants. The horizontal line 
indicates to total amount of genes in the UTI89 strain. 
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The correct inference of transposon mutants is improved by technical replicates 

cross validation 

We next performed library arraying on the pooled UTI89 transposon library 

using the published SUDOKU method (Anzai et al., 2017; Erlich et al., 2009). Heavy 

technical optimizations were required to establish the entirety of this protocol in the 

laboratory (see methods for details). In here, however, we will focus on the post-initial 

arraying step of SUDOKU: the data analysis, and the current outcome.  

Ultimately, the arrayed SUDOKU library was independently sequenced 3 times, 

with initial quality control being performed by both the TnSeeker pipeline (chapter 3), 

and other custom-made Python scripts. When considering all the combined replicates 

and sequencing pools, we observed insertions across the entire length of the genome 

in the same pattern as the original library, thus indicating no specific biases for certain 

mutants upon colony picking, or in the overall process. When considering read 

abundance per insertion, 2 distinct populations are seen, the first contains insertions 

with low abundance reads, and the second insertions with around 1000 reads (figure 

5 B). To evaluate the influence that read abundance might have on unique insertion 

determination, we calculated the total number of insertions when assuming distinct 

minimal read-thresholds. Curiously, despite stringent read pre-processing parameters 

(see methods), when considering all insertions with at least 1 read, 76,834 unique 

insertions were reported across all pools in all replicates combined (figure 5D1). Such 

is higher than the absolute maximum number of picked mutants (50,688), indicating 

either the occurrence of more than one insertion per mutant, or the lack of stringency 

upon unique insertion determination. The first requires the occurrence of several highly 

unlikely events (a large population of cells with at least 2 transpositions events), and 

has been discarded as significantly occurring in both the current, and previous works 

(Wetmore et al., 2015) (evaluated by well-specific sanger sequencing). We therefore 

attributed such overestimation to miss alignments arising from artifacts in the Illumina 

library building process. To further explore this hypothesis, we checked how iteratively 

increasing the total read cutoff influenced the intersection of common insertions across 

all 3 sequencing replicate datasets. An optimal cutoff value of 15 reads, corresponding 

to 33,612 uniquely found insertions, and an overlap of 68% (insertion wise) across all 

replicates was deemed optimal (figure 5C and 5D2). 3,614 different genes had a 

transposon mutant with these settings, similar to what was predicted in the simulation 
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when considering library biases (figure 4B). Curiously, 4,200 genes are found when 

no cutoffs are used, the same as expected from the random picking simulation (figure 

4A). Considering a high stringency in mutant location inference is desired, and that 

such numbers fall within the expected total number of mutants, a cutoff of 15 reads 

(0.1 RPM) is perhaps the most advisable for any downstream SUDOKU pool 

deconvolution, especially when using all the available data for pool deconvolution and 

mutant location inference. 

We next determined the total amount of unique barcodes, and how imposing 

read cutoffs influences unique barcode distribution. Similarly to before, the cutoff 

determination can be based on total percentage overlap between the 3 independent 

sequencing samples. Interestingly, 40 reads (0.3 RPM) per barcode were required to 

maximize barcode overlap (figure 5C and 5E2). As such values are largely dependent 

on dataset sequencing depth, and on the sequencing of individual SUDOKU pools, 

the usage of RPM might be more suitable for any downstream applications. 

Overall unique barcode diversity was also maximized when considering a cutoff 

of 40 reads, with fewer low diversity barcodes being observed at such values than 

other values (figure 5A1). Such situation was observed for intra-insertion unique, and 

all (inter-unique and inter-non-unique) barcodes (figure 5A2 and 5A3).  
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Figure 5 | SUDOKU arrayed UTI89 transposon library statistics. 

The transposon insertions corresponding to all 3 sequencing replicates were combined and 
analyzed together. A) Density distribution of the effect that different read cutoffs have on 
recalling different barcodes as measured by determining the Hamming distance between any 
combination of barcodes per insertion. A higher Hamming distance signifies a higher barcode 
diversity, and a small value implies the existence of highly similar barcodes. A1) Diversity of 
all unique barcodes across all insertions. A2) Diversity across all barcodes in all samples. A3) 
Diversity of intra-insertion barcodes. B) Distribution of reads and insertions across the UTI89 
genome. C) Rarefaction curve for the influence of different minimal read cutoffs on the total % 
overlap of either unique barcodes or transposon insertions across the 3 replicates. D and E) 
Venn diagram with the overlap of D) insertions and E) unique barcodes, using a read cutoff of 
either 1 read (D1 and E1), 40 reads (E2), or 15 reads (D2). 
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Solving the SUDOKU: arraying recapitulates mutants from pooled libraries 

 Following SUDOKU pool sequencing and quality control, we applied the 

published SUDOKU deconvolution Python pipeline for inferring the location of all 

sequenced transposon mutants within the physical plate matrix (Anzai et al., 2017; 

Erlich et al., 2009). Despite successful attempts with the provided test data (1000 

reads, corresponding to 181KB of computer space), we were unable to correctly use 

the program with our dataset. Initial problems persisted at the level of total running 

time and RAM usage. Indeed, we estimated several years would be required to 

process the entirety of our sequencing data, whilst requiring several TB of RAM to run 

in the EMBL HPC cluster. We optimized the program to perform operations in parallel 

and decrease RAM usage, however feasible total running times were still only possible 

when heavily using the cluster. Moreover, several code rewrites and bug fixes were 

required to correctly process our transposon dataset and infer the mutants’ correct 

location. Ultimately, we recreated the entire program using a simpler, more accurate, 

mutant location inference statistical method, and by partially adapting Python code 

snippets from both TnSeeker and 2FAST2Q. Such improvement made the SUDOKU 

pipeline capable of running on its entirety on a common laptop within a few hours. 

Furthermore, the program is now capable of not only deconvoluting libraries of 

transposon mutants, but also CRISPRi. 

 Despite successfully having implemented the SUDOKU arraying pipeline, we 

found the location of 50% of all mutants to be totally unpredictable. Such a problem 

could not be fully mitigated by adjusting read-thresholds, indicating some other 

methodology related issue. We were nonetheless able to infer the location of mutants 

targeting 3,503 different genes (~70% of all genes), out of a total of 3,850 detected 

genes. Out of these, we were able to detect 3,067 genes with a transposon insertion 

within 10%-80% of the gene, with 2,737 genes likely existing as a pure mutant 

population (wells with a single unique mutant). The remaining mutants potentially exist 

as single well mixed populations in need of further purification. The inferred total gene 

mutants obtained correspond to the predicted limit for the library size (figure 4B), 

indicating the robustness of the technique in recapitulating mutants from a pooled to 

an arrayed library. Works are ongoing for further condensing the library into single 

occupancy wells for each curated gene transposon mutant. 
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Discussion 

Similarly to the previous chapter, here we continued exploring next-generation 

sequencing applications in transposon libraries. We used a randomly barcoded Tn5 

transposon vector to generate mutant libraries and associate any found barcodes to 

insertion locations. We found that, in most cases, most of the barcodes are repeated 

across more than 1 insertion. This issue does not arise from a lack of barcode 

variability, as when comparing the hamming distance of all found barcodes, a random 

nucleotide distribution is consistently observed. We found that the most prevalent 

barcode forms have a Hamming distance of 15, indicating that they differ, position 

wise, on ¾ of their nucleotide sequence from any other observed barcode. Barcode 

repeatability could result from a bottleneck in the used method for transposon building 

as all transposon libraries were done by conjugation with the pKMW7 vector carrying 

strain on an agar surface. It is thus possible that a local overrepresentation of certain 

types of barcode carrying strains among the conjugation matrix might have resulted in 

an enrichment for certain barcodes among the receiving strains. This would result in 

different transposon insertion events carrying the same barcode.  

When looking at the Hamming distance of unique barcodes per insertion, we 

consistently observed the occurrence of low Hamming distance forms, indicating these 

to be low abundance derivatives of a single unique barcode. These seemed to mostly 

exist as lower read abundance forms, being able to be filtered out of the population by 

using highly stringent library dependent cutoffs, while not decreasing non-unique 

barcodes. Total unique barcodes thus do not provide a good representation of the 

actual number of the total uniquely barcoded population, or unique insertions, as a 

portion of these arise from artifacts possibly introduced during the sequencing library 

creation procedure. The importance of such an issue, however, can be mitigated by 

the type of desired downstream applications. For example, when comparing barcodes 

from the same library across multiple conditions, the relevance is on assuring that the 

barcodes are only associated to a certain unique location, not necessarily to which 

barcode of that same location. In this case, it is only necessary to guarantee that there 

aren’t similar barcodes across different locations, and such is indeed the case (figure 

2H and 4A1). 

Using the associated list of linked unique-barcodes to insertions as a barcode 

guide, we performed RB-Tnseq across multiple conditions for all the 7 libraries. Such 
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would allow for the high-throughput differential fitness determination of all insertions 

and genes in all these scenarios. Upon sequencing, however, hardly any reads 

matched the original barcoded population. Indeed, only 1 in 10 of all sequenced 

barcodes aligned to the reference (figure 3B1 and 3C1). Such result possibly indicated 

an issue related with the sequencing depth of the original libraries, where barcodes 

might not be found due to their relative low abundance, or even be considered unique 

while in reality existing across multiple insertions. This phenomenon is clearly present 

in the UTI89 arrayed library, where at most only 55% of all unique barcodes were 

shared among the 3 sequencing replicates of the same initial population, despite 

stringent read-cutoffs (figure 5C). RB-Tnseq thus requires deep sequencing of the 

initial libraries to be accurate, a possibly costly process when using transposon 

libraries carrying hundreds of thousands of different barcoded insertions. The lack of 

significant differential fitness observed for all genes in the performed RB-Tnseq assays 

can thus be explained by these issues, and the low coverage of the found barcodes.  

In this work we also applied the SUDOKU arraying technique to a randomly 

picked subset of 50,688 different colonies from the UTI89 transposon library. 

Extensive recoding and fixing of the originally SUDOKU analysis pipeline was required 

and is still ongoing, however we have reduced the total running time and hardware 

requirements, with the deconvolution program now being able to run on a laptop.  

We have inferred the location of pure transposon mutants for 70% of all UTI89 

genes. When considering that some essential genes do not accept transposon 

insertions, the actual percentage of recovered mutants is higher. Despite such 

numbers, the locations of a vast portion of all insertions remained undetermined. Due 

to the nature of SUDOKU’s combinatorial pooling, it’s possible that confounding effects 

arising from well or sequencing pool cross contamination from other pools/wells 

creates an unsolvable puzzle for the location inference of various transposon 

insertions. This effect would render any given mutant as being putatively present in a 

plethora of pools and wells, and thus create difficulties in true location inference. We 

observed that imposing read cutoffs limits such effects, however, this mostly only 

buffers false positives in the mutant insertion alignment pipeline. This is exemplified in 

figure 5D2, where the biggest overlap in recapitulated mutants among all 3 sequencing 

replicates is observed when a threshold of 15 reads is used. Further methodology 

optimizations are perhaps then required upon the laboratorial pool sequencing 

creation and colony arraying process to avoid biological derived errors. Another 
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possibility would be to subdivide the current SUDOKU layout into smaller ones (for 

example, arraying 3 times 17K mutants). Such would limit any potential mutant overlap 

within the sequencing pools. 

Despite these setbacks, we are currently improving the location inference 

algorithm to calculate the most likely location of ambiguously located insertions. This 

will allow to confidently extract more mutants from the currently arrayed library. The 

presence and absence of unique barcodes, after cutoff filtering, can also be further 

leveraged for correct location inference. In this case, both barcodes and insertions 

would need to be present in a certain relative amount for the mutant location to be 

considered as valid, and not as noise from methodological errors.  

It would be interesting in the future to retry RB-Tnseq using the barcodes found 

in not only this arrayed library, but also the newer more saturating libraries 

characterized in chapter 3. To maximize correct unique barcode retrieval, it might also 

be interesting to sequence each library with more than one technical replicate and 

perform overlap read cutoff optimization, as described for the SODOKU library. 

Indeed, some replicates already exist for some of the libraries, opening the door for 

further trials. Ultimately, it is our goal to be able to combine the curated barcoded 

SUDOKU arrayed library into unique combinations of smaller-scale libraries. Such 

could, for example, allow RB-Tnseq to be performed with a high degree of coverage 

on a subset of picked cataloged mutants.  

Considering the relative success in retrieving arrayed mutants from a pooled 

library, we intend on applying the SUDOKU arraying method to both other transposon 

libraries and CRISPRi libraries. Due to their reduced size and more homogenous 

distribution of mutants, these latter would require smaller numbers of picked mutants, 

thus reducing cost, time, and simplifying the creation of the sequencing pools. 

Ultimately, it is our belief these approaches will contribute to accelerated research into 

non-model organisms and strains, expediting so far unknown biology. 
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Methods 

Strains 

The APA766 strain (harboring the randomly barcoded Tn5 library plasmid 

pKMW7) was a gift from Adam Deutschbauer. For culturing APA766, LB was 

supplemented with diaminopimelic acid (DAP) to a final concentration of 300µM, and 

Kanamycin (50µg/ml). The E. coli strains Nissle 1917, IAI16, IAI13, IAI33, NRG857C, 

BW25113, and UTI89 are available in the Ecoref panel (Galardini et al., 2017) and 

were routinely cultured in LB media at 37ºC, unless stated otherwise. 

All Tn5 library strains were built and maintained as described in chapter 3. 

 

Fitness Assay 

 An aliquot of the appropriate library strain was defrosted into 20ml of LB and 

grown until OD578 = 1.0 at 37ºC, 200rpm. At this point, 5ml were used for total DNA 

extraction (basal point, time 0), with the remaining culture being diluted to OD578 = 

0.005 in 25ml of LB supplemented with one of the various tested compounds: LB + 

10% Candida albicans spent media; LB at pH 5.5 (MES buffer);  LB (control), LB with 

0.5M of NaCl; LB + MIC50 of Ciprofloxacin; LB + MIC10 of Doxycycline, LB + MIC50 

of Cefsulodin (table 2). After 8 generations at 37ºC and 200rpm, when OD578 ~ 1.1, 

10ml were used for total DNA extraction (end point). 

 

Table 2 | MIC per antibiotic per Escherichia coli strain 

MIC were determined by performing an e-test with the indicated antibiotics and strains of 
interest. 

Strain Ciprofloxacin (µg/ml) Doxycycline (µg/ml) Cefsulodin (µg/ml) 

IAI 33 0.004 1 0.12 
NRG 857 C 0.008 16 0.25 
Nissle 1917 0.008 8 0.5 

UTI 89 0.008 6 0.25 
IAI 16 0.004 0.75 0.12 
IAI 13 0.004 1 0.25 
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Fitness Assay Sequencing 

 Random-Barcode transposon sequencing was performed as described by 

Wetmore et al (Wetmore et al., 2015). Briefly, a single step Illumina library building 

PCR was performed with primers with Illumina adaptor sequences, and delimiting the 

barcode sequence (table 3 and table 4). The resulting product was purified using 

SPRIselect magnetic beads and sequenced on a HiSeq 2500 apparatus using single 

ended 50bp reads. 

 

Table 3 | PCR reaction for generating the barcode Illumina library for the barcode 
fitness assay. 

Reagent Amount 

Q5 reaction buffer 10 µl 
Q5 Hot Start Polymerase 0.5 µl 

dNTP's (5µM) 4 µl 
Mix of Seq.2.Trans_4N/5N/6N/7N (10uM) 2.5 µl 

RB_Seq.X (X=index primer) (10uM) 2.5 µl 
DNA (200ng) X 

H2O For 50 µl 
  

 

Table 4 | PCR reaction cycling protocol. 

Temperature (ºC) Time Cycles  

98ºC 4 min 1x 
98ºC 30 s   
30ºC 30 s 25X 
72ºC 30 s   
72ºC 5 min 1x 

 

 

Tn5 associated Random-Barcode Extraction 

 The random barcodes corresponding to all insertions present in the original 

libraries were extracted using TnSeeker (chapter 3). Filtering was performed to obtain 

all 20bp long barcodes that were associated with only a single chromosome location, 

and that had at least 3 reads. Finally, only barcodes in insertions occurring after the 

first 10%, and before the last 90% of a gene were considered. 

 

Fitness Assay Sequencing Analysis 

Random-barcodes were extracted from the fitness assay .fastq files using 

2FAST2Q (chapter 2). All reads were searched for the barcode delimiting conserved 
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upstream sequence, CTGCAGGGATGTCCACGAGGTCTCT, allowing for 2 

mismatches. When present, the following 20bp were aligned and counted against the 

reference barcodes found in the originally transposon library. Alignment was 

performed allowing for 0 mismatches on the barcode. The resulting read count table 

was filtered based on the presence of transposon insertion sites with more than 3 

reads in the initial condition (at time 0), and the test condition. An extra filtering was 

performed to only consider genes with more than 30 reads across all barcoded 

insertions within any given gene. Differential barcode analysis was performed using 

MAGeCK (Li et al., 2014). 

 

SUDOKU arraying 

 The UTI89 transposon library (chapter 3) was plated at OD578 = 1 in rectangular 

LB+Kan (30µl/ml) containing plates at an enough density to obtain isolated colonies. 

Following overnight incubation at 37ºC, all plates were loaded into the RapidPick Lite 

Colony Picker system from Hudson Robotics for individual colony picking (robot 

picking settings: dither=0; dwell=0; and place value=1). Automatic arraying of the 

colonies was performed into 384 well plates with 100µl of LB+Kan (30µl/ml) 

media/well. Due to the relative high number of colonies to be picked, this process was 

repeated every day for a few days. At the end of each day, all arrayed colony 

containing 384 well plates were incubated overnight at 37ºC, 900rpm.  

 The following day, all overnight 384 well plates were submitted to robotic 

arraying into new 384 plates, the ‘master collection’ plates, for freezing at -80ºC by 

following the schematic on table 6. Simultaneously, all wells were respectively pipetted 

into 4 different pools depending on the sequencing pool they belonged to (1 pool 

contained all the same rows, 1 pool all same columns. The 2 other pools were 

organized as described in table 6,7, and 8) (figure 1). The pool decision depended on 

the well/plate spatial organization within the virtual plate matrix (table 8). For the 

creation of the sequencing pools, all 384well plates were virtually demultiplexed into 

96well plates as demonstrated in table 6 and 7. A liquid handling robot (BioMek, 

Beckman Coulter) was used for all these operations. All ‘master collection’ plates were 

frozen as soon as possible, with sequencing pools being centrifuged, and all pellets 

being stored and frozen in 50ml tubes for later use. This process was performed in 
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parallel with the robotic colony picking, and repeated until ~50,000 colonies were 

arrayed (3-4 days). 

 Following SUDOKU arraying, DNA was extracted from all created sequencing 

pools. Illumina libraries were assembled and sequenced as described (chapter 3). The 

used sequencing indexes for multiplexing are indicated on table 8.  

 

Table 5 | Primers used in this study 

Primer Name Primer Sequence Used Workflow 

Seq_2.Transp_4
N 

AATGATACGGCGACCACCGAGATCTACACTCTTTCC
CTACACGACGCTCTTCCGATCTNNNNCTGCAGGGA
TGTCCACGAGG 

Fitness Assay 
Sequencing 

Seq_2.Transp_5
N 

AATGATACGGCGACCACCGAGATCTACACTCTTTCC
CTACACGACGCTCTTCCGATCTNNNNNCTGCAGGG
ATGTCCACGAGG 

Fitness Assay 
Sequencing 

Seq_2.Transp_6
N 

AATGATACGGCGACCACCGAGATCTACACTCTTTCC
CTACACGACGCTCTTCCGATCTNNNNNNCTGCAGG
GATGTCCACGAGG 

Fitness Assay 
Sequencing 

Seq_2.Transp_7
N 

AATGATACGGCGACCACCGAGATCTACACTCTTTCC
CTACACGACGCTCTTCCGATCTNNNNNNNCTGCAG
GGATGTCCACGAGG 

Fitness Assay 
Sequencing 

RB_Seq.1 
CAAGCAGAAGACGGCATACGAGATCGTGATG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 

Sequencing 

RB_Seq.2 
CAAGCAGAAGACGGCATACGAGATACATCGG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.3 
CAAGCAGAAGACGGCATACGAGATGCCTGAG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.4 
CAAGCAGAAGACGGCATACGAGATTGGTCAG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.5 
CAAGCAGAAGACGGCATACGAGATCACTGTG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.6 
CAAGCAGAAGACGGCATACGAGATATTGGCG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.7 
CAAGCAGAAGACGGCATACGAGATGATCTGG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.8 
CAAGCAGAAGACGGCATACGAGATTCAAGTG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.9 
CAAGCAGAAGACGGCATACGAGATCTGATCG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 
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RB_Seq.10 
CAAGCAGAAGACGGCATACGAGATAAGCCAG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.11 
CAAGCAGAAGACGGCATACGAGATGTAGCCG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.12 
CAAGCAGAAGACGGCATACGAGATTACAAGG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.13 
CAAGCAGAAGACGGCATACGAGATTTGACTG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.14 
CAAGCAGAAGACGGCATACGAGATGGAACTG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.15 
CAAGCAGAAGACGGCATACGAGATTGACATG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.16 
CAAGCAGAAGACGGCATACGAGATGGACGG
GTGACTGGAGTTCAGACGTGTGCTCTTCCGA
TCTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.17 
CAAGCAGAAGACGGCATACGAGATCACTACG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.18 
CAAGCAGAAGACGGCATACGAGATGCGGACG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.19 
CAAGCAGAAGACGGCATACGAGATTATCGCG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.20 
CAAGCAGAAGACGGCATACGAGATGGCCACG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.21 
CAAGCAGAAGACGGCATACGAGATCGAAACG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.22 
CAAGCAGAAGACGGCATACGAGATCGTACGG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.23 
CAAGCAGAAGACGGCATACGAGATCCACGCG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.24 
CAAGCAGAAGACGGCATACGAGATGCTACCG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.25 
CAAGCAGAAGACGGCATACGAGATATCAGTG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.26 
CAAGCAGAAGACGGCATACGAGATGCTCATG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.27 
CAAGCAGAAGACGGCATACGAGATAGGAATG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 
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RB_Seq.28 
CAAGCAGAAGACGGCATACGAGATCATTTGG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.29 
CAAGCAGAAGACGGCATACGAGATTAGTTGG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.30 
CAAGCAGAAGACGGCATACGAGATCCGGTGG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.31 
CAAGCAGAAGACGGCATACGAGATATCGTGG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.32 
CAAGCAGAAGACGGCATACGAGATTGAGTGG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.33 
CAAGCAGAAGACGGCATACGAGATCGCCTGG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.34 
CAAGCAGAAGACGGCATACGAGATGCCATGG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.35 
CAAGCAGAAGACGGCATACGAGATAAAACGG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.36 
CAAGCAGAAGACGGCATACGAGATTGTTGGG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.37 
CAAGCAGAAGACGGCATACGAGATATTCCGG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 

RB_Seq.38 
CAAGCAGAAGACGGCATACGAGATAGCTAGG
TGACTGGAGTTCAGACGTGTGCTCTTCCGAT
CTGTCGACCTGCAGCGTACG 

Fitness Assay 
Sequencing 
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Table 6 | SUDOKU arraying matrix layout 

All the entries in each row and column correspond to 384 well plates, in total capable of holding 
50,688 individual mutants. All mutants were directly arrayed from the overnight incubation 384 
well plates into fresh 384-plates, upon which the sequencing pools were created following a 
demultiplexing procedure in the following configuration (see table 7), and frozen at -80ºC. 

384-plates A B C D E F 

I 1 2 3 4 5 6 

II 7 8 9 10 11 12 

III 13 14 15 16 17 18 

IV 19 20 21 22 23 24 

V 25 26 27 28 29 30 

VI 31 32 33 34 35 36 

VII 37 38 39 40 41 42 

VIII 43 44 45 46 47 48 

IX 49 50 51 52 53 54 

X 55 56 57 58 59 60 

XI 61 62 63 64 65 66 

XII 67 68 69 70 71 72 

XIII 73 74 75 76 77 78 

XIV 79 80 81 82 83 84 

XV 85 86 87 88 89 90 

XVI 91 92 93 94 95 96 

XVII 97 98 99 100 101 102 

XVIII 103 104 105 106 107 108 

XIX 109 110 111 112 113 114 

XX 115 116 117 118 119 120 

XXI 121 122 123 124 125 126 

XXII 127 128 129 130 131 132 
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Table 7 | Demultiplexing schematic from the 384 well plate matrix to the pool 

row and column sequencing matrix 

Six different 384 well plates are indicated in the schematic (outer table, grey). To reduce the 
amount of mutants per pool, each 384-plate was demultiplexed into four different pools (inner 
table). The pools depended on the spatial arrangement of the 384-well plate matrix, and the 
spatial organization of the sequencing pools is indicated on table 8. 

384-plates I II III IV 

A PR1:PC1 PR1:PC2 PR1:PC3 PR1:PC4 

PR2:PC1 PR2:PC2 PR2:PC3 PR2:PC4 

PR3:PC1 PR3:PC2 PR3:PC3 PR3:PC4 

PR4:PC1 PR4:PC2 PR4:PC3 PR4:PC4 

B PR5:PC1 PR5:PC2 PR5:PC3 PR5:PC4 

PR6:PC1 PR6:PC2 PR6:PC3 PR6:PC4 

PR7:PC1 PR7:PC2 PR7:PC3 PR7:PC4 

PR8:PC1 PR8:PC2 PR8:PC3 PR8:PC4 
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Table 8 | SUDOKU sequencing pools matrix layout.  

All the entries in each row and column represent the virtual demultiplexed pool well plates 
present in the same sequencing pools (24 pool row (PR) and 22 pool columns (PC) pools).  
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Table 9 | Used sequencing index per SUDOKU pool 

The following Illumina indexes were used to make the primers ‘Seq_2.Chrom.X’ prior to the 

last PCR in the library building process.  

Pool Index 

A GGTTCA 

B TTGGAC 

C TCCAGG 

D CAGCGT 

E CAAGTG 

F AAGCTG 

G CAAGGT 

H CAGCTG 

1 AAGCGT 

2 ACAGTG 

3 AACGTG 

4 CCAGTG 

5 ACAGGT 

6 ATACGG 

7 ACGCTG 

8 CACGTG 

9 AACGGT 

10 CCAGGT 

11 CTACGG 

12 CAGATG 

PR01 ACGCGT 

PR02 CACGGT 

PR03 CAGAGT 

PR04 ACCGTG 

PR05 ACGATG 

PR06 ACCGGT 

PR07 ATCCGG 

PR08 CTAAGG 

PR09 CCGATG 

PR10 ACGAGT 

PR11 TAACGG 

PR12 CCGAGT 

PR13 ATCAGG 

PR14 CTCAGG 

PR15 TCACGG 

PR16 TACCGG 

PR17 TCAAGG 

PR18 TACAGG 

PR19 CAGGTT 

PR20 CTAGTG 

PR21 ACGGTT 
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PR22 ATGCTG 

PR23 CTAGGT 

PR24 ATGCAG 

PC01 ATGCGT 

PC02 ATCGTG 

PC03 ATCGGT 

PC04 CTGATG 

PC05 TAGCTG 

PC06 CTGAGT 

PC07 TAGCGT 

PC08 TCAGTG 

PC09 TACGTG 

PC10 TCAGGT 

PC11 TTACGG 

PC12 TACGGT 

PC13 TCGATG 

PC14 TCGAGT 

PC15 TTCAGG 

PC16 AAGGTC 

PC17 CAGGTC 

PC18 CAGGAT 

PC19 ATAGGC 

PC20 ACGGTC 

PC21 CTAGAG 

PC22 ACGGAT   
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Supplementary 

 
Supplementary figure 1 | Distribution of barcodes across the genome of the 
used strains used for RB-Tnseq. 

Read distribution across the chromosome (different contigs are indicated by different 
background shades, ordered from largest to smallest) for BW25113 (A), Nissle 1917 (B), UTI 
89 (C), IAI 16 (D), IAI 13 (E), IAI 33 (F), and NRG 857 C (G). Number of reads and barcodes 
per unique, or across all barcodes, per bin of 50,000 bp, are indicated by the red/blue lines. 
Density plot represents the read quantity per insertion. 
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Supplementary figure 2 | Unfiltered barcode numbers and reads distribution 

across all libraries used for RB-Tnseq. 

For each strain, the distribution of the absolute number of all barcodes and unique barcodes 
is plotted for each insertion (A) or gene (C). The same distribution for reads is also shown for 
insertions (B) or genes (D). E) For each insertion of the UTI89 strain, the most abundant 
barcode was ranked 1, and so forth. All barcodes corresponding to any given rank were 
grouped, and their read abundance plotted as a boxplot. Each rank position thus represents 
the distribution of the entire barcoded library, when barcodes with at least E1) 3 barcodes; E2) 
10 barcodes; or E3) 25 barcodes are considered. 
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Abstract 

It is known that bacteria often exist as multi-species communities, yet little is 

known about how gene essentiality changes at this level. To study such interactions, 

we used a pooled IPTG-inducible CRISPRi library targeting all known genetic loci in 

Streptococcus pneumoniae, an opportunistic human pathogen. To better mimic the S. 

pneumoniae natural habitat, we allowed pneumococci to compete with other bacteria 

in a nasopharyngeal epithelial cell matrix. Upon co-culture with Staphylococcus 

aureus, and wild type (WT) S. pneumoniae, we identified pneumococcal genes that 

display a fitness defect only in the presence of the competitor. Moreover, we 

demonstrate how two of these genes, an efflux pump (SPV 686/7/8, here renamed as 

arpABC) and a serine protease (prtA), are ubiquitous to S. pneumoniae competition 

with different species, including itself. Intriguingly, we show that the efflux pump mutant 

doesn’t grow when S. aureus is present, and the pH of the environment is acidic (pH 

≤6), suggesting an active role of this protein complex in counteracting adverse S. 

aureus-induced changes in the environment.  

We further explored S. pneumoniae and S. aureus interaction, and 

demonstrated by confocal microscopy that pneumococcal strain D39V mainly inhabits 

the upper area of a S. aureus – Detroit 562 matrix. Indeed, under these conditions, we 

show that core essential pathways related with cell wall and peptidoglycan production 

confer a fitness disadvantage to S. pneumoniae, thus highlighting how assumed 

essential metabolism can be compensated by using possible opportunistic 

mechanisms.  

Together, this study is one of the first in its kind to explore how gene fitness is 

affected by competing species at a genome-wide level under different environments, 

and will provide a better understanding of genes important for pneumococcal ecology.   
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Introduction 

The human nasopharynx is actively colonized by a unique niche of 

microorganisms. Different in abundance and taxa from that of the oral and oropharynx, 

the active maintenance of such a distinct ecological landscape has been associated 

with a decreased incidence of respiratory tract infections (Flynn & Dooley, 2021; Man 

et al., 2019; Matthew S. Kelly et al., 2017; Siegel & Weiser, 2015).  

Streptococcus pneumoniae (Sp) is a Gram-positive bacterium that can 

asymptomatically colonize the nasopharynx of healthy individuals. Innocuous Sp 

infection, however, can progress to opportunistic disease. Such process normally 

initiates with Sp translocating to the sterile environment of the internal organs, where 

it can cause pneumonia, meningitis, otitis media, and/or sepsis (Loughran et al., 2018; 

Subramanian et al., 2019). Sp versatility as both a commensal and pathogen can be 

attributed to its repertoire of cell attachment and host-defense/evading components 

(Subramanian et al., 2019; Weiser, 2010). For example, cellular proteases are typically 

used as part of normal homeostasis processes, but can also play a role in preventing 

the action of the host complement immune system (Marquart, 2021). At its core, it is 

the regulation of these dual-purpose elements that determine the shift between the 

commensal and pathogen states. The exact mechanisms that induce this switch are 

still underexplored, however, several reports have highlighted the role that inter- and 

intra-species competition might have on this phenomenon (Shak et al., 2013; Weiser, 

2010).  

Upon infection, Sp must establish itself into a niche occupied not only by other 

species, but possibly also by other pneumococcal strains. Indeed, studies indicate that 

between 35 to 43% of all Sp hosts carry multiple colonizing serotypes (Tonkin-Hill et 

al., 2022; Turner et al., 2011). The relative recent introduction of pneumococcal 

conjugate vaccines (PCVs) has shifted the frequency and colonization dynamics of Sp 

strain types, allowing previously uncommon strains to become more prevalent in a 

process known as serotype replacement, and thus highlighting the importance of Sp 

co-colonization and interspecies competition studies (Lo et al., 2019; Weiser, 2010). 

As an hedge against competitors, Sp can deploy the action of toxic peptides 

known as bacteriocins, and thereby eliminate strains not expressing the respective 

immunity factors (Aggarwal et al., 2020; Lehtinen et al., 2022; Shak et al., 2013; 

Weiser, 2010; Wholey et al., 2019). Several of these bacteriocin systems have been 
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characterized, with the blp regulon perhaps being one of the most ubiquitous. Blp 

activation relies on a quorum-sensing pheromone, BlpC, and has been implicated to 

crosstalk with the also quorum related Sp genetic transformation competence system. 

Interestingly, both pathways are activated in a pH-dependent manner, possibly 

suggesting a link between intra-species competition and exogenous DNA uptake 

(Dawid et al., 2007; Kjos et al., 2016; Shak et al., 2013; Wang et al., 2018; Weiser, 

2010). Indeed, BlpC can be exported by its cognate transporter BlpAB as well by the 

competence pheromone exporter ComAB (Kjos et al 2016, Wholey et al 2016). 

Despite not being a decisive factor in human co-colonization (Valente et al., 2016), blp 

harboring strains have been demonstrated to have competitive advantages in a mouse 

colonization model (Dawid et al., 2007). Such results indicate a possible involvement 

of not only a plethora of bacteriocin systems, but also of other yet unknown variables.  

Besides interspecies competition, Sp must also compete with other bacterial 

species, viruses, and the host immune system for a place in the nasopharynx niche. 

Similarly to Sp, Staphylococcus aureus (Sa) is also a common human commensal 

and/or opportunistic pathogen, being asymptomatically carried by around 20% of the 

population, where it preferentially inhabits the nares (J Kluytmans et al., 1997; van 

Belkum et al., 2009). Sa is a leading cause of both hospital and community-acquired 

skin and soft tissue infections (Olaniyi et al., 2017). Epidemiological studies have also 

demonstrated an inverse correlation between the carriage of Sp and Sa, with the 

presence of pneumococcus apparently inhibiting Sa colonization. Indeed, 

immunocompetent pneumococcal carriers are 50% less likely to carry Sa. These 

observations have led several studies to speculate about the possible connection 

between the introduction of PCV and an increase in Sa carriage. Such hypothesis, 

however, seem to be as of yet, unsubstantiated (Bogaert et al., 2004; Lee et al., 2009; 

Gili Regev-Yochay et al., 2004; Reiss-Mandel & Regev-Yochay, 2016; Shak et al., 

2013).  

Several explanatory mechanisms have been advanced as a reasoning for this 

negative interaction. For example, Sa co-colonization with Sp has been demonstrated 

to be inhibited via the effect of a cross-reactive antibody. Indeed, in this case 

antibodies against the Sp cell wall associated dehydrogenase SP 1119 have been 

shown to cross-react against P5CDH, a similar dehydrogenase in Sa. Such interaction 

induces a reduction in Sa carriage following Sp colonization in mice (Lijek et al., 2012). 

Such an effect, however, doesn’t fully explain how, in some cases, Sp and Sa might 
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co-colonize the same host, or how Sa carriage might follow Sp infection later in life. In 

vitro studies have also shown that H2O2 production is a major component of Sp 

bactericidal activity against Sa (Bryant et al., 2016; G. Regev-Yochay et al., 2006). 

Such effect, however, is conflicting when translating to in vivo models, with reports 

often claiming a neutral influence of H2O2 on co-colonization (Lijek & Weiser, 2012; E. 

Margolis, 2009; Park et al., 2008; G. Regev-Yochay et al., 2008; Reiss-Mandel & 

Regev-Yochay, 2016). Indeed, recent work has shown that Sp can eradicate Sa 

biofilms independently of H2O2 production. By using Transwell devices, it was 

demonstrated that this mechanism required direct physical contact (Khan et al., 2016). 

Curiously, another study demonstrated that both Sp and Sa can form stable biofilm 

communities in the presence of epithelial cells (Reddinger et al., 2018). Additional 

factors, beyond the presence of H2O2, are thus at play regarding Sp and Sa co-

colonization. Such results highlight the differences between in vitro and in vivo studies, 

and strengthen the case for more comprehensive ‘natural-like’ testing setups. 

Curiously, Sp carriage has also been associated with positive inter-bacterial 

interactions. Indeed, a study has found a positive correlation between Sp and the 

simultaneous co-colonization of both Haemophilus influenzae and Moraxella 

catarrhalis (Pettigrew et al., 2008). Other works have further demonstrated that 

established Sp populations facilitate colonization of H. influenzae alone, an effect also 

seen in longitudinal studies, but not observed in vitro (Lijek & Weiser, 2012; E Margolis 

et al., 2010; Neto et al., 2003; Pericone et al., 2000). In vivo co-colonization with H. 

influenzae, however, results in rapid Sp clearance from the nasopharynx, probably 

due to an increased inflammatory response, and demonstrating how one species can 

modulate the host to eliminate competitors (Ratner et al., 2005).  

Taken together, these studies demonstrate the importance that different 

experimental conditions might have on recapitulating the true state of the natural 

environment. So far co-colonization in vitro studies using epithelial cell substrates have 

often focused on the host response side, with the activity of the ‘invader’ seldom being 

evaluated on a genome wide scale, especially in regards to gene essentiality (Asmat 

et al., 2011; S. Novick et al., 2017; Ratner et al., 2005; van Opijnen & Camilli, 2012; 

Weight et al., 2019). In here, we leveraged CRISPRi-Seq for assaying Sp responses 

to the presence of competing species, such as Sa. We then further elaborated on this 

model and explored co-colonization mechanism on a human epithelial cell matrix 

format (figure 1). This is, to our knowledge, the first study where the fitness of both 
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essential and non-essential genes is determined in such settings. We demonstrate 

how SPV 686/7/8 (renamed ArpABC), a general purpose antimicrobial resistance 

related efflux pump, becomes a conditional essential gene when Sa is co-cultured with 

Sa, but only at pH 6. 
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Figure 1 | Overview of the used CRISPRi-Seq methodology  

The D39V IPTG-inducible CRISPRi library (see methods) was used in combination with 

different co-culture conditions: When relevant, Sp (purple rounded rectangles) was incubated 

with Sa (yellow rectangles) or Detroit 562 human cells (blue cells) in both liquid (supplemented 

RPMI, yellow) and solid (C+Y agar, white background) media (A). At the end of the co-culture 

experiment, cells were collected and the CRISPRi library sequenced (B-C). Differential 

analysis reveals genetic features relevant for each condition Vs. another condition (D). 
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Results 

The ArpABC MacAB-like efflux pump is crucial for successful competition 

To identify genes and pathways required for Sp survival in the presence of 

various competitors, we developed a solid-based (C+Y agar) CRISPRi-seq assay (Fig. 

1; see methods). By plating Sp in the presence of competitors on a solid surface, we 

were able to screen for contact-dependent interactions within a static niche. To 

determine which genes are required for the survival of Sp on an established Sa 

environment, we inoculated a previously described Sp D39V CRISPRi library (Liu et 

al., 2017; Liu et al., 2021) onto an agar surface on which Sa was growing for 4h (see 

methods). We observed that only a limited number of Sp genes became conditionally 

essential in these settings (figure 2A, supplementary figure 2A). The top two hits were 

sgRNAs targeting SPV_0686/7/8 (log2 fold change = -5, p-value = 2.3x10-33), and prtA 

(log2 fold change = -1.5, p-value = 1.8x10-3) (figure 2A). The spv_0686/7/8 operon 

(also known as sp0785/6/7 and spr0693/4/5) encodes an ATP-binding cassette (ABC)-

type MacAB-like efflux pump and was previously associated with both antibiotic and 

LL-37 antimicrobial peptide resistance (Majchrzykiewicz et al., 2010; Yang et al., 

2018). Due to its related activity with antimicrobial export, and now also with its 

discovered competition mechanism, we renamed spv_0686/7/8 as arpABC, 

antimicrobial and competition related pump A/B/C.  

PrtA (Pneumococcal Protease A) is a cell wall associated S8 serine protease 

belonging to a protein class that has been implicated in the cleavage of lantibiotic 

leader sequences. Lantibiotics are a sub group of bacteriocins, named after the non-

proteinogenic amino acid lanthionine (Marquart, 2021).  

 To validate the observed fitness defects of CRISPRi knockdowns of both prtA 

and arpABC under the tested conditions, we generated knock-out (KO) mutants in a 

background that constitutively expresses firefly luciferase. By tracking luminescence 

over time, we can track the population’s metabolic activity as a proxy for cell density 

(Sorg et al., 2015). Luminescence of wild type (WT) and the ΔprtA and ΔarpABC 

mutants were measured in the presence and absence of Sa. We observed that when 

grown in the presence of an established Sa matrix, both mutants exhibited a relative 

fitness defect (fitness defect of ~0.3-0.4x compared with the WT), in line with our 

CRISPRi-seq screen (figure 2A, 2B, 2E). Interestingly, both mutants also competed 

less well against Escherichia coli and Sp (figure 2E, 2H). A strain in which the 

https://en.wikipedia.org/wiki/Proteinogenic_amino_acid
https://en.wikipedia.org/wiki/Proteinogenic_amino_acid
https://en.wikipedia.org/wiki/Amino_acid
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ΔarpABC KO was complemented by expression of arpABC from an ectopic locus 

showed a WT-like phenotype when grown in the presence of SA (figure 2E, 2H, 2F).  

Unlike what was observed for Sa, when ΔarpABC Sp had to compete with WT 

Sp, the luciferase-activity profile mimicked the respective single-culture conditions, 

albeit at a faster pace (activity is abolished before 10h). Conversely, Sa competition 

prolonged this state, with Sp metabolic activity “plateauing” for longer (figure 2E, 2H). 

This lowered plateaued metabolic state might result in a lower rate of division, and 

consequently in a lower total amount of elapsed generations per unit of time. Such 

phenomenon is in alignment with the obtained CRISPRi data for Sp co-cultured with 

Sa, where a concomitant relative decrease in total generations (measured by sgRNA 

abundance skewness from the diagonal) was observed when the relative initial 

concentration of Sa was increased (supplementary figure 3) (see methods for CRIPRi-

Seq normalization procedures).  

We next assessed whether these effects could be recapitulated at different 

initial relative Sp to Sa CFU ratios without any pre-established Sa matrix. Indeed, we 

only observed a fitness defect for ΔarpABC when the Sp CFU ratio was at least 100x 

lower than that of Sa. Similar cell density dependent results were also obtained when 

CRISPRi-seq was performed using different relative CFU ratios of either Sp WT or Sa 

as competitors. A generalized pronounced effect on differential gene fitness was only 

observed starting at a ratio of 1 Sp to 10 competitors, with the effect being more 

pronounced for Sp WT (figure 2D, 2G, supplementary figure 2B, supplementary figure 

3). 

Altogether, these results indicate that the arpABC operon is an important player 

in Sp adaptation to high bacterial density competition environments. 
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Figure 2 | PrtA and ArpABC negatively impact Sp competition fitness with other 

bacteria 

A) D39V CRISPRi library normalized fitness comparison between the presence and absence 

of Sa incubated for 4h in C+Y agar. Normalized values correspond to the L1 Norm of the log2 

fold-changes (see methods). A value of 0 indicates a neutral fitness effect. Both PrtA and 

ArpABC are indicated in red, and only display a negative differential fitness in the Sp + Sa 

condition. B) Relative luminesce area under the curve (AUC) fold-change difference between 

D39V WT (fold-change of 1) and (mutant / WT) when inoculated in the presence / absence 

(+competitor/-competitor) of a competitor incubated for 4h in agar C+Y prior to addition of Sp, 

respectively (see E and H). C) Same as B, but Sa was either simultaneously added or not to 

agar C+Y with either D39V WT or ΔarpABC at different starting relative CFU ratios (1:1,1:10, 

or 1:100). D) Same as A, but Sp D39V WT was simultaneously added to the Sp library in a 

1:10 CFU ratio.  E) Relative luminescence growth curves of D39V WT, ΔarpABC, or the 

complemented mutant ΔarpABC + CIL::arpABC. Sp was added at a concentration of 100,000 

CFU/ml. E) In the presence of Sa (125,000 CFU/ml) incubated for 4h. H) In the presence of 

WT Sp (100 CFU/ml) incubated for 4h. F) Similar to B and C, but regarding the 

complementation strain ΔarpABC + CIL::arpABC. G) Same as D, but Sa WT was used as the 

competitor instead of Sp WT. 
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arpABC as a conditional essential gene: Acidic pH negatively impacts Sp 

survivability in the presence of Sa when arpABC is absent  

 pH has been demonstrated to modulate the efflux of the Resistance Nodulation 

Division (RND) family of transporters (Martins et al., 2009). Considering arpABC 

belongs to this family of proteins, we evaluated the putative impact that environmental 

pH has on Sp fitness when competing with Sa.  

 We submitted both the WT D39V and the ΔarpABC to competition with Sa as 

previously indicated. As shown in Fig. 3, we observed that the fitness of the ΔarpABC 

mutant decreased with the decrease in the initial media pH, but only in the presence 

of Sa (figure 3A, 3B, 3C1, 3C2). Indeed, at pH 6.1, ΔarpABC growth was only 0.15 

that of the WT under a similar condition (figure 3B). At a pH lower than 6, ΔarpABC 

was unable to grow in the presence of Sa, and thus no growth profile is available. In 

the absence of Sa, however, equivalent growth to that of D39V WT was observed 

under all pH conditions (figure 3A, 3C1). We also noted that in the presence of Sp, Sa 

naturally acidifies the growth media more than Sp by itself, possibly further 

exacerbating the pH impact on ArpABC mediated activity. Considering the normal 

nasopharynx pH ranges between 6.1 and 7.9 (Brunworth et al., 2012), such 

observations hint at ArpABC being a key component in Sp adaptation within the 

nasopharynx microbiome.  
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Figure 3 | ArpABC is required for competition with Sa in acidic environments 

A) Growth fold-changes as measured by relative luminescence AUC between D39V WT and 
ΔarpABC in the presence/absence of Sa incubated for 4h in agar C+Y prior to addition of Sp, 

at different starting pH (mutant/WT AUC). B) Same as A, but relative fold-changes are 
normalized to the respective mutant/WT fold-change, for any given pH ((mutant/WT fold-
change +Sa) / (mutant/WT fold-change -Sa)), and indicated as a heatmap where lower 
numbers indicate a worse fitness.  
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Sa dislodges Sp D39V from a Detroit 562 cell matrix 

 Several reports have highlighted the differences between in vitro (bacteria 

grown in laboratory conditions) conclusions and their applicability in vivo (bacteria 

during host infection), with the role of H2O2 on Sp colonization being one of such 

examples (see introduction). We therefore next sought to explore the impact Sa has 

on Sp co-colonization on a setting closer to the Sp natural environment, the human 

nasopharynx. To this end, we cultured pharynx epithelial cells (Detroit 562) to a 

confluent layer and infected them with either Sp, Sp and Sa, or Sa (see methods).  

To maintain both Sp and Sa active growth, while minimizing damage to the 

Detroit 562 cells, we first determined the optimal multiplicity of infection (MOI) for both 

bacterial species. By tracking Sp metabolic activity via luminescence, and observing 

the spatial interaction, morphology, and distribution of Sp, Sa, and the Detroit 562 

cells, we determined a multiplicity of infection (MOI) of 5 for Sp, with an infection time 

of 6h, would be the most suited. This would allow the time frames required to perform 

microscopy and genetic analyses on the different interactions (see methods) (figure 4) 

(supplementary figure 5 and 6). 

When co-culturing Sp and Sa with Detroit 562, we observed that both species 

seem to co-exist within 2 exclusion zones: Vertically, with Sp mostly being dislodged 

to the top of the Sa matrix; and horizontally, with Sp concentrating within the gaps in 

the Sa matrix. Interestingly, Sa maintained a close association with the pharynx cells 

independently of the presence of Sp. This differed from Sp, where a looser association 

with the Detroit 562 cells was observed, even when in single-culture conditions (figure 

4A, 4B, 4C). Such weaker connection to the pharynx cell matrix could readily dislodge 

Sp upon agitation. Indeed, upon performing scanning electron microscopy (SEM) on 

Sp, Sa, and Detroit 562 co-culture settings, we were unable to observe Sp, possibly 

due to the several washing stages required for SEM sample preparation (figure 4D, 

4E). 
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Figure 4 | Sp, Sa, or Sp and Sa on a human pharynx matrix (Detroit 562 cells)   

Sp (green), Sa (red), or Sp and Sa were co-cultured with human pharynx Detroit 562 cells for 
6h. The microscopy images were obtained by merging a Z-stack of bright field with both the 
red and green fluorescence fields (see methods). (A, B, C). D and E) SEM image of Detroit 
562 cells inoculated with both Sp and Sa (D), or just Sp (E).  
 

  



 

Chapter 5 | 151 

 

0 

1 

2 

3 

[4] 

5 

The Sp cell wall plays a key role on Sp competition with Sa in a human pharynx 

cell matrix 

 To further understand Sp interactions with both Detroit 562 and Sa, we next 

applied CRISPRi-seq under these settings. Considering that we previously 

demonstrated that the relative ratio of Sp Vs. competitor is a key factor in Sp 

competition, we submitted Detroit 562 cells to different inoculation times with Sa prior 

to adding the D39V Sp CRISPRi library. The Sp library was either simultaneously 

added with Sa, or following pre-incubation of the Detroit 562 cells for either 1h 45min, 

or 3h (see methods). These conditions were chosen based on their respective impact 

on the metabolic activity of Sp, as measured by relative luminescence (supplementary 

figure 5) .  

 Adding Sa at different time points to Detroit 562 cells resulted in different gene 

fitness requirements on Sp. We observed that the previously reported genes, prtA and 

arpABC, are not significantly observed in any of the tested conditions (figure 5C; 

supplementary figure 7). However, a borderline significant fitness defect for prtA was 

seen when Sp was simultaneously incubated with Sa on an epithelial cell matrix (log2 

fold change = -1.35, p-value = 0.08). In the same condition, genes involved in Sp cell 

wall/shape become more critical for survival, in line with the results obtained when Sp 

is cultured with just Detroit 562 cells, possibly indicating a reduced effect of Sa in the 

environment (tar operon, rodZ, rodA, mreC) (figure 5A, 5D). Conversely, when Sa is 

pre-incubated alone with Detroit 562 prior to Sp (for either 1h45min, or 3h), cell wall 

related genes associated with peptidoglycan biosynthesis, such as pbp2x, ddl, or the 

potABCD operon, gain a fitness defect, not being as required under these conditions 

as when Sp is by itself (x-axis of both figure 5B, supplementary figure 7G). This effect 

seems to be dependent on the presence of the Detroit 562 cells, as when these are 

absent, such pathways do not display a differential fitness defect (supplementary 

figure 7A, 7B, 7E). Also dependent on the presence of Detroit 562 cells, is the 

increased Sp requirement for the mevalonate pathway (mva gene family), with the 

presence of Sa decreasing the need for these metabolites under the same conditions 

(supplementary figure 7C, 7D). When no Detroit 562 cells are added, such effect is 

also seen, with the mevalonate pathway being less required when Sp is co-cultured 

with Sa than when grown by itself (supplementary figure 7). Considering that a 

depletion in the mevalonate pathway has been previously associated with a reduced 
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amount of peptidoglycan precursors (Dewachter et al., 2022), the observed negative 

effects in the presence of Detroit 562 cells can be linked with the also negative gene 

fitness of several cell wall related genes, under the same conditions. The amelioration 

of the mevalonate pathway fitness in the presence of Sa could then be due to 

metabolic precursor sharing, and thus indicate some degree of metabolic synergy 

between both species when in RPMI media (supplementary figure 7C).  

 After 3h of Sa pre-incubation, most of the observed Sp gene fitness defects 

seem to originate from Sa itself, as the same overall gene fitness of all genes is 

observed in both the presence or absence of Detroit 562 cells (supplementary figure 

7A). Such could indicate that after 3h, Sp mainly interacts with Sa, irrespective of the 

pharynx cell matrix. Indeed, we have demonstrated that Sp D39V mainly co-exists on 

top of the Sa-Detroit 562 matrix (figure 4C). 

The cps operon encodes the Sp capsule, and, in D39V, the serotype 2 capsule. 

Interestingly, in all conditions where Sa was present, CRISPRi knockdown of the cps2 

operon consistently exhibited a positive fitness defect. This implies that this operon is 

detrimental for growth only when Sa is present, independently of the presence of 

Detroit 562 cells. Alternatively, reduced capsule could lead to increased adherence to 

the epithelial cells (Kjos et al., 2015) thereby providing a competitive advantage in the 

presence of Sa. Exceptionally, cps2 displays neutral fitness only when Sp and Sa co-

exist in C+Y agar, indicating cps2 to be detrimental for Sp competition in liquid RPMI 

media, but having no effect when cells are on a C+Y agar surface (figure 5C, 

supplementary figure 7F). Under these latter settings, cell wall related pathways once 

again play a key role in Sp adaptation to Sa. Although such effects could derive from 

the longer Sa incubation time in the C+Y agar condition than on RPMI, these results 

nonetheless contribute to show the prominent role of the cell wall on Sa competition. 

Curiously, no significant cell wall related genes were observed in the initial agar based 

CRISPRi screen (figure 2A), again highlighting the condition dependent role of gene 

essentiality/fitness. 
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Figure 5 | Sp cell wall pathway fitness changes in regards to the presence of 

both Sa and human pharynx cells (Detroit 562) 

D39V CRISPRi library normalized fitness comparison between the presence and absence of 
Sa, and/or Detroit 562 cells in RPMI media. Sp was either added simultaneously with Sa (D), 
or after 1h45min (B), or 3h (x-axis, C). Without Sa, but with Detroit 562 epithelial cells (A). In 
the case of C the conditions used (C+Y agar, y-axis) correspond to the same used in the assay 
indicated in figure 2A. The normalized values correspond to the L1 Norm of the log2 fold-
changes (see methods). A value of 0 indicates a neutral fitness effect. 
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Discussion 

Sp survival as either a human commensal or a pathogen is dependent on the 

crucial initial step of nasopharynx colonization. A plethora of studies have approached 

Sp requirements for adherence with human pharynx cells (Mlacha et al., 2013; S. 

Novick et al., 2017; Weight et al., 2019), however only a few have dwelled into gene 

essentiality under such conditions (van Opijnen & Camilli, 2012). Indeed, 

transcriptional responses only describe how a gene expression changes, not how a 

gene changes the overall fitness of a cell when under a certain condition. The two 

have often been demonstrated to be uncorrelated, especially regarding core essential 

genes, where constant expression profiles are commonly seen across conditions 

(Jensen et al., 2017). In here we have expanded on this knowledge and examined Sp 

gene essentiality using a three-part system, where a Sp CRISPRi library was grown 

in the presence of human Detroit 562 pharynx cells, and Sa. Unlike previous Tn-Seq 

studies, CRISPRi-Seq allows for the examination of the relative fitness of core 

essential genes (in this context defined as genes essential under all conditions), thus 

opening the door for new research avenues  (de Bakker et al., 2022; Liu et al., 2021; 

van Opijnen et al., 2009; van Opijnen & Camilli, 2012, 2013; van Opijnen et al., 2014). 

We believe this is the first study where the relative essentiality of most Sp operons is 

examined under these settings.  

 Both ArpABC and PrtA were observed to be required by Sp to compete against 

other bacteria (itself, Sa, and E. coli), albeit only in close contact solid media conditions 

(figure 2A, figure 5, supplementary figure 7). PrtA, however, exhibited a borderline 

significant fitness defect when Sp was simultaneously inoculated with Sa on Detroit 

562 cells (log2 fold change = -1.35, p-value = 0.08). PrtA has been previously 

demonstrated to worsen Sp systemic infection in mice, although not for all Sp strains 

(Bethe et al., 2001; Mahdi et al., 2015; Marquart, 2021). Considering PrtA is released 

into the extracellular milieu following maturation, it could be involved in the degradation 

of extracellular matrix components. Indeed, PrtA has been shown to interact with 

collagen (Frolet et al., 2010), and S8 serine peptidases have been demonstrated to 

process lantibiotics into their active forms (Y. Zhang et al., 2022). Besides its 

involvement in in vivo infection, PrtA could also have a role in either hindering the 

growth of competing bacteria via matrix degradation, or in self-defense by cleaving 

potentially harmful peptides secreted by neighboring cells. Considering prtA has been 
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demonstrated to be upregulated in the presence of various antimicrobial peptides, 

such as Bacitracin, LL-37, and Nisin (Majchrzykiewicz et al., 2010), such results are 

in line with Sp population dynamics, which are often characterized by their aggressive 

fratricide strategies, with competent Sp inducing the lysis of non-competent cells 

(Claverys & Havarstein, 2007; Guiral et al., 2005). 

 We have also demonstrated that the ABC-type MacAB-like efflux pump ArpABC 

(Yang et al., 2018) increases Sp growth when in the presence of Sa, with its activity 

being essential for Sp survival with Sa in acidic pH (~6) (figure 3). Interestingly, a 

MacAB-like efflux pump has also been shown to protect Salmonella enterica from 

oxidative stress by the excretion of a soluble anti-H2O2 molecule (Bogomolnaya et al., 

2013).  Similarly to prtA, arpABC has been demonstrated to be upregulated, and 

confer increased resistance in the presence of both bacitracin and LL-37 

(Majchrzykiewicz et al., 2010). Moreover, arpABC is also upregulated when 

competence stimulating peptide-1 (CSP) is added to the media, and in the initial steps 

of Sp A549 cells infection (1h) (Aprianto et al., 2018). Another study also related this 

efflux pump with a decreased susceptibility to antimicrobials, such as erythromycin, 

fosfomycin, and fusidic acid (Marrer et al., 2006). Genomic and transcriptome analysis 

also showed that arpABC has a complex regulation, with two distinct promoters, RpoD 

and GntR (Slager et al., 2018). GntR, one of the largest bacterial transcription factor 

families, is also known to negatively regulate another ABC transporter involved in 

antimicrobial resistance, SPV 1525/6 (Majchrzykiewicz et al., 2010). Altogether, these 

results hint at the multi-purpose function of this pump. In the future, it will be interesting 

to see the exact role of GntR on the here observed fitness. Furthermore, whether the 

entire ArpABC operon or just some of its subunits are required for the reported 

phenotypes still needs to be tested. ArpC, however, has been demonstrated to be 

essential for a fully functioning ArpABC, with ArpA cooperating with ArpBC to form a 

continuous efficient tunnel for subtract transportation from the extracellular membrane 

face to the peptidoglycan layer (figure 6) (Yang et al., 2018).  

Sa has recently been demonstrated to inhibit Pseudomonas aeruginosa in a 

glucose and pH dependent manner by production of acetoin, acetic acid, and other 

oligopeptides or cyclic peptides (Kvich et al., 2022). The observed decrease in 

ΔarpABC survival when in competition with Sa at low pH could thus be related with 

ArpABC excreting Sa-produced low pH activated compounds. Such could also explain 
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why arpABC did not display any significant differential fitness when Sp was competed 

with Sa in liquid RPMI media. Unlike C+Y, RPMI is buffered at pH 7.4. The closer 

contact of Sp with its competitors when in an agar matrix can also be a factor due to 

the possible exacerbation of any possible effects due to higher local concentrations of 

various compounds. Further testing would be required to determine if these effects are 

also observed at a lower pH in the presence of pharynx cell, or when in competition 

with other bacteria. Such conditions would not be physiologically unrealistic, as 

nasopharynx pH can be as low as 5 in diseased individuals (Brunworth et al., 2012). 

arpABC thus emerges as a conditional essential gene, being directly involved in the 

Sp general antimicrobial defense system. 

 

Figure 6 | ArpABC protein assembly 

A) ArpABC substract-entrance tunnel as calculated by the program CAVEAR 3.0.1. MFP 
(membrane fusion protein), PLD (periplasmatic domain), MP (membrane proximal), TMD 
(transmembrane domain), NBD (nucleotide-binding domains) are indicated. ArpA augments 
ArpBC activity by two-fold. B) Simulated modle of ArpABC, built by manually superimposing 
the structures of AprA, and ArpBC. Adapted from Yang et al. (Yang et al., 2018). 

 
The lic operon is upregulated in the presence of pharynx cells (S. Novick et al., 

2017; Orihuela et al., 2004). In here we report the same operon to have a fitness defect 

in both the presence of Detroit 562 cells and absence of Sa (log2 fold change = -5, p-

value = 1x10-9), when compared with all other conditions (presence/absence of Detroit 
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562 cells with Sa, and Sp by itself). Lic is involved in the metabolism of 

phosphorylcholine, which binds to the teichoic acids and lipoteichoic acids present in 

Sp surface. Considering phosphorylcholine is required for increased adherence to 

human cells (J. R. Zhang et al., 1999), such results suggest that an increased 

adherence to the underlying cell matrix increases Sp fitness, but isn’t as required when 

a competitor is present, or when a cell matrix is absent (neutral fitness). Such close 

contact has been associated with the first stage of invasive disease (Hammerschmidt 

et al., 2005; S. Novick et al., 2017). The limited effect observed when Sa is present 

could thus be caused by the protective effect one established species can have on 

modulating infection by another invading species. Indeed, we observed Sa tendency 

to occlude Sp D39V from direct contact with the pharynx matrix (figure 4). Similar 

results were obtained when Sp was co-cultured into a Sa agar matrix (figure 5C), and 

further highlight the overall net positive fitness effect on Sp when there is close contact 

with the surrounding matrix.  

The requirement for essential cell wall related pathways (involved in the 

peptidoglycan pathway, figure 5B) was the most reduced when Sa was present, with 

similar mutants displaying a severe fitness defect when D39V is by itself. The largest 

effect was observed when Sa was co-cultured the longest time with Detroit 562 cells 

(figure 5B). Together, such results exemplify how assumed core essential functions, 

such as peptidoglycan synthesis, can be considered conditionally essential depending 

on the conditions. In this case, such reduced requirement might arise from Sp 

leveraging the existing Sa matrix as a structural support for its own cells, and therefore 

gaining a fitness advantage by bypassing an otherwise costly essential pathway. Such 

hypothesis also explains the greater decrease in capsule (cps) requirement observed 

when Sa is present (figure 5). Such effect, however, is not observed in solid agar 

media, where the fitness advantage arises mainly from the reduction in cell wall 

metabolism, as opposed from a concomitant reduction in cell wall and capsule 

production, as indicated by the neutral fitness of this latter (figure 5C). Further testing 

would be required to precisely ascertain the impact of capsule production on Sp 

interaction with Sa, however it is possible that the lack of a capsule would facilitate Sp 

dissemination within a Sa matrix. 

Capsule shredding has been reported to increase Sp adherence, and as a first 

step in Sp transition into disease, with unencapsulated Sp strains significantly 

adhering better to human cells than encapsulated ones (Hammerschmidt et al., 2005; 
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S. Novick et al., 2017). Such results agree with our observations, where the current 

Sp D39V strain fails to be detected by SEM when using a cell matrix model, probably 

due to washing of the low adhered cells (figure 3D, 3E).  

 With this work, we have explored the dynamic role of gene essentiality under 

diverse complex environments, particularly how non-essential genes might transition 

to essential, and how previously known core essentials shift to non-essential. We have 

also demonstrated how changes in relative bacteria concentration, pH, and media type 

have on modulating Sp response to the same stimulus type: competition with other 

bacteria. Altogether, such results serve as a reminder of the infinitely intricate bacterial 

regulation system, and how in vitro relevance must always be considered in the 

context of all possible bacterial natural environments. 
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Methods 

Strains and libraries 

The Sp strain D39V and its derivatives were either cultured at 37°C without 

shaking in liquid C+Y (pH 6,8), or at 37°C with 5% CO2 in C+Y (pH 6.8) 1% agar 

(Martin et al., 1995), unless stated otherwise. See table 1 for the full list of used strains. 

The used Sp D39V CRISPRi library consist of an IPTG-inducible CRISPRi 

system with 1498 pooled individual different guide RNAs (sgRNAs) targeting 2,111 

genetic features (de Bakker et al., 2022; Liu et al., 2017). IPTG induction activates 

dCas9 expression, ultimately resulting in the transcriptional arrest of the sgRNAs´ 

binding site, usually located at the transcriptional start site of an operon.  

Sa strain NCTC8325-4 was either grown in BHI media at 37ºC with shaking at 

200rpm, or in LBA at 37ºC, unless stated otherwise. 

Detroit 562 (ATCC® CCL-138™) cells were routinely grown in adherent cell 

culture flasks in Dulbecco's Modified Eagle Medium (DMEM) (ThermoFisher 

Scientific) supplemented with 10% FCS, 25mM HEPES, and 50U/ml of PS (Pen-strep) 

at 37ºC with 5% CO2. 

 

Electron Microscopy 

 Infection of Detroit 562 cells with Sa NCTC8325-4 (MOI of 5) and/or Sp D39V 

WT (MOI of 5) was performed as described (see ‘Sp Vs. Detroit 562 / Sp CRISPRi-

Seq’ section). SEM imagining was performed in collaboration with the Electron 

Microscopy Facility at the University of Lausanne.  

 

Confocal Microscopy 

 Briefly, 200µl of DMEM Detroit 562 cells at a concentration of 1X106 cells/ml 

were inoculated into an 8 well ibidi microscopy chamber and incubated at 37ºC, 

5%CO2. 2 days after, at a concentration of ~2X106 cells/ml, the wells were washed 

with 200µl of PBS and inoculated with 200µl of RPMI media. When required, 

fluorescent Sp (VL1978) (MOI=5) and/or Sa (VL4874) (MOI=10) were added to the 

media. Imaging was performed after 6h of incubation at 37ºC, 5%CO2, using a Zeiss 

LSM 900 confocal microscope. The resulting bright, and red/green fluorescence fields 
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were merged and processed using the Fiji ImageJ software (Schindelin et al., 2012). 

For Z-stack creation, slices of 0.2µm were used. 

 

Table 1 | Bacterial strains used in this study 

See table 2 and 3 for further description on all built strains, and used primers. 

Strain name Description Reference 

Sa NCTC8325-4 
MSSA strain, derivative of 
NCRC8325, cured of phages 

(R. Novick, 1967) 

Sa VL4874 (red) 
NCTC8325-4, pSRFPS1(pKK30)-
tmpr 

Lab collection 

Sp D39V WT (VL1) Serotype 2 (Slager et al., 2018) 

Sp VL1978 (green) 
D39V, HlpA::HlpA-mNeongreen-
cmr 

Lab collection 

Sp D39V WT 
(luminescent) (VL551) 

D39V, cep::specr-P3-Luciferase Lab collection 

∆prta (VL3893) 
D39V, ∆SPV 558::eryr, cep::specr-
P3-luciferase, 

This study 

∆arpABC (VL3933) 
D39V, ∆arpABC::eryr, cep::specr-
P3-luciferase 

This study 

Complementation of 
∆arpABC (VL5303) 

D39V, ∆arpABC::eryr, cep::specr-
P3-luciferase, cil::arpABC-kanr 

This study 

 

Strain building 

For transformation with the appropriate DNA fragments, Sp was incubated in 

C+Y at 37°C to OD595 ~0.11. Competence was induced by addition of 100 ng/ml 

synthetic CSP-1, followed by 12 min of incubation at 37°C. 100µl of the resulting 

culture were sub-divided into as many tubes as transformation reactions (100µl of cells 

per transformation reaction). DNA was added and uptake occurred for 20 min at 30°C. 

cells were allowed to recover for up to 1.5h. Transformants were selected by mixing 

the cell culture with Columbia agar supplemented with 4% defibrinated sheep blood 

(CBA, Thermo Scientific). Appropriate antibiotics were added as needed. Incubated 

proceeded overnight at 37°C, 5% CO2. Successful transformants were confirmed by 

PCR and Sanger sequencing (Microsynth). Successfully built strains were stocked at 

OD595 0.3/0.4 in C+Y with 15% glycerol at -80°C.  
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Table 2 | Description for building all the strains used in this study 

Strain name Description, and primers 

∆prta (VL3893) 

The primers OVL5488, OVL5489, OVL5490, and OVL5491 were used 
to respectively PCR ~1000bp of the upstream and downstream 
regions of SPV 558 (prtA). OVL1767 and OVL1768 were used to PCR 
the eryr gene. BsaI was used to cut all fragments. Following ligation 
and PCR of the obtained correct fragment, transformation was carried 
as described. 

∆arpABC 
(VL3933) 

The primers OVL5438, OVL5439, OVL5440, and OVL5441 were used 
to respectively PCR ~1000bp of the upstream and downstream 
regions of SPV 686-8 (arpABC). OVL1767 and OVL1768 were used 
to PCR the eryr gene. BsaI was used to cut all fragments. Following 
ligation and PCR of the obtained correct fragment, transformation was 
carried as described. 

Complementation 
of ∆arpABC 
(VL5303) 

The primers OVL5457, OVL7804, OVL7807, and OVL828 were used 
to respectively PCR ~900bp of the upstream and downstream regions 
of the cil::kanr locus. The primers OVL7805 and OVL7806 were used 
to PCR the native arpABC gene. BsmBI was used to cut all 
fragments. Following ligation and PCR of the obtained correct 
fragment, transformation was carried as described.  

 

Table 3 | Primers used in this study 

Primer Name Primer Sequence Primer Description 

OVL5438 CTTCGAAATGAATGGTAATGC ISU_Fw_oper278 

OVL5439 
CGAAGTGGTCTCGAGTAAATGAAACTCCTTTTCT
TTTTTACA 

ISU_Rv_oper278 

OVL5440 
CGAAGTGGTCTCGAAGCGATCAACAAGATGGAC
ACTC 

ISD_Fw_oper278 

OVL5441 ATTTAACATCCAACATCATAAGAAGG ISD_Rv_oper278 

OVL5488 AGTGAAGATTGTGCAGAGA ISU_FW_SPV558 

OVL5489 
CGAAGTGGTCTCGAGTATTTAATTCCTTACATAT
TTATTTAACTTCCA 

ISU_RV_SPV558 

OVL5490 
CGAAGTGGTCTCGAAGCGACAAAAGCTATAGAA
AAAAATGGT 

ISD_FW_SPV558 

OVL5491 GAGCCAGAATATTTGTTTGACT ISD_RV_SPV558 

OVL5457 CAATCCACATCGGCCAGATCGTTATTC Kan_R 

OVL7804 
TTGTGGCGTCTCGGAGTGGTACCGGCTGCATGC
ATCG 

1_CIL_kan_UP_R 

OVL828 
AATGATACGGCGACCACCGAGATCTACACAGAG
TAGATCGTCGGCAGCGTCAGATGTGTATAAGAG
ACAGAAACATAAAGAAAGGCCCGGCGC 

1_CIL_kan_DW_R 

OVL7805 
TTGTGGCGTCTCGACTCTGCTACGCACAAAAAAT
TGC 

2_SPV_686/7/8_F 



 

Chapter 5 | 162 

 

OVL7806 
TTGTGGCGTCTCGTCCAAAAACAAGATAGACGA
GTGTCC 

3_SPV_686/7/8_R 

OVL7807 
TTGTGGCGTCTCCTGGATCCCTCCAGTAACTCG
TC 

4_CIL_KAN_DW_F 

OVL1767 
CGAAGTGGTCTCGTCATGAACAAAAATATAAAAT
ATTCTCAAAACT 

Ery GD_F 

OVL1768 
CGAAGTGGTCTCGGCTTATTTCCTCCCGTTAAAT
AATAGAT 

Ery GD_R 

Read1-
custom 

CTTGACATTGCACTGTCCCCCTGGTATAATAACT
ATA 

Illumina MiniSeq 
custom primer 

N501 
AATGATACGGCGACCACCGAGATCTACACTAGA
TCGCTCGTCGGCAGCGTCAGATGTGTATA 

Illumina MiniSeq 
indexing primer 

N502 
AATGATACGGCGACCACCGAGATCTACACCTCT
CTATTCGTCGGCAGCGTCAGATGTGTATA 

Illumina MiniSeq 
indexing primer 

N503 
AATGATACGGCGACCACCGAGATCTACACTATC
CTCTTCGTCGGCAGCGTCAGATGTGTATA 

Illumina MiniSeq 
indexing primer 

N504 
AATGATACGGCGACCACCGAGATCTACACAGAG
TAGATCGTCGGCAGCGTCAGATGTGTATA 

Illumina MiniSeq 
indexing primer 

N505 
AATGATACGGCGACCACCGAGATCTACACGTAA
GGAGTCGTCGGCAGCGTCAGATGTGTATA 

Illumina MiniSeq 
indexing primer 

N506 
AATGATACGGCGACCACCGAGATCTACACACTG
CATATCGTCGGCAGCGTCAGATGTGTATA 

Illumina MiniSeq 
indexing primer 

N507 
AATGATACGGCGACCACCGAGATCTACACAAGG
AGTATCGTCGGCAGCGTCAGATGTGTATA 

Illumina MiniSeq 
indexing primer 

N508 
AATGATACGGCGACCACCGAGATCTACACCTAA
GCCTTCGTCGGCAGCGTCAGATGTGTATA 

Illumina MiniSeq 
indexing primer 

N701 
CAAGCAGAAGACGGCATACGAGATTCGCCTTAG
TCTCGTGGGCTCGGAGATGTGTAT 

Illumina MiniSeq 
indexing primer 

N702 
CAAGCAGAAGACGGCATACGAGATCTAGTACGG
TCTCGTGGGCTCGGAGATGTGTAT 

Illumina MiniSeq 
indexing primer 

N703 
CAAGCAGAAGACGGCATACGAGATTTCTGCCTG
TCTCGTGGGCTCGGAGATGTGTAT 

Illumina MiniSeq 
indexing primer 

N704 
CAAGCAGAAGACGGCATACGAGATGCTCAGGAG
TCTCGTGGGCTCGGAGATGTGTAT 

Illumina MiniSeq 
indexing primer 

N705 
CAAGCAGAAGACGGCATACGAGATAGGAGTCCG
TCTCGTGGGCTCGGAGATGTGTAT 

Illumina MiniSeq 
indexing primer 

N706 
CAAGCAGAAGACGGCATACGAGATCATGCCTAG
TCTCGTGGGCTCGGAGATGTGTAT 

Illumina MiniSeq 
indexing primer 

N707 
CAAGCAGAAGACGGCATACGAGATGTAGAGAGG
TCTCGTGGGCTCGGAGATGTGTAT 

Illumina MiniSeq 
indexing primer 

N708 
CAAGCAGAAGACGGCATACGAGATCCTCTCTGG
TCTCGTGGGCTCGGAGATGTGTAT 

Illumina MiniSeq 
indexing primer 

N709 
CAAGCAGAAGACGGCATACGAGATAGCGTAGCG
TCTCGTGGGCTCGGAGATGTGTAT 

Illumina MiniSeq 
indexing primer 

N710 
CAAGCAGAAGACGGCATACGAGATCAGCCTCGG
TCTCGTGGGCTCGGAGATGTGTAT 

Illumina MiniSeq 
indexing primer 

N711 
CAAGCAGAAGACGGCATACGAGATTGCCTCTTG
TCTCGTGGGCTCGGAGATGTGTAT 

Illumina MiniSeq 
indexing primer 

N712 
CAAGCAGAAGACGGCATACGAGATTCCTCTACG
TCTCGTGGGCTCGGAGATGTGTAT 

Illumina MiniSeq 
indexing primer 
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Agar-based luminescence assay 

 200µl of C+Y 1% agar supplemented with 0.1 mg/ml of luciferin were added to 

a 96-well black polystyrene microplate plate. When required, the pH of the C+Y media 

was adjusted by adding HCl. The needed luminescent Sp strains were defrosted and 

used to inoculate 2ml of liquid C+Y at a 1/100 dilution. All strains were incubated at 

37ºC until OD600 ~0.1, at which point another dilution was performed to a final OD600 

of 0.0001 (100,000 CFU/ml). When appropriate, such dilution was mixed with non-

luminescent competitors at the desired CFU ratios (1:1;1:10:1:100;1:1000). In the case 

of Sa, an appropriately diluted 16h overnight culture (~5M CFU/ml) of NCTC8325-4 

was used for all assays. When pre-incubating the C+Y with competitors for 4h, an 

OD600 of 0.000001 (100 CFU/ml) and an OD600 of 0.001 (125,000 CFU/ml) were used 

for Sp D39V WT and Sa NCTC8325-4, respectively. Luminescence was measured 

every 10min for at least 16h using a plate reader (Infinite F200, Tecan). All resulting 

data analysis were performed using a custom made Python3 script. Prior to AUC 

determination, time points were trimmed in such a way that the first data point of each 

sample corresponded to the first point where the luminescence value was above 100 

(a.u.). Such threshold was defined based on background noise level fluctuations, and 

allowed for correction of experimental artifacts by aligning all samples to time 0 at the 

start of exponential growth. AUC was then calculated between 0h and 8h, which 

normally corresponded to the onset of stationary phase, and the decrease in 

luminescence (metabolic activity). Such time frames also corresponded to the times 

used for CRISPRi-Seq. All relative fold-changes between samples were calculated by 

dividing the respective AUC, where appropriate. 

 

Sp Vs. Detroit 562 / Sp CRISPRi-Seq 

Following inoculation into 12-well flat bottom, sterile, tissue-culture treated 

plates at an initial concentration of 1X106 cells/ml, the cells were incubated for 2/3 

days at 37ºC, 5%CO2 until confluent (~2X106 cells/ml).  

Wells were washed with 200µl of PBS prior to the addition of 5ml RPMI 1640 

(ThermoFisher Scientific) supplemented with 1% FCS, 10nM HEPES, and 0.5% yeast 

extract. 1mM of IPTG was added when required. When appropriate, RPMI was 

supplemented with the Sp D39V CRISPRi library. To this end, an aliquot of the library 

was defrosted and diluted 1/40 in C+Y, and at OD578 = 0.1, diluted again to match a 
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MOI of 5. For Sa, a 16h overnight culture (~5M CFU/ml) of NCTC8325-4 was used at 

a MOI of 5 (when Sa was either added simultaneously with Sp, or 1h45min before Sp), 

or with a MOI of 50 when Sa was pre-incubated for 3h prior to adding Sp. 4 replicates 

per condition were used, combining all possible arrangements: +/- Detroit 562 cells; 

+/- Sa. Sa was either added simultaneously with Sp, or Sa was pre-incubated for either 

1h45min, or 3h, prior to Sp. All plates were inoculated for 6h at 37ºC, 5%CO2.  

Total DNA was extracted by adding 3 ml of (NH₄)₂SO₄ solution for every 1 ml of 

media. All adherent cells were scrapped and mixed. The mix was incubated at room 

temperature for 5 min and the sample solutions were collected in 15 ml tubes. 8 ml of TE was 

added and the samples centrifuged at 10.000 rpm for 20 min for pellet recovery. Total DNA 

was extracted for each sample (FastPure Blood/cel/Tissue/Bacetria DNA isolation; 

Vazyme). Illumina libraries were built and indexed by PCR (table 3), and sequenced 

in an Illumina MiniSeq device, as described (de Bakker et al., 2022).  

 

Sp Vs. Sa C+Y agar competition CRISPRi Assay 

 100µl of 16h overnight culture (~5M CFU/ml) of Sa NCTC8325-4 was 

inoculated into C+Y agar plates supplemented with and without 1mM IPTG, and grown 

for 4h at 37ºC, 5% CO2. An aliquot of the Sp D39V CRISPRi library was defrosted and 

diluted 1/40 in C+Y. At OD578 = 0.1, and upon reaching 4h of Sa growth, 300µl of 

library were added to the control (C+Y agar with and without IPTG), and the previous 

Sa plates. After 8h of incubation at 37ºC, 5% CO2, 2ml of C+Y were added to each 

plate, mixed, and the cell suspension collected. Total DNA was extracted for each 

sample (FastPure Blood/cel/Tissue/Bacetria DNA isolation; Vazyme). Illumina libraries 

were built and indexed by PCR (table 3), and sequenced in an Illumina MiniSeq device, 

as described (de Bakker et al., 2022).  

 

CRISPRi-Seq analysis 

 CRISPRi read counts were obtained from .fastq files using 2FAST2Q (chapter 

2) (Bravo et al., 2022). Fold change data analysis was performed using R DeSeq2 

package (Love et al., 2014). Essentially, the obtained reads per sgRNA were 

normalized, and differential analysis between the induced (+IPTG) and non-induced (-

IPTG) samples were performed for each condition group (e.g.: Sp and Sa +IPTG Vs. 

Sp and Sa -IPTG). The obtained log2 fold-changes indicated the relative fitness 
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differences for each sgRNA under the tested condition. Comparison across different 

conditions was performed using a custom Python3 script. As log2 fold-changes directly 

relate with a sample’s total number of generations, different conditions might have 

different relative fold-changes for the same gene fitness, and thus incur in the risk of 

erroneously indicating a difference between conditions when different conditions are 

compared. To mitigate this possibility, for each pair of conditions (e.g.: Sp Vs. Sp and 

Sa), log2 fold-changes were normalized based on the l1 Norm, calculated using the 

Scikit-learn Python module (Pedregosa et al., 2011). Normalization corrected 

differences in the generation times between the 2 different conditions being compared, 

thus allowing the inference of sample specific differential fitness genes without log2 

fold-change generational skewness.  
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Supplementary 
 

 
 

Supplementary figure 1 | Luminescence curves for S. pneumoniae D39V 
constitutively expressing the firefly luciferase gene under different co-culture 
conditions.  

Luminescence was tracked as described and is represented as arbitrary units (a.u). D39V 
metabolic activity in: A) C+Y agar, and C+Y liquid. B) RPMI+Y, and RPMI+Y with Detroit 562 
nasopharynx cells. 
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Supplementary figure 2 | PCA plot of the normalized reads per million (RPM) for 
the Sp CRISPRi library.  

A) PCA distribution of the normalized reads of the 3 replicates per experimental condition (+/- 

1mM IPTG; +/- Sa) from the experimental setup used to obtain the data shown in figure 2A. 

B) PCA distribution of the normalized reads of the 3 replicates per experimental condition (+/- 

1mM IPTG; +/- Sa; +/- Sp WT) from the experimental setup used to obtain the data shown in 

figure 2F and 2G. C)  PCA distribution of the normalized reads of the 4 replicates per 

experimental condition (+/- 1mM IPTG; +/- Sa; +/- Detroit 562) from the experimental setup 

used to obtain the data shown in figure 4. 
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Supplementary figure 3 | Un-normalized fitness comparisons at different 
starting ratios of Sp D39V CRISPRi library, and competitors 

Fitness distribution of the Sp CRISPRi library co-cultured with either Sp WT or Sa when using 

a relative CFU ratio of either 10:1, 1:1, or 1:10 of Sp to competitor. Axis units correspond to 

log2 fold-changes. 
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Supplementary figure 4 | Relative luminesce of D39V WT and ΔarpABC under 

different pH conditions 

A1) Absence of Sa. A2) Presence of Sa. 
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Supplementary figure 5 | Sp metabolic activity when in the presence of the 

tested CRISPRi-Seq conditions. 

A) At a starting Sp concentration of 10M CFU/ml luminescence rapidly decreased following 

the start of the experiment, indicating either death or decreasing metabolic activity. This 

condition was thus deemed unsuitable for CRISPRi-Seq. B) Starting Sp concentration of 1M 

CFU/ml (MOI=5). This Sp concentration was chosen for the CRISPRi screen Sp 

concentration, with Sp reacting differently to the presence and absence of both epithelial cells, 

and Sa, whilst maintaining active metabolic activity.   

 

 

 

 

A 

B

D39V and Detroit 562  

D39V 

D39V with Sa (12.5M 
CFU/ml) and Detroit 562 

D39V with Sa (12.5M 
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CFU/ml) and Detroit 562 
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CFU/ml)  
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Supplementary figure 6 | Bright field microscopy image of Detroit 562 when co-

cultured with Sp (MOI=5) and Sa (MOI=6) 

Bright field microscopy picture (amplification: 100x) of Detroit 562 cells with Sp (MOI=5) and 
Sa (MOI=6) at A) 1h post infection. B) 6h post infection. C) Detroit 562 cells in RPMI media 
1h into the experiment. D) 6h into the experiment. 
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Supplementary figure 7 | The mevalonate pathway is less required when Sa is 

co-cultured with Sa 

D39V CRISPRi library normalized fitness comparison with the absence/presence of Sa, pre 
incubated for either 1h45min, 3h, or simultaneously added to RPMI media. The normalized 
values correspond to the L1 Norm of the log2 fold-changes (see methods).  
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The oldest question in genetics 

Throughout this thesis we have approached one of the oldest standing topics 

in genetics: what are the minimal requirements for life. In the general introduction we 

described how the history of genetics is intertwined with mutagenesis analysis, and 

how mutants are used to not only map genetic interactions, but also to characterize 

phenotypic adaptations. 95 years after the official discovery of the first mutagen 

(Muller, 1927), such methodologies remain paramount. With the advent of NGS, 

mutagenesis-based techniques have exploded in use, having since then ushered in 

an era of high-throughput genetics. Such large scaling testing, however, generates 

what is commonly known as ‘big data’ (Dolinski & Troyanskaya, 2015). In chapters 2, 

3 and 4, we described and developed new computational pipelines capable of 

efficiently mining such data, and of returning all the essential genes of any bacterium, 

under any condition, when Tn-Seq or CRISPRi-Seq methods are used. 

In chapter 3, using Tn-seq, we determined the strain-level influence on both the 

core and pan essentialome of Escherichia coli, and how both essentialomes are 

defined by the conservation of essential functions, not by the conservation of gene 

homology per se. In chapter 5, we focused on a single strain, Streptococcus 

pneumoniae D39V, and leveraged CRISPRi-seq to demonstrate the impact that 

changing environments have on gene essentiality, and how essentiality arises and 

disappears in regards to specific transient stimuli, thus creating conditional 

essentiality.  

 

A semantics issue: Are not all genes either essential, or conditionally essential? 

Genes persist in a population if they display a net neutral or positive gain, that 

is, if they cause a cell lineage to survive equally well, or better, than its pears. Such 

relates with the current accepted definition of fitness, ultimately derived from Darwin: 

the ability to survive and reproduce in a given environment (Barker, 2009; Darwin, 

1869).  

Considering that an actively expressed, non-mobile, gene requires a certain 

amount of resources for processing (i.e. for transcription/translation), any originating 

gene activity must then be balanced out by the cost of acquiring said resources by the 

cell. In a situation where the used resources are higher than the acquired resources, 

a decreased cell fitness will ensue, and eventually force the cell/gene out of the 
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population if other cells are not incurring in similar, or worse, losses. In this case, the 

responsible gene would reduce the cell’s relative growth potential (reflected as a 

slower growth in the prevalent environment), and ultimately cause the cell to be 

outcompeted.  

If genes disappear from a population when their respective overall resource net 

gain is negative, such implies that actively expressed genes do not decrease overall 

bacterial resources in regards to a competitor. This non net negative concerted genetic 

action further implies that actively expressed, non-mobile genes are, under any one of 

the multitude of relevant natural encountered environments, essential in the way that 

they allow a cell to not be outcompeted (Fang et al., 2005; Rancati et al., 2018). All 

genes under these circumstances are thus biologically required (needed for the 

proliferation of individual cells), as a bacterium’s overall competitive fitness is 

increased by their presence, allowing it to outcompete its pears and assure its own 

survival. With perhaps the exception of mobile or non-active genes, bacterial genes 

are thus either essential, if they assure bacterial reproduction in all environments, or 

conditionally essential, as they have been selected to ensure its host outcompetes 

others under either general or very specific conditions. Genes are thus either 

advantageous or deleterious under different environments. With this simplistic model, 

an always non-essential gene would thus either be existing in a transitory fading-out-

of-existence state (frequency decreases within a population), or not existing at all. 

 Such genes, however, often persist within a population for longer than expected 

by mathematical modeling, suggesting that other forces are also at play. Negative 

frequency-dependent selection has been called the major driver behind this 

phenomenon. In this case, the relative fitness of a gene decreases as its frequency 

increases within a population, due to exactly its rareness. In bacteria, such can apply 

to genes related with resource competition/production, and/or resistance to invading 

elements (bacteriophages/plasmids). These circumstances would favor scenarios 

where genes that have become deleterious in a certain condition, would become 

advantageous again over time (Brisson, 2018; Kazancıoğlu et al., 2014; Mitchell-Olds 

et al., 2007). 

Such observations highlight the dangers of extrapolating data from the artificial 

biological setups routinely used by biology laboratories, including the ones in this 

thesis, to a bacterium’s natural environment. Indeed, in chapter 5 we observed how 

slightly different environments can dramatically change gene essentiality, with a gene 
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not essential in most tested conditions, SPV 686/7/8 (renamed arpABC), becoming 

conditionally essential at pH 6 in the presence of Staphylococcus aureus.  

 

A pooling issue: When the method is a condition by itself 

Both Tn-seq and CRISPRi-seq methods used in this thesis rely on the existence 

of a pool of distinct mutants, whose relative frequency will change when submitted to 

any particular environment over the course of generations, according to the individual 

fitness of each strain. The biggest advantage of these methods is therefore the easy 

simultaneous evaluation of the relative fitness of each strain in a pooled population, 

within a single tube. However, when these pooled libraries of mutants are used, 

individual strains will not only display a fitness in regards to the test condition, but also 

to the presence of their pool competitors. For example, community factor producing 

strains can artificially enhance the fitness of non-producing strains. Concomitantly, 

phenomena such as frequency-dependent selection, bet-hedging, and labor division 

can also enable the persistence of sub fit strains within a test pool (Thibault et al., 

2019; Veening et al., 2008). Despite such mechanisms being at play in both Tn-seq 

and CRISPRi-seq, due to the typically larger randomly obtained mutant pool obtained 

by Tn-seq, it is possible that more mutants would display this kind of behavior. It is 

feasible that this would result in increased noise upon essentiality determination, as 

deleterious transposon insertions would remain in the genome and be propagated 

over time within the population, skewering any insertion frequency dependent 

essentiality determination, especially when evaluating non-essential sub gene 

domains. The ramifications of such processes were explored in chapter 3, where a 

general Tn-seq analysis pipeline was developed. 

In chapter 4, we adapted a pooled library arraying method known as SUDOKU 

(Anzai et al., 2017; Baym et al., 2016; Erlich et al., 2009), and applied it to the UTI89 

Escherichia coli Tn-seq library (chapter 3 and 4). We further developed this method to 

be able to operate with CRISPRi-seq libraries. Effectively, SUDOKU is then now able 

to array, from any pooled library size, either Tn-seq or CRISPRi-seq libraries. 

SUDOKU relies on the random picking of mutant strains from the pool (following pool 

plating), followed by their individual arraying. As both laboratorial complexity and cost 

rises with the increase in required arrayed mutants, it is advantageous to array libraries 

whose relative mutant frequency is as homogenous as possible as a skewed mutant 
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distribution will result in more repeated (unnecessary) mutants being picked. Smaller 

libraries are thus at an advantage in this regard, with our described D39V CRISPRi 

library with a single guide RNA per genetic feature (chapter 5) requiring comparatively 

less resources and time for arraying into characterized single occupancy wells than 

either transposon or multi guide CRISPRi libraries. The large-scale implementation of 

such high-throughput arraying methods are still in their infancy, but its application will 

yield invaluable insight into single gene mutant phenotypes in the absence of any 

compensatory community effects. Such methods can also further enhance the field of 

multi omics. Indeed, several –omics approaches can then be readily performed, 

without the need for library purification or temporary re-arraying every time a new 

experiment is attempted.  

Pooled community effects have been recently clearly observed by Thibault et 

al.. By encapsulating individual Tn-seq S. pneumoniae generated mutants within 

microscopic agar droplets, the authors demonstrated a difference in the fitness of 1-

3% of all mutants (Thibault et al., 2019). An example effect was shown for the nagA 

and nagB genes, which display severe growth defect in droplet culture, but not in 

pooled culture, when AGP, a sugar, is added. Co-culture with wild type abolished all 

growth defects, as AGP could be metabolized into its sugar subunits, and then be 

released as a community metabolite. 

In chapter 5, we approached S. pneumoniae interaction with S. aureus. 

Community effects might be of particular importance in these settings, as both species, 

especially the first, have been associated with bacteriocin and quorum-sensing 

molecules production (Dawid et al., 2007; Kjos et al., 2016; Kvich et al., 2022; Potter 

et al., 2014). Our top hit, ArpABC (SPV 686/7/8), is a general-purpose efflux pump 

capable of exporting several antibiotics and antimicrobial peptides (Yang et al., 2018). 

Therefore, we hypothesized about the involvement of molecules active in the 

extracellular milieu, and how the true negative fitness of some strains might be masked 

by ‘community-friendly’ strains. We are thus currently developing droplet CRISPRi-

seq, where each single droplet will carry a single CRISPRi mutant strain. The same 

competition assays between S. pneumoniae and S. aureus described in chapter 5 will 

then be, once again, performed, with S. pneumoniae being encapsulated with different 

CFU ratios of S. aureus. Any ‘cheater’ strains surviving in the pool collection due to a 

protective effect from other strains will then become apparent, with their phenotype 

further elucidating the nature of both species’ interactions. Moreover, our recent 
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discovery of pH influence on these strains (indicated by SPV 686/7/8 conditional 

essentiality) will also prompt us to attempt another CRISPRi-seq screen at pH 6, which 

we have so far not performed. 

 

A systematic approach to a system’s problem 

Despite the advances described in the thesis, the nature of the complex 

interaction between S. pneumoniae and S. aureus is, to this day, still shrouded in 

uncertainty. Interestingly, a negative carriage correlation is observed for both species. 

Some reports have attributed such to H2O2 production by Sp, however, the 

physiological impact of H2O2 on this interaction is still unclear, with several works 

having either demonstrated or refuted this mechanism (Lijek & Weiser, 2012; Margolis, 

2009; Pericone et al., 2000; Gili Regev-Yochay et al., 2004; G. Regev-Yochay et al., 

2008; G. Regev-Yochay et al., 2006). Currently, the most prevailing explanation for 

this seems to be dependent on the host. Indeed, S. pneumoniae antibody has been 

described to cross-react with S. aureus, and proven sufficient to inhibit S. aureus nasal 

colonization (Lijek et al., 2012; McNally et al., 2006; Melles et al., 2007). Despite these 

factors, co-colonization has been shown to still persist both in vivo and in vitro, with 

both species forming stable dual-species biofilms (Reddingera et al., 2018). Similar 

conflicting scenarios have also been seen for S. pneumoniae interacting with other 

nasopharynx commensals, such as Haemophilus influenzae or Moraxella catarrhalis 

(Pericone et al., 2000), or even between S. aureus and Pseudomonas aeruginosa 

(Kvich et al., 2022). Such are only a few examples of a larger remark: bacteria are 

optimally adapted to handle an almost infinite combination of parameters, and small 

environmental variations result in distinct degrees of adaptations. Therefore, the only 

way to obtain a clear overall picture of how, or even why, bacteria (will) behave, is to 

obtain as much as possible different data, using as distinct as possible conditions.  

Biologists have, since the beginning of genetics, mostly described how 

organisms adapt to different conditions, and what causes such adaptations. This 

rationale has changed little in 100 years, mostly due to technological and data 

constrictions. Such logic dramatically differs from that of classical physics, where the 

standard relies mostly on predicting and simulating physical systems, not on their 

description (Freddolino & Tavazoie, 2012). There is, however, a justification for such 

a difference: lack of systematic data. Unlike Physics’ case, our understanding of life 
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has always been too limited and fragmented to attempt any accurate inference on how 

life adapts and interacts with both itself and the environment. In the past decade, 

however, biologists have not only started cataloging more types of cellular processes 

to an unprecedented detail, but are also doing so in thousands of distinct conditions 

(Dolinski & Troyanskaya, 2015; Krassowski et al., 2020; Leshchiner et al., 2022). In 

this thesis we mostly focused on the unidimensional characterization of genome-wide 

gene essentiality at the strain and environmental level (chapter 4 and 5). It would be 

interesting to further this description and collect data, under the same parameters, for 

the proteome, transcriptome, and metabolome. This assortment of data could then be 

used for a multi-omics approach, similar to ones already attempted for other 

organisms. For example, such multi-dimensional and abundant biological data are 

already available for some bacteria, and are currently creating one of the most 

demanding and exciting challenges the field has ever faced: how to integrate such 

distinct data types, and simulate bacteria. In effect, a few attempts at full cell 

simulations have so far been made using the simple organism Mycoplasma 

genitalium, with another model having been recently published for Escherichia coli 

(Freddolino & Tavazoie, 2012; Karr et al., 2012; Macklin et al., 2020). These 

simulations were performed by manually integrating and tweaking vast amounts of 

different biological data into classic mathematical models. Recent advances with 

Artificial Intelligence (AI), however, might now finally enable the escalation of these 

approaches into fully automated systems. AlphaFold2 is one of such examples, where 

new protein structures can be inferred from described structures (Jumper et al., 2021). 

These examples demonstrate how a systematic collection of coherent complete 

datasets is the way to eventually instate system biology as the biological paradigm. It 

would then not be surprising for systems biology to finally catch up to the Physics 

rational of prediction, not just observation. 

 

A question of function, not sequence  

Even for the well characterized E. coli model organism, around 30% of all genes 

lack experimental functional evidence (Ghatak et al., 2019). This figure gets worse 

considering that less than 1% of all currently predicted proteins across all domains of 

life have been experimentally validated, and 24% have a completely unknown gene 

function (Chang et al., 2016). Such genes could harbor important metabolic functions, 
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possibly capable of functional replacement when known essential genes are absent, 

or by providing unknown support to known pathways (Shields & Jensen, 2019). 

Indeed, an attempt at synthetizing a minimal bacterial genome, JCVI-syn3.0, revealed 

that 149 out of the 473 genes had an unknown function, with the cell not being viable 

in their absence (Hutchison et al., 2016).  

In chapter 3 we reported a pan- and core-essentialome concomitant increase 

and decrease in size with the number of considered strain essentialomes. Gene 

functional replacement seems to, at least partly, explain this phenomenon (Coe et al., 

2019; Fang et al., 2005; Narayanan et al., 2017; Rosconi et al., 2022; Rousset et al., 

2021; Shields & Jensen, 2019). Functional replacement can be the result of non-

orthologous gene displacement, that is, how genes that are unrelated or paralogous 

can perform the same function in different organisms (Forterre, 1999; Koonin et al., 

1996). For example, E. coli and Bacillus subtilis have different non-homologous 

systems for DNA recombination, the RecBCD and AddAB/RexAB systems, 

respectively (Forterre, 1999; Karoui et al., 1998). Similar situations can thus occur not 

only at the species level, but also in individual strains. Indeed, in their natural 

environment, cells are exposed to several mobile elements such as plasmids and/or 

viruses. The integration/excision of these elements, often able of infecting different 

lineages of organisms, can result in the carriage of extra non-self-DNA, and thus 

create plentiful chances for non-orthologous gene displacement.  

We reported how genes related to translation and ribosome 

biogenesis/structure were the only ones significantly enriched in the 8-bacteria-wide 

core essentialome. Such could be due to several factors, albeit a mix of several is 

probably likely. Most non-orthologues genes are involved in metabolic functions 

(Dessimoz et al., 2006), and thus, most of the non-homologs essential genes will not 

be in the core essentialome due to lack of homology, resulting in these categories 

being absent. Such a scenario gains strength when considering the pan-essentialome, 

where these same metabolic categories are enriched, due to, in this case, non-

orthologs being considered. Experimentally, another factor would be library saturation, 

where some genes could be categorized as non-essential or, most likely, be too small 

to be significantly assessed, and thus removing them from the comparison pool. 

Considering the range of gene sizes, it is still unlikely this scenario would result in only 

one COG category being enriched. Another possibility is errors arising from the gene 

annotation prediction, and pan-genome standardization across all used strains. 
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Homologous, or partially homologous genes could be incorrected labelled as distinct. 

As we used standard benchmarked methods, such a scenario is also unlikely 

(Galardini et al., 2017). The most likely possibility is related to these results originating 

from a true biological effect. Indeed, several cases of essential genes involved in DNA 

information processing (such as replication and transcription) have been attributed to 

also occur in viral/plasmid sequences. These elements, on occasion, can encode 

and/or require their own DNA processing proteins, thus submitting any genes in these 

functional categories to high mobility and evolutionary pressure (Forterre, 1999). 

Genes not carried or directly used by mobile elements, such as those involved in 

synthesizing proteins, like ribosomes, would thus be the functional category least 

submitted to non-orthologous gene displacement. This seems to be the observed 

case, possibly exacerbated by the mentioned experimental and data processing 

procedures. Expectedly, careful in-depth analysis of the tolerance needed for 

considering any gene the same as another gene based on homology would thus be 

required to validate any findings. Strain specific essentiality could also be validated 

using the CRISPRi system. Ultimately, applications of such strain level discrepancies 

can potentially be applied for species, or even strain, specific therapy.  

  

Ecce, fortis novum mundum 

Currently, biologists typically generate more data than can humanly be 

interpreted in regards to both time availability and complexity. In an effort to increase 

the throughput of such data analysis, computer science has been brought to the 

forefront of biology, prompting the appearance of the interdisciplinary field known as 

computational biology: the application of analytical processes in modeling biological 

systems. Bioinformatics is thus a subset of this latter, being mostly described as the 

application of informatics to the understanding of biological data (Gibas & Jambeck, 

2001). In this thesis we dwelled into both fields, with 2FAST2Q being a bioinformatics 

tool, and TnSeeker closer to a computational biology pipeline.  

In chapter 2 we described 2FAST2Q, a program capable of translating NGS 

raw data into an organized human readable format of feature counts. 2FAST2Q solved 

a recent inconvenience in bioinformatics, exacerbated by the rise in CRISPRi-seq 

usage, the non-existence of a single easy to use program capable of easily extracting, 

filtering, and counting features from .fastq files. In chapter 3, we developed TnSeeker, 
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a Tn-seq analysis pipeline. TnSeeker could be considered a computational biology 

method more than ‘just bioinformatics’ due to its modeling and predictive nature. 

Indeed, the inference of gene essentiality by use of a self-optimizing statistical 

thresholding based on recalling a gene gold set is an example of statistical 

bootstrapping and cross validation. Similar to AI based methods, such reliance on 

previous data, possibly significantly different from the one being analyzed, could also 

be argued to be one of the program’s biggest weaknesses. TnSeeker depends on the 

existence of not only homologous essential genes between the gold set and a new 

sample, which we have described to be limited, but also those genes must have similar 

names to the ones in the database. These issues, however, can be mitigated by using 

standardized annotation and pan-genome assembly methods (Galardini et al., 2017). 

Such requires the careful annotation of any de novo sequenced organism, making 

sure all annotation is up to date. Considering the fast-paced environment of current 

biology, and the lack of standardizations regarding data analysis, especially 

concerning NGS and genbank annotations, it is likely that in the future these 

comparisons will be rendered obsolete. Future iterations of TnSeeker should therefore 

include homology-based comparisons for gene essentiality, where gold set essential 

and non-essential genes are compared directly by sequence, and not by database 

name. However, as described before, sequence comparison might also be a sub 

optimal mechanism, as, due to non-orthologous gene displacement, essentiality is 

primarily linked to function, not sequence. Gold set comparison could thus be 

performed based on functional category annotations. Such implementation would 

render TnSeeker a more powerful essentiality predictive tool, especially in regards to 

non-bacterial genomes, or organisms distant from the ones used for implementing the 

gold set.  

In the –omics era, where several experimental hypotheses are already derived 

from ‘big data’, computational biology is starting to step in as the next big paradigm 

shift. As fields become more and more interdisciplinary, and as AI becomes more 

advanced and sips further into society, it is only a matter of time until AI driven data 

hypothesis derived from direct integration of all known biological databases becomes 

a lab standard. Such large-scale integration of data, beyond the comprehension of any 

human mind, would result in the pursuit of now unforeseeable biological questions. 

Indeed, AI interdisciplinary versatility has been recently demonstrated, with models 

developed for social platforms having been used for protein structure prediction (Lin 
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et al., 2022). Moreover, advances by OpenAI have shown AI can interact with humans, 

and even derive images, scientific texts, and hypothesis on demand. AI has become 

exceedingly good at explaining the bigger picture, however, the responsibility of what 

is worth pursuing or developing is still very human. For now. 

In 100 years, we have progressed from describing natural mutations, to 

inducing precise alterations where needed. From observing phenotypes, to predicting 

them. From assuming proteins were the base of heredity, to storing digital information 

in DNA (Ceze et al., 2019). It is not possible to know what the future will bring, however 

it is expected to be bewildering and unimaginable if the same knowledge growth rate 

continues.
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