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Abstract
Summary: Joint analyses of paired host and pathogen genome sequences have the potential to enhance our understanding of host–pathogen
interactions. A systematic approach to conduct such a joint analysis is through a “genome-to-genome” (G2G) association study, which involves
testing for associations between all host and pathogen genetic variants. Significant associations reveal host genetic factors that might drive path-
ogen variation, highlighting biological mechanisms likely to be involved in host control and pathogen escape. Here, we present a Snakemake
workflow that allows researchers to conduct G2G studies in a reproducible and scalable manner. In addition, we have developed an intuitive R
Shiny application that generates custom summaries of the results, enabling users to derive relevant insights.

Availability and implementation: G2GSnake is freely available at: https://github.com/zmx21/G2GSnake under the MIT license.

1 Introduction

Hosts and pathogens are involved in an evolutionary battle
that involve successive rounds of evolution from both sides
(Daugherty and Malik 2012). Pathogens constantly evolve to
escape from host immunity or other control mechanisms,
while simultaneously hosts are also under evolutionary pres-
sure from pathogens. The signatures of this evolutionary bat-
tle are reflected on both genomes. Therefore, joint analyses of
host and pathogen genomes offer an opportunity to re-
capitulate such processes and to identify specific genetic loci
involved in host–pathogen interactions.

An effective method to jointly analyze paired host and patho-
gen genomes is through the “genome-to-genome” (G2G) ap-
proach. This hypothesis-free approach involves searching for
significant associations between all pairs host and pathogen
variants (Fellay and Pedergnana 2020), reflecting either host se-
lection pressure on the pathogen or pathogen selection pressure
on the host. An example where such evolutionary conflict often
occurs is between host genetic loci that are involved in patho-
gen control and pathogen genetic loci that are involved in im-
mune escape. Indeed, G2G studies conducted in viruses such as
human immunodeficiency virus (HIV) (Bartha et al. 2013) and
hepatitis C virus (HCV) (Ansari et al. 2017) have highlighted
relevant viral immune evasion mechanisms. However, G2G
studies conducted in pathogens such as Epstein–Barr virus
(EBV) (Rüeger et al. 2021), Mycobacterium tuberculosis
(Phelan et al. 2023), and Plasmodium falciparum (Band et al.

2022) illustrates the potential of the approach to also uncover
other important host–pathogen interaction mechanisms.

To our knowledge, existing software used for G2G studies
are mostly limited to specific pathogens, and lacks generaliz-
able computational or result visualization capabilities. Given
that the G2G approach could be systematically applied to
many other pathogens, we present here a Snakemake work-
flow that can be generalized to any paired host–pathogen ge-
nomic datasets. We have also developed an interactive R
Shiny app that enables users to generate custom queries and
visualizations of the results.

2 Methods

2.1 Workflow

A summary of the functionalities of the G2GSnake software is
shown in Fig. 1. In brief, the workflow relies on: (i) pathogen
genetic data, either a nucleotide multiple sequence alignment
or an amino acid matrix for each gene, (ii) host genetic data,
in the form of a VCF file, and (iii) a sample mapping file that
lists sample pairs and additional covariates. Genetic principal
components are calculated for both the host and pathogen to
correct for stratification. Associations between all host and
pathogen variants are then tested under the G2G framework,
corrected for principal components and any provided covari-
ates. A directed acyclic graph for a typical workflow is shown
in Supplementary Fig. S1. All jobs are executed within a pro-
vided docker container to ensure reproducibility and cross-
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platform compatibility. References to all external tools used
in the pipeline can be found in supplementary materials.

2.2 Pathogen genetic data

On the pathogen side, a binary matrix is required for each
gene to analyze, encoding the presence or absence of amino-
acid variants in each pathogen sample. Variants should be
separated by gene, and multi-allelic variants should be decom-
posed and encoded as separate variants. We also provide
functionalities that derive such a matrix from a multiple-
sequence nucleotide alignment file (fasta) using custom R
scripts and nextalign (Aksamentov et al. 2021) for transla-
tion. In such an instance, a reference genome (fasta) and an-
notation (gff) file is also required to extract nonsynonymous
variants. Multi-allelic variants would be automatically
decomposed. Next, given that a phylogenetic tree in newick
format is provided, phylogenetic principal components are
calculated using the adephylo package in R (Jombart et al.
2010). As a general approach, we recommend that a phyloge-
netic tree be built from genes concatenated per individual,
given that variability within a gene may be limited for slower-
evolving pathogens. Alternatively, standard principal compo-
nents can be calculated. Finally, pathogen variants are filtered
based on user-specified allele frequency and missingness
thresholds (fraction of samples with null calls at a given vari-
ant site).

2.3 Host genetic data

On the host side, a VCF file is required. Single-nucleotide
polymorphisms, insertion–deletions (indels), and structural
variants are all supported. However, multi-allelic variants
should be decomposed and indels should be normalized
beforehand. Quality control procedures are based on
user-defined thresholds and includes filtering based on
missingness, minor allele frequency, and deviation from
Hardy–Weinberg equilibrium. Principal components are then
calculated using GCTA (Yang et al. 2011).

2.4 Genome-to-genome study

The software relies on existing tools developed for genome-
wide association studies (GWAS) to conduct G2G studies. A
case-control GWAS is run for each pathogen variant, treating
it as an outcome. Specifically, a regression model is con-
structed for each pathogen variant j and human variant i:

yj � bijGi þ
X

k

akXk

where yj represents a vector (derived from the binary matrix)
encoding the presence of pathogen variant j (0 or 1), Gi repre-
sents the genotype dosage vector (derived from the VCF file)
of host variant i, and Xk represents the covariate vector for

Figure 1. Summary of G2Gsnake. The workflow relies on three main input sources: (i) pathogen genetic data, (ii) host genetic data, and (iii) a sample

mapping file along with additional covariates. Associations between all pathogen and host genetic variants are then tested under the genome-to-genome

(G2G) framework. Pathogen and host genetic principal components are included as covariates to correct for stratification. Finally, results can be visualized

in the R Shiny app. Created with BioRender.com.
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covariate k. Covariates include host and pathogen principal
components along with other user-specified covariates.

Users can choose to use PLINK (Chang et al. 2015) or
REGENIE (Mbatchou et al. 2021) to conduct association
tests. PLINK was chosen due to its high computational effi-
ciency, while REGENIE was chosen due to its ability to han-
dle rare pathogen variants, which give rise to unbalanced
case–control ratios, through the SPA test. While REGENIE is
more computationally demanding, both methods can be rea-
sonably applied to a dataset with a size comparable to real-
world datasets of past genome-to-genome studies
(Supplementary Table S1).

For both methods, un-adjusted P-values without correction
for multiple testing are reported. To accurately interpret the
results, the user should select relevant P-value thresholds that
accounts for multiple-testing, e.g. by applying Bonferonni
correction.

3 Results

3.1 Simulation studies

To test the validity of our software, we generated four simu-
lated host–pathogen genetic datasets based on the framework
described by Naret et al. (2018). Each simulation included
1 000 000 host variants, 500 pathogen variants, and 1000
samples. In simulation A and simulation B, no true associa-
tions between host and pathogen variants existed. In simula-
tion A, all host and pathogen variants were not population
stratified, while in simulation B, a portion of host and patho-
gen variants were population stratified (10% and 20%, re-
spectively). In simulation C and simulation D, true
associations between host and pathogen variants were cre-
ated. In simulation C, associations only existed between var-
iants that were not population stratified, while in simulation
D, associations also existed between population stratified var-
iants. For all four simulations, the number of host and patho-
gen variants that belonged to each category is shown in
Table 1.

We next applied G2GSnake to the four simulations using
the REGENIE approach. Due to the co-occurrence of patho-
gen lineages and certain human ancestral groups, spurious
associations due to population stratification can occur. To
correct for this, we included the top five host and pathogen
principal components as covariates. Figure 2A summarizes
the precision and recall for simulations with true positives
(simulation C and D) based on different P-value thresholds.

As expected, a higher area under the precision–recall curve
(AUPRC) was achieved for simulation C (AUPRC¼ 0.95)
compared to simulation D (AUPRC¼ 0.91), since simulation
D contained associated variants that were also stratified.

Based on the Bonferroni corrected P-value threshold
(P<1�10�10, corrected for the number of host–pathogen var-
iant pairs tested under a ¼ 0:05), a false positive rate of 0 was
achieved for all four simulations (Supplementary Table S2).
For simulation C and D, a precision of 1 was achieved for
both. A slightly higher recall was achieved for simulation C
(0.755) compared to simulation D (0.705). For both simula-
tion C and simulation D, precision was slightly favored over
recall due to the relatively conservative nature of Bonferroni
correction (Fig. 2A).

Finally, based on simulation D, Fig. 2B compares the
P-value of associations between variant pairs in different cate-
gories. As expected, associations between true G2G associ-
ated pairs that were not stratified were detected by the
software as strongly associated. For true G2G associated pairs
that were stratified, the detected associations were less signifi-
cant given that principal components cannot fully separate
true signal from population stratification. For all other pairs
that were not associated, the detected associations were negli-
gible. Few nonassociated pairs were detected as weakly asso-
ciated likely due to residual stratification that principal
components were not able to capture.

3.2 Visualization—R Shiny App

To visualize and summarize results from the G2G study,
we developed a R Shiny app. The app is launched from a
Docker container to ensure cross-platform compatibility.
Supplementary Figure S2 illustrates the main functionalities
of the app based on results from simulation D, including: (i) a
results table which displays summary statistics of all G2G
associations below a specified P-value threshold
(Supplementary Fig. S2A), (ii) a results plot which displays all
G2G associations in the specified pathogen gene and below a
specified P-value threshold (Supplementary Fig. S2B), (iii) a
Manhattan or QQ plot for a specified pathogen variant
(Supplementary Fig. S2C), and (iv) a correlation plot between
host and pathogen principal components (Supplementary
Fig. S2D).

4 Conclusion

We introduce a scalable and reproducible Snakemake
workflow that allows researchers to jointly analyze paired
host–pathogen genetic data under the G2G framework. In
our implementation, only nonsynonymous pathogen variants
were considered as they are more likely to be functionally rel-
evant. However, a limitation is that synonymous variants
both within or outside of coding regions that could also have
functional consequences, such as variants that affect RNA
structure or those within transcription factor binding sites,
would be excluded. In addition, variants within diverse acces-
sory loci that are part of the variation of many bacterial spe-
cies would not conform to multiple-sequence alignments and
existing reference genome annotations. To rectify this, users
would have to leverage external tools and provide an amino
acid matrix for each gene from the pangenome.

In this study, we generated simulations that included 500
independent pathogen variants. This is similar in orders of
magnitude to the number of variants tested in previous viral

Table 1. Number of host and pathogen variants in each category for the

four simulation scenarios.a

Simulation Unstratified Stratified Associated Associated
and stratified

Pathogen variants
A 500 0 0 0
B 400 100 0 0
C 200 100 200 0
D 200 100 100 100
Host variants
A 1 000 000 0 0 0
B 900 000 100 000 0 0
C 899 800 100 000 200 0
D 899 800 100 000 100 100

a All simulations included 1 000 000 host variants, 500 pathogen
variants, and 1000 samples.
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genome-to-genome studies (i.e. in the order of 102 to 103

variants), but other microbial populations such as bacteria
could present more variants (i.e. in the order of 104 to 105)
(Power et al. 2017). Analyzing such datasets would be com-
putationally demanding, but still feasible (i.e. run-time of ap-
proximately a few days based on the PLINK approach and
110 CPU cores).

For clonal microbial populations, such as M.tuberculosis, a
large proportion of variants would be highly correlated. In
such an instance, the user may want to apply variant pruning
to remove highly correlated variants. Furthermore,
Bonferroni correction would also be overly conservative. The
user may want to utilize other multiple-hypothesis correction
procedures, e.g. those based on permutation.

Compared to the software implementation presented by
Naret et al. (2018), which was designed primarily as a frame-
work to conduct simulation studies, G2GSnake leverages re-
cent GWAS tools that are more computationally efficient.
Furthermore, G2GSnake offers ease-of-use and generalizabil-
ity, enabling G2G studies to be systematically conducted and
interpreted for novel pathogens of interest. Finally, cross-
platform compatibility is also guaranteed through docker
containers that contain the workflow itself and the R Shiny
app.
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