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Abstract 

Background  Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is characterized by altered 
cellular metabolism in the brain. Several of these alterations have been found to be exacerbated in females, known 
to be disproportionately affected by AD. We aimed to unravel metabolic alterations in AD at the metabolic pathway 
level and evaluate whether they are sex-specific through integrative metabolomic, lipidomic, and proteomic analysis 
of mouse brain tissue.

Methods  We analyzed male and female triple-transgenic mouse whole brain tissue by untargeted mass spec‑
trometry-based methods to obtain a molecular signature consisting of polar metabolite, complex lipid, and protein 
data. These data were analyzed using multi-omics factor analysis. Pathway-level alterations were identified through 
joint pathway enrichment analysis or by separately evaluating lipid ontology and known proteins related to lipid 
metabolism.

Results  Our analysis revealed significant AD-associated and in part sex-specific alterations across the molecular sig‑
nature. Sex-dependent alterations were identified in GABA synthesis, arginine biosynthesis, and in alanine, aspartate, 
and glutamate metabolism. AD-associated alterations involving lipids were also found in the fatty acid elongation 
pathway and lysophospholipid metabolism, with a significant sex-specific effect for the latter.

Conclusions  Through multi-omics analysis, we report AD-associated and sex-specific metabolic alterations in the AD 
brain involving lysophospholipid and amino acid metabolism. These findings contribute to the characterization of the 
AD phenotype at the molecular level while considering the effect of sex, an overlooked yet determinant metabolic 
variable.
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Background
Alzheimer’s disease (AD) affects millions of lives as 
patients lose their cognitive functions and ability to live 
on their own [1, 2]. Despite many efforts, AD is still 
poorly understood, as evidenced by many failed clini-
cal trials and the continued lack of treatments proven 
to stop neuronal death, although new treatments are 
currently being investigated [1, 3–5]. In addition, nearly 
twice as many women develop AD compared to men, but 
the reasons behind this sex bias remain unclear [1, 6]. 
External factors such as socioeconomic differences or the 
increased lifespan of women may play a role, but physi-
ological differences have also been identified [1, 6–10]. 
Therefore, further insights into the molecular mecha-
nisms underlying AD in men and women are clearly 
needed.

Omics-scale approaches provide a way to compre-
hensively explore molecular changes across multiple 
pathways, leading to a better understanding of the mech-
anisms that underlie complex diseases [11]. Applied 
to AD, omics studies have identified many alterations 
in metabolic pathways, particularly related to energy, 
lipid, and amino acid metabolism [12–34]. Interestingly, 
some of these changes were found to be exacerbated in 
females; notably, alterations in amino acid metabolism, 
the TCA cycle, and fatty acid metabolism were more pro-
nounced in women [31–33]. In addition, mouse models 
of AD showed decreased mitochondrial respiration and 
earlier glucose hypometabolism in female brain tissue 
compared to males [33, 35, 36]. Sex differences in the reg-
ulation of metabolic processes might be at the origin of 
AD onset, and therefore need to be better characterized 
and explored.

The characterization and understanding of metabolic 
alterations underlying complex diseases such as AD can 
be improved through multi-omics approaches combining 
different layers of omics data [11, 37]. Since metabolites 
incorporate environmental input and represent the clos-
est molecular link to the phenotype, metabolomics and 
lipidomics data complement other layers of omics data 
to enhance the functional understanding of a biological 
system in a physiologically healthy and diseased state 
[17–19, 38, 39]. The addition of other omics data layers is 
particularly important as genome-wide association stud-
ies alone have failed to explain the observed variability in 
AD [16, 40]. Multi-omics approaches have demonstrated 
that the combined effects of multiple molecular players 
(genes, proteins, metabolites) contribute to altered cellu-
lar and metabolic processes linked to AD pathology [17, 
18, 39]. Therefore, the integration of multiple data layers 
to find colocalized and consistent changes in metabolic 
pathways can better explain the mechanisms underlying AD.

In an effort to generate multiple omics data layers 
from one sample and to integrate these data layers, clas-
sic approaches for sample preparation and data analysis 
need to be upgraded. A truly integrative approach would 
merge all layers of data for analysis, and therefore novel 
statistical approaches are often needed [37, 38, 41, 42]. 
Furthermore, inherent variability between omics data 
sets acquired on independent samples should be avoided, 
therefore methods that allow for the extraction and anal-
ysis of multiple small- and macro-molecule components 
of metabolism, from the same sample, should become 
a common practice [37]. An improved and integrative 
multi-omics workflow will allow for a better understand-
ing of metabolic dysfunction at the level of the biochemi-
cal pathways that underlie the onset and progression of 
complex diseases.

We aimed to optimize a multi-omics approach relying 
on metabolomics (including lipidomics) and proteomics 
to identify potentially sex-biased metabolic pathways in 
the AD brain. To this end, we analyzed brain tissue lysate 
from the triple-transgenic AD (3xTg-AD) mouse (APP 
KM670/671NL, PSEN1 M146V, and MAPT P301L muta-
tions). This is a well-established model that exhibits most 
key pathologies, including the hallmark characteristics of 
amyloid-beta plaques and tau neurofibrillary tangles with 
aging, after the age of 12 months [43, 44]. Prior to these 
visible markers of cerebral AD pathology, the electro-
physiological, morphological, and behavioral alterations 
were also identified at the age of 7–10 months in 3xTg-
AD mice [45, 46]. Accordingly, for the present study, we 
chose to carry out experiments in mice aged 8 months 
which we hypothesized was likely to present alterations 
in the metabolic profile prior to appearance of estab-
lished markers of AD pathology. To gain a comprehensive 
overview of metabolism, we first optimized a protocol 
to obtain high-coverage profiles of polar metabolites, 
lipids, and proteins from the same sample. We integrated 
the data obtained in an unsupervised model where we 
observed a clear sex bias within the disease. Integrative 
pathway analyses and lipid ontology analyses were per-
formed to identify the metabolic pathways showing the 
strongest sex-biased alterations in AD. Our approach 
has led to the further characterization of sex differences 
in AD and can pave the way for future research into the 
molecular mechanisms underlying these sex biases.

Methods
Chemicals
Analytical grade acetonitrile, ammonium formate, formic 
acid, isopropanol, methanol, and water were purchased 
from Biosolve Chimie (FR), while ammonium acetate and 
acetic acid were purchased from Merck (USA).
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Samples
All experimental procedures were approved by the Vet-
erinary Affairs Office of the Canton of Vaud, Switzerland, 
and were conducted as described previously by Van der 
Velpen et al. (2021) [47]. In short, male and female 3xTg-
AD and WT mice were sacrificed at 8 months of age by 
decapitation without prior anesthesia in order to avoid 
alterations to the metabolic profile [47]. Whole brain was 
collected and immediately frozen on dry ice and stored 
at −80°C until the day of the analysis. Analyzed tissue 
samples consisted of five males and seven females per 
genotype. Whole brain tissue samples were mechanically 
homogenized under liquid nitrogen and aliquots were 
pre-weighed (~50 mg) in lysis tubes (Soft Tissue CK 14 
Tubes, Bertin Technologies, USA).

Sample preparation: polar metabolites, lipids, and proteins 
from brain tissue
Polar and lipid metabolite extraction
Pre-weighed homogenized brain tissue (~50 mg) was 
first extracted by the addition of 750 μl of methanol:water 
(4:1, v/v) solution with ceramic beads in the Cryolys Pre-
cellys 24 Sample Homogenizer (2 × 20s at 10,000 rpm 
and <10°C, Bertin Technologies, USA). Homogenized 
lysates were centrifuged for 15 min at 21,000 g and 4°C. 
80 μl of the supernatant (polar metabolite extract) was 
collected for polar metabolite analysis. The remain-
ing supernatant was collected and reserved. The resid-
ual pellet was re-extracted by the addition of 750 μl of 
1-butanol:methanol (1:1, v/v), followed by homogeniza-
tion and centrifugation as described above. The super-
natant (lipid extract) was pooled with the reserved polar 
metabolite extract, evaporated to dryness under vacuum 
(Refrigerated CentriVap Concentrator coupled to Cen-
triVap Cold Trap, Labconco, USA), and reconstituted 
in 350 μl of 1-butanol:methanol (1:1, v/v). The residual 
pellet was dried and stored on dry ice prior to protein 
extraction. Reconstituted extracts were vortexed for 30s, 
sonicated for 60s, and centrifuged for 15 min at 21,000 g 
and 4°C. Quality controls (QCs) were prepared by pool-
ing 10 μl from each sample. A QC dilution series at 100, 
50, 25, 12.5, and 6.25% was prepared for both polar and 
lipid metabolite analysis.

Protein preparation
Protein material after solvent extraction was resus-
pended in lysis buffer (1% Sodium deoxycholate, 30mM 
Tris pH 8.6, 10 mM DTT ) and re-homogenized in a 
FastPrep system. Aliquots of samples (100 μg at 2 μg/
μl) were Cys-reduced/alkylated and digested following 
a modified version of the iST method [48], desalted on 
a Waters Oasis MCX plate, and dried. For peptide MS2 

library construction, samples were mixed to create a 
pool, which was manually separated into 7 fractions by 
off-line basic reversed-phase (bRP) using the Pierce High 
pH Reversed-Phase Peptide Fractionation Kit (Thermo 
Fisher Scientific).

LC‑HRMS
Polar and lipid metabolite analysis
Polar and lipid metabolite extracts were analyzed by 
ultra-high-performance liquid chromatography (1290 
UHPLC System, Agilent Technologies) coupled to a 
quadrupole time-of-flight mass spectrometer (6550 
iFunnel Q-TOF LC/MS, Agilent Technologies) with 
an electrospray ionization source (Dual Agilent Jet 
Stream Electrospray Ionization) controlled by Agilent 
MassHunter Workstation Data Acquisition Software. 
ESI source conditions can be found in the supporting 
information.

Lipid analysis was carried out, in both posi-
tive and negative ionization modes, using a Zorbax 
Eclipse Plus C18 column (1.8 μm, 2.1 × 100 mm, Agi-
lent Technologies) as described by Carrard and Gal-
lart-Ayala et  al. (2021) [49]. Briefly, mobile phases A 
and B consisted of 10 mM ammonium acetate and 
0.1% acetic acid in acetonitrile:water (3:2, v/v) and 
isopropanol:acetonitrile:water (44:5:1, v/v) respectively. 
Flow rate was 0.6 ml/min, injection volume 2 μl, and 
column temperature 60°C. Separation of polar metabo-
lites was carried out as described by Gallart-Ayala et al. 
(2018) [50]. Briefly, separation was performed for positive 
ionization mode using an Acquity UPLC BEH amide col-
umn (1.7 μm, 2.1 × 100 mm, Waters, IE). Mobile phase 
A consisted of 20 mM ammonium formate and 0.1% for-
mic acid in water and mobile phase B consisted of 0.1% 
formic acid in acetonitrile. Flow rate was 0.4 ml/min, 
injection volume 2 μl, and column temperature 25°C. For 
negative ionization mode, separation was performed on 
a SeQuant ZIC-pHILIC column (5 μm, 2.1 × 100 mm, 
Merck, DE) preceded by a guard column (SeQuant ZIC-
pHILIC Guard Kit, 2.1 × 20 mm, PEEK coated guard col-
umn, Merck, DE). Mobile phase A consisted of 20 mM 
ammonium hydroxide and 20 mM ammonium acetate in 
water and mobile phase B consisted of pure acetonitrile. 
Flow rate was 0.3 ml/min, injection volume 2 μl, and col-
umn temperature 30°C.

Full details on MS acquisition can be found in the sup-
porting information. Briefly, sample data were acquired 
in full scan acquisition mode in the range of 50–1700 m/z 
at a rate of 2 spectra/s. QCs at the beginning of the ana-
lytical run were acquired by tandem mass spectrometry 
through iterative data-dependent acquisition over five 
iterations with rolling exclusion, in the range of 30–1700 
m/z at a rate of 3 spectra/s with a narrow isolation width 
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(~1.3 amu). Different collision energy conditions were 
tested on tissue extracts to determine the optimal con-
ditions for the highest coverage (Figure S1). As a result, 
we concluded that the combined 25–40 eV for lipidomics 
analysis in both positive and negative mode, 10–25 eV for 
metabolomics analysis in positive ionization mode, and 
10 eV for metabolomics analysis in negative ionization 
mode provided the best coverage.

QCs and QC dilution series were analyzed at the 
beginning and end of analytical runs. QCs were further 
injected regularly between every ten samples throughout 
the overall analytical run.

Protein analysis
To profile brain proteomes we applied a Data-Independ-
ent Acquisition (DIA) strategy. LC-MS/MS analysis was 
carried out on a TIMS-TOF Pro (Bruker, Bremen, Ger-
many) mass spectrometer interfaced through a nanospray 
ion source to an Ultimate 3000 RSLCnano HPLC system 
(Dionex). Peptides were separated on a reversed-phase 
(custom packed) 40 cm C18 column (75 μm ID, 100Å, 
Reprosil Pur 1.9 μm particles, Dr. Maisch, Germany) at a 
flow rate of 0.250 μl/min with a linear 6–45% acetonitrile 
gradient in 107 min. Identical LC gradients were used for 
data-dependent and data-independent acquisition (DDA 
resp. DIA using PASEF) measurements using standard 
MS methods as published [51]. Detailed description of 
the instrument and data processing parameters can be 
found in the supporting information.

Data processing
Metabolomics and lipidomics data were converted to 
ABF file format and uploaded to MS-DIAL software (ver. 
4.48) for peak detection, chromatogram alignment, and 
peak annotation [52, 53]. Polar and lipid metabolites were 
annotated based on accurate mass and MS/MS spectral 
matching using, respectively, the Fiehn HILIC and Lipid-
Blast mass spectral libraries [54, 55]. Polar metabolites 
were further annotated based on accurate mass and MS/
MS spectral matching using METLIN Cloud spectral 
library (https://​metli​nclou​d2.​massc​onsor​tium.​com/) [56, 
57]. The peak area for each annotated metabolite was 
taken for statistical analyses.

Metabolomics and lipidomics data were normalized 
to sample tissue weight (Table S6 and S7). The system-
atic bias in peak area over time (signal intensity drift) 
inherently present in LC-MS data was corrected using an 
adaptive cubic smoothing spline algorithm (LOWESS) on 
pooled QC samples injected regularly between samples 
over the course of the run [58]. Positive linearity across 
the QC dilution series was visually inspected and metab-
olites (including lipids) with a coefficient of variation > 

30% across QCs and/or r2 < 0.65 were discarded. Metab-
olomics and lipidomics data were log10 transformed prior 
to analysis.

For protein identification and quantitation by DIA, 
Bruker MS data were processed with Spectronaut 14.10 
(Biognosys, Schlieren, Switzerland). A library was con-
structed from the DDA data for the bRP fractions by 
searching the reference mouse proteome (RefProt, www.​
UNIPR​OT.​org) (55485 sequences). The library contained 
7951 protein groups. Peptide-centric analysis of DIA 
data with Spectronaut used the library described above 
and standard parameters, leading to the identifica-
tion and quantitation of 6742 protein groups. Exported 
protein group intensities normalized by Spectronaut 
were further analyzed with Perseus [59]. Only protein 
groups quantitated by on average 3 precursors were 
kept (5115 proteins — see Table S8). Intensities were 
log2-transformed and Welch t-tests were computed to 
compare all conditions.

Statistical analysis
The significant effects of genotype, sex, and their interac-
tion (sex:genotype) on polar metabolites, lipids, and pro-
teins were tested using an ANOVA with a non-sequential 
sum of square (type III) to deal with the unbalanced 
design between males and females. Polar metabolites and 
lipids were log10 transformed to normalize their error 
distribution. P-values for the effects of sex, genotype, and 
sex:genotype were adjusted for multiple testing using the 
Benjamini & Hochberg procedure to control for false 
discovery rate (FDR).

Multi-omics analysis was performed using Multi-
Omics Factor Analysis (MOFA2 version 1.2.0) [60]. 
Polar metabolites, lipids, and proteins datasets were 
further transformed independently using EigenMS [61] 
to improve dataset normalization and reduce the unde-
sired source of variation as suggested by MOFA authors. 
MOFA model training was started with 8 factors, 0.005 
variance explained threshold for factor drop and “slow” 
convergence mode of the ELBO. Other options were set 
as default.

Pathway and enrichment analyses
Integrative analysis of proteins and polar metabolites 
was performed using the online MetaboAnalyst soft-
ware (ver. 4.0 and 5.0) [62]. Proteins and polar metabo-
lites with a significant raw p-value for interaction effect 
were uploaded for Joint Pathway Analysis. The following 
analysis parameters were chosen: hypergeometric test for 
enrichment analysis, degree centrality for topology meas-
ure, and combining p-values weighted at the pathway 
level for integration.

https://metlincloud2.massconsortium.com/
http://www.uniprot.org
http://www.uniprot.org
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Lipid ontology analysis was performed using the 
online LION/web Lipid Ontology Enrichment soft-
ware [63]. Lipid species and their corrected p-value 
for genotype effect were uploaded for ranked 
analysis.

Protein enrichment in KEGG was first performed 
by mapping uniprot ID to keggid and keggid to KEGG 
pathways using the KEGGREST R package (v1.32.0). 
KEGG pathways enrichment was then performed 
using a rank sum test or a hypergeometric test. Back-
ground universe for enrichment analysis contained 
all proteins that were quantified. Individual proteins 
involved in lysophospholipid metabolism were found 
by matching identifiers with UniProt results for the 
keywords “phospholipase A1,” “phospholipase A2,” 
“lysophospholipid acyltransferase,” and “lysophospho-
lipase” [64]. Matches were manually curated based on 
function.

Data visualization
Graphs were made in Python. Boxplots were gener-
ated from fold-change values where the abundance of 
a given compound in a sample was normalized to the 
median male WT value for the said compound. This 
was done to have consistent axes but does not change 
the distribution. Given the broad range of compound 
abundances, data was standardized prior representa-
tion: first, standard scores were calculated for each 
compound in a sample using the sample mean and 
standard deviation (x-μ)/σ. Then the median score for 
a given group (male or female, WT or 3xTg-AD) was 
used to generate heatmaps.

Results
From simultaneous extraction of polar metabolites, lipids, 
and proteins to multi‑omics analysis
With the goal of integrating metabolomics, lipidom-
ics, and proteomics data, we aimed to reduce variability 
between these datasets as much as possible. Therefore, 
as opposed to using independent samples to extract each 
data layer, we developed a sequential extraction pro-
tocol to extract polar metabolites, complex lipids, and 
proteins from the same sample while relying on single-
phase extraction methods. The first step consisted of the 
extraction of polar metabolites using a methanol:water 
(4:1 v/v) solution (Fig. 1). An aliquot of this extract was 
analyzed by hydrophilic interaction chromatography 
coupled to high-resolution mass spectrometry (HILIC-
HRMS) for the measurement of polar and moderately 
polar metabolites. Complex lipids were recovered from 
the remaining pellet by a subsequent extraction with 
1-butanol:methanol (1:1 v/v, BuMe) (Fig.  1) [65, 66]. 
For maximized coverage of amphipathic and non-polar 
lipids, methanolic and BuMe extracts were pooled, pre-
concentrated, and analyzed using reversed phase liq-
uid chromatography (RPLC) coupled to HRMS. Finally, 
the precipitated protein pellet was used for proteomics 
analysis with nanoLC-HRMS (Fig. 1). The content of each 
acquired data layer (e.g., polar metabolome, lipidome, 
and proteome), was characterized by matching against 
either experimentally acquired or in silico created spec-
tral libraries of tandem mass spectrometry (MS/MS) data 
(see Materials and Methods for detailed description). As 
a result, we identified a comprehensive panel of metab-
olites and proteins, consisting of 119 polar metabolites, 
600 unique lipid species, and 5115 reliably quantified 

Fig. 1  Extraction pipeline to obtain multiple data layers from the same sample. A sequential extraction method followed by an untargeted mass 
spectrometry approach was used to obtain multiple data layers from the same samples of whole brain homogenate (50 mg) from male and female 
WT and 3xTg-AD mice. A first extraction (pink arrows) was performed with methanol:water (4:1, v/v), and an aliquot of the resulting supernatant 
was analyzed for polar metabolites. The same sample was extracted a second time with BuMe (butanol:methanol 1:1, v/v, yellow arrows), and the 
pool from both organic solvent extractions was evaporated, reconstituted and analyzed for complex lipids. Proteins from the remaining pellet were 
extracted and digested by a modified iST method (1% Na+DCA, 30mM Tris 10 mM DTT), then analyzed (green arrows). Omics data were acquired 
using LC-ESI-HRMS. Using MS/MS spectral matching, 119 polar metabolites, 600 unique lipid species, and 5115 proteins were annotated with high 
confidence. WT: wild-type; 3xTg-AD: triple transgenic Alzheimer’s disease model; LC: liquid chromatography; ESI: electrospray ionization; HRMS: high 
resolution mass spectrometry; MS/MS: tandem mass spectrometry
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proteins, which constitute a molecular signature of 
mouse brain tissue (Table S1–S3).

This multi-layered molecular signature was explored 
using Multi-Omics Factor Analysis (MOFA) to identify 
the dimensions (i.e., factors) that capture the joint or 
specific source of variation within the analyzed omics set 
of 3xTg-AD and wild-type (WT) animals [60]. In paral-
lel, we calculated the significant effect of genotype, sexes, 
and sex:genotype interaction for each molecular spe-
cies (Table S1–S3). As illustrated in Fig.  2A, the meta-
bolic profiles of the polar metabolome, lipidome, and 
proteome showed a strong sample clustering by geno-
type and sex. In particular, Factor 1 captured the differ-
ence between 3xTg-AD and WT genotype, with a small 
sex bias within the 3xTg-AD group (Fig. 2A). This factor 
explained the largest part of the variance among all data-
sets (Fig. 2B). Accordingly, we observed that Factor 1 top 
contributors have a significant effect of genotypes (Figure 
S2 Factor 1). Factor 2 identified molecular features with 
weak differences between male and female under WT 
condition but that strongly diverge under 3xTg-AD. Top 
contributors to Factor 2 displayed a large genotype effect 
carried by the WT female response (set as the reference) 

with a strong sex:genotype interaction that reduces or 
inverts this response in males, nicely highlighted by 
lipidomics data (Figure S2 Factor 2). Although variance 
in proteomics data could be explained by Factor 2, this 
response was surprisingly absent in the annotated mouse 
metabolome (Fig. 2) which suggests that this response is 
either lipid-specific or beyond the coverage of our meth-
ods. Factor 3 captured a smaller part of variance that is 
opposed to Factor 2. A strong sex difference is observed 
in WT mice, but this difference disappeared under 3xTg-
AD. However, because of the smaller effect sizes within 
this factor, most of these data do not pass the significant 
FDR threshold of our linear model (Figure S2 Factor 3). 
Finally, Factor 4 revealed some unknown small source(s) 
of variation within our dataset.

Integrative enrichment analysis reveals sex‑biased amino 
acid metabolism in the triple‑transgenic AD mouse brain
Following MOFA analysis, the revealed significant 
alterations from the top Factors were mapped onto bio-
chemically relevant pathways using integrative enrich-
ment analysis. Within amino acid metabolism, both 
the alanine, aspartate, and glutamate pathway and the 

Fig. 2  Multi-omics factor analysis. A Samples plotted according to factor values from MOFA. Male and female animals are represented by the colors 
blue and orange, respectively. WT and 3xTg-AD animals are represented by circles and crosses, respectively. B Percent of variance explained by each 
omics data layer per MOFA factor. MOFA, multi-omics factor analysis; M, male; F, female; WT, wild-type; 3xTg-AD, triple transgenic Alzheimer’s disease 
model
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arginine biosynthesis pathway were found to be sig-
nificantly affected in the AD mouse model in a sex-
dependent fashion (Table S4). The alanine, aspartate, 
and glutamate pathway exhibited two areas of coordi-
nated sex-biased changes upon AD (Fig. 3). Metabolites 
implicated in the conversion of N-acetyl-aspartyl-glu-
tamate (NAAG) to aspartate (i.e., N-acetyl-aspartyl-
glutamate, N-acetyl-aspartate, and aspartate) showed 
consistently lower levels in male 3xTg-AD compared to 
WT, while this decrease was not seen in females (Fig. 3) 
(interaction effect, pN-acetyl-aspartyl-glutamate = 0.019, 
pN-acetyl-aspartate = 0.008, pAspartate = 0.007). Accord-
ingly, the expression of the Folh1 enzyme which initi-
ates this conversion was also downregulated in males 

(interaction effect pFolh1 = 0.021). Changes were also 
observed in the part of the pathway associated with the 
synthesis of gamma-aminobutyric acid (GABA). The 
enzymes Abat and Gad1, responsible for its synthesis, 
were downregulated in 3xTg-AD females but not in 
males (Fig.  3) (interaction effect, pAbat = 0.006, pGad1 
= 0.004). However, total GABA levels were not signifi-
cantly changed in any of the populations (Table S2). On 
the other hand, the intermediate metabolite N-acetyl-
GABA, derived from putrescine through a different 
pathway, was significantly increased in the 3xTg-AD 
animals compared to WT (genotype effect pN-acetyl-GABA 
= 0.005) (Fig.  3). Finally, although other individual 
enzymes of the alanine, aspartate, and glutamate 

Fig. 3  Interaction effects in the Alanine, Aspartate, and Glutamate metabolic pathway. Selected measured metabolites (beige background) and 
proteins (gray background, bold title) from the alanine, aspartate, and glutamate metabolic pathway are represented by boxplots. Each line of the 
boxplot is a quartile of the compound abundancy per sample group (relative to the median value of male WT). Boxes are colored blue or orange 
with triangular or circular points for males and females, respectively. Asterisks above plots denote significant p-values for a sex:genotype interaction 
effect, less than 0.05 (*) or less than 0.01 (**). M, male; F, female; WT, wild-type; 3xTg-AD, triple transgenic Alzheimer’s disease model



Page 8 of 17Strefeler et al. Alzheimer’s Research & Therapy            (2023) 15:8 

metabolic pathway also showed genotype- and sex-
biased expression, the metabolite data is not sufficient 
to explain their downstream effects (Fig. 3, Figure S3).

The second significantly enriched pathway was argi-
nine biosynthesis (Fig. 4). Here, however, we observed 
fewer coordinated hubs of sex-biased alterations. 
Nonetheless, it is interesting to note an increase in argi-
nine levels in 3xTg-AD females compared to WT, but 
not in males (interaction effect pArginine = 0.006). Simi-
larly, the expression of neighboring enzyme Nos1 was 
lower in 3xTg-AD females compared to WT (pNos1 = 
0.031). We also observed genotype differences in this 
pathway (Table S1–S3), notably, decreased levels of 
Glul (genotype effect pGlul = 0.036), essential for the 
elimination of ammonia as glutamine in the healthy 
brain, in 3xTg-AD mice.

Lipid ontology enrichment analysis reveals altered 
fatty acid and lysophospholipid metabolism 
in the triple‑transgenic AD mouse brain
To elucidate alterations (and potentially sex biases) in 
lipid metabolism, we performed lipid ontology analy-
sis on molecular species exhibiting a genotype effect. 
According to enrichment analysis, long-chain free fatty 
acids (FFAs) and lysophospholipids (LPLs) were sig-
nificantly affected in association with the AD pheno-
type (Figs.  5 and 6, Table S5). In addition, analysis of 
proteins involved in lipid metabolic pathways also sup-
ported the observed changes at the metabolite level 
(Fig.  5, Figure S4). While not all individual FFA spe-
cies reached significance, both total long-chain free 
fatty acids and the enzymes involved in early fatty acid 
elongation were depleted in transgenic animals (Fig. 5) 
(genotype effect pTotal FFA = 0.009, pHadhb = 0.005, pHadh 
= 0.068 (ns), pHadha = 0.024, pEchs1 = 2.0E−5, pMecr = 
0.001, pPpt1 = 4.2E−11). One long-chain fatty acid trans-
porter was also significantly decreased in transgenic 
animals (genotype effect pSlc27a1 = 2.2E−7) (Figure S4).

Lysophospholipids were also enriched based on a gen-
otype effect, however, closer observation revealed that 
a decrease in transgenic animals was driven by females 
only (Fig. 6). LPLs and in particular lysophatidylcholines 
followed a consistent trend of decreased levels in female 
3xTg-AD only (Fig. 6). Total lysophospholipids in female 
3xTg-AD were significantly lower compared to the other 
groups (pTotal LPL = 0.019). We further explored the pro-
teins involved in LPL metabolism and found two specific 
enzymes, Lclat1 and Enpp2, that also exhibited a signifi-
cant genotype effect driven by females (Figure S4) (geno-
type effect pLclat1 = 0.021, pEnpp2 = 0.049).

Discussion
To characterize the metabolic changes underlying 
AD and sex biases therein, we applied an untargeted 
discovery approach for broad coverage of the polar 
metabolome, lipidome, and proteome without a priori 
hypotheses. By using multiple layers of data that com-
plement each other, data-driven hypotheses generated 
from one omics type can be cross-validated by another 
and we can obtain additional determinant insights into 
altered metabolism [37, 38]. To facilitate data integra-
tion and limit variability between these datasets, we 
developed a sequential extraction protocol to recover 
all omics data layers from the same sample, as opposed 
to using independent samples (Fig.  1). While biphasic 
methods exist to simultaneously extract both polar and 
lipid metabolites, single-phase methods tailored to each 
are more reproducible and effective [65–69]. This is par-
ticularly true for amphipathic lipids which can be lost 
through biphasic extractions as they diffuse and partition 
between both phases. Therefore, we performed two con-
secutive single-phase extractions with methanol:water 
(4:1, v/v) and 1-butanol:methanol (1:1, v/v) and pooled 
both extracts for lipid analysis (Fig. 1). Since proteins are 
essentially insoluble in pure organic solvents, the pre-
cipitated protein pellet can be lysed and reconstituted 
for proteomics analysis, allowing for extraction of a wide 
range of proteins from the same sample (Fig. 1). A com-
bined acquisition using high-resolution MS1 and MS2 
(MS/MS) data allowed for metabolite annotation with a 
high level of confidence. While the quality and quantity 
of the acquired MS/MS data is limited by the instrument 
sensitivity and scanning speed (in addition to available 
spectral libraries), the acquisition of multiple data layers 
compensates to a certain extent for this type of inherent 
bias, since protein data allow to bridge the gaps in the 
segments of the pathways where metabolite information 
is lacking, or vice versa [70]. Using an integrative mul-
tivariate analysis approach (i.e., MOFA), the acquired 
comprehensive metabolite and protein signatures of 
brain tissue revealed both AD-associated alterations and 
disease-related sex differences in brain metabolism. The 
identification of sex differences at the molecular level 
is essential to understand the molecular mechanisms 
behind sex biases observed in AD prevalence and symp-
toms [9, 71–76]. To gain understanding on the biochemi-
cal and physiological relevance of revealed metabolic 
alterations, the data were further explored in the con-
text of metabolic pathways and lipid ontology, thereby 
highlighting AD-related sex biases in amino acid and 
lysophospholipid metabolism and deregulated free fatty 
acid elongation in the AD brain (Figs. 3, 4, and 5).
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Fig. 4  Interaction effects in the Arginine biosynthesis pathway. Measured metabolites (beige background) and proteins (gray background, bold 
title) from the arginine biosynthesis pathway are represented by boxplots. Each line of the boxplot is a quartile of the compound abundancy per 
sample group (relative to the median value of male WT). Boxes are colored blue or orange with triangular or circular points for males and females, 
respectively. Asterisks above plots denote significant p-values for a sex:genotype interaction effect, less than 0.05 (*) or less than 0.01 (**). M, male; F, 
female; WT, wild-type; 3xTg-AD, triple transgenic Alzheimer’s disease model
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Fig. 5  Genotype effects in long-chain free fatty acids. A Heatmap of median standard scores of long-chain free fatty acid species abundance 
in each sample group. B Schema of free fatty acid elongation in the mitochondria. Proteins are represented by boxplots where each line of the 
boxplot is a quartile of the compound abundancy per sample group (relative to the median value of male WT). Boxes are colored blue or orange 
with triangular or circular points for males and females, respectively. Asterisks above plots denote significant p-values for a genotype effect, less 
than 0.05 (*), less than 0.01 (**), or less than 0.001 (***). FA, free fatty acid; M, male; F, female; WT, wild-type; 3xTg-AD, triple transgenic Alzheimer’s 
disease model

(See figure on next page.)
Fig. 6  Sex-specific genotype-related differences in lysophospholipids. Heatmap of median standard scores of lysophospholipid species 
abundance in each sample group. Asterisks next to the plot denote significant p-values for a genotype effect, less than 0.05 (*), less than 0.01 
(**), or less than 0.001 (***). LPC, lysophosphatidylcholine; O, ether linkage; P plasmalogen linkage; LPE, lysophosphatidylethanolamine; LPG, 
lysophosphatidylglycerol; LPI, lysophosphatidylinositol; LPS lysophosphatidylserine; M, male; F, female; WT, wild-type; 3xTg-AD, triple transgenic 
Alzheimer’s disease model
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Fig. 6  (See legend on previous page.)
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Alterations in amino acid metabolism in AD are 
sex‑dependent
Within alanine, aspartate, and glutamate metabolism, we 
found two coordinated hubs of sex-biased alterations in 
AD (Fig. 3). The alanine, aspartate, and glutamate path-
way is connected to various cellular processes including 
energy metabolism and the biosynthesis of neurotrans-
mitters. Sex biases within this pathway can therefore 
influence multiple aspects of cell behavior and health, 
and by extension AD pathology. Multiple alterations in 
alanine, aspartate, and glutamate metabolism in AD have 
been previously reported [29, 32, 77–79] and correlated 
to key AD pathologies [29]. As discussed in further detail 
below, some of these changes can be directly linked to 
cognitive function.

At the entrance to the alanine, aspartate, and gluta-
mate pathway lies NAAG, which is transformed into 
N-acetyl-aspartate (NAA) and finally aspartate (Fig.  3). 
NAAG is a neurotransmitter with a role in cognition 
while its product NAA is a marker of viable neurons [80, 
81]. Previously reported reduction in both NAAG and 
NAA in AD can indicate both impaired cognition and 
neuronal loss [81–83]. Our findings showed in addition 
that NAAG and NAA levels were particularly depleted 
in 3xTg-AD males, suggesting worsened cognitive func-
tion compared to the females (Fig. 3). These results at the 
metabolite level were further supported by a significant 
downregulation of the Folh1 enzyme, which catalyzes 
the transformation of NAAG into NAA, in 3xTg-AD 
males (compared to WT) (Fig. 3), although this enzyme 
was differentially expressed in males and females regard-
less of genotype. These findings might imply a compen-
satory mechanism to reduce the catabolism of NAAG 
and preserve the necessary amounts for brain function. 
The potential of different mechanisms underlying loss of 
cognitive function in AD between each sex, such as sex-
hormone-driven effects, must be further explored as they 
might have important implications for prognosis and 
presumed therapeutic strategies.

Another neurotransmitter produced through gluta-
mate metabolism is GABA. GABA has been previously 
reported to be increased in the AD brain and linked to 
impaired cognition and increased reactive astrocytes 
surrounding amyloid plaques, as reviewed elsewhere 
[84]. While we did not find any significant changes in 
total GABA levels, multiple enzymes and intermediates 
in different GABA synthesis routes were altered (Fig. 3). 
This observation of unchanging GABA levels might be 
due to our analysis of the whole brain, where some areas 
or cell types may compensate for each other. Indeed, in 
healthy brain tissue GABA will be produced by GABAe-
rgic neurons; however, if these die reactive astrocytes 
can compensate by producing GABA from putrescine 

via MAO-B [85, 86]. Our results provide partial evidence 
of this manner of compensation by reactive astrocytes, 
since we found a significant increase in the intermedi-
ate metabolite of this pathway, N-acetyl-GABA, in 3xTg-
AD animals. This would suggest a hyperactivation of this 
pathway in AD and could also explain the lack of change 
in total GABA levels. However, we did not find any signif-
icant changes in the expression levels of MAO-B (Table 
S1), although this does not necessarily indicate a lack of 
change in its activity.

We have in addition found a sex difference within 
GABA synthesis in AD; enzymes Abat and Gad1 were 
significantly depleted in 3xTg-AD females. It would 
make sense for the compensatory pathway to be further 
upregulated in this case, and we do see a more dramatic 
increase in N-acetyl-GABA in this population, although 
it did not reach significance for an interaction effect. 
One study has provided evidence for a stronger increase 
of GABA in murine AD females compared to males and 
linked it to progressive cognitive decline [87]. Clearly, the 
potential of sex differences in GABA synthesis (perhaps 
involving reactive astrocytes) could benefit from further 
research.

Reactive astrocytes may also be implicated based on 
our findings related to arginine metabolism. We have 
observed significantly increased arginine levels in 3xTg-
AD females (Fig.  4). Accumulation of arginine in AD 
has previously been reported in the mouse brain and in 
both the human brain and plasma [27, 30, 32, 88, 89]. 
Furthermore, arginine accumulation has been linked to 
inflammation, another hallmark of AD [1, 90]. Previous 
studies have reported the accumulation, and later release, 
of arginine by astrocytes in inflammatory environments 
to reduce the production of free radicals by Nos [88, 90]. 
However, to our knowledge, our study is the first report 
of sex-biased arginine increase in AD. We can therefore 
speculate on the possibility of sex-biased phenotypes 
within reactive astrocytes which have recently been 
placed in the center of AD pathology as an early event 
(i.e., reactive astrogliosis) in AD progression [91, 92]. 
This would not be so surprising, since sex differences in 
glial cells have been previously described, reviewed else-
where [93], and were recently also reported in microglial 
cells in AD [94].

Arginine biosynthesis in the brain is also linked to 
ammonia waste management, as the vast majority of 
ammonia is incorporated into glutamine by Glul and 
transported in this way to the liver for disposal via the 
urea cycle [90, 95]. We found that Glul expression was 
significantly decreased in the 3xTg-AD brain compared 
to WT (Fig.  4). This result is in accordance with previ-
ous reports on the failure of ammonia elimination mech-
anisms in AD [95, 96]. In normal conditions, the urea 
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cycle in the brain is not complete due to the lack of Otc 
enzyme expression, so Glul is essential for the removal 
of ammonia. However, in AD, ammonia was shown to 
accumulate [95, 96]. The excess of ammonia has been 
linked to impaired cognition and memory, increased 
blood-brain barrier permeability, and diminished 
energy metabolism [95]. Unable to deal with the exces-
sive ammonia, Otc expression can be induced in cerebral 
vascular endothelial cells, creating a complete urea cycle 
[97]. However, our results did not reveal the increase in 
Otc expression in 3xTg-AD mouse brain.

Alterations in lipids imply the link to inflammation 
in the AD brain
Our study found an overall decrease in long-chain FFAs 
(regardless of saturation state) in the 8-month 3xTg-AD 
brain compared to WT (Fig.  5A). In addition, protein 
enrichment analysis showed that the levels of proteins 
involved in fatty acid elongation and one long-chain FFA 
transporter (Scl27a1) from the Slc27a family were sig-
nificantly downregulated in the 3xTg-AD brain (Fig. 5B, 
Figure S4). These findings imply that FFA transport into 
and synthesis within AD brains might be altered. Previ-
ous reports of FFA levels in AD in both the blood and in 
the brain have been contradictory, as both accumulation 
and depletion were observed in humans and mice [33, 79, 
98–104]. One plausible explanation for these reported 
differences might be variable alterations in FFA levels 
with the stage of disease progression. Given the strong 
associations previously revealed between FFA levels 
and memory, neuronal signaling (e.g., long-term poten-
tiation, neurotransmitter release), and inflammation, FFA 
metabolism might have an essential role in AD pathology 
[105–108].

Lysophospholipids, and notably their most abundant 
subclasses lysophosphatidylcholines and lysophosphati-
dylethanolamines, have been widely reported to be 
decreased in AD [26, 102, 109–112]. Our study further 
uncovered a sex bias; we found that the observed decrease 
was driven by females (Fig.  6). LPLs have been recog-
nized as important bioactive molecules that participate 
in multiple signaling cascades and can remodel cellular 
membranes [113, 114]. Moreover, decreased lysophos-
phatidylcholine has previously been correlated to amy-
loid β load [112]. To explore the mechanisms underlying 
LPL decrease in 3xTg-AD females, we further focused 
on the enzymes involved in LPL metabolism. A primary 
pathway of LPL metabolism is through the Land’s cycle. 
Phospholipases A cleave glycerophospholipids into a 
FFA and an LPL, while lysophospholipid acyltrans-
ferases (LPAT) catalyze the opposite reaction. Previous 
studies have suggested decreased LPLs to be caused by 

decreased phospholipase A2 activity and increased LPAT 
activity [115, 116]. We did not find phospholipase levels 
to be decreased in female 3xTg-AD mice. However, one 
LPAT enzyme, Lclat1, had significantly higher expres-
sion in 3xTg-AD females and therefore could explain the 
LPL sex bias that we observed (Figure S4). Alternatively, 
beyond the Land’s cycle, LPLs can be degraded by phos-
pholipases. We found a significant increase in the expres-
sion of phospholipase Enpp2 in 3xTg-AD mice which 
was, once again, driven by females (Figure S4). If Enpp2 
is indeed more active, more of the lysophosphatidic acid 
will be produced. This hypothesis has interesting poten-
tial because lysophosphatidic acid has been associated 
with Alzheimer’s pathology biomarkers [117], the disrup-
tion of neurotransmission, and increased permeability of 
the blood-brain barrier [109, 118–120]. Further efforts 
will be needed to untangle lysophospholipid metabolism 
in the AD brain and its implications.

Limitations
Our study is exploratory in nature, relying on global 
untargeted approaches and acquired omics data with the 
aim to generate data-driven hypotheses. These hypoth-
eses need to be further investigated using orthogonal and 
targeted experimental approaches with statistical rigor. 
In addition, the untargeted analyses were performed on a 
homogenate of a whole brain tissue which presents some 
limitations. Different brain regions and cell types can 
have different metabolic profiles and activity, therefore 
our results reflect an averaged effect across many differ-
ent cell types and structurally and functionally distinct 
regions. Finally, at 8 months this mouse model does not 
yet exhibit amyloidẞ plaques and neurofibrillary tangles, 
the well-established pathological markers of AD [44]. 
The metabolic profile may further change as the disease 
advances and tangles appear.

Conclusion
Through multi-omics data integration and pathway-
level analyses, we have identified several areas of altered 
metabolism in AD. Moreover, we have highlighted 
metabolic sex biases within AD that may contribute to 
explaining the known differences in disease prevalence 
and symptoms. This exploratory data-driven study pro-
vides a starting point for further research into mecha-
nisms of impaired cognition that may be related to 
different neurotransmitters for each sex, into the role of 
ammonia waste management in the AD brain, the rela-
tionship between AD and oxidative stress initiated by 
NOS, the roles of long-chain FFA in memory, and the rel-
evance of LPLs and lysophosphatidic acid metabolism in 
the development of AD in females.
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