
gcodeml: A Grid-enabled Tool for Detecting
Positive Selection in Biological Evolution

Sébastien MORETTIa,c, Riccardo MURRIb , Sergio MAFFIOLETTIb, Arnold
KUZNIARa, Briséïs CASTELLAa, Nicolas SALAMINa, Marc ROBINSON-RECHAVIa,

and Heinz STOCKINGER
c,1

a Department of Ecology and Evolution, University of Lausanne and SIB Swiss Institute
of Bioinformatics, Lausanne, Switzerland

b Grid Computing Competence Center (GC3), University of Zurich, Switzerland
c Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland

1 Heinz.Stockinger@isb-sib.ch

Abstract. One of the important questions in biological evolution is to know if
certain changes along protein coding genes have contributed to the adaptation of
species. This problem is known to be biologically complex and computationally
very expensive. It, therefore, requires efficient Grid or cluster solutions to overcome
the computational challenge. We have developed a Grid-enabled tool (gcodeml) that
relies on the PAML (codeml) package to help analyse large phylogenetic datasets on
both Grids and computational clusters. Although we report on results for gcodeml,
our approach is applicable and customisable to related problems in biology or other
scientific domains.

Keywords. bioinformatics, phylogeny, positive selection, Grid, cluster, ARC.

1 Introduction

Understanding the evolution of species is one of the main questions in biology. To
address this question, it is necessary to develop mathematical models to estimate how
different biological processes could have resulted in the current diversity of life. In
particular, there is a strong interest to assess whether a certain feature or function could
be involved in the adaptation of organisms to their environment. The force that promotes
such adaptation is generally known as positive or Darwinian selection (named after the
biologist Charles Darwin [2]), and the current increase of genomic data makes it possible
to study the processes of adaptation at the molecular level (reviewed in [1], [4], [6]).

Selectome [14] (http://selectome.unil.ch) is a database that provides information on
such positive selection events. It is provided as an on-line resource that can be easily
used by life science researchers. However, the underlying computational steps are
complex and require large amounts of computational resources. In brief, the
computationally intensive parts are based on the phylogenetic software package called
PAML [18] and in particular the codeml application. The focus of our work is to provide
a suitable computational engine that efficiently and reliably executes thousands of
codeml jobs on both Grid and cluster environments.

Given that multiple codeml jobs are independent of each other, despite sharing parts
of the input data sets, the application is embarrassingly parallel and therefore suitable for
cluster, cloud and Grid environments. Previous production runs have been done on the
computational cluster of Vital-IT (http://www.vital-it.ch), the High Performance

Computing Center of the SIB Swiss Institute of Bioinformatics (http://www.isb-sib.ch).
However, the computational needs of Selectome cannot be fully met by the Vital-IT
infrastructure without seriously limiting the remaining user groups. Consequently, in a
previous study we also looked into cloud solutions [10] and recently developed a
solution for a Grid environment.

In the following article we present gcodeml, a grid-enabled version of codeml that
runs on the ARC-based Swiss Multi-Science Computing Grid (SMSCG,
http://www.smscg.ch) [17] infrastructure. Internally, the tool makes use of GC3Pie [13],
a Python framework that provides the basic building blocks for high-throughput
applications on both Grids (based on the Advanced Resource Connector - ARC [3]) and
clusters (e.g. Sun/Oracle Grid Engine - SGE). gcodeml is a fault-tolerant solution that
makes use of ARC's Run Time Environment (RTE) feature to execute pre-installed
codeml applications at several sites of the SMSCG infrastructure. The underlying
software system takes care of job (re)-submission and automatically corrects for most
errors in case of problems with the Grid infrastructure. The latter is enabled via
customised pre- and post-processing steps that follow the actual execution on remote
sites. The GC3Pie framework has also been used successfully in computational
chemistry [11], molecular modelling and cryptography; see
http://gc3pie.googlecode.com for a list of already supported use cases.

2 Related Work

Addressing embarrassingly parallel applications with a cluster, cloud or Grid
approach has been done for many years using various approaches and many different
Grid solutions for different application domains: computational phylogeny [16],
sequence search and analysis [15] as well as cryptography [9]. However, most of the
existing solutions have been developed around a single use case or type of infrastructure.
Extending or generalising these tools often results in the same level of complexity as
developing a complete end-to-end solution. Additionally, even if Grid technologies are
(slowly but progressively) reaching maturity for implementing large-scale high-
throughput computational use cases, it is still required to maintain a fine-grained control
of the underlying Grid services and to optimise the access to the resources. Service
invocation, data transfer, fault-tolerant execution and supervision are only a few themes
that have to be addressed efficiently when dealing with large-scale data analysis.

In the last few years, within the SMSCG project, we had the opportunity to identify
several key high-throughput usage and scalability patterns common to many different
scientific use cases. Writing end-to-end solutions for these patterns using existing tools
and adopting them within the SMSCG infrastructure would have required a substantial
re-engineering effort: solutions such as GANGA [12], SAGA [8] or MOTEUR [5] do not
provide up-to-date interfaces to the ARC middleware, on which the SMSCG
infrastructure is built. Moreover, GANGA is centered on an execution and data handling
model that is more adequate to high energy physics than life science applications,
making it complex to generalise.

Solutions like P-GRADE (http://portal.p-grade.hu) or WISDOM [7], despite being
generic high-throughput submission engines, still require implementing the majority of
the control logic (i.e., the pre- and post-processing steps). We then considered the
GC3Pie framework, a Python library, to declare and supervise the execution of large

application campaigns. Since GC3Pie is already available and used on the SMSCG
infrastructure, it was chosen for implementing the high-level, application-specific control
logic for codeml. Further details and background information on the GC3Pie framework
will be given in Section 4.2.

3 Biological Background and Computational Requirements

3.1 The codeml Application

The codeml application is one of the software tools included in the PAML
(Phylogenetic Analysis by Maximum Likelihood) package [18], which enables
phylogenetic analyses of DNA and protein sequences using a maximum likelihood
approach.

Some background: while DNA sequences are drawn from an alphabet of four
different nucleotides (bases), proteins are built from 20 different amino acids. Each
nucleotide triplet (e.g., AAC) is called a “codon” (cf. Figure 1) and is then translated into
a unique amino acid. In brief, in order to synthesise proteins, the four-letter DNA code is
translated into the 20-letter code of proteins (several codons map to the same amino
acid). Therefore, the name “codeml”, since it takes aligned codons as input, and
estimates the probability of an event of positive selection in the history of the specific
protein coding sequence. This is done by using the phylogenetic tree of related
sequences, and then estimating the probabilities of transitions between an ancestral and
descendent codon (cf. Figure 1). For instance, in an ancient species the codon TAC might
have been TAT. Additionally, this change might have had a positive effect on descending
species. In order to detect such changes, protein coding sequences of different species
such as human, mouse or chimpanzee are compared.

Figure 1. Input data for codeml: aligned codon sequences of five species (A-E) (left), a phylogenetic tree
of the five species (right) inferred from the second column (codons) of the alignment.

In simple words, the aim of codeml is to detect positive selection events (resulting in
improved biological functions) in the history of species. In many cases, changes within
codons do not lead to positive selection events. This represents the null hypothesis (H0)
that we want to test against the assumption of a positive selection event, also referred to
as the alternative hypothesis (H1), using the maximum likelihood ratio test. The codeml
program evaluates both hypotheses separately using a maximum likelihood approach.

The detailed description of the algorithm is beyond the scope of this article (cf. [18] for
further details) but the important feature is that different protein coding sequences and
branches can be analysed in parallel, which results in an embarrassingly parallel
execution of codeml.

Figure 2. Overview of codeml's dataflow using data from the Ensembl database (sequence alignments
and phylogenetic trees as shown in Figure 1).

The overview of the codeml execution is shown in Figure 2: a single codeml run
takes a sequence alignment file, the corresponding phylogenetic tree, as well as several
parameters stored in a control file (cf. top part of Figure 2). A specific interior branch of
the tree is selected to test for positive selection. Then, codeml is run twice, once for H0
and once for H1. Finally, data from several runs (i.e., all possible branches for each gene
tree) are gathered to produce final codeml results, by the use of likelihood tests for each
pair H0/H1, and of a Bayesian inference of selected codons.

The runtime of codeml usually increases with the size of the tree (i.e., the number of
leaves/genes) and the length of the sequences (i.e., the number of codons). On average, a
single run for a single branch of a 30-gene tree takes about 20-30 minutes to compute.

3.2 The Selectome Database

Given the computational costs of individual codeml runs, it is reasonable to pre-
calculate the data for many different species and protein coding genes. In fact, this is a
typical approach in bioinformatics to avoid redundant calculations done repeatedly by
many groups. For positive selection, the database “Selectome” has been created as a
resource for researchers in biological evolution. However, since new biological data
become available with very high speed (the Ensembl database provides new releases

every 2 months), Selectome needs to be regularly updated to cope with changes and new
biological insights.

The results presented in Selectome are not based on simply running codeml: a
complex workflow is involved to first prepare, then analyse, and finally to correctly
display the information on a web site. For details, refer to [14] and the documentation on
the Selectome web page (http://selectome.unil.ch/cgi-bin/methods.cgi). However,
running codeml is by far the most compute-intensive part, and can only be done with
large computational resources.

3.3 Requirements

The basic requirements for the computational engine of Selectome (i.e., the efficient
execution of codeml jobs) are as follows:

• Access to large computing resources. Ensembl version 66 from February 2012
has more than 50 vertebrate species. About 20,000 phylogenetic trees are
available as primary data for Selectome. This represents almost 2,000,000 jobs
and 100 CPU years. The number of species sequenced increases exponentially,
hence, increasing the size of the trees.

• Fault-tolerant execution. Given that tens of thousands of jobs need to be
executed, a fault-tolerant execution system is required that detects potential
issues and corrects them automatically: if individual jobs fail, resubmit them or
retry them on other machines. The system must not lose or omit jobs (codeml
executions) but it is free to execute them in any order.

• No human intervention to compute data: due to the scale of the problem that is
directly proportional to the data size, it is necessary that the computational
engine runs smoothly without human intervention, i.e., the person that launches
the codeml runs should not need to supervise each single execution but only
intervene if major technical problems occur.

4 Architectural and Technical Details

In the following section we describe how gcodeml, a client-side Grid and cluster
tool, has been designed and implemented to meet the requirements. Note that gcodeml is
not necessarily a tool that will be used by many different users but mainly by selected
“production managers”, such as the one that needs to provide data for the computational
engine of Selectome. This is an important requirement for the design and
implementation.

4.1 Architectural Overview

gcodeml is a client-side tool that uses the GC3Pie framework to manage codeml
computational jobs, i.e., while GC3Pie provides a general job submission and execution
framework (cf. Section 4.2), gcodeml is the application-specific code that establishes the
interface between the scientist and the Grid. Similarly to the standard codeml program,
gcodeml requires a set of sequence alignments, phylogenetic trees and codeml parameter
files. Given a set of directories containing these input files, gcodeml creates one
computational job for each pair of corresponding H0 and H1 data sets; then it submits the

jobs, monitors them and retrieves output results until all jobs have been successfully
executed (cf. Figure 3).

Although GC3Pie can manage jobs on a variety of batch-oriented systems, we have
only used the ARC back-end to distribute jobs on the SMSCG infrastructure. In order to
ensure maximum processing performance, the codeml application has been pre-installed
at each site in SMSCG using the best available compilation options. By making use of
ARC's Run Time Environment (RTE) feature, codeml wrapper scripts can be executed in
the same way on each cluster without knowing the installation details of codeml at the
client side. Additionally, jobs are only scheduled to sites that have the codeml RTE
installed and functional.

Figure 3. Overview of gcodeml's workflow: (1) input folder is provided as input argument. (2) For each
valid sub-folder, an instance of CodemlApplication is created. (3) Each Application is added to a gc3libs
execution engine in parallel. (4) gc3libs.engine executes jobs in bulk on the SMSCG infrastructure. (5)
when a CodemlApplication is finished, its terminated() method is called for post-processing (6). Once
all CodemlApplication have terminated successfully, gcodeml ends and results are available on
specified destination (7).

4.2 GC3Pie and gcodeml

GC3Pie is a library of Python classes for running large job campaigns on diverse
batch-oriented execution environments. At the heart of the GC3Pie model is a generic
Application object which provides a high-level description of a computational job
(including a list of input/output files, resource requirements and limits, etc.). GC3Pie
translates this information into the job description format needed by the actual execution
back-end selected, e.g., xRSL for ARC-based Grids, or a submission script for SGE.
Application objects can be adapted to provide behaviour customised to a specific use
case. For instance, the CodemlApplication object used in gcodeml knows how to locate
the phylogenetic trees and sequence alignment files given the main codeml input file; in
addition, it implements the post-processing hook that is run after the codeml job has
finished and determines whether the run has been successful or not (cf. Figure 3).

GC3Pie provides composition operators that allow treating a collection of jobs as a
single whole [13]: this makes it easy to implement the “embarrassingly parallel” job
scheme needed by gcodeml by simply bundling all jobs into a single collection with no
dependencies.

4.3 Specific Features of gcodeml

gcodeml is a command-line tool which scans the directory recursively for input files
and creates corresponding computational jobs. Then, it manages the jobs all the way
through to successful completion and retrieves output results. Processing the set of
codeml computational jobs requires the following steps which are transparent to the
gcodeml user except for the data organisation.

1. Input data needs to be organised such that files (sequence alignments,
phylogenetic trees and parameter files for both H0 and H1) are located in the
same directory. Hierarchies of directories are allowed with multiple input sets
per directory in order to bundle several codeml runs.

2. H0 and H1 need to be computed on the same computational node in order to
avoid spurious statistical deviations that might be due to different machine
architectures. Therefore, corresponding H0 and H1 input files are bundled into a
single codeml job.

3. Once the job has finished, result files are downloaded to the gcodeml client host
or stored on a Grid Storage Element (using the GridFTP protocol). After the
files have been downloaded, a post-processing step is executed: it checks that
all required output files are present and parses them for specific tags to
determine if codeml has run through the end. Sometimes, ARC might report
errors although all files have been successfully processed and/or downloaded.
In such cases, gcodeml over-writes the actual job status and corrects it.

4. If a job has failed, gcodeml retries it at different execution sites until it is
correctly executed (i.e., the post-processing step returns an “OK” status).

5. The status of all submitted jobs is periodically monitored, and new jobs are
(re)submitted until all jobs have terminated successfully.

GC3Pie takes a polling approach to managing a collection of jobs: “live” jobs (i.e.,
jobs that are in running or submitted/scheduled state) are checked regularly, and an
appropriate action is taken depending on their status. Output from finished jobs is
retrieved, and new jobs are submitted to replace the older ones. The polling interval can
be set by a command-line option but, due to the ARC information system update delays,
it is not useful to choose an interval shorter than 60 seconds.

In order to prevent the SMSCG infrastructure from overflow, one can specify the
gcodeml limits for both the number of “live” jobs and the duration of a single job (which
is also a safeguard against runaway codeml computations). The default limits are set to
50 concurrent “live” jobs of 8 hours each.

For performance reasons, gcodeml relies on ARC's RTE to locate clusters with pre-
installed codeml applications. However, not each site might have codeml installed (this
might be true for local cluster environments accessible with SGE). In such cases, the
location of the codeml executable can be specified as a command-line argument, and
codeml will be submitted with the actual jobs. This is also a useful feature to test new
versions of codeml.

Given that gcodeml builds on ARC, standard X.509 user certificates (either long-
lived ones or based on SLCS - http://www.switch.ch/grid/slcs/) are required. The GC3Pie
framework (hence, gcodeml) takes care of proxy certificate management: if valid
certificate and proxy are not available at the start of a session, users are prompted for the
pass phrase; the proxy certificate is then automatically renewed when needed.

5 Experimental Results

A gcodeml client is installed on a machine at Vital-IT (within the network domain of
the University of Lausanne) and is accessible for bioinformaticians who update the
Selectome database. The installation uses CentOS 5.6, ARC 0.8.3, and GC3Pie 1.1 with
Python 2.4, and relies on the ARC servers installed at several sites in the SMSCG
infrastructure. Currently, ARC servers are installed at more than 10 sites in Switzerland,
offering access to more than 7,000 CPU cores (only a subset of CPU cores is available
for gcodeml).

In order to test both the efficiency and the reliability of our approach, we used a real
dataset from the Ensembl database consisting of 1,000 gene families with 12,636
individual Grid jobs. Each job executes 2 codeml runs, one for H0 and one for H1. In our
SMSCG infrastructure we have currently five sites that have the codeml RTE available
and are therefore candidates for participating in the experiment. One of the sites (EPFL)
consists of a Condor environment and uses a desktop Grid approach whereas all other
four sites (SIB/Vital-IT (Lausanne), University of Zurich, WSL (Zurich) and HES-SO
Geneva) have dedicated clusters that are accessible on a 24x7 schedule. In total, the four
sites have 2,164 CPU cores but only a fraction of that is available to a single user. The
exact number depends on usage and varies over time.

The aim of the experimental runs it to show that gcodeml fulfills the requirements of
successfully executing all 12,636 codeml jobs in a “reasonable” amount of time (this
corresponds to the CPU-intensive “Step 2” in Figure 2). It is particularly important that
gcodeml automatically corrects for errors and delivers reliable results. Overall, we
conducted the experiment three times on SMSCG (using 50, 120 and 240 “live” Grid
jobs, respectively – a single Grid job can either be in running or submitted/scheduled
state) as well as once on the Vital-IT cluster using 240 jobs in parallel with all data
available on a parallel file system (no overhead for data transfer of input nor output). In
all three Grid runs, gcodeml has corrected for all Grid errors and resubmitted jobs
(between 17 and 118 errors were corrected) when necessary, to finally have all results
correctly downloaded and stored on a client machine at Vital-IT. In the Vital-IT cluster
case using LSF, no errors have occurred. Detailed performance numbers (including the
number of jobs and of sites involved) are shown in Figure 4.

During one of the experiments (SMSCG 50S in Figure 4), the SLCS server (proxy
certificate management server) was upgraded and, therefore, had a down-time of a few
hours. However, gcodeml correctly recovered from this issue and demonstrated a robust
submission/execution system. Due to gcodeml's feature of adding new jobs and
resubmitting failed jobs, gcodeml can also handle instances when a client's proxy
certificate expires.

In summary, the gcodeml system works very reliably on several sites of the SMSCG
Grid, and delivers correct results with 100% success rates. This is due to the built-in error
recovery (resubmission) system. The results show that a local cluster with a parallel file

system performs certainly better in terms of speed but the overall user-perceived quality
of results is the same for cluster and Grid infrastructures. On both infrastructures, all test
runs for detecting positive selections have been completed successfully.

Figure 4. Performance of codeml jobs. On the left, the overall run time of all jobs is shown (including
scheduling, and data transfer overhead). On the right, the individual wall times of the 12,636 codeml
jobs are shown.

6 Conclusion

Our proposed system is ready to be put into production to serve an actively used
biological database. The experimental runs have been successful and show that the Grid
approach of gcodeml will allow us to recalculate Selectome for a new release based on
the Ensembl database. In the future, we also aim to use the European Grid infrastructure
offered by EGI either through native EMI client integration in ARC or by providing a
new GC3Pie back-end for gLite Computing Elements (which are operated by many other
sites in Europe, namely those participating in the WLCG Grid).

A few more technical improvements are necessary to further ease the use of the
system. For instance, support for long-running jobs needs to be added based on automatic
renewal of proxy certificates. Additionally, some further work is on-going with respect to
handling of job status information: currently, job states are stored in the file system
whereas we gain better performance with our current prototype based on a SQLite
database (not yet included in gcodeml). This also improves access times for job status
information.

Although the codeml algorithm is currently supporting an embarrassingly parallel
approach, codeml does not yet make use of data-parallel features to allow for better
performance of single runs. In a related project (http://www.hp2c.ch/projects/selectome/)
we are currently improving both the algorithm and the implementation of the codon
model used in Selectome. If the run-time of the codeml executable is improved, this also

has a positive impact on the number of Grid and/or cluster calculations that are required
to produce new versions of Selectome since many nodes are now multi-core.

Acknowledgments

We thank Manohar Jonnalagedda for his help in installing and configuring a first version of
GC3Pie. Additionally, thanks to Volker Flegel for his support with hardware and system
software. Finally, thanks to all system administrators in SMSCG for installing and supporting the
codeml RTE. This work was supported by the projects UNIL.5 (Grid/Selectome) and SMSCG
(with computational infrastructure and support) as part of the “AAA/SWITCH – e-infrastructure
for e-science” programme under the leadership of SWITCH, the Swiss NREN, and has been
supported by funds from the State Secretariat for Education and Research, the Federal Office for
Professional Education and Technology and ETH Board. Parts of the computations were
performed at the Vital-IT Center for high-performance computing of the SIB.

References

[1] Anisimova M and Liberles DA. The quest for natural selection in the age of comparative genomics.

Heredity, 99:567-579, 2007.

[2] Darwin C. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured
Races in the Struggle for Life London: John Murray. ISBN 1-4353-9386-4, 1859.

[3] Ellert M, et al. Advanced Resource Connector middleware for lightweight computational Grids. Future
Generation Computer Systems, 23(2):219–240, 2007.

[4] Eyre-Walker A. The genomic rate of adaptive evolution. Trends in Ecol & Evol, 21:569-75, 2006.
[5] Glatard T, Montagnat J, Lingrand D, Pennec X. Flexible and efficient workflow deployment of data-

intensive applications on grids with MOTEUR. IJHPCA, 22(3):347-360, 2008.
[6] Hurst LD. Fundamental concepts in genetics: Genetics and the understanding of selection. Nat Rev

Genet, 10:83-93, 2009.

[7] Jacq N, et al. Grid-enabled Virtual Screening Against Malaria. J Grid Computing, 6(1):29-43, 2008.

[8] Jha S, Kaiser H, Merzky A, Weidner O. Grid Interoperability at the application level using SAGA. IEEE
International Conference on e-Science and Grid Computing. Washington DC, 2007.

[9] Kleinjung T, et al. A heterogeneous computing environment to solve the 768-bit RSA challenge. Cluster
Computing, 15(1):53-68, 2012.

[10] Kraut A, Moretti S, Robinson-Rechavi M, Stockinger H, Flanders D. Phylogenetic code in the cloud -
can it meet the expectations? Studies in Health Technology and Informatics, 159:55-63, 2010.

[11] Maffioletti S, Murri R, Packard M, Reumann T. Enabling High-Throughput Computational Chemistry
on the Grid. Poster presented at the EGI User Forum 2011, Vilnius, Lithuania, Apr. 11-14, 2011.

[12] Moscicki J, et al. Ganga: A tool for computational-task management and easy access to Grid resources.
Computer Physics Communications, 180(11): 2303-2316, 2009.

[13] Murri R, Maffioletti S, et al. Computational workflows with GC3Pie. Poster at EuroSciPy - Annual
European Conference for Scientists using Python, Paris, France, Aug. 25-28, 2011.

[14] Proux E, Studer RA, Moretti S, Robinson-Rechavi M. Selectome: a database of positive selection.
Nucleic Acids Research, 37:D404-7 Database issue, 2009.

[15] Stockinger H, et al. Grid Approach to Embarrassingly Parallel CPU-Intensive Bioinformatics Problems.
IEEE Int. Conf. on e-Science and Grid Computing, Amsterdam, The Netherlands, Dec. 4-6, 2006.

[16] Stockinger H, et al. Large-Scale Co-Phylogenetic Analysis on the Grid. International Journal of Grid and
High Performance Computing, 1(1):39-54, 2009.

[17] Stockinger H, et al. The Swiss National Grid Association and its Experience on a National Grid
Infrastructure. Austrian Grid Symposium, 2009.

[18] Yang Z. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology and Evolution,
24(8):1586-1591, 2007.

	2 Related Work
	3 Biological Background and Computational Requirements
	3.1 The codeml Application
	3.2 The Selectome Database
	3.3 Requirements
	4.1 Architectural Overview
	4.2 GC3Pie and gcodeml
	4.3 Specific Features of gcodeml

	5 Experimental Results
	6 Conclusion
	Acknowledgments
	References

