Digital Investigation (2004) 1, 114—128

ELSEVIER

PRODUCT REVIEW

Digital
Investigat;l@'l

www.elsevier.com/locate/diin

% Tool review—WinHex

Eoghan Casey®® *

#Knowledge Solutions LLC, 61535 S Hwy 97 #9-148, Bend, OR 97702, United States
bStroz Friedberg LLC, 1150 Connecticut Ave., NW, Suite 200, Washington, DC 20036, United States

Received 5 April 2004; revised 14 April 2004; accepted 14 April 2004

KEYWORDS Abstract

This paper presents strengths and shortcomings of WinHex Specialist

Digital forensics tool
testing;

Digital evidence
preservation;

Forensic
examination;

File systems;

Data recovery

Edition (version 11.25 SR-7) in the context of the overall digital forensics process,
focusing on its ability to preserve and examine data on storage media. No serious
problems were found during non-exhaustive testing of the tool’s ability to create a
forensic image of a disk, and to verify the integrity of an image. Generally accepted
data sets were used to test WinHex’s ability to reliably and accurately interpret file
date—time stamps, recover deleted files, and search for keywords. The results of
these tests are summarized in this paper. Certain advanced examination capabilities
were also evaluated, including the creation of custom templates to interpret
EXT2/EXT3 file systems. Based on this review, several enhancements are proposed.
In addition to these results, this paper demonstrates a systematic approach to eval-

uating similar forensic tools.
© 2004 Elsevier Ltd. All rights reserved.

Introduction

WinHex began as a disk editing program and has
developed into a forensic tool that is useful to dig-
ital evidence examiners of all skill levels. Experi-
enced examiners use WinHex Specialist Edition to
validate the results of other tools and to perform
specialized tasks such as file comparison and text
extraction. This program is also used to teach novi-
ces about disk layout, file system structures, data
recovery, and other fundamental concepts in digi-
tal forensics. When a new tool emerges in this
field, it is necessary to assess its capabilities and
identify any weaknesses.

* Corresponding author.
E-mail address: eco@corpus-delicti.com.

When evaluating any forensic application, it is
important to measure its performance against gen-
erally accepted test data sets whenever feasible.
For this purpose, the Digital Investigation Tool
Test Images created by Brian Carrier were used
(publicly available at http://dftt.sourceforge.
net/). These data sets are designed specifically
to test a forensic tool’s ability to reliably and accu-
rately interpret file date—time stamps, recover
deleted files, and search for keywords. When it is
not feasible to test a particular feature using ac-
cepted data sets, it is usually sufficient to validate
the results with other forensic tools to ensure they
are consistent or that any differences are explica-
ble. This validation approach was used during this
tool review to confirm that WinHex was capable of
making a forensic image of data on storage media,
calculating the MD5 hash value of a disk or image,

1742-2876/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.diin.2004.04.001

http://dftt.sourceforge.net/
http://dftt.sourceforge.net/
mailto:eco@corpus-delicti.com
http://www.elsevier.com/locate/diin

Tool review—WinHex

115

recovering deleted files, and correctly interpreting
various date—time stamps embedded in different
file types. Based on this tool review and testing,
some future refinements are proposed to help
developers prioritize enhancements in the forensic
capabilities of WinHex.

In the process of reviewing WinHex, this paper
also familiarizes digital investigators with different
aspects of file systems as a source of evidence. The-
primary focus is on FAT and NTFS because these
are the file systems that WinHex directly supports.
Additionally, with the increasing use of UNIX sys-
tems on personal and corporate systems, digital in-
vestigators require a solid understanding of UNIX file
systems. Many people avoid this area because of the
misconception that it is beyond their technical abil-
ities. A secondary aim of this paper is to make UNIX
file systems more accessible by demonstrating how
WinHex can be used to examine EXT2 and EXT3 file
systems which are commonly found on Linux sys-
tems. This treatment helps novices who want to im-
prove their understanding of UNIX file systems in
a familiar Windows-based environment. This knowl-
edge is also useful to experienced practitioners who
examine UNIX systems with Windows-based tools
such as EnCase and FTK, enabling them to confirm
important findings at a low level using WinHex.

Preservation

Prior to making a forensic image of digital evidence
it is a good practice to create a sanitized storage
area. Using a storage area that has been wiped of
all previous data and verified to be empty prevents
the possibility of data from past investigations from
commingling with the current case. A selected disk
can be sanitized using WinHex’s Fill Disk Sectors op-
tion on the Edit menu. For the purpose of forensic
sterilization it is generally sufficient to overwrite

Fill Disk Sectors

() Fill with hex values

() Fill with random bytes
Range: |0 |to |255 (0.255)

Ok] [Cancel]

data once with a known pattern. WinHex permits
this type of wiping as well as the more rigorous ap-
proach recommended in USDOD (1995) to prevent
extraordinary hardware-based recovery efforts
(see Fig. 1). This author verified that WinHex suc-
cessfully filled all sectors as instructed after warn-
ing the user several times that all data on the disk
would be overwritten.

Additionally, prior to making a forensic image, it
is a good practice to calculate the cryptographic
checksum of the original disk. MD5 or SHA1 hash val-
ues of a disk are useful for verifying the integrity of
digital evidence by confirming that a forensic image
isidentical to the original. The cryptographic check-
sum of a selected disk or file can be obtained using
WinHex’s Calculate Hash option on the Tools menu.

The WinHex Clone Disk option under the
Tools—Disk Tools menu can be used to either clone
the source disk onto another disk, or copy all sec-
tors of a disk into a file as shown in Fig. 2. Before
using this feature, it is advisable to configure
WinHex to automatically calculate the MD5 value
of data that it copies by setting the Calculate
auto-hash to MD5 under the Options—Security
menu item. It is also advisable to run WinHex on
Windows 2000/XP when performing this operation
to ensure that the disk size is obtained using 1/0
control codes (e.g., IOCTL_DISK_GET_LENGTH_
INFO) instead of relying on information provided
by the BIOS via the Int13h interface. Notably,
because WinHex does not send ATA commands
directly to the drive, it may not detect all sectors
that are hidden by a Host Protected Area (HPA) or
Device Configuration Overlay (DCO).

Testing performed by this author found that
WinHex copied all data from storage media, and
correctly calculated the MD5 values of storage
media and image files. However, error handling
during the acquisition process is lacking. For in-
stance, when saving an image file to a disk that

Passes:

i Pass #1 .
\

Figure 1

Sanitizing a disk using the “DoD” option of WinHex’s Fill Disk Sectors facility.

116

E. Casey

Clone Disk [Copy Sectors) @

Source disk:

= D

\Hard disk 0. HITACHI_Dk.23DA-20 [18.6 GEB]

=| 0]

‘ C:\evidence\cazel 234%hitachi-001-031604.dd

D estination file:

[] Log procedure silently [no error messages)

[] Avoid damaged areas. Skip range:

[¥]:Copy entire source diski

Cancel }

“*SECTOR COULD NOT BE READ = |

Figure 2 Copying data in all sectors from a hard disk into a file.

was too small, WinHex aborted the acquisition pro-
cess after it had filled the destination disk, giving
an error that the disk was full. It would be more ef-
fective to inform the user from the outset that
there is insufficient space on the target disk, or
to prompt the user for additional storage when
the destination disk is full. Similarly, when trying
to clone a disk onto another disk that was too
small, WinHex generated an unspecified input er-
ror and aborted the operation. It would be more
helpful for WinHex to inform the user that the ca-
pacity of the destination drive was too small. Fur-
thermore, WinHex permitted the unwary user to
perform the dangerous operation of saving a foren-
sic image onto the same disk that was being
copied, thus overwriting unallocated space on
the evidentiary drive. The potential for such mis-
takes emphasizes the importance of using a
write-blocker and designing tools to only save
data to a disk that the user has specifically desig-
nated as writable.

Examination

The examination process involves data recovery,
harvesting, reduction, organization and searching
(Casey and Palmer, 2004). A thorough examination
results in all relevant data being organized and
presented in a manner that facilitates detailed
analysis. Each step in the examination process is
dealt with separately here.

To begin, it is common practice to obtain infor-
mation about the disk using the Media Details

Report option on WinHex’s Specialist menu as
shown here:

WinHex 11.25
3/16/2004, 14:52:15

[C:\casel234\evidence\gamblor.1]
Total capacity: 170,139,648 bytes = 162 MB

Number of cylinders: 41
Number of heads: 128

Sectors per track: 63

Bytes per sector: 512

Total no. of sectors: 332,304
Surplus sectors at end: 1,680

Partition 1

162 MB, FAT16

Sectors 46 - 331,935
Partition table: Sector 0
Total no. of sectors: 331,890
Usable sectors: 331,528

First data sector: 357

Bytes per sector: 512

Bytes per cluster: 4,096

Free clusters: 12,396 = 30% free
Total clusters: 41,441

Unused inter-partition space:
Sectors 1 - 45 (22.5 KB)

Sectors 331,936 - 332,303 (184 KB)
= 207 KB

Using this feature, WinHex successfully detected
all six partitions in the Extended DOS Partition
Test (Carrier, 2003a).

Information in the Media Details Report can be
compared with parameters on the disk label,
CMOS settings, or with results from other tools to
confirm that the actual values were detected by

Tool review—WinHex

117

== [C:\Courses\de5B3\assignment3\hunter-floppy.dd] g@@

A

Fileniarne® Size | E...
D contacts, xls 165KB xls
l_j newaddress.bxt 122 bytes but
,_1 skiways-netafix.doc Z1.0KB doc

| todo. b=t

april

122 bytes Ext

greenfield.do 195KE do

Offset BE 1L &2 3 4 B & 7 8
oooooooo | EB 3E S0 2B 23 5B 4A 30 49
oooooole (02 EO OO 40 OB FO 09 o0 12
gooooo32 00 00 OO0 0O 00 00 29 1D 2B
noooonds |20 20 20 20 20 20 46 41 54
ooooooe4 | FA 33 C9 BE D1 BC FC 7B 16
goopooso 1E 56 16 55 BF 22 05 89 7JE
noooon9s | F3 A4 06 1F BD 00 7C Ch 45
ooooolliz2 (F9 FB 38 66 24 7C 04 CD 13
ooooolzg | ee 1e 03 46 1C 13 56 1E 03
0ooool44 46 FC B9 56 FE B8 20 00 8B
oooooled (03 C3 48 F? F3 01 46 FC 11

<

4+1 files, 0+1 directories
Modified A...
2/18/2001 12:49:16
511312003 12:42:18
5/13/2003 11:56:10
5/13/2003 12:40:43
5/6/2003 14:41:44
5/8/2003 14:34:16

Created
Si8(2003 14:43:15

Accessed
c{12{2003
5/13/2003
5{13/2003
5/13/2003
51812003
5i12}2003

15 Access ® |V 5]~
00 E>1+#[JOIHC....

0o a.@&

53
7D
0o
FC
45
F?
g3
0B
07

5(13/2003 12:42:17
5{13/2003 12:32:00
5/13/2003 12:37:54
Gf0/2003 14:41:44
S(8/2003 14:43:00

9

48
0o
F?
1
07
oo
FE
r
46
76
4E

10

43
Nz
16
32
BD
29
oF
ac
0E
11
FE

11

oo
oo
53
20
78
4E
8B
84
13
F7
=%:1

12

0z
oo
41
20
aa
0z
46
46
D1
E&
%5

13

01
oo
4c
20
s
El
18
10
50
8B
EB

14

01
oo
45
F1
76
0E
a8
EL
52
SE
oo

n
AIEIRNUY . k= A
R L i O
&5 % |EER.IF. |
walfs | I x<IF. 1
f..F. ¥, F. HPR
FilVbh, .l1v.==l1"
.EH%é‘Fﬁ.NbZK».v

>

Figure 3 Using WinHex’s Interpret Image File as Disk feature to examine a FAT file system and recover deleted files
and directories (disk image available at http://www.disclosedigital.com/downloads.html).

WinHex. In the event that a different disk ge-
ometry needs to be set, WinHex provides a Set
Disk Parameters option on the Tools—Disk Tools
menu that can be used to specify different CHS
values when viewing a physical disk or a different
number of clusters when viewing a logical volume.

Recovery

In addition to examining active files, digital evi-
dence examiners often need to salvage deleted
data from a disk. WinHex can interpret FAT and
NTFS file systems and can automatically recover
deleted files and directories on these file systems.
In some instances, it is necessary to instruct
WinHex to parse the file system using the Interpret

Image File as Disk option on the Specialist menu.
Fig. 3 shows WinHex being used to recover the de-
leted file “greenfield.doc” and directory “april”
from a FAT formatted disk.

Using the disk image from “FAT Undelete Test
#1” (Carrier, 2004a), WinHex successfully recon-
structed the directory structure and recovered
deleted files that were not fragmented.

When recovering deleted files on FAT file sys-
tems, WinHex assumes that data is located in con-
tiguous clusters. This assumption breaks down
when dealing with fragmented files such as those
in bold in Table 1, potentially causing clusters
from other files to be associated with the un-
deleted file. For comparison, this author used
WinHex and EnCase to recover 92 deleted photo-
graphs from a memory card. The MD5 hashes of the
files recovered using both tools were calculated

Table 1 WinHex results for “FAT Undelete Test #1” (Carrier, 2004a)

File Size MD5

#ing.dat 780 59b20779f69ff9f0ac5fcd2c38835a79
#rag1.dat 1584 c4f3b9a0f17d464f4fc61b94ecfécc21
#rag2.dat 3873 965370acfa85aa7e26ab04bbd45cdcae
#ult1.dat 3801 ffd27bd782bdce67750b6b9ee069d2ef
#irf\Mult2.dat 1715 59cf0e9cd107bc1e75afb7374f6e05bb
#ir1\Dir2\Frag3.dat 2027 a7a14ac62f79fdea4056ed5e8bcf97ef

http://www.disclosedigital.com/downloads.html

118

E. Casey

using Maresware’s hash utility and then compared
using hashcmp as shown here:

E:\>hashcmp encase.txt winhex.txt -h

HASHCMP
Registered to: Eoghan Casey

Ver. 02.03.22.11.33V (32 bit) ser no# 1031306760

Portions Copyright 1998-2002 by Mares and Company,
(770)237-8870 http://www.dmares.com

Getting number of records in each file. This may take some time.

Processed 27

Based on field starting at 89, for 32 characters

Found the following entry in encase.txt not in winhex.txt
E:\encase_lOlOlOO.JPG 554A921D1F30FFBB48DF8C6FD1165DE7
Processed 81

Based on field starting at 89, for 32 characters

Found the following entry in encase.txt not in winhex.txt
E:\encase_1010018.JPG E98A9E42EQOE35B440504CB3A699303F7
Based on field starting at 89, for 32 characters

Found the following entry in encase.txt not in winhex.txt
E:\encase_1010086.JPG FO02A9CBC19F0F67626DDOEFDDFD56C71
Processed 92 Compare file records in 1 not in 2

Processed 0

Based on field starting at 89, for 32 characters

Found the following entry in winhex.txt not in encase.txt
E:\winhex\#1010100. jpg 2FA63B26E866CDESAAFC05147F260AA4

Based on field starting at 89, for 32 characters
Found the following entry in winhex.txt not in encase.txt
E:\winhex\#1010086. jpg D04E616855CO0B3F110CA6D777D83A10D

Based on field starting at 89, for 32 characters

Found the following entry in winhex.txt not in encase.txt
E:\winhex\#1010018. jpg FC5945833F88C99930B251C0701536AC
Processed 92 Compare file records in 2 not in 1

Found 6 mismatches

This output indicates that there were differen-
ces between the same files recovered by both
tools—these mismatches were due to different re-
covery methods. When undeleting files, EnCase
skips clusters that are allocated to other files
whereas WinHex copies contiguous clusters, in-
cluding clusters that are allocated to active files.
The approach implemented by EnCase also breaks
down when portions of a deleted file are overwrit-
ten by another file that is subsequently deleted.
Ultimately, no single method will always be suc-
cessful in all circumstances. This emphasizes the
importance of using multiple tools and being aware
of the assumptions they make.

On NTFS, WinHex displays deleted files in the
context of the file system and, for convenience,
also assembles deleted files and directories that
are still referenced by the file system in an area
called “Lost & Found” as shown in Fig. 4.

Using the “NTFS Undelete (and leap vyear)
Test #1” (Carrier, 2004b), WinHex correctly dis-
played dates as 02/29/2004 and recovered all files
except the alternate data stream (ADS) associated
with file “mult1.dat” (see Table 2). Although
WinHex correctly associated the data in this ADS
with the parent file “mult1.dat”, it did not provide
an automated way to recover the data in the
ADS. However, this alternate data stream was
detected using WinHex’s Create Drive Contents
Table feature with the ADS option enabled, and
the sectors associated with this ADS were listed
to help the examiner locate the associated data
on disk.

Although WinHex was able to recover “sing2.
dat”—a single cluster file in a directory whose
MFT entry had been reallocated, it was not
able to associate the file with its original directory.
Other specialized forensic tools including EnCase

Tool review—WinHex

119

== [C:\Projecis\diskimages\7-ntfs-undel-1¥7-ntfs-undel. dd]

TN 1045 files, 242 directories
Filename Size | E...| Created Modified Access... | A
iLost & Found
_J$Extend 2292004 14:57:57 2/29/2004 14:57:57 2/29(200... SH
__15ystem Wolume Information 2129)2004 14:59:10 2/29/2004 14:59:11 2[29/200... SH
] $5=cure 0 bytes 0/ofoo0 ? 0/0/000 ? ojofoon ?
REE 0 bytes 2/29{2004 14:57:57 2/29/2004 14:57:57 2/29/200... SH
|| $UpCase 126 KB 212912004 14:57:57 2j29/2004 14:57:57 2/29/200... SH
L] $MF TRy 4,0KB 217912004 14:57:57 2/29/2004 14:57:57 2/29(200... 5H
‘J $MFT 27.0KB 2/29j2004 14:57:57 2/29/2004 14,57.57 Z/29/200... SH
] $LagFie 2.0 MB 21292004 14:57:57 2/29/2004 14:57.57 2/29{200... 5H
L] $Boot 8.0 KB 2/29{2004 14:57:57 2j29/2004 14:57:57 2/29/200... SH
] $Bitmap 0.7 KB 2292004 14:57:57 2/29/2004 14:57:57 2/29(200... SH
|_] $Badclus 0 bytes 21292004 14:57:57 2/29/2004 14:57:57 2{29(200... 5H
‘_j $attrDef 35.2KB 21292004 14:57:57 2/29/2004 14:57.57 2/29{200... SH
dirt 2/29{2004 15:03:00 2/29/2004 15:03:00 2/29/200...
fragl.dat 1.5KE dat 2/29/2004 15:00:17 2/29/2004 15:00:40 2{29/200... A
singl.dat 0.6KE dat 2/29{2004 15:01:24 2j29/2004 15:01:2¢ 2j29(200... A
mult1.dat 1.2KB dat 2/29/2004 15:01:37 2/29/2004 15:02:22 2/29/200... A
fragz.dat 3.0KB dat 2/29/2004 15:00:29 2/29/2004 15:02:54 2/29/200... A
resl.dat 101 bytes dat 2/29/2004 15:05:37 2/29(2004 15:05:37 2/29/200... A
Off=et g 1 & 3 & & & 2 B 9 10 11 12 13 14 1§ |[§Accessiwe |FQ,,||A
04207616 49 4E 44 58 28 00 0% 00 49 98 10 00 00 00 OO0 OO INDE(...In.....
0420732 00 OO0 00 OO OO OO OO OO 40 OO OO OO DB OS5 OO QO @ . @, .
04207648 E8 OF 00 00D OO OO OD OD 2000 OS5 00O C3 01 C3 01 e&....... .. EZ
04207664 3 01 00 00 00 OO 00 OO0 OO0 OO0 OO OO OO0 00 00 OO &.....
04207680 00 00 00 0O OO0 QO OO0 OO 0O 00 QO 0O OO0 OO OO0 QO
s 1

Figure 4 Using WinHex’s Interpret Image File as Disk feature to examine a NTFS file system and recover deleted files

and directories.

were similarly unable to associate this file with its
original directory.

Notably, when automatically interpreting file
systems, WinHex converts date—time stamps to
the time zone of the examination system. There-
fore, examiners must be cognizant of this adjust-
ment as discussed in Boyd and Forster (2004).
The next section presents a number of other
ways that WinHex can be used to recover deleted
data.

Unallocated and file slack space

Keep in mind that criminals often take steps to
conceal their crimes, and deleted data often con-
tains the most incriminating digital evidence.
Therefore, it is often fruitful to scour unallocated
and file slack space for useful data. WinHex can be
used to recover both file slack and unallocated
space using the Gather Slack Space and Gather
Free Space options on the Specialist menu.

Table 2 WinHex results for “NTFS Undelete (and leap year) Test #1”” (Carrier, 2004b)

File Size MD5

res1.dat 101 9036637712B491904CDOBFBDBE648453

sing1.dat 780 59B20779F69FF9FOACS5FCD2C38835A79
mult1.dat 3801 FFD27BD782BDCE67750B6B9EEO69D2EF
mult1.dat:ADS Not recovered Not recovered

dirf\mult2.dat 1715 59CFOE9CD107BC1E75AFB7374F6E05BB
frag1.dat 1584 7A3BC5B763BEF201202108F4BA128149

frag2.dat 3873 OE80AB84EF0087E60DFC67B88A1CF13E
dir1\dir2\frag3.dat 2027 21121699487F3FBBDB9A4B3391B6D3EO
sing2.dat 1005 C229626F6A71B167AD7E50C4F2FCCDB1

120

E. Casey

File Retrieval from Free Space-1 @

Select file typels] | Email [tharaugh only] [.eml] ~
to recover. Dutlook Express [.dbx] =
Outlook, [.pst
5 wiord/E xcel [.xlz.or.doc
M5 Access [.mdb)
wordPerfect [wpd|
PostScript [eps.or.ps)
Adobe Acrobal [.pdf)
Quicken [.qdf]
- Windows Password [pwl]
ZIP Archive [2] v
Ma file size: ‘1UUUUU ‘ bytes
Output folder; C:hcaszel 234 unallocated-proc E]
Filename pattern: ‘ recu:uvered"""} [for output files)
OK] [Cancel]

Tharough search, not only at cluster boundaries

Sector size in bytes: 512 ‘

R

First cluster at sector;

Stop retrieval at sector;

[CJiCreate subfolder for each file type

[] Ovenarite extracted clusters with zero bytes

[lgnare read erors [for physically damaged disks]

Figure 5 File carving based on class characteristics.

Furthermore, WinHex can extract the space that is
not assigned to any of the partitions on a disk if de-
sired using the Gather Inter-partition Space option.

WinHex also has the capability to salvage deleted
files of a certain type from unallocated space. Fig. 5
shows the Recover File by Type feature on the
Tools—Disk Tools menu being used to extract Word
documents from unallocated space. This approach
to salvaging files is commonly referred to as “file
carving” because it uses common header character-
istics to identify the beginning of a file and then
carves out the data in continuous clusters until it
reaches a characteristic that marks the end of the
file or until it reaches a predefined maximum file size.

By default, WinHex’s Recover File by Type
file carving feature only searches the beginning
of each cluster for headers. This approach is
efficient, taking advantage of the fact that files
usually start at cluster boundaries, but in some sit-
uations this assumption may not be suitable (e.g.,
when the desired files are embedded within other
files). Therefore, the “Thorough search” option in
Fig. 5 instructs WinHex to inspecting all data on
the disk for file headers, ignoring cluster and
sector boundaries. The results of this activity are

Offset 0o 1 2 3 4 5 6 17 8
011865664 E5 69 00 66 00 00 00 FF FF
011865680 FF FF FF FF FF FF FF FF FF
011865696 E5 6E 00 61 00 6C 00 2D 00
011865712 6F 00 72 00 61 00 67 00 65
011865728 E5 66 00 69 00 67 00 75 00
011865744 35 00 2D 00 65 00 78 00 74
011865760 E5 49 47 55 52 45 7E 31 54

summarized in the following log that is automati-
cally generated by WinHex:

3/22/2004, 22:52:29
C:\casel234\prepare\unallocated-raw\Free Space-1
Scope: 499712 - 499711

Disk layout options: not used, examining all offsets
Fixed/maxmimum file size: 100000

MS Word/Excel (xls.or.doc), header: DOCF11EQ
or.doc
or.doc
or.doc
or.doc

recovered0000.x1ls.
recovered0001.xls.
recovered0002.x1ls.
recovered0003.x1ls.

000000 -
019968 -
097280 -
117248 -

099999:
119967:
197279:
217247:

3/22/2004, 22:52:29

4 headers were found. 4 files were retrieved.

WinHex can also be used to recover files with spe-
cific patterns in their names using the Recover File
by Name feature on the Tools—Disk Tools menu.

Deleted data can also be salvaged using
WinHex’s “template” feature. Users can create
customized templates that tell WinHex how to
interpret certain data structures. For example,
take a directory entry found in unallocated space
as shown here in hexadecimal:

9 10 11 12 13 14 15

FF FF OF 00 9F FF FF ai.f...yyyy..¥yy
FF 00 00 FF FF FF FF §y9yyyyyyy..yyyy
73 00 OF 00 9F 74 00 dan.a.l.-.s...Yt.
00 00 00 2E 00 74 00 o0.r.a.g.e..... t

72 00 OF 00 9F 65 00 af.i.g.u.r...¥Ye.
00 00 00 65 00 72 00 5.-.e.x.t e.r.
49 46 20 00 9E B2 52 AIGURE~1TIF .Z2%R

Template Manager

Title®
L= BMP File Format [with Paletie)
“JBoot Sectar FAT
—IBoot Sector FAT32
_—JBoot Sector NTFS
HExt2 Directory Entry [alloc]
HEx2 Group Descriptor
“IExtZ Inods
ZIExt2 Super Block
“AExt2 Super Block [Menard)
FAT Directory Entny
AFAT Directary Entry
S FAT1E Entry
S FAT32 Entry
S FAT32 FSINFO Sector
—Ihdaster Boot Record
= Palm PDB
b= Palm PDB 6 records

Description

Structure of @ BMP image file

BIOS parameter block [BPB] and more
BIDS parameter block [BPB] and more
Boot sector of an NTFS partition

Ext2 dir entry format

Ext2 Group Descriptor
Ext Inode

Ext2 Super Block

Ext2 Super Block
MNormald/short entry forrat
Long entry format

hust start at start of FAT to get numbers right.
Must start at start of FAT to get numbers right.

Contains additional information about the volume

Contains partition table
Palm Database File
Palm D atabase File records

Time
2/28/2004 16:40:03
1A17/2004 171:02:00
1A7/2004 11:02:00
1A7/2004 11:02:00
242972004 20:23:23
31472004 19:42:17
3M14/2004 19:41:47
3A4/2004 19:.48:11
3/22/2004 18:08:12
1/17/2004 17,
14742004 11:02:00
2/28/2004 16:42:05
2/28/2004 16:42:10
272872004 16:41.47
11772004 11:02:00
114372002 13:38:50
1143/2002 13,3850

[

Applyl

| |

Close

Edit...

) |

Delete. ..

J |

Figure 6 Applying a template using the WinHex Template Manager.

a = -
U= FAT Directory Entry, Base Offset: 11865760 X

Recaord #: |EI ‘ [m

Offset Title Value
11865760 Filename [blank-padded] EEIGUHE"‘T
11865768 E stengion [blank-padded) [TIF
11865771 OF = LFN enliy 20
11865771 Atibutes [- -a-di-vols-h] |00100000
11865760 00 = Never used, E5 =Erased |ES
11865772 (reserved] 0
11865774 Creation dae & time \2/16/2004 [10:21:36
11865773 Cr. time refinement in 10-ms units T 58
11865776 Access date [ho timel) §l2f'1 B42004 06:0232
11865782 Update date & time 2722004 150602
118E5780 [FAT 32] High word of cluster # |0 '
11865785 16-bit cluster # 12854
11865788 File size [zero for a directory) |2152

= FAT Directory Entry, Base Offset: 11865728

Record #: 0 | [Close |
Offset Title Yalue
11865728 Sequence number ES
11865729 Filename [5 chars, FF-padded) | figur
11865742 Filename [next & chars] e5-ext
11865756 Filename [next 2 chars] er
11865739 OF = LFN entry oF
11865739 Attibutes [- -a-dir-vol-s-h-1] oooo1111
11865740 [reserved) 0
11865741 SFN checksum 5F
11865754 16-bit cluster # [always 0] 0

Figure 7 (a) Applying the WinHex “FAT Directory Entry (Normal/short entry format)” template to a FAT directory
entry found in unallocated space. (b) Applying the WinHex “FAT Directory Entry (Long entry format)” template to
a FAT directory entry containing part of the filename *figure5-external-storage.tif”.

122

E. Casey

An examiner can view this directory in a more
readable form using a template packaged with
WinHex by placing the cursor at the beginning of
the data structure, opening the Template Manager
on the View menu, and applying the appropriate
template as shown in Fig. 6.

Using the WinHex templates for short and long
file names shown in Fig. 6 and applying them to
the appropriate directory entries results in the
interpreted data shown in Fig. 7.

Offset 0 1 2 3 4 5 6 17 8
00007000 02 00 00 00 OC 00 01 02 2E
00007010 0C 00 02 02 2E 2E 00 00 OB
00007020 6C 6F 73 74 2B 66 6F 75 6E
00007030 14 00 0A 02 64 69 72 65 63
00007040 OE 00 00 00 14 00 09 01 69
00007050 74 00 00 00 15 00 00 00 20
00007060 33 70 00 00 00 00 00 00 10
00007070 32 32 2E 73 11 00 00 00 24
00007080 34 34 2E 73 00 00 00 00 14
00007090 6C 65 2E 70 64 66 00 00 13
000070A0 44 43 50 S5F 31 37 32 32 2E
000070BO 54 03 0A 01 2E 66 69 6C 65
000070C0O 00 00 00 00 40 03 OB 01 2E
000070D0 77 70 78 00 00 00 00 00 00

Although the focus of this section was on
Windows systems, the file carving and template
features can be applied to other file systems such
as EXT2 and EXT3.

Extended file systems (EXT2/EXT3)

The EXT3 and EXT2 file systems are essentially
the same except that EXT3 has an additional
journal file that is used to expedite system

recovery after a crash. Although WinHex does
not directly support the EXT2 and EXT3 file sys-
tems, individuals can create custom templates
to tell the program how to interpret any data
structure. Like FAT file systems, EXT2/EXT3 file
systems have a root directory and something like
a file allocate table; called the inode table. For
instance, the root directory of an EXT2 file sys-
tem is shown here in hexadecimal format with
inode numbers in bold:

A B C D E F

00 00 00 02 00 00 00 v.iiuiiinnnnn
00 00 00 14 00 OA 02 @ tiiiiiiinenennnn
64 00 00 OC 00 00 OO lost+found......
74 6F 72 79 31 00 00directoryl..
6E 64 65 78 2E 64 61 @ index.da
00 05 01 66 69 6C 65 toveeeee oan file
00 05 01 66 69 6C 65 B3P et file
00 05 01 66 69 6C 65 22.s S...file
00 OA 01 68 61 6E 64 44.s. 0000 hand
00 00 00 68 03 0OC 01 le.pdf...... h...
4A 50 47 00 00 00 00 DCP_1722.JPG....
33 2E 73 77 70 00 00 T....file3.swp..
66 69 6C 65 33 2E 73@....file3.s

00 00 00 00 00 00 WOX e oo eeeeenenns

Using a WinHex template created by this author for
interpreting EXT2 root directory entries (available
at http://www.x-ways.net/winhex/templates/
index.html) enables us to view this information in
a more readable form as shown in Fig. 8.

The directory entry in Fig. 8 indicates that the
file “index.dat” is assigned inode 14. Using another
WinHex template created by this author for inter-
preting inode tables on EXT2/EXT3 systems enables
us to view the data in a more readable form as
shown in Fig. 9.

The inode shown in Fig. 9 indicates that the
file starts at block 577 and that indirect block

= Exta2 Directory Entry (alloc), Base Offset: 7040

Hecord #: 2 Cloge
Offset Title

s inode [14

7044 enirplzngth |20

7045 fielen 19

file type [1=regular file 2=director) I1
file name |inden.dat

087
7048

Value

Figure 8 Using WinHex’s template feature to examine the Root directory of an EXT2 file system (disk image available

at http://www.disclosedigital.com/downloads.html).

http://www.x-ways.net/winhex/templates/index.html
http://www.x-ways.net/winhex/templates/index.html
http://www.disclosedigital.com/downloads.html

Tool review—WinHex

123

= Ext2 Inode, Base Offset: 1A80

19

Record #:

Offset

TA80
1482
1484
1488
148C
1490
1434
1498
1494
143C

1AED
1484
14E8
1ABC
1ACO
1AC4
1ACH
1ACC
1400
1404
1402
1A0C

Title Value
File mode 33188
Owner uid 500
Size [bytes] 49152
Access ime 2410/2004 05:00:00
Ihode change 213/2004 05:0E:22
Modification 24842004 201248
Deletion 141415970 00:00:00
Group id 500
Hard links count |1
Block count 98
File Hags 0
05 dependent 0
Direct block #1 |57
Direct block # 2 |578
Direct block # 3 |579
Direct block #4 530
Direct block #5 |581
Direct block # & | 582
Direct block #7583
Direct block #8 |584
Direct block #3585
Direct block # 10 |586
Direct block # 11 |587
Direct block #12 538
Indirect block # 1 |583
Indirect block # 2 |0

Figure 9 Using WinHex’s template feature to examine an inode on an EXT2 file system (disk image available at
http://www.disclosedigital.com/downloads.html).

589 contains a list of additional blocks that are
assigned to this file. The contents of block 589
(589 X 1024 = byte offset 603136) is shown here
in hexadecimal format.

Offset

00603136
00603152
00603168
00603184
00603200
00603216
00603232
00603248
00603264

0o 1 2 3

4E 02 00 00
52 02 00 00
56 02 00 00
5A 02 00 00

5E 02 00 00 5SF
63
67
6B
6F

62 02 00 00
66 02 00 00
6A 02 00 00
6E 02 00 00

5 6 7

4F 02 00 00
53
57
5B 02 00 00

02 00 00
02 00 00

02 00 00
02 00 00
02 00 00
02 00 00
02 00 00

8

50
54
58
5C
60
64
68
6C
70

This “alphabet soup” is simply a list of block
numbers in little endian format which equate to

blocks 590—625 (0000024E—00000271 hexadeci-
mal). Once the data associated with a file has
been located, a WinHex template may be available
to interpret the data or the data can be marked in

9 10

02
02
02
02
02
02
02
02
02

00
00
00
00
00
00
00
00
00

11

00
00
00
00
00
00
00
00
00

12

51
55
59
5D
61
65
69
6D
71

13 14

02 00
02 00
02 00
02 00
02 00
02 00
02 00
02 00
02 00

15

00
00
00
00
00
00
00
00
00

SU MO >N X

~=w0o

o ~WQ Ql

R

T =55 Q

Q 5 P 0 — <K 30

WinHex and exported to a file for further process-

ing using other tools.

http://www.disclosedigital.com/downloads.html

124

E. Casey

Although using templates to interpret file sys-
tems can be useful for certain tasks such as teach-
ing novices and verifying important details at a low
level, it is rarely feasible to perform a complete
forensic examination in this manner. On large disks
it would take an inordinate amount of time to
extract all data and metadata from the file sys-
tem using the techniques demonstrated in this
section.

Harvesting

The aim of harvesting during the forensic examina-
tion process is to gather metadata relating to
directories, files, and fragments salvaged during
the recovery process. File system characteristics
are the most common form of metadata. WinHex
can generate a list of existing and deleted files
and directories with associated characteristics, in-
cluding date—time stamps, size, allocated clus-
ters, and hash values using the Create Drive
Contents Table option on the Specialist menu.

By default, the Create Drive Contents Table
feature lists active and deleted files that are still
referenced by the file system (i.e. in directories
on FAT and in the SMFT on NTFS). Enabling the
“Particularly thorough search” option instructs
WinHex to look beyond the file system, and to me-
thodically scan the entire disk for deleted directo-
ries or MFT entries. Specifically, on FAT systems,
this thorough search feature searches the begin-
ning of every sector for the pattern generally asso-
ciated with a directory (*. ..”). According to the
developer, using the “Particularly thorough
search” option on NTFS causes WinHex to look
for the pattern generally associated with MFT
entries (“FILE”) at the beginning of each cluster

Last Visit® Prot. Domain Resource Cache ... S... E. C. User Address
@ 2/8/2004 14:56:26 192.166.0.5:8080 612352
lﬂ 2/8/2004 14:56:36 http 192 168.0.5:8080 IMGO0]1.JPG eco 613120
‘ﬂ 2/8/2004 14:56:40 http 192 168.0.5:8080 IMGO02.JPG [=ln] 613376
iJ 2/8/2004 14:56:44 http 192,1668.0,5:8080 IMGO03,IPG [=ux] 613632
'ﬂ 2/8/2004 14:56:46 http 192,1668.0,5:8080 IMGO04, PG eCo 613888
lj 2/8/2004 14:56:49 http 192 168.0.5:8080 IMGO0S, PG eco 614144
'ﬂ 218/2004 14:56:51 http 192,168.0,5:8080 IMGO0G6,IPG [=ua] 614400
lﬂ 2/6/2004 14:56:53 http 192,166.0.5:8080 IMGOO7.JPG eco 614656
li) 2/8/2004 14:56:56 http 192,168.0,5:8080 IMGOOS, JPG eCo 614912
'j 2/8]2004 14:56:59 http 192 168.0.5:8080 IMGO09,.JPG [=latn] 612864
'J’ 2/8/2004 15:03:46 http 192,168.0,5:8080 IMGO00,IPG eco 615168
Visited: eco@http://192.168.0.5:8080

and at the beginning of each 1024-byte entity
within that cluster, if a cluster is larger than
1024 bytes. These facilities for generating a list
of deleted directory and MFT entries are useful
for verifying the results of other tools such as
EnCase’s Recover Folders feature.

By design, WinHex does not calculate hash
values of deleted files, making it necessary to save
the recovered files to disk and calculate their MD5
values with a tool specifically designed for this
purpose such as Maresware’s hash utility as
demonstrated in the recovery section of this
paper. This approach to calculating hash values is
recommended even when using integrated forensic
media examination applications since internal MD5
calculations may not always be correct.

After the basic file characteristics are har-
vested, it is then necessary to look within files
for additional metadata. Compound files such as
Microsoft Office and Outlook files have date—time
stamps and other metadata embedded in them. As
noted earlier, custom WinHex templates can be
created to interpret different data structures. In
the case of index.dat and INFO files, WinHex can
invoke the X-Ways Trace utility on the Tools menu
to interpret the data as shown in Fig. 10.

Notably, the X-Ways Trace utility converts da-
te—time stamps into the local time zone of the ex-
amination computer when the Convert to Local
Time option on the Edit menu is enabled which
can create confusion if not realized (Boyd and
Forster, 2004).

The Data Interpreter feature on WinHex’s
Options menu can also be used to interpret embed-
ded date—time stamps as shown in Fig. 11. Note
the discrepancy between the date—time stamps
in Figs. 10 and 11 caused by the time zone ad-
justment (605CE7A27DEEC301 = February 8, 2004
19:56:26 GMT).

Figure 10 An IE History index.dat file interpreted using X-Ways Trace (http://www.x-ways.net/trace/).

http://www.x-ways.net/trace/

Tool review—WinHex

125

= ext2-floppy-130204. dd

Of et 0t 2 3 4 5 6 7 8
00612352 55 52 4C 20 02 00 00 00 B0
006123668 60 5C E7 42 7D EE C3 01 65
00612384 | 00 OOFFESS———]00 00
00612400 60 Qo iiElnRRiEElN, pp
00612416 | 01 ool FLETIME: 2782004 |0 1,
00612432 | 48 30 el oo
00612448 00 00 00 00 OD FO AD OB S6
00612464 20 65 63 6F 40 68 74 74 70
00612480 |31 36 38 2E 30 2E 35 34 38
006124396 10 00 02 00 00 00 00 10 00

9
5C
30
oo
oo
oa
oo
69
34
30
oo

B

10 11 12; 13 14 15

E7 42 7D EE C3 01 URL ..., “~gelid.
OE 9F 00 00 00 00 “~gekid =001 ...
00 00 00 0D 00 0O ...l
10 10 00 00 00 00 e shs

00 00 00 00 00 OO .. .0...........
00 00 OO0 OO0 00 0O HO.B............
73 69 74 B85 B4 34 &— Visited:
2F 2F 31 39 32 2E eco@®http:--192.
38 30 00 FO AD OB 168.0.5:8080.5-.
00 00 00 00 00 00 v

Figure 11
Interpreter feature.

The Data Interpreter feature can convert
several time formats, including 64 bit Windows
FILETIME, 32 bit Windows/DOS, and UNIX date—
time stamps.

Search and organization

WinHex can search a disk for text or hexadecimal
values, allows for case sensitivity and Unicode
when performing text searches, and can be config-
ured with a wildcard character (e.g., ?, 3F), but
does not have a regular expression search feature.
In addition to searching for individual keywords,
a list of keywords can be provided in the Simulta-
neous Search feature on the Specialist menu and
the output can be saved to a file or to the WinHex
Position Manager which enables the user to locate
specific search hits on the disk. The output of the
Simultaneous Search feature includes the logical
file that contains the keyword but not the cluster
number. The cluster number and associated file
can be obtained by going to each keyword and
reading the information in the Details window as
shown in Fig. 12.

Using the disk image “NTFS Keyword Search #1”
(Carrier, 2003b) shown in Fig. 12, WinHex located
all of the keywords except “n-frag” which was
split between two non-contiguous clusters in an
allocated file. The implication here is that WinHex
does not search the logical file system on the phys-
ical disk. For instance, in a homicide investigation,
if an incriminating file named “personal-diary.txt”
contains the word “murdered” but this keyword is
split between two non-contiguous clusters, a key-
word search for “murdered” using WinHex will
not find this occurrence. Although WinHex can per-
form a logical search of a mounted volume using
the Open Folder option on the File menu, this
does not work with forensic images.

A Window 64 bit FILETIME date—time stamp in an IE History (index.dat) file viewed using WinHex’s Data

When a keyword is located in resident data
(keywords 1—4 in Table 3), search results exported
to a file or displayed in the Position Manager do not
clearly indicate the associated file name, simply
indicating that it was found in the MFT. To deter-
mine the file name it is necessary to place the cur-
sor on the keyword in WinHex and click on the
context sensitive Access button which will have
an option to recover the file associated with the
selected MFT entry as shown in Fig. 13. Notice
that the Details window shows the number of the
selected MFT entry.

Furthermore, for keywords in alternate data
streams, WinHex associated the hit with the
parent file or directory rather than with the ADS
(keywords 3, 4, 9 and 10 in Table 3). Omitting
the name of the ADS that contains a keyword could
lead to misinterpretations of the search results.
As an example, in a larceny investigation, if a file
named “personal-finances.txt” had an ADS named
“stolen-money.txt” containing a list of stolen sums
of money, WinHex could be used to locate the list
of stolen money but would not show the examiner
that they were in the ADS named “stolen-money.
txt”, instead displaying the name of the parent
file “personal-finances.txt”.

Finally, WinHex did not recover the deleted file
named “file-n-2.dat” and therefore did not indi-
cate that the keyword “n-unalloc” was found in
this deleted file. Actually, it would be a surprise
if any tool could recover this file since the only ref-
erence to the filename is in the SLogfile and there
is no way to associate specific clusters with that
file name.

Be aware that WinHex does not provide the lo-
cation of keywords relative to the beginning of log-
ical files, only the offset from the beginning of the
disk.

Using the “FAT Keyword Search #1” (Carrier,
2003c), WinHex located all of the keywords in
the correct files except for those fragmented

126

E. Casey

NE g
“FE HEX

Dl ad®

[C:\Projectshdiskimages\3-ntfs-kwntts-img-kw-1.dd] l

101
o1

4

== [C:\Projects\diskimages\3-ntfs-kwinifs-img-kw-1.dd]
N

File Edit Search Position Yiew Tools BSZEE[H8 Options File Manager Window Help

-+ ¥ F

ojectshdiskimages3-ntf:

16+1 files. 4+1 directones NTES

Filenarne Size E... Created Modified Access... | A...| A
[$Boot 8.0 KB 10/23/2003 12:12:59 10/23{2003 12:12:59 10/23/20... SH State: ariginal
[$mitmap 2.0K8 10/23j2003 12:12:59 10/23/2003 12:12:59 10{23(20... SH Undo levet il
Lj$Ei.zn:lCIus 0 bytes 10§23/2003 12:12:59 10{23{2003 12:12:59 10/23/20... SH Undo reverses: n/a
d$.‘\ttrDBF 35.2KB 10/23/2003 12:12:59 104232003 12:12:59 10/23/20,.. SH
(] file-r-1.dat 120bytes dat 10/23/2003 12:14:59 10/23(2003 02:01:08 10/23(20... A Total capacity: 7.8MB
| file-r-3.dat 05KE dat 10{23(2003 12:15:13 10/23{2003 12:15:39 10/23/20.,, A Sectolite:
[fils-n-1 .dat 2.0KE dat 10{23{2003 12:17:55 1023{2003 02:04:14 10/2320,.. A Bies por lister 512
(] file-n-4.dat Z0KB dat 10/23/2003 121612 10/23/2003 01:57:40 10/23/20.., A Tolal ckrclas: 16,064
dffla-n-&dat 1.3KB dat 10/23j2003 12:18:14 10/23/2003 12:18:50 10/23(20... A ks reiiacton i
|_]file-n-3.dat 25KE dat 10{23(2003 12:18:09 10/23{2003 12:20:38 10/23/20... A SRl e
file-r-2.dat 120 bykes dat 10/24j2003 11:27:35 10/23/2003 02:02:00 10/24/20... A 3
Last scanned: 7 min. ago
Of f=et 01 2 3 4 5 & 7 8 9 10 11 12 13 14 15 || Secese ™™ W%d) Cliser o a0gn
D4128160 | 96 4C 67 &5 92 FE B6 9E 686 84 IF 54 A8 90 SB 3E |Ig# pTIII.T I[> Py B
04128176 FS 1E FB 64 66 AB 54 83 Bl 86 FD 00 AC 48 4D 6D &.uajf«Zixly.-HMm 2y
04128192 OB 57 EF 37 25 39 58 84 68 4F 0E 92 B8 8C 32 FO . Wi7X9H1hO. " ,123
0412 g 0o 00 0O 00 OO OO 0O OO OO GO OO0 OO OO0 OO0 OO0 00 Window #: 1
0412 00 00 00 00 DO BE 2D 73 6C 61 63 6B 00 00 00 0O .B-slack No. of windows: 1
04128240 00 00 0D 00 OO OO0 0O OO OO0 OO OO0 0D OO0 OO0 OO OO0 Mode: T
04128256 |FF 56 6C 98 DO 5D 56 66 B4 C7 14 CE 6B 93 EL Ed | VIIDIVE C.11155 Prpamcterser ANSIASCH
04128272 83 84 B3 C5 10 65 8C 7E CC C7 F6 76 FF 50 9C 46 1174 e1™IGowvPIF fofsers: poag
04128288 |F2 AD 7A CF 02 SB 2F B9 ED FS AD ED A7 CE 16 3F &-z1.[/133-i51.7 [lBytes perpage 2216-352
04128304 3C AF 4E EE Ck 48 10 1D 8A B2 B2 19 87 Ce Al D8 < HiEH..1%*.I1Xi@
04128320 DS 39 7B 76 20 B4 E3 4C Ef C7 40 00 19 5F 15 1B 09{v ‘&LzC@. _
04128336 23 E5 D5 57 10 60 39 AF 91 8E 40 DE C4 0C 99 36 #40W. 97 1@k .16 o=
04128352 72 69 18 03 C3 94 EA D& 48 SA 46 OF 8F 29 FC 17 ri. . A1e0HZF. 1), S
Sector B0BZ of 16064 Offzet 4128223 =110 Block: 421760 - 4121763 | Size: 1DI

Figure 12 The Details window provides information about data at the current cursor position, including the cluster

and name of the associated file when applicable.

across non-contiguous clusters (in bold in Table 4).
Again, this indicates that WinHex only performs
a physical search of the disk and not a logical
search of files. The fact that WinHex found the
three “cross” strings indicates that it will find
strings that cross file boundaries. Specifically, it

Table 3 WinHex results for “NTFS Keyword Search
#1” (Carrier, 2003b)

Num String Cluster Cluster allocation
1 r-alloc 1342 ?2:\SLogFile
r-alloc 5409 2:\SMFT #27 (file-r-1.dat)
2 r-unalloc 1350 2:\SLogFile
r-unalloc 1915 ?2:\SLogFile
r-unalloc 5423 2:\SMFT #34 (file-r-2.dat)
3 r-fads 1391 2:\SLogFile
r-fads 5414 2:\SMFT #29 (file-r-3.dat)
4 r-dads 1528 ?2:\SLogFile
r-dads 5415 2:\SMFT #30 (dir-r-4)
5 n-alloc 8050 2:\file-n-1.dat
6 n-unalloc 8053 Unallocated space
7 n-frag Not found Not found
8 n-slack 8062 2:\file-n-4.dat (slack)
9 n-fads 8067 ?2:\file-n-5.dat (slack)
10 n-dads 8068 2:\dir-n-6

will find keywords that start in a file and end in
slack space, start in one file and end in another,
and start in a file and end in an unallocated sector.

The Gather Text feature on the Specialist menu
is useful for extracting human readable data on
a disk. For instance, this feature can be applied
to unallocated or file slack space to find useful
text fragments. The Text Passages feature on the
Search menu performs searches for a specified
number of sequential letters, numbers, or punctu-
ation marks or spaces.

Conclusions and recommendations

WinHex Specialist Edition is a valuable tool for ex-
perienced forensic examiners to validate findings
obtained using other applications, and is useful
for students to learn about file systems and data
structures. In addition to most of the file inventory
and data recovery capabilities necessary in a foren-
sic examination tool, WinHex facilitates low-level
examination of digital evidence using the Data
Interpreter and template features. The template
feature can also be used to edit structures such as a
partition table or file allocation table, which can be

Tool review—WinHex

127

' [
* [C:\Projects\diskimages\3-ntfs-kwintfs-img-kw-1.dd] e —Wé!
- - - [C:\Projectshdiskimages\3-ntfs
2\ 16+1 files, 4+1 directories NTFS
Filenarne Size E... Created Modified Access... | A... A
_] $Boot 8.0KB 10/23/2003 12:12:59 10/23/2003 12:12:59 10/23/20... SH State: original
] 4Bitmap 2.0KB 10/23(2003 12:12:59 10/23/2003 12:12:59 10/23(20,., SH Undo levek 0
_] $BadClus 0 bytes 10/23{2003 12:12:59 10/23/2003 12:12:59 10{23/20... SH Undo reverses: nia
] gaetroef 35.2KB 10/2312003 12:12/59 10/23/2003 12:12:59 10/23{20,., SH .
) Fle-r-1.dat 120bytes dat 10/23/2003 12:14:50 10/23/2003 02:01:08 10/23/20... A Tatal capacwézz”E;EMB
JFi\E-r-S.dat 0.5KB dat 10/23/2003 12:15:13 10/23/2003 12:15:39 10/23/20.., A i gies
JFi\e-m-l.det 2.0KB dat 10/23/2003 12:17:58 10/23(2003 02:04:14 10/23/20... A Al e 512
] file-ri-4.dat 2,0KE dat 10/23/2003 12:18:12 10/23(2003 01:57:40 10/23/20.., A Tl ckilors 16.064
] file-n-5.dat 1.3KB dat 10/23/2003 12:18:14 10/23/2003 12:18:50 10/23/20... A
i q 3 e e Bytes per sector: 512
) file-r-3.dat 25KB dat 10/23/2003 12:18:00 10/23(2003 12:20:38 10/23/20... A Gt e i
filg-r-2,dat 120 bytes dat 10/24/2003 11:27:35 10/23/2003 02:02:00 10/24/20... A 7
= Last scanned: 20 min. ago
Offset B 1 2 3 4 F F 7 8 910 1112 13 14 15 @A w |V 3 R
= _teooss ¥ | @ B Cluster No.: 5403
02769536 00 00 00 00 02 01 00 00 00 00 00 00 00 00 00 00| Boot seckor SMET (27)
02769552 | 00 00 00 00 00 00 00 00 30 00 00 00 78 00 00 00 | pagk sector template) 24,
02769568 00 00 OO 0O 0O 0O 02 OO S& OO OO OO 18 OO 01 00 -
02769584 05 00 DO 00 OO OO OS5 00 OO0 6B 64 30 89 99 C3 01 Root directory indaw #: 1
02769600 00 6B 64 30 89 93 C3 01 00 6B 64 30 89 99 C3 01 Master File Table ($MFt) Mo. of windows: 1
Grests |0 S0 Ed 3 9953 3 0 00 S0 B8 000 M8 0000 vt Bk
5 h Fil d (dh Character set; AMSIASCI
02769648 | OC 03 66 00 63 D0 6C 00 65 00 2D 00 72 00 2D 0g | cohferecord (down) J-Eorect ey
02769664 31 00 2E 0O 64 00 61 00 74 00 OO OO 0O 0D OO OO Free clusters Byles per page: 22x16=352
02769680 80 00 DO 00 90 OO0 00 00 e Tt e en b 5 o -
02769696 78 00 00 00 18 00 00 00 do3r=1:0ab (120 byies)
02769712 4C 34 05 D3 74 E9 3D 18 91 8C A6 75 32 62 6F DB L:.0Oté=. |lu2bol I —
02769728 F4 F3 18 B9 10 A7 B6 D9 17 8F 60 7C A2 51 FC A9 ao.! .ST0.1° |¢Que et

Figure 13 Displaying the file name associated with MFT entry #27 using WinHex’s context sensitive Access button

which facilitates the recovery of the associated file.

useful for repairing damage and recovering data.
A number of enhancements are proposed here to
address shortcomings described in this paper.

Preservation

One proposed enhancement to the Clone Disk fea-
ture is error handling to inform the user when the
destination disk has insufficient capacity. Alter-
nately, prompting the user for additional storage
when the destination drive is full would be an
effective way to respond to a full disk. It would

Table 4 WinHex results for “FAT Keyword Search
#1” (Carrier, 2003c)

Num String Cluster allocation Sector

1 first file1.dat 271

2 SECOND file2.dat 272
SECOND Root directory 239

3 1cross1 file1.dat 271

4 2cross2 file3.dat 273

5 3cross3 unallocated space 283

6 1slack1 file2.dat 272

7 2slack2 file3.dat 274

8 3slack3 file4.dat 277

9 1fragment1 Not found Not found

10 2fragment Not found Not found
sentence2

11 deleted Unallocated space 276

12 a?b\c*dSeff[g” file7.dat 279

also be prudent to prevent a forensic image from
being saved to the same disk that it is being copied
from. One approach to preventing users from acci-
dentally overwriting evidence is to make all disks
read only by default and to require users to desig-
nate a disk as writable before WinHex will save
data onto it.

Since the testing in this review was not exhaus-
tive, the Clone Disk feature could benefit from
more testing to determine if it has problems under
certain circumstances. In any event, given the im-
portance of the acquisition process, it is advisable
to duplicate an evidentiary disk using at least two
tools and to verify that the MD5 value of both
images match that of the original.

Recovery

One issue uncovered while testing WinHex’s file re-
covery capabilities on FAT file systems was that
clusters allocated to active files were included in
undeleted files. Since there are advantages to dif-
ferent recovery methods, it would benefit the user
to have an option to choose which method to im-
plement. The method not currently employed by
WinHex is to skip allocated clusters during the un-
deletion process. Another proposed enhancement
is an automated feature to recover alternate data
streams.

128

E. Casey

Search

One proposed enhancement to WinHex’s search
functionality is to perform both logical and physi-
cal searches of forensic images. A logical search
capability would enable WinHex to find keywords
that are fragmented across non-contiguous clus-
ters allocated to a file. A logical search would also
enable WinHex to calculate the offset of the key-
word from the beginning of the file.

When using the Simultaneous Search feature to
export search results to a file or WinHex’s Position
Manager, it would be helpful to include the file
name associated with resident data of MFT entries.
When a keyword is found in ADS, the search results
should provide the name of the stream in addition
to that of the parent file. Additionally, a regular
expression search feature would enable more flex-
ible searches.

Documentation

Although WinHex creates a log file when certain
actions are performed, it does not log all actions
that a forensic examiner takes. A log of an
examiner’s actions can help others assess the
work, reproduce the results, and determine if any-
one viewed private data without authorization or
exceeded their authorization by overstepping the
bounds of an organization’s privacy policy or a
search warrant. When using tools that do not cre-
ate this type of audit record, it is necessary to
make detailed written notes. Although it is always
a good practice to keep written notes when pro-
cessing evidence, they rarely have the level of
detail of computer generated audit logs.

Classification

Currently WinHex has limited data reduction capa-
bilities that could be improved by classifying files,

detecting file signature mismatches, and by using
the NSRL hash database to identify known files.
According to the developer, a WinHex Forensic
Edition will be available later this year that can
automatically classify files (e.g., Microsoft Office
documents, e-mail, images, pictures with a high
percentage of skin color) and detect file signature
mismatches.

Acknowledgements

Thanks to Stefan Fleischmann for explaining some
of the nuances of WinHex, to Brian Carrier for
providing the tool testing images and helpful sug-
gestions, and to Troy Larson for his invaluable
feedback and enduring wit.

References

Boyd C, Forster P. Time and date issues in forensic compu-
ting—a case study. Digital Invest 2004;1(1).

Carrier B. Extended DOS partition test, 2003a. Available from:
http://dftt.sourceforge.net/test1/index.html.

Carrier B. NTFS keyword search #1, 2003b. Available from:
http://dftt.sourceforge.net/test3/index.html.

Carrier B. FAT keyword search #1, 2003c. Available from:
http://dftt.sourceforge.net/test2/index.html.

Carrier B. FAT undelete test #1, 2004a. Available from: http://
dftt.sourceforge.net/test6/index.html.

Carrier B. NTFS undelete (and leap year) test #1, 2004b.
Available from: http://dftt.sourceforge.net/test7/index.
html.

Casey E, Palmer G. The investigative process in Digital evidence
and computer crime: forensic science, computers and the
Internet. 2nd ed. Academic Press; 2004.

USDOD. National industrial security program operating manual
(NISPOM / 5220.22-M), 1995. Available from: http://www.
dss.mil/isec/nispom_0195.htm.

Available online at www.sciencedirect.com

sc.ENce@D.nEcTe

http://dftt.sourceforge.net/test1/index.html
http://dftt.sourceforge.net/test3/index.html
http://dftt.sourceforge.net/test2/index.html
http://dftt.sourceforge.net/test6/index.html
http://dftt.sourceforge.net/test6/index.html
http://dftt.sourceforge.net/test7/index.html
http://dftt.sourceforge.net/test7/index.html
http://www.dss.mil/isec/nispom_0195.htm
http://www.dss.mil/isec/nispom_0195.htm

	flink1
	Introduction
	Preservation
	Examination
	Recovery
	Unallocated and file slack space
	Extended file systems (EXT2/EXT3)
	Harvesting
	Search and organization
	Conclusions and recommendations
	Preservation
	Recovery
	Search
	Documentation
	Classification

	Acknowledgements
	References

