Supplementary information

State aggregation for fast likelihood computations in molecular evolution

Iakov I. Davydov, Marc Robinson-Rechavi, Nicolas Salamin*

Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland Swiss Institute of Bioinformatics, Genopode, Quartier Sorge, 1015 Lausanne, Switzerland

[^0]$\left.\begin{array}{lllllll}\hline \text { Dataset } & \begin{array}{c}\text { Sequence } \\ \text { length }\end{array} & \begin{array}{c}\text { Number of } \\ \text { sequences }\end{array} & \omega_{0} & \kappa & \begin{array}{c}\text { Codon } \\ \text { frequencies }\end{array} & \begin{array}{c}\text { Tree } \\ \text { length }\end{array} \\ \hline \text { wvar } & 300 & 18 & \sim \operatorname{Beta}(2,5) & 2 & 1 / 61 & 4 \\ \text { kvar } & 300 & 18 & 0.3 & \sim \operatorname{Unif}(1 / 2,10) & 1 / 61 & 4 \\ \text { alen } & 100-5000 & 18 & 0.3 & 2 & 1 / 61 & 4 \\ \text { nseq } & 300 & 8-50 & 0.3 & 2 & 1 / 61 & 4 \\ \text { sequences }\end{array}\right]$

Table S1: List of simulated datasets for M0 model.

A

Parameter	Distribution
κ	$1+\operatorname{Exponential}(1)$
ω_{0}	$\operatorname{Beta}(2,5)$
ω_{2}	$1+\operatorname{Gamma}(10,2)$,
$p_{0}+p_{1}$	$(=1$ for H 0$)$
$\frac{p_{0}}{p_{0}+p_{1}}$	$\operatorname{Beta}(10,1)$
Tree length	$\operatorname{Beta}(10,1)$
Number of codons	$\operatorname{Gamma}(2,2)$
Number of sequences	$\operatorname{Unif}(100,1000)$

B

Parameter	Distribution
$\alpha($ Beta distribution parameter, negative selection)	$\operatorname{Gamma}(5,1)$
β (Beta distribution parameter)	$\operatorname{Gamma}(8,1)$
$\operatorname{Mean}\left(\omega_{2}\right)$ (mean of the Gamma distribution, positive selection)	$1+\operatorname{Gamma}(10,2)$,
$\operatorname{Var}\left(\omega_{2}\right)$ (variance of the Gamma distribution)	$\left(\omega_{2}=1\right.$ for H0)
α (shape of the Gamma distribution for the site rate variation)	$\operatorname{Beta}(20,50) \cdot \operatorname{Mean}\left(\omega_{2}\right)$

Table S2: Model parameter distribution the simulated datasets A) branch-site model; B) extra parameters for the extended branch-site model.

A		Selection detected (aggregated)	
		-	+
Selection detected	-	79140	5
(normal)	+	7	13

B		Selection detected (aggregated)	
		-	+
Selection detected	-	79054	24
(normal)	+	27	60

Table S3: Statistical performance of FastCodeML on the Primates dataset. Detected selection in normal and aggregated modes of FastCodeML. Numbers in the cells correspond to the number of performed tests. Every non-terminal branch was tested. A) After correction for multiple hypothesis testing, FDR (false discovery rate) cutoff=0.05; B) FDR cutoff=0.4.

Figure S1: Schematic representation of the tree likelihood computation: A) full likelihood; B) postexponentiation aggregation; C) pre-exponentiation aggregation; D) pre- and post-exponentiation aggregation. Rough algorithm complexity indicated for steps dependent on alignment length (N), internal nodes count (K) and dimensionality of aggregated Markov chain (M).

Figure S2: Parameter distribution for branch-site model simulations.

Figure S3: Parameter distribution for extended branch-site model simulations. See text for the parameter descriptions.

Figure S4: Correlation between estimated ω and κ values in normal and aggregated modes for varying simulated ω value (wvar dataset, M0 model).

Figure S5: Correlation between estimated ω and κ values in normal and aggregated modes for varying simulated κ value (kvar dataset, M0 model).

Figure S6: Correlation between estimated ω and κ values in normal and aggregated modes for varying simulated sequences length (alen dataset, M0 model).

Figure S7: Correlation between estimated ω and κ values in normal and aggregated modes for varying codon frequencies Dirichlet distribution α parameter value (cfreq dataset, M0 model).

Figure S8: Correlation between estimated ω and κ values in normal and aggregated modes for varying number of simulated sequences (nseq dataset, M0 model).

Figure S9: Correlation between estimated ω and κ values in normal and aggregated modes for varying tree length (tlen dataset, M0 model). Tree length limited to the range [0.01; 300], see text.

A

B

method \bigcirc No aggregation \triangle Absolutely conserved positions aggregation \square Full aggregation

Figure S10: Estimated ω (A) and $\kappa(\mathrm{B})$ values versus simulated ω value for the wvar dataset, M0 model. Lines correspond to the simulation parameter values.

A

B

method \square No aggregation \triangle Absolutely conserved positions aggregation \qquad Full aggregation

Figure S11: Estimated $\omega(\mathrm{A})$ and $\kappa(\mathrm{B})$ values versus simulated κ value for the kvar dataset, M0 model. Lines correspond to the simulation parameter values.

\circ No aggregation \square Full aggregation Δ Genetic code based aggregation

Figure S12: Estimated $\omega(\mathrm{A})$ and $\kappa(\mathrm{B})$ values versus simulated tree length for the tlen dataset, M0 model. Lines correspond to the simulation parameter values. Tree length limited to the range $[0.01 ; 300]$, see text. Optimization with a variable number of iterations using the Broyden-Fletcher-Goldfarb-Shanno algorithm variant (L-BFGS-B).

Figure S13: Relative error (maximum likelihood estimate divided by the true value) of ω (A) and κ (B) estimation using various aggregation strategies. All the M0 datasets except for tlen were used. Optimization was performed using the L-BFGS-B algorithm.

Figure S14: Speedup for fixed-positions only aggregation, M0 model.

Figure S15: Speedup versus the α parameter of the codon frequencies Dirichlet distribution, M0 model, cfreq dataset.

A

B

method \bigcirc No aggregation \triangle Absolutely conserved positions aggregation \square Full aggregation

Figure S16: Estimated $\omega(\mathrm{A})$ and $\kappa(\mathrm{B})$ values versus simulated tree length for the tlen dataset, M0 model. Lines correspond to the simulation parameter values.

Figure S17: Branch lengths estimated with and without aggregation, M0 model. Each data point represents an individual branch from a single tree. This plot includes all the M0 datasets except for the varying tree length dataset (tlen). The red line indicates equal values. Optimization performed using the L-BFGS-B algorithm.

Figure S18: Branch length estimation error versus total tree length for the tlen dataset, M0 model. Both axes are \log-scale. Relative error (E) for a given tree is defined as $E=$ $\frac{\sum\left|t_{\text {estimated }}^{i}-t_{\text {true }}^{i}\right|}{N} / \sum t_{\text {true }}^{i}$, where $t_{\text {estimated }}^{i}$ is an estimated length for branch $i, t_{\text {true }}^{i}$ is a true length and N is a number of branches in a tree. For tree lengths below 10 symbols are overlapping demonstrating almost perfect match. Optimization performed using the L-BFGS-B algorithm. Tree length limited to the range $[0.01 ; 300]$, see text.

Figure S19: Speedup versus average codon count for the branch-site model. Each point represents one simulated alignment.

Figure S20: Speedup versus average codon count for M0 model. Optimization performed using the L-BFGS-B algorithm. Branch lengths, ω and κ were optimized.

Figure S21: Number of Likelihood evaluations for M0 model with and without state aggregation. Optimization performed using the L-BFGS-B algorithm. Branch lengths, ω and κ were optimized. Both axes are log-scale. Dashed line indicates the ideal match.

Figure S22: Average speedup per likelihood computation versus A) alignment length and B) average codon count for the branch-site model. Each point represents one simulated alignment.

Figure S23: ROC curves for FastCodeML in full likelihood and aggregated likelihood modes for the extended branch-site model simulations. Specificity, sensitivity and AUC indicated.

Figure S24: Speedup of hybrid strategy. Maximum likelihood estimation in aggregated mode is followed by full mode likelihood maximization (branch-site model).

[^0]: *Corresponding author, nicolas.salamin@unil.ch

