Berger et al. BMIC Bioinformatics 2010, 11:510
http://www.biomedcentral.com/1471-2105/11/510

BMC
Bioinformatics

RESEARCH ARTICLE Open Access

Functional Analysis: Evaluation of Response
Intensities - Tailoring ANOVA for Lists of
Expression Subsets

Fabrice Berger' ', Bertrand De Meulder'", Anthoula Gaigneaux', Sophie Depiereux’, Eric Bareke', Michael Pierre’,
Benoit De Hertogh', Mauro Delorenzi’, Eric Depiereux’

Abstract

Background: Microarray data is frequently used to characterize the expression profile of a whole genome and to
compare the characteristics of that genome under several conditions. Geneset analysis methods have been
described previously to analyze the expression values of several genes related by known biological criteria
(metabolic pathway, pathology signature, co-regulation by a common factor, etc) at the same time and the cost of
these methods allows for the use of more values to help discover the underlying biological mechanisms.

Results: As several methods assume different null hypotheses, we propose to reformulate the main question that
biologists seek to answer. To determine which genesets are associated with expression values that differ between
two experiments, we focused on three ad hoc criteria: expression levels, the direction of individual gene expression
changes (up or down regulation), and correlations between genes. We introduce the FAERI methodology, tailored
from a two-way ANOVA to examine these criteria. The significance of the results was evaluated according to the
self-contained null hypothesis, using label sampling or by inferring the null distribution from normally distributed
random data. Evaluations performed on simulated data revealed that FAERI outperforms currently available
methods for each type of set tested. We then applied the FAERI method to analyze three real-world datasets on
hypoxia response. FAERI was able to detect more genesets than other methodologies, and the genesets selected
were coherent with current knowledge of cellular response to hypoxia. Moreover, the genesets selected by FAERI

were confirmed when the analysis was repeated on two additional related datasets.

Conclusions: The expression values of genesets are associated with several biological effects. The underlying
mathematical structure of the genesets allows for analysis of data from several genes at the same time. Focusing
on expression levels, the direction of the expression changes, and correlations, we showed that two-step data
reduction allowed us to significantly improve the performance of geneset analysis using a modified two-way
ANOVA procedure, and to detect genesets that current methods fail to detect.

Background

Introduction

The major issue when studying datasets with many tests
and few replicates in general and microarray datasets in
particular is the decreased power of the analysis. Indeed,
to reduce the risk of detecting false positives due to the
lack of a sufficient number of replicates, statistical tests
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allow for higher threshold levels as the number of repli-
cates decreases. This implies an unavoidable increase of
the number of false negatives and, thereby, a decrease in
power.

To compensate for this lack of information about
expression data generated by microarrays, some authors
have tried to work at the probe level, breaking down pro-
besets into smaller components. Nonetheless, most
researchers prefer to work at the probeset level where
data can be analyzed in different layers (individual analy-
sis, geneset analysis, coexpression studies, clustering) [1].
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Among these methods, the analysis of genesets with
regard to known or observed biological criteria holds
high potential for fundamental as well as clinical
research. For example, members of the same metabolic
pathway can be studied simultaneously to assess modifi-
cations of the pathway under certain conditions, such as
the action of a drug, or to diagnose a pathology, etc. [2].
This last application is common with genesets called
“signatures”, devised for certain pathologies based on
coexpression [3] or clustering studies [4,5]. The study of
genesets involves two complementary tasks:

- group discovery: empirical data is used to identify
new criteria to discover new genesets. This task uses
several different approaches such as data clustering [6-9]
and the study of regulatory sequences [10-14],

- geneset analysis: previously defined genesets are used
to guide empirical data analysis, to determine whether the
expression values of known genesets are correlated with
the conditions compared in the experiments [15-17].

The research presented here focuses on statistical gene-
set analyses. Our initial motivation was to answer the see-
mingly trivial question (Qop): “Which known genesets are
associated with different expression profiles under the two
conditions compared?”. We discuss here the ability of
current methods to provide an answer to this question.

This main question Qg implies several hypotheses
related to the nature/composition of genesets tested: the
individual members (genes) may be expressed at various
levels, over- or under-expressed or correlated (coordi-
nated response of member genes).

To provide an answer to question Qg, we present the
FAERI methodology (Functional Analysis: Evaluation of
Response Intensities), an ANOVA-2-like procedure tai-
lored to detect genesets with differing expression pro-
files, regardless of the nature of the individual responses.

State of the art

Several geneset analysis methods have been published
recently. Each available method provides an answer to
question Qg. The methods discussed below were
selected to provide an overview of the main strategies
followed by the authors, or due to their pioneering
approach.

Over-representation analysis methods are not consid-
ered in this paper, as they focus on the top list obtained
by individual analysis and aim to identify only those
groups of genes that are represented by the most differ-
entially expressed probesets. This approach thus facili-
tates the interpretation of individual analyses, by giving
annotation clues about biological meaning. However,
such methods require the ad hoc selection of an indivi-
dual statistic, and the definition of an arbitrary threshold
for the detection of individual genes, whatever the indi-
vidual statistic used. Thus, over-representation analysis

Page 2 of 19

does not allow for the detection of genesets associated
with subtle individual changes according to the indivi-
dual statistic chosen [18-21]. For this reason, other
authors describe improved ORA strategies. As an exam-
ple, Yi and Stephens, in SLEPR, first select sample-level
differentiated genes from each individual sample, before
computing an enrichment score characterizing the gene-
set [22].

Table 1 contains several questions addressed by pre-
viously described methods.

More recent functional class scoring (FCS) methods
can be classified based on their competitive or self-con-
tained null hypothesis. Competitive methods sort the
groups focusing on question Qcomp (Table 1) [23-28].
Such methods provide a list of genesets that are the
most significantly associated with the phenotype com-
pared with other geneset definitions. The definition of
the null hypothesis of the competitive methods is theo-
retically associated with the gene-sampling strategy for
significance evaluation (data permutations driven by
random definition of equal sized genesets) [23,29]. This
statement, however, as shown by Effron and Tibshirani,
does not take into account the pattern of correlations
between genes, which is destroyed by gene-sampling
[29]. Conversely, self-contained methods study question
Qqeir (Table 1). The significance of the results, for those
methods, is evaluated by label sampling (data permuta-
tions driven by random definition of phenotypes for a
given group definition). Each geneset score is thus eval-
uated against its putative range of geneset score values,
maintaining the geneset definition [23,28,30-34].

Table 1 Formulation of the different questions asked by
the different genesets analysis methods

Question Formulation

Qo Which known genesets are associated with different
expression profiles under the two conditions compared?

Qcomp Which geneset definitions are associated with the biggest
difference in expression profiles observed under each
condition?

Qseif Which genesets are associated with diverging expression
profiles between conditions compared with random
definitions of phenotype?

Qcor Which genesets are defined by members associated with
correlated expression changes?

Quni Which genesets are associated with an increase or decrease
of all member expression values?

Quidir Which genesets are defined by differentially expressed
genes, regardless of the direction of the regulation?

Qint Which genesets are associated with variable individual
expression changes?

Q. Which unidirectional groups have members that are

associated with a correlated answer?

Question Qo covers all the others; therefore, a method answering this
question answers all the others.
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The GSEA methodology and its derivatives make use
of a hybrid strategy providing results that are harder to
interpret. The null model used to develop the methods
relies on the competitive approach, but is later evaluated
by label sampling, thus mixing both strategies [24,25,27].

The second methodological difference between the
methods concerns definition of the geneset score evalu-
ated. Methods using two steps first compute an indivi-
dual statistic that is then used in a second step to
compute a geneset statistic [23-28,33]. Conversely, glo-
bal methods perform the analysis in a single step, evalu-
ating geneset statistics from raw expression values
associated with the group members (GlobalTest, Globa-
lAncova) [30,31,34]. SAMGS is a particular case of a
global method where the final formulation of the statis-
tic is similar to a two-step strategy using the SAM t-like
individual statistic [30].

Questions studied by the methods

Current methods do not provide equivalent answers to
question Q. Therefore, we propose to reformulate the
hypothesis used with the available methods with respect
to the biological properties of the sets (Table 1).

Table 2 provides a snapshot of several available analy-
tical methods. These methods are compared based on
the hypothesis tested (3" column), data used (4™ col-
umn), statistic used (5™ column) and significance eva-
luation procedure (6™ column). The other columns
provide additional information.

Question Qg includes all of the other questions (Qc,,,
Quni> Qpidir and Qi) related to the nature of the groups
tested. Three criteria must be taken into account to
describe the groups: expression levels (a), the direction
of the expression change (b) and correlations between
the group members (c).

(a) It is important to study expression levels as
highly expressed probesets may mask differences
observed for probesets with lower expression levels.
Two-step methods such as the SAMGS are not
influenced by this criterion. For example, the Stu-
dent ¢ or SAMGS d statistics characterize expression
differences, regardless of the individual expression
levels [30]. Moreover, global methods that rely on
the i.i.d. condition may be affected as expression
levels vary between probesets, meaning that the pro-
besets are not identically distributed.

(b) Individual expression values may reveal up or
down regulation of the genes depending on the con-
ditions tested. One way to take the direction of
expression changes into account and deliver results
with no dependence on this criterion is to avoid
studying mixed groups with a global null effect (50%
over and 50% under expressed). Two-step methods
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may be adapted to use the absolute value of a uni-
directional individual statistic (Student ¢ [35]), or its
squared value (SAMGS [30]). Alternatively, the gene-
set statistic may be defined to be representative of
the directional subgroup associated with the biggest
expression change (absmean), optionally with regard
to the size of the directional subgroup (maxmean)
[23]. Among global methods, the SAMGS and Glo-
balTest are independent of the direction as the null
hypothesis is tested respectively on squared statistic
(d°) and expression change variability (z°) [30,31].

(c) Genes may be associated with correlated or vari-
able expression changes. Question Qq takes both
possibilities into account. Two-step methods based
on a sum or a mean, like the SAMGS, do not need
further adaptation since they explicitly rely on the
sum of individual pieces of information [5,23,28,30].
The total difference is then evaluated independently
of the variability of the individual differences.
Among global methods, the GlobalTest is suited for
the study of uncorrelated genesets as it assesses the
variability of the individual answers. On the contrary,
the GlobalTest is not intended to detect correlated
groups since the variability of the individual answers
in such sets is null (question Q. , see Table 1) [31].

It appears that only two-step methods, as well as the
SAMGS, may simultaneously provide an answer to the
three criteria considered and thus evaluate more com-
pletely question Q,.

Software packages developed thus far are not always
able to fine-tune the appropriate combination of steps
with regards to the criteria. Moreover, it is not systema-
tic to take the direction of the answer into account or
to rely on partial genesets (the maxmean statistic, for
example, mainly takes the directional subgroup with the
strongest expression change into account) [23,28,30,33].

Global methods, on the other hand, ignore the possi-
ble bias associated with expression level. The SAMGS
procedure involves a preliminary step of variance stabili-
zation based on the SAM individual analysis method,
which requires that the expression values of all probe-
sets be estimated [30,36-38].

Competitive procedures aim to identify groups with
bigger differences and ignore groups associated with the
phenotype but with a moderate answer compared to the
others. The self-contained null hypothesis thus provides
a more appropriate answer, where each set is evaluated
according to its possible distribution range [23-28,33].

Objectives

There are several possible strategies to evaluate question
Qo as completely as possible. Several methodologies
may be selected to answer complementary questions.
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Table 2 Comparison of the properties of several geneset differential expression analysis methods
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Author Year Hypothesis Data used Group Significance Name Properties Individual
statistic statistic
Mootha et al 2003 Competitive Individual ES (Running Sample GSEA Hybrid Signal/
statistic Sum) permutations noise Ratio
Subramanian 2005 Competitive Individual ES (Running Sample GSEA Hybrid, asymmetrical Individual
et al statistic Sum) permutations correlation
(r)
Keller et al 2007 Competitive Individual ES (Running Competitive Variant Hybrid, symmetrical *
statistic Sum) theoretical GSEA
model
Effron & 2007 Competitive Individual ES (Running Sample GSA Restandardizaton *
Tibshirani statistic Sum) permutations
Pavlidis et al 2004 Competitive Individual Log (p(g)) = Genes Depends on the geneset  Pearson
statistic mean[log[p permutations size correlation
(o coef.
Tian et al 2005 Competitive Individual  Weighted Genes Standardization Student t
statistic mean permutations
Tian et al 2005 Self- Individual ~ Weighted Sample Standardization Student t
contained statistic mean permutations
Kim & Volsky 2005 Self- Individual Mean Normal PAGE Central Limit Theorem Fold-
contained statistic distribution change
Effron & 2007 Self- Individual Mean Sample GSA Unidirectional Student t
Tibshirani contained statistic permutations + Restandardization
Effron & 2007 Self- Individual Maxmean Sample GSA Unidirectional Student t
Tibshirani contained statistic permutations (directional subset) +
Restandardization
Effron & 2007 Self- Individual ~ Absmean Sample GSA Unidirectional (absolute  Student t
Tibshirani contained statistic permutations value) +
Restandardization
Dinu et al 2007 Self- Expression Sum (d?) Sample SAM-GS Determination of Sy SAM d
contained data permutations statistic
Goeman et al 2004 Self- Expression Q(g) = mean  Permutation/ GlobalTest P (Y|X) Qi)
contained data (e10)] Gamma/
Asymptotic
Mansmann & 2005 Self- Expression F Sample GlobalAncova P (XIY)
Meister contained data permutations
Berger et al  Unpublished Self- Expression F Fisher F ANOVA-2 Unidirectional
contained data
Berger et al  Unpublished Self- Expression F* Sample FAERI Bidirectional
contained data permutations/

random data

The methods are grouped into categories. The upper and lower parts of the table list respectively the competitive and self-contained methods. The methods
highlighted in bold rely on a two-step procedure. The methods in plain writing rely on a global analysis, which uses the expression data to compute the geneset
statistic in one single step, based on multivariate models. Finally, ANOVA-2 and FAERI are shown in italics.

Gentleman et al. previously suggested to separately
study sub-groups defined by the direction of expression
changes and to define core sets of genes common to
several genesets (thus avoiding that the same genes lead
to the detection of several genesets). As a perspective of
the GlobalAncova methodology, Mansmann and Meister
proposed to study the interaction between the effect of
the condition and group composition, to take the varia-
bility of the individual responses into account. The
hypothesis associated with this test complements the
unidirectional null hypothesis, but also provides a partial
answer to question Qg since it ignores unidirectional
correlated groups (no interaction).

The work reported below proposes an alternative
strategy to answer question Qg based on a single self-
contained test. To optimally analyze expression data,
our model relies on a global strategy because two-step
methods suffer from a loss of information (correlation)
caused by the substitution of data with individual statis-
tics. We introduce the FAERI method that was tailored
from the 2-factor ANOVA procedure. Our aim was to
group the information associated with individual differ-
ences into one single statistic taking direction, correla-
tion and expression level into account and to combine
the advantages of the GlobalTest (groups with a variable
answer), GlobalAncova (unidirectional groups) and
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SAMGS (independence with expression level) models
whilst avoiding their respective limitations.

Methods

Datasets

Hypoxia datasets

Bosco et al. (2006) described the E-MEXP-445 dataset,
available in the ArrayExpress repository. The experiment
compares samples extracted from human monocytes.
RNA was hybridized on 6 Affymetrix HGU-133a micro-
chips, among which 3 normoxia samples and 3 samples
from cultures grown under hypoxic conditions [39].

Vengellur et al. (2005) studied cellular response to
hypoxia on human Hep3b hepatocytes cell lines, consid-
ering 3 additional treatments known to mimic hypoxic
conditions: cobalt chloride (100 M), nickel chloride (100
puM), and DFO (100 puM). mRNA was extracted sepa-
rately from two biological replicates, and cRNA was
hybridized on Affymetrix GeneChip HG-U95Av1 micro-
chips. We used part of this dataset to compare samples
grown under normoxic and hypoxic conditions, and did
not use the other samples (used by the authors to com-
pare hypoxia with molecules that mimic hypoxic condi-
tions). This dataset is available on GEO (GSE-1056) [40].

Kim et al. (2006) described the GSE-4086 dataset,
available on GEO. The authors studied cellular response
to hypoxia on human B lymphocytes (P493-6 cell line).
Two biological replicates were used to extract mRNA
from separate cultures. cRNA was hybridized on Affy-
metrix GeneChip HG-U133A microchips [41].

In the work reported here, the three hypoxia datasets
were preprocessed using GCRMA to study the effect of
hypoxia and compare the ability of each geneset analysis
method to detect common pathways from several data-
sets featuring a limited number of replicates.

Xiao et al. (2008) report a study of osteoporosis using
microarrays hybridized with 10 low and 10 high BMD
samples (post-menopausal woman, aged 54-60).
B-lymphocyte mRNAs were isolated from 70 ml of blood,
and cRNA was hybridized on Affymetrix GeneChip HG-
U133A microchips. This dataset is available both on
GEO (GSE-7429) and ArrayExpress (E-GEOD-7429)
[42]. We used this dataset, preprocessed with GCRMA,
to illustrate the development of the FAERI methodology.

Introduction to FAERI

As several genes are associated with multiple probesets, a
bias could be introduced during the analysis at the gene-
set-level. In the work reported below, we used only one
probeset for each gene studied on the microchip, by
selecting the probeset associated with the largest variabil-
ity, to avoid giving too much weight to a gene due to the
number of associated probesets. As a result of this selec-
tion, the words “probesets” and “genes” are synonyms in
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this text. The multiplicity of the probesets is not consid-
ered in this publication.

The analysis of variance or ANOVA relies on the
study of the variability of the data with respect to one
or more criteria to determine if that(those) criterion(a)
is(are) responsible for the values observed. The simplest
model, relying on a single criterion is equivalent to the
Student ¢ test [43]. When analyzing differential expres-
sion, a one-way ANOVA can evaluate the involvement
of probesets under two or more conditions. The
ANOVA with two classification criteria allows for study
of the differential expression of a set of probesets (the
first and second criteria respectively relate to the mem-
bers of the geneset and to the definition of the experi-
mental conditions compared).

The model that we chose to test the validity of this
approach states that the expression data observed can
be explained by dependence of the intensities measured
on the probesets, the condition and the interdependence
between those two parameters, since each probeset can
potentially be associated with a different response under
each of the tested conditions.

The mathematical representation of this model is
given by Equation 1.

Xijye = H+a; +bj +aby + E iy, (1)

Where p is the general mean, a; is the contribution of
factor a, b; is the contribution of factor b, aby; is the
contribution of the interaction of factors a and b and E
Gk is the residual contribution.

The comparison between the different criteria relies
on the ratio of the mean squares associated with each
criterion. The statistic computed for each criterion is
evaluated by Fisher’s F distribution using the appropriate
number of degrees of freedom (equations 2 to 4).

MS
Fu = MSZ ~ F(na -1 nanb(nrepl - 1)) (2)
MS
p = ——L ~ F(ny, — L;n,ny(n,, — 1)) (3)
E
MS
Fab =—a F(na - 1)(”1] - 1);nanb(nrepl - 1)) (4)

Where F, is the F score associated with factor x, MS,
is the mean square value associated with factor x, n, is
the number of levels for factor x.

It is important to note that when the effect of the
interaction is significant, no decisions can be made for
the other criteria. The study of the effect associated
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with the condition is close to the GlobalAncova method
[31,44]. The study of the interaction is similar to the
GlobalTest methodology and to the perspectives formu-
lated by Mansmann and Meister (GlobalAncova), since
the genesets within which probesets present a different
answer are biologically interesting [44]. We state that
this test must be complemented with a test on the con-
dition because it is impossible to detect unidirectional
and correlated changes by studying the interaction
alone. To circumvent this limitation, we present a strat-
egy in the next section for analysis of the FAERI metho-
dology designed to simultaneously answer all possible
configurations in a single test. For more details on the
procedures of the FAERI methodology, see the Addi-
tional File 1 (Section 1).

FAERI

Geneset analysis of differential expression is influenced
by the direction of the expression changes of the mem-
bers and by possible interactions between the probesets
and the conditions [29,31,44-46].

Expression level

Probesets belonging to the same geneset can be
expressed at various levels. From a biological point of
view, a weakly expressed geneset might have a bigger
impact on physiology than a strongly expressed one. We
propose to standardize the data so that, in principle, all
the probesets have the same potential for response
under two conditions compared, based on a classical
reduction of data producing Z values. The standardiza-
tion is computed for each probeset using Equation 5 by
pooling the data associated with both conditions and
computing the observed mean and variance. The result-
ing reduced data is distributed around a mean value of
0 with a variance of 1. The information about the differ-
ence between the conditions is retained. At the end of
this operation, the result of an individual analysis based
on the Student ¢ is unchanged. Note that this procedure
renders data closer to the conditions of application of
the ANOVA 2 (iid values).

_ (Xij - Mpool,i)

Zjj S (5)

pool,i

Where Xj; is the expression value associated with the
i™ probeset in the j™ microchip, Mpeol, ; and Sy, ; are
the means and standard deviations computed for probe-
set i from all experiments (step 1). This procedure is
repeated for each probeset in the dataset.

Direction of differential expression

Several probesets may be activated or repressed at the
same time, but may also be associated with a variable
expression change, depending on the biological context
studied and the definition of the genesets. To provide a
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full answer to question Q, with no dependence on the
direction of differential expression, two approaches can
be proposed: up- and down-regulated probesets may be
studied separately or simultaneously by computing a
cumulative value for the absolute difference. The first
solution consists of defining “activated” or “repressed”
genesets to conduct a proper analysis. This approach
relies on current knowledge that is incomplete, but is
useful for diagnosis purposes to determine whether a
patient has a pathology by analyzing signature genesets.
The second solution is addressed by several methods by
defining an individual statistic independent of the direc-
tion (absolute or squared value of the Student ¢ statistic)
[23,37,47,48].

Using a multivariate procedure, we propose to study
the absolute response of the genes by directional reduc-
tion of the data. This operation involves multiplying the
expression values related to down-regulated genes by -1
(Equation 6). The down-regulated genes are identified
empirically from the expression data studied.

Zil]? = sign(D;) X Z;; (6)

Where D; = M;® - M;®, the difference in means
between conditions A and B for the i'" probeset, Zy =
Z-score associated with the i™ probeset in the j™ micro-
chip, and ZDU the directionally reduced Z-score asso-
ciated with the i™ probeset in the j™ microchip.

It may be interesting to consider the median instead
of the mean to evaluate the direction of differential
expression. However, the performances tests we con-
ducted previously in individual expression analyses show
a reduction in the performance of the Student ¢ test
when using the median as the estimator [49] on biologi-
cal data (and on spike in datasets, data not shown).

After this 2-step reduction of the data, FAERI evalu-
ates an F statistic as is done in the ANOVA-2 proce-
dure (Equation 1). The FAERI F* statistic associated
with the condition effect is representative of the differ-
ences found based on biological reasoning. Each gene
provides information on its differential expression,
independently of the direction of that difference, and
the absolute value of the individual ¢ statistic remains
unchanged.

Null distribution

Due to the dependence on geneset size introduced by
directional reduction, the significance of the results can-
not be evaluated using Fisher’s theoretical distribution,
which is used by the ANOVA procedure. We will refer
to the statistic computed using the FAERI methodology
as F*. We tested two solutions to determine the null dis-
tribution of the FAERI F* statistic, relying either on per-
mutations or the use of random data.
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The permutation strategy associated with a self-
contained null hypothesis relies on label sampling
[23,29]. Given the null hypothesis that no probeset is
involved under the conditions compared, the permuta-
tions of the labels are performed independently for each
probeset, independently of the correlation between the
members of the geneset.

Due to the Z value reduction step, a second strategy
may be used to evaluate the null distribution of the
FAERI F* statistic. Indeed, as the null hypothesis states
that there are no differences between the two conditions
compared and as we postulate that individual expression
values follow a normal distribution, Z standardization
provides the possibility to establish the null distribution
using random data from a normal distribution, and then
apply the same 2-step reduction to compute the refer-
ence F*, values. Under the null hypothesis, the F* statis-
tic computed on reduced test data should follow the
same distribution as the F*, statistic computed from
reduced random data. Conversely, if the expression
values of the geneset differ between two conditions, the
F* statistic distribution leads to higher values than the
F*, values computed from random data.

This possibility to compute a reference distribution
based on random data frees the FAERI method from the
limited number of available permutations. Moreover, for
each experimental strategy (number of replicates) and
each geneset size, the null distribution can be computed
once and stored for future analysis.

Results and Discussion

The effects of two-step reduction

As presented in the introduction, we propose to take the
level of individual expression into account, using a first-
step reduction of the data. Figure 1 illustrates the results
obtained when applying ANOVA-2 to the raw data and
to the reduced data. In both cases, the effect of the con-
dition factor was compared to the interaction between
the condition and the probeset. Comparison of the
p-values associated with the two effects, before and after
standardization, shows that expression levels are an
important criterion: a very large number of groups are
significant for one of the two effects or for both when
each probeset is considered on even ground. This sug-
gests that a very large number of genesets are made up
of members distributed at various expression levels and
that the expression change of several weakly expressed
probesets is masked by strongly expressed probesets
when raw data is used.

In the second step of FAERI, we used a directional
reduction to obtain a cumulated value of absolute expres-
sion changes in the genesets. We chose to use an empirical
determination of the direction, easier to assess from the
data than from prior incomplete knowledge. As the sign of
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the reduced values is not a feature of the biological
mechanisms involved within genesets, the description of
the mechanisms involved should be associated with indivi-
dual analysis of the member genes based on raw data.

Figure 2 illustrates the distribution of the F* statistic
with regards to the number of members, for each step of
the FAERI analysis strategy. The upper part of the figure
shows the results obtained with randomly generated data
and the lower part shows results obtained with the biolo-
gical dataset E-GEOD-7429. The statistics computed on
real data are larger, which highlights the important biolo-
gical variability. The Z reduction step considerably modi-
fies the distribution of the F* values on the biological
dataset, thus underscoring the effect associated with
expression level as previously mentioned and observed in
figure 1. This step thus has a major impact on the results
of the analysis. Directional reduction leads to dependence
on the number of members in the group. Random sam-
pling of a small number of individual values leads to a
bias associated with individual variability. On average,
this bias is equally probable in both directions. Therefore,
applying an ANOVA-2 analysis to such data reveals that
the mean effect is null. After directional reduction of the
data, the global effect of this bias is cumulated and added
to the effect associated with the condition. Since this bias
is cumulated, the F* statistic is dependent on geneset size
and increases when the set has more members. This con-
cern can be assessed quite easily as described in the
“Materials and Methods” section of this paper, through
suitable evaluation of the null distribution.

We tested two procedures to assess the significance of
the F* statistic. Figure 3 shows that the computed
p-value is independent of the number of members in
the set, regardless of the procedure used. Figure 4 shows
that the p-values evaluated using permutations or ran-
dom data are perfectly correlated when simulated data
is analyzed, but that a great number of genesets display
different behavior when biological data is analyzed. This
observation illustrates that the variability of biological
data cannot be modeled by generating a null distribu-
tion from iid random data, as both procedures do not
provide similar p-values when real-world data is ana-
lyzed. In biological samples, each gene may be expressed
at a variable level of expression, with gene-specific varia-
bility. Furthermore, a correlation exists between genes,
so that their distribution is not independent. The eva-
luation of permutations leads to a higher number of
extreme values, as co-occurring expression changes are
more likely to be observed using biological data.

Mansmann and Meister recommend assessing the sig-
nificance from permutations instead of the Fisher distribu-
tion when analyzing microarray data with a multivariate
procedure. Their GlobalAncova procedure evaluates the
significance of the test using the label-sampling strategy



Berger et al. BVIC Bioinformatics 2010, 11:510 Page 8 of 19
http://www.biomedcentral.com/1471-2105/11/510

p 3
o =1, - .
= : N
]
= 5 @ = E 2 : *
= q B i -
T = -1 . =] — @ _| *
2 Aa 3§ 24 e 2 8 =L ‘ . :
g & = E ¥ 4 - .
+ 2 = + 2 g i
g5 ] S o |
= = e < B E =74i:
= § = 5 B i
2 a Y E |l
& 2 :
= 'E' 3 = - 2
; s < a
= - ] d
3 B & g -
& 2 o &n e o
. g 5 = i -
=
i =
T T T T | T T T ‘ ' ' ‘
0o 0z 04 06 08 10 0.0 0.2 04 0.6 0.8 1.0
Anova-2 : p-value associated to Anova-2 : p-value associated to
phenotype phenotype

Figure 1 lllustration of the effect of Z-value data reduction on a variance analysis with two classification criteria. The p-values
associated with the effect of the condition studied and the intersection are compared before and after Z reduction. After this step, the effect
associated with the probeset is null (data not shown). Prior to Z reduction, the probesets are expressed at variable levels. After reduction, the
expression level is standardized for all of the probesets and their individual contributions are balanced during the variance analysis. The genesets
analyzed are distributed differently and reveal a more pronounced effect of the condition and/or of the interaction between the condition and
the probesets. Put differently, both the strength and variability of the individual answer are revealed by this step.
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Figure 2 lllustration of the distribution of the F statistic evaluated compared with geneset size using the ANOVA-2 procedure on the
initial expression data (left panel), on the standardized data (center) and on standardized and unidirectional data (right, FAERI
procedure). The graphs in the upper part are generated from random data and show that the directional reduction step induces dependence
on the number of members in the geneset. The graphs in the lower part show results obtained from real data (E-GEOD-7479), and illustrate the
impact of the standardization of data relative to each probeset as well as dependence on the number of members following the directional
reduction step.
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Figure 3 Illustration of the logarithm of the p-values obtained by ANOVA-2 (left), FAERI based on random data (center) or
permutations (right), versus the number of members in the geneset (real dataset E-GEOD-7479). The graphs presented in the center and
on the right show that the two procedures to evaluate the significance of the FAERI test give p-values dependant on geneset size.
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instead of the classic Fisher distribution [34]. The Globa-
lAncova procedure does not include a Z-reduction step,
and the iid requirement is not met due to gene-specific
expression levels, gene-specific variability, and gene corre-
lation patterns.

Performance evaluation

Performance evaluation on simulated data

Several authors have stressed the need to compare the
performances of geneset analysis methods with regard to
the correlation between geneset members [23,29,50]. To
this end, Marit Ackermann et al. developed a simulation

scenario focusing on 9 geneset definitions [51]. Each set
is generated randomly by a multivariate normal distribu-
tion using the definition of a correlation/covariance
matrix. Table 3 summarizes the parameters used to fine-
tune the simulation of the sets, focusing on the correla-
tion structure, direction of simulated differences, and
proportion of members differentially simulated. Each set
was simulated with 10 replicates for each condition and
included 20 members.

We reproduced the simulation proposed by Ackerman
et al. to assess the performances of ANOVA-2, FAERI
and several geneset analysis methods currently available,

Random Data
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p-value FAERI (null : label perms) (-log,,)
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T T T T T T T
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p-value FAERI (null : random) (-log, )

part of the genesets present a similar p-value (diagonally).
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Figure 4 Comparison of the logarithm of the p-values obtained by FAERI based on random data or permutations. The left graph shows
the comparison of the p-values obtained during analysis of simulated data. The right graph shows results obtained when analyzing real data
(E-GEOD-7479), illustrating that the null distribution evaluated by the two procedures is different in the case of real data, but, nonetheless, that
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Table 3 Definition of the series of measurements used to evaluate the performances of the geneset differential

expression analysis methods

Difference of expression Correlation Diff. Expressed Over-Expressed Under-Expressed Design

Set 1 0.75 06 20 20 0 Unidirectional
Set 2 0.75 0 20 20 0 Unidirectional
Set 3 0 0 0 0 0 Ho

Set 4 0.75 06 10 10 0 Unidirectional
Set 5 0.75 0 10 10 0 Unidirectional
Set 6 1 06 20 10 10 Bidirectional
Set 7 1 0 20 10 10 Bidirectional
Set 8 1 06 10 5 5 Bidirectional
Set 9 1 0 10 5 5 Bidirectional

to obtain a comprehensive understanding of the perfor-
mances with regards to the mathematical structure of
the data. Each set was simulated 100 times and Table 4
summarizes the detection rate associated with each set,
when the selection threshold was set to 0.1, 0.01 and
0.001 for the p-values. Histograms of the p-values
resulting from the analysis of set no. 3 with each
method are also provided in the Additional File 1.

Comparison of the results illustrates the effect of cor-
relations between members of the sets. For each method
tested, the presence of intra-set correlations reduces the
performance of the analysis. For the simplest simulated
sets (unidirectional), ANOVA-2 provides the best
results, followed by FAERI (sets 1, 2 and 4) and Glo-
balTest, as evaluated using a gamma distribution or per-
mutations (set 5).

Moreover, the ANOVA-2 and FAERI procedures are
both associated with higher performance compared to all
other methods based on the simplest simulation scenario
(sets 1, 2 and 4). Indeed, FAERI detects set 1 in 62% of
the cases, with a threshold of 0.001 and no false positives
(set 3: 0%). At this threshold, FAERI is able to detect
roughly 5 times more genesets than the best performing
method currently available (SAMGS with g-value: 13%).
As a comparison, SAMGS and GlobalTest require a
threshold that is 100 times higher to detect only 60% of
set 1. Comparison of sets 4 and 5 highlights the method’s
abilities to detect genesets where half of the members are
not differentially expressed. In this case, FAERI detects
43% of the genesets, compared to 15% when applying
GlobalTest with a gamma distribution. The ANOVA-2
and FAERI procedures thus appear to be the most appro-
priate to analyze unidirectional genesets.

The lower part of Table 4 concerns sets simulated with
mixed differences in two directions (sets 6, 7, 8 and 9).
The behavior of the methods differs: the ANOVA-2 and
GSA methodologies (using the mean as the geneset sta-
tistic), as well as GSEA, are not appropriate to analyze
such sets. For each bidirectional set tested, the FAERI

methodology performs best, with the exception of set 9
where SAMGS provides better results for a threshold
below 0.05 (values were checked for this threshold, but
not included in Table 4). The presence of a correlation
between the members reduces the performance, as
shown for the unidirectional scenarios.

To ease interpretation of method’s performances with
regard to the mathematical structure of the genesets
analyzed, Table 5 presents the ranking of the methods
for each type of set simulated, using a threshold of 0.01
for the p-values. The statistic used was accuracy [the
ratio of true positives and true negatives over the num-
ber of groups tested: accuracy = (TP/TN)/(P+N)]. The
scores above 75% are shown in bold.

Table 5 reveals that the best performing methods, inde-
pendently of the structure of the set, are all based on a
“global” strategy. The ranking of the methods is consis-
tent with the models considered by these methods:

+ ANOVA-2 is the most appropriate method for uni-
directional groups;
+ GlobalTest, which uses a statistic representative of
response variability, is suited for the study of both
uni- and bidirectional non correlated genesets;
+ SAMGS, using an individual statistic, appears to be
less appropriate for the analysis of correlated gene-
sets, since this information is lost during the
procedure;
« FAERI, developed to detect sets independently of
their mathematical structure, is appropriate for each
type of set tested;
+ ANOVA-2 and FAERI provide an appropriate analy-
sis of sets with correlated members, respectively using
unidirectional and bidirectional definition of sets;
+ Methods making use of a two-step strategy provide
lower performance levels (GSA and GSEA).

Real data: study of hypoxia

Analysis of a genuine biological dataset offers the opportu-

nity to qualitatively evaluate the results and provide a
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Table 4 Comparison of geneset differential expression analysis method performances, based on the simulation model proposed by M Ackerman

Cut-Off a2.fixed faeri. faeri. GSA. GSA. GSA. Globaltest. Globaltest.  Globaltest. Gsea. Gsea. Samgs. Samgs.
fixed.null fixed.perms mean* absmean* maxmean* asymptotic gamma permutations  pval fdr pval qval
0.001 Set3 0 0 0 0 0 0 0 0 0 0 0 0 1
Ho 0.01 Set3 1 0 0 0 0 0 0 0 0 0 0 0 2
0.1 Set3 3 3 3 12 0 0 2 5 3 2 1 2 27
0.001  Set2 100 96 97 15 25 12 54 9% 95 69 20 91 94
100% DE 0.01 Set2 100 99 99 15 25 12 95 99 97 99 77 98 99
Uni 0.1 Set2 100 100 100 78 72 64 99 99 99 100 100 99 100
0.001 Set5 72 40 36 0 2 0 3 64 49 14 2 39 56
50% DE 0.01 Set5 89 75 78 0 2 0 42 89 84 42 25 81 84
0.1 Set5 100 94 94 7 17 3 93 99 98 93 84 96 99
0.001  Setl 86 62 60 1 2 2 1 10 8 2 0 7 13
100% DE  0.01 Set1 89 69 70 1 2 2 20 35 25 16 3 23 41
Uni+Cor 0.1 Set1 95 80 80 " 23 11 58 59 58 46 47 56 73
0.001 Set4 55 43 39 0 0 0 0 15 7 4 3 4 11
50% DE 0.01 Set4 65 52 54 0 0 0 18 30 24 13 14 23 43
0.1 Set4 81 65 65 1 13 1 56 60 57 43 47 56 73
0.001  Set7 0 100 100 1 67 40 100 100 100 1 0 100 100
100% DE  0.01 Set7 0 100 100 1 67 40 100 100 100 10 1 100 100
Bidir 0.1 Set7 6 100 100 22 98 82 100 100 100 69 32 100 100
0.001  Set9 0 84 82 0 7 2 32 95 93 0 0 86 93
50% DE 0.01 Set9 0 95 95 0 7 2 93 100 100 1 0 100 100
0.1 Set9 9 100 100 16 48 15 100 100 100 27 8 100 100
0.001  Set6 0 84 84 0 11 8 5 28 17 6 1 15 25
100% DE 0.01 Set6 0 88 89 0 11 8 39 50 43 17 8 43 61
Bidir+Cor 0.1 Set6 2 93 93 35 49 54 79 79 78 57 42 78 88
0.001 Set8 0 63 62 0 2 1 3 30 14 0 0 13 23
50% DE 0.01 Set8 0 75 76 0 2 1 36 50 42 3 0 40 58
0.1 Set8 3 86 86 28 27 12 75 78 75 31 15 76 85

Each set of measurements presented was generated 100 times. The measurements in the table show, for each method, the number of detections of the different sets of measurements defined. The upper part of
the table presents the results for unidirectional genesets only (all members over expressed) and the lower part concerns groups with a simulated mixed answer (over and under expression). The data related to Ho
shows the number of genesets detected by chance (false positives).
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Table 5 Characterization of each method’s performances
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a2. faeri. faeri. GSA. GSA. GSA. Globaltest. Globaltest. Globaltest. Gsea. Gsea. Samgs.
fixed fixed. fixed. mean* absmean* maxmean* asymptotic gamma perm pval fdr pval
null perms
100% uni 100% 99% 99% 57% 62% 56% 97% 99% 98% 99% 88% 99%
50% uni 94% 87% 89% 50% 51% 50% 71% 9% 92% 71%  62%  90%
100%uni + cor  94% 84% 85% 50% 51% 51% 60% 67% 62% 58% 51% 61%
50%uni + cor 82% 76% 77% 50% 50% 50% 59% 65% 62% 56% 57% 61%
100% bidir 50% 100% 100% 50% 83% 70% 100% 100% 100% 55% 50%  100%
50% bidir 50% 97% 97% 50% 53% 51% 96% 100% 100% 50% 50%  100%
100% bidir + 50% 94% 94% 50% 55% 54% 69% 75% 71% 58% 54%  71%
cor
50% bidir + 50% 87% 88% 50% 51% 50% 68% 75% 71% 51% 50%  70%
cor
Mean 71% 90% 91% 51% 57% 54% 77% 84% 82% 62% 58%  81%
Rank 7 2 1 12 10 1 6 3 4 8 9 5

Comparison of the number of true positives and true negatives to the total number of tests (VP+VN)/(P+N). For information, we also computed the mean value
for the 8 types of groups studied. The significance threshold to select groups was set at 0.01. The highlighted (in bold) values are relative to methods obtaining
a score of more than 75%. The four global methods are more appropriate for geneset analysis and the two-step methods show poor performance. Among the
global methods, only ANOVA-2 and FAERI happen to be suited for unidirectional correlated genesets. FAERI and SAMGS are the only methods adapted for the
study of bidirectional correlated genesets. Across all genesets tested, the methods giving the best results were: FAERI (perms), FAERI (null), SAMGS (g-value),
GlobaTest (gamma), GlobaTest (perms), SAMGS (p-value), GlobalTest (asymptotic). FAERI is the only method suited for the study of all types of genesets tested.

biological validation of geneset analysis methods through
comparison of the results with current biological knowl-
edge. We chose to use three datasets related to response
under hypoxic conditions. The definition of the genesets
relies on the MSIGDB databank (version 2.5), published
by the authors of the GSEA methodology [25]. MSIGDB
consists of several libraries of genesets (categories). The
analysis reported below focuses on the C2.kegg category.

Table 6 lists the genesets detected by FAERI, evaluated
on permutations, from analysis of the E-MEXP-445 data-
set, described by Bosco et al. [39]. The detection thresh-
old was set to 0.05 for the p-values (significant genesets).
Each geneset selected was characterized by the p-values
computed for several methods currently available. The
last two columns provide the p-values characterizing the
same genesets when the analysis was performed on 2
other datasets related to the same topic (GSE-1056 and
GSE-4086).

Table 6 shows that currently available methods fail to
detect the genesets selected by FAERI (permutations).
Most of the genesets selected by FAERI are also detected
by at least one other global method, the ANOVA-2 or
the GlobalTest. The two-step GSA.maxmean method
seems to also be able to detect a few of the same sets.
GSEA, SAMGS, GSA.mean and GSA.absmean do not
find any significant genesets. Finally, the p-values
obtained for datasets GSE1056 and GSE4086 are mostly
significant or highly significant, validating the relevance
of these genesets with regard to the biological question
studied.

This list can be split into 3 categories. First, genesets
concerning several metabolic pathways suggest metabolic
adaptations occur as a cellular response to oxygen

deprivation. Second, several genesets address signaling
pathways and are known to be involved in the hypoxic
stress response. Genesets of the third category are related
to pathologies, mostly involving cancers, for which a
hypoxic environment has been observed [52-54]. These
results illustrate the ability of FAERI to detect groups
known to be involved in hypoxic responses or hypoxia-
related pathologies, and to detect those groups indepen-
dently in 3 datasets related to hypoxia. In particular, we
should point out the strong coherence between genesets
detected by FAERI on a small number of replicates (3*3),
either within the top list or between top lists associated
with the three datasets.

These observations should be followed-up by a charac-
terization of the genesets detected by the other methods.
Table 7 lists the genesets detected with high significance
(p-value < = 0.01) by at least one geneset analysis method
(excluding FAERI), and compares the p-values assigned to
these genesets by each of the methods tested (including
FAERI). We observe that GSA.mean, GlobalTest (permu-
tation), GSEA and SAMGS do not find any geneset to be
highly significant. The sets detected by GlobalTest.gamma
are also detected as significant by its equivalent based on
an asymptotic distribution. Several genesets detected and
considered to be significant by FAERI are related to
hypoxia (hsa00010, hsa00030, hsa00720, hsa04664,
hsa05211). Overall, the p-values attributed by FAERI to all
the genesets detected by other methods are small, which
confirms the ability of the method to assign lower scores
to genesets related to hypoxia and detected by the other
methods. Other genesets can be considered to be related
to hypoxia, even indirectly (Cysteine metabolism, for
example). The nature of these genesets suggests however
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Table 6 List of genesets in the C2.KEGG category detected significantly by the FAERI.perms method (detection threshold of 0.05 for the p-values)
faeri. faeri. a2.fixed GSA. GSA. GSA. Globaltest.  Globaltest. Globaltest. Gsea. Gsea. Samgs. Samgs. Gse1056 Gse4086
fixed.perms  fixed.null mean absmean maxmean asymptocic gamma perm pval fdr pval qval
hsa00010_glycolysis_and_gluconeogenesis 1.8E-03 0.64 1.2E-13 096 0.95 098 0.020 7.8E-03 0.10 0.11 017 0.10 0.08 0.047 8.0E-04
hsa00020_citrate_circle 6.9E-03 0.38 1.7E-05 0.19 0.65 0.10 0.08 0.035 0.10 022 040 0.19 0.08 0.020 1.9E-03
hsa00030_pentose_phosphate_pathway 8.4E-03 041 9.5E-04 095 0.90 0.97 0.024 8.8E-03 0.10 0.23 0.28 0.10 0.08 3.0E-03 0.019
hsa00051_fructose_and_mannose_metabolism 0.011 097 6.0E-04 092 068 097 0.043 0.014 0.10 0.24 038 0.10 0.08 0.025 3.9E-03
hsa00100_biosynthesis_of_steroids 4.0E-04 0.94 2.5E-04 015 0.75 0.0E+00 0.14 0.10 0.30 0.11 0.32 0.10 0.08 2.0E-04 1.0E-04
hsa00190_oxidative_phosphorylation 0.036 0.99 4.5E-07 023 048 0.27 0.30 035 0.50 040 0.53 049 0.08 0.0E+00 0.0E+00
hsa00230_purine_metabolism 0.047 1.00 012 0.69 043 0.63 0.13 0.10 0.30 0.23 0.51 049 0.08 7.0E-04 1.0E-04
hsa00480_glutathione_metabolsim 0.025 1.00 1.0E-03 0.19 0.52 0.10 0.27 0.30 0.50 022 037 0.30 0.08 9.0E-04 0.012
hsa00511_n_glycan_degradation 9.5E-03 0.90 0.020 0.19 0.59 0.08 0.15 0.14 0.30 0.29 048 0.30 0.08 0.06 0.21
Hsa00530_aminosugars_metabolism 0.031 0.19 0.040 0.19 0.55 0.07 0.10 0.06 0.30 0.18 048 030 0.08 0.026 0.12
Hsa00620_pyruvate_metabolism 0.011 1.00 2.6E-05 009 0.68 0.045 0.06 0.031 0.10 0.1 0.19 0.10 0.08 8.2E-03  5.0E-04
Hsa00710_carbon_fixation 0.022 1.00 3.3E-03 095 0.90 0.97 0.045 0.017 0.10 0.23 0.35 0.10 0.08 0.019 0.034
Hsa00720_reductive_caboxylate_cycle 0.031 1.00 4.2E-04 0.0 0.75 0.0E+00 0.07 0.034 0.10 0.1 030 0.10 0.08 4.6E-03 0.038
Hsa00900_terpenoid_biosynthesis 0.018 0.047 0.010 0.25 0.77 0.025 0.06 0.019 0.10 048 063 0.10 0.08 0.07 0.035
Hsa01032_glycan_structures_degradation 4.7E-03 0.83 3.9E-03 019 0.55 0.13 0.14 0.13 0.30 0.10 043 040 0.08 0.05 0.08
Hsa01510_neurodegenerative_diseases 0.010 1.00 0.21 092 092 097 0.09 0.043 0.10 0.71 0.72 0.10 0.08 0.08 9.0E-03
Hsa03010_ribosome 5.0E-04 091 1.1E-10 0.78 0.57 0.86 0.24 0.26 040 0.1 0.22 0.29 0.08 0.27 2.0E-04
Hsa03320_ppar_signaling_pathway 0.014 1.00 39E-03 017 0.55 0.035 0.06 0.039 0.10 0.11 027 040 0.08 0.017 6.9E-03
Hsa04010_mapk_signaling_pathway 0.020 0.90 057 059 0.30 033 0.22 022 0.50 0.30 0.54 049 0.08 0.0E+00 0.0E+00
Hsa04130_snare_interactions_in_vesicular_transport 8.6E-03 097 0.11 0.18 0.56 0.1 0.16 0.10 040 061 0.71 040 0.08 048 2.8E-03
Hsa4150_mtor_signaling_pathway 0.038 0.23 4.8E-03 0381 047 0.75 0.039 0.010 0.10 0.12 032 038 0.08 0.017 0.039
Hsa04210_apoptosis 3.7E-03 0.05 0.39 041 0.31 041 0.20 0.16 040 0.81 0.76 049 0.08 1.0E-04 9.0E-04
Hsa04370_vegf_signaling_pathway 0.030 0.08 26E-03 087 0.29 0.83 0.047 0.017 0.10 0.11 0.23 0.10 0.08 7.0E-04 0.026
Hsa04510_focal_adhesion 0.035 0.19 0.025 0.73 0.26 048 0.07 0.034 0.20 0.11 024 0.19 0.08 4.3E-03 0.0E+00
Hsa04620_toll_like_receptor_signaling_pathway 5.7E-03 0.047 0.020 0.61 047 0.66 0.049 0.018 0.10 0.11 044 0.10 0.08 0.033 4.0E-04
Hsa04650_natural_killer_cell_mediated_cytotoxicity 0.016 0.10 0.58 0.29 043 017 0.20 0.17 0.50 0.60 0.72 0.72 0.08 7.0E-03  0.0E+00
Hsa04660_t_cell_receptor_signaling_pathway 0.036 0.10 0.65 0.95 0.55 097 0.07 0.025 0.10 0.11 041 041 0.08 1.6E-03  7.1E-03
Hsa04662_b_cell_receptor_signaling_pathway 1.5E-03 097 0.78 040 048 0.13 0.06 0.011 0.10 053 0.63 0.63 0.08 2.2E-03  2.0E-04
Hsa04664_fc_epsilon_ri_signaling_pathway 0.039 097 0.05 091 0.55 0.97 0.032 6.9E-03 0.10 0.11 0.25 0.25 0.08 8.9E-03 0.022
Hsa04810_regulation_of_actin_cytoskeleton 0.024 052 0.023 030 040 038 0.29 032 0.50 042 052 052 0.08 1.0E-04 0.0E+00
Hsa05040_huntingtons_disease 3.0E-04 0.50 6.6E-03 078 095 0.98 0.13 0.06 0.10 0.29 045 045 0.08 083 1.1E-03
Hsa05150_cholera_infection 0.019 1.00 29E-03 037 0.73 0.1 0.045 0.015 0.10 037 0.51 0.51 0.08 0.12 9.4E-03
Hsa05120_epithelial_cell_signaling_in_helicobacter_pylorii_infection 0.036 1.00 1.1E-03 0.1 0.55 0.045 0.15 0.09 0.30 0.21 048 048 0.08 1.3E-03 1.3E-03
Hsa05130_pathogenic_escherishia_coli_infection_ehec 0.047 1.00 0.044 0.26 047 0.18 0.20 017 040 0.18 0.29 0.29 0.08 4.9E-03  3.8E-03
Hsa05131_pathogenic_escherishia_coli_infection_epec 0.047 1.00 0.044 0.26 047 0.18 0.20 0.17 040 0.18 0.29 0.29 0.08 49E-03 3.8E-03
Hsa05210_colorectal_cancer 0.041 7.1E-03 0.36 067 0.29 041 0.16 0.09 040 0.22 035 035 0.08 0.011 8.8E-03
Hsa05211_renal_cell_carcinoma 0.017 7.1E-03 53E-04 091 0.55 097 0.036 9.9E-03 0.10 0.12 0.24 0.24 0.08 8.2E-03 0.021
Hsa05212_pancreatic_cancer 0.013 9.5E-03 044 047 0.29 0.34 0.09 0.041 0.20 043 0.54 0.54 0.08 4.3E-03  3.0E-03
Hsa05216_thyroid_cancer 4.0E-03 0.86 091 053 0.55 0.20 0.17 0.15 0.30 0.30 0.54 0.54 0.08 1.0E-03 0.10
Hsa05219_bladder_cancer 0.048 047 0.60 0.57 0.55 061 0.11 0.08 0.30 091 0.80 0.80 0.08 9.1E-03 0.08
Hsa05220_chronic_myeloid_leukemia 0.028 1.00 0.73 0.37 0.31 041 0.15 0.09 040 061 065 0.65 0.08 1.0E-04  7.9E-03
Hsa05221_acute_myeloid_leukemia 6.0E-04 1.00 0.24 024 0.31 0.26 0.15 0.1 0.30 0.60 0.72 0.72 0.08 0.0E+00 0.018

For each geneset, the p-values obtained by each method are listed. The values in plain text are not significant. The p-values of the significant (0.05) and highly significant (scientific notation) genesets are shown in bold. The two last

columns give the p-values obtained for datasets GSE-1056 and GSE-4086 by FAERI.perms, to illustrate the coherence of the results presented.
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Table 7 List of the genesets of the C2.KEGG category detected with a highly significant threshold (0.01) by the other methods

Faeri. Faeri. GSA. GSA. GSA. Globaltest. Globaltest. Globaltest. Gsea. Gsea. Samgs. Samgs.

fixed.null fixed.perms mean absmean maxmean symptoti gamma permutations pval  fdr pval qval
Hsa00010_glycolysis_and_neoglucogenesis 0.64 1.8E-03 0.96 0.95 0.98 0.020 7.8E-03 0.1 0.1 0.17 0.1 0.08
Hsa00030_pentose_phosphate_pathway 041 8.4E-03 0.95 09 0.97 0.024 8.8E-03 0.1 0.23 0.28 0.1 0.08
Hsa00052_galactose_metabolism 0.73 0.08 0.95 0.77 097 0.018 8.3E-03 0.1 0.11 013 0.1 0.08
Hsa00053_ascorbate_and_aldarate_metabolism 0.97 0.18 0.0E+00 0.72 0.06 0.16 0.16 03 0.11 042 0.19 0.08
Hsa00071_fatty_acid_metabolism 0.71 0.15 0.0E+00 052 0.045 02 0.18 05 0.11 03 049 0.08
Hsa00100_biosynthesis_of_steriods 094 4.0E-04 015 0.75 0.0E+00 0.14 0.1 03 0.11 032 0.1 0.08
Hsa00272_cysteine_metabolism 0.94 0.25 0.34 0.62 0.1 0.028 6.7E-03 0.1 0.21 046 0.19 0.08
Hsa00340_histidine_metabolism 1 0.17 0.0E+00 036 0.11 035 041 05 0.11 0.21 0.59 09
Hsa00500_starch_and_sucrose_metabolism 1 0.08 0.95 06 0.97 0.020 6.7E-03 0.1 0.11 0.18 0.1 0.08
Hsa00512_o_glycan_biosynthesis 02 022 0.0E+00 044 0.0E+00 0.36 042 05 0.64 0.71 0.1 0.08
Hsa00521_streptomycin_biosynthesis 0.94 0.1 0.95 0.96 0.97 0.016 8.7E-03 0.1 0.1 0.17 0.1 0.08
Hsa00640_propanoate_metabolism 0.92 0.06 0.15 06 0.0E+00 0.1 0.07 03 0.1 0.31 0.19 0.08
Hsa00720_reductive_carboxylate_pathway 1 0.031 0.1 0.75 0.0E+00 0.7 0.034 0.1 0. 03 0.1 0.08
Hsa04664_fc_epsilon_ri_signaling_pathway 0.97 0.039 091 0.55 0.97 0.032 6.9E-03 0.1 0.11 0.25 0.1 0.08
Hsa0521_renal_cell_carcinoma 7.1E-03 0.017 091 0.55 097 0.036 9.9E-03 0.1 0.12 0.24 0.1 0.08

For each geneset, the p-values are given for each method we used.
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that their relationship with hypoxia is of lesser importance
than genesets known to be involved in the hypoxic
response (listed in Table 6). FAERI assign a higher p-value
to such sets (hsa00053, hsa00071, hsa00272, hsa00340,
hsa00512, hsa00521). When the significance threshold is
set to 0.05, the same conclusions can be made: GSEA and
SAMGS fail to detect any significant geneset. On the con-
trary, GlobalTest gives a much higher number of genesets,
and this list is coherent with FAERI (permutations) (data
not shown).

As Table 6 illustrated a correlation between the results
provided by FAERI on 3 related datasets, we compared
each method’s ability to discover common genesets
from several related datasets. Table 8 lists the number
of genesets detected by each method for each of the
three datasets, as well as the number of common gene-
sets between the datasets. The analysis was performed
using the C2.kegg category, on the E-MEXP-445, GSE-
1056 and GSE-4086 datasets. The thresholds were
set to 0.01 and 0.05 for the p-values. The ANOVA-2
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procedure, FAERI (permutations) and GlobalTest
detected several genesets with a higher level of signifi-
cance (lower p-value), while GSEA and SAMGS failed
to detect any set, as mentioned previously. The GSE-
4086 dataset contains only 4 (2vs2) replicates, and thus
the analysis revealed a large rate of false positives.
Therefore, we concentrated the analysis in Table 8 on
datasets GSE-1056 and E-MEXP-445.

Setting a significance threshold of 1% for the p-values,
the ranking of the methods detecting more genesets
common to the two experiments is the following:
FAERLpermutations (6 common genesets for at least 14
genesets detected), ANOVA-2 (5/35), GlobalTest.gamma
(1/8) and GSA.mean (1/14). The other methods do not
intersect. When the significance threshold is set to 5%,
the ranking of the methods is the following: FAERI.per-
mutations (34/42), GlobalTest.gamma (20/45), FAERIL.
null (6/18), ANOVA-2 (15/51), GlobalTest.asymptotic
(4/26) and GSA.mean (1/8). The other methods do not
intersect. These results suggest that the bidirectional

Table 8 Comparison of the number of groups detected in the C2.KEGG category and of the number of common

detections in three datasets

0.010 A2. Faeri. Faeri. GSA. GSA. GSA. Globaltest. Globaltest. Globaltest. Gsea. Gsea. Samgs. Samgs.

fixed fixed. fixed. mean* absmean* maxmean* asymptotic gamma permutations pval fdr pval qval
null perms

Emexp445 62 7 14 14 5 19 0 8 0 0 0

GSE-1056 36 9 51 5 0 8 1 15 0 0 0

GSE-4086 93 89 94 49 38 62 0 0 0 0 0 NA NA

Emexp445- 5 0 6 1 0 0 0 1 0 0 0 0 0

GSE-1056

Emexp445- 24 5 9 8 0 1 0 0 0 0 0 NA NA

GSE-4086

GSE-1056~ 21 7 37 4 0 4 0 0 0 0 0 NA NA

GSE-4086

Emexp445- 4 0 3 1 0 0 0 0 0 0 0 NA NA

GSE-1056-

GSE-4086

0.050 A2.  Faeri. Faeri. GSA. GSA. GSA. Globaltest.  Globaltest.  Globaltest. Gsea. Gsea. Samgs. Samgs.
fixed fixed. fixed. mean* absmean* maxmean* asymptotic gamma permutations  pval  fdr pval qval

null  perms

Emexp445 62 18 42 14 5 23 26 45 0 0 0 0 0

GSE-1056 51 27 80 8 2 12 33 70 40 " 0 15 69

GSE-4086 119 119 142 49 38 62 32 185 0 0 NA NA

Emexp445- 15 6 34 1 0 0 4 20 0 0 0

GSE-1056

Emexp445- 48 14 37 8 0 13 13 44 0 0 0 NA NA

GSE-4086

GSE-1056- 31 23 71 4 1 6 7 69 0 0 0 NA NA

GSE-4086

Emexp445- 13 4 31 1 0 0 2 20 0 0 0 NA NA

GSE-1056-

GSE-4086

The results are shown for each method, for significance thresholds of 0.05 and 0.01. The three datasets analyzed are E-MEXP-445, GSE-1056 and GSE-4086, and
concern the same condition (oxygen deprivation). The first column contains the datasets analyzed. The first 3 rows of each table contain the top list obtained by
each geneset analysis method. When several datasets are mentioned at the beginning of the row, the number of genesets in the other columns is the

intersection of the results from different datasets.
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genesets, detected by FAERI and GlobalTest, are an
important part of the genesets simultaneously involved
in both datasets, compared with the ANOVA-2 and
GSA.mean procedures.

To quantify the abilities of the methods to provide the
same result from different datasets, we propose to com-
pute Pearson’s coefficients of correlation on the ranks
associated with the genesets analyzed, by pairwise com-
parison of the three datasets, for each method and each
category of genesets defined (See Additional File 1, addi-
tional table 1).

For all the categories tested, the FAERI.permutations
methodology is associated with a higher coefficient of
correlation. Conversely, the ANOVA-2, GSEA and GSA.
mean provide poorly correlated results. The coefficients
of correlation obtained for the other methods are inter-
mediary between these two extremes and depend on the
geneset category.

Conclusion

Conclusions

Geneset differential expression analysis is a far more
complex task than the individual analysis of expression
changes. The diversity of the biological criteria involved
and prior definition of the genesets has an impact on
the mathematical properties of the expression subsets to
be analyzed. Furthermore, the diversity of available ana-
lysis procedures, each based on specific strategies and
null hypotheses, must address these properties. Thus,
design of the analysis strategy is not that simple. Cur-
rent methods involve over-representation analysis (ORA,
not considered here), and functional class scoring (FCS).
This last category of methods relies either on 2-step
(post-hoc) or global strategies (using raw data).

In this paper, we address this question by considering
the biological properties of genesets with regard to the
underlying mathematical properties of the associated
expression values. Focusing on expression levels, the
direction of regulation and potential correlations between
geneset members, we developed the FAERI methodology
(Functional Analysis: Evaluation of Response Intensities).
FAERI is a global methodology tailored from a 2-factor
ANOVA procedure by a 2-step reduction of the data,
and is evaluated with respect to the self-contained null-
hypothesis (using label sampling or random data).

Evaluations performed on random data reveal the abil-
ity of each method to detect sets simulated according to
8 scenarios, relying on mathematical properties. The
ANOVA-2 procedure performs best when analyzing uni-
directional genesets and FAERI performs similarly. Both
methods outperform each currently available method.
When the definition of the sets involves members regu-
lated in both directions, ANOVA-2 performance drops,
as expected, and our proposed FAERI methodology
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outperforms all tested methods. Both methods provide
an appropriate solution for the analysis of correlated
data (exclusively on unidirectional genesets in the case
of ANOVA-2). FAERI thus constitutes an improvement
over all tested methods, and turns out to be the optimal
method for testing question Qg (“Which known genesets
are associated with different expression profiles under
the two conditions compared?”).

A real-world example of analysis is reported for three
datasets on cellular response to hypoxia. The results
obtained from analysis of the E-MEXP-445 dataset illus-
trate that FAERI (evaluated using permutations) is able
to detect relevant results when a strict cut-off is used,
compared to the other methodologies. The genesets
detected by FAERI are related to three categories,
respectively metabolic perturbations, hypoxia signaling/
response, and hypoxia-related pathologies. The results
of other global methods confirm these results, and post-
hoc methods fail to detect any significant genesets. The
results provided by FAERI from analysis of the two
additional datasets reveal its ability to detect the same
sets using several related datasets. Focusing on the top
list obtained with several datasets, we showed that
FAERI not only detects more sets, but also presents a
larger intersection of the results.

We proposed to score this last assessment on the
whole list of sets by computing the Pearson correlation
coefficient on the ranked list of genesets, for each
method, using pairwise comparisons between the three
datasets. Among all methods tested, FAERI provides the
best correlated results between related datasets, regard-
less of the source of geneset definition used (each cate-
gory of the MSIGDB databank was used for this
purpose). FAERI thus outperforms all methods tested
for its ability to attribute similar scores to each geneset
from several datasets.

Several recommendations emerge from this work.
First, we suggest that differential expression analyses of
microarray data be studied first by performing a geneset
analysis with FAERI, and then that the results be further
characterized using either an individual analysis or
mathematical characterization of the sets detected. This
approach eases interpretation of the results with regard
to the correlation and direction of probeset-specific
expression changes encountered for each geneset. Alter-
natively, genesets can be first classified with regard to
the mathematical properties of the geneset expression
values, and then the data can be analyzed using distinct
methodologies (for example, applying the ANOVA-2
procedure on unidirectional sets).

Perspectives
As a perspective for future work, we suggest to adapt
FAERI so it would be able to test unequal sample
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datasets. Several adaptations to the ANOVA-2 proce-
dure have been suggested to this end. To best adapt
FAERI for this purpose, performance evaluations are
required. Another interesting development would be to
develop robust variants of FAERI based on the study of
the impact of extreme values.

An additional comment may be formulated about the
empirical definition of the direction from the difference
in means, used in the second step of the FAERI proce-
dure. Indeed, genes slightly differing in one direction
may empirically seem to be involved in the opposite
direction, as sampling a small number of replicates can
lead to a smaller or larger distribution than the popula-
tion. Thus, the directional reduction step may lead to an
incorrect definition of the sign of the expression change
with regards to the biological structure of the data. An
alternative would be to characterize first the direction
associated with each gene based on current knowledge
of the biological processes. Similarly, another alternative
adaptation of the procedure would be to determine
which genes are associated with an expression change,
and to use the directional reduction step only on those
genes. However, the use of prior knowledge on the
expression and directional changes for each gene would
be associated with important biases: incorrect prior
information would reduce the significance of the geneset
analysis, and this bias is more probable for less-studied
genesets/biological mechanisms. Thus, the evaluation of
the null distribution with realistic background noise
would be geneset specific, depending on the number of
errors in the annotation. In the future, we also plan to
develop a non-parametric equivalent to FAERI, by
applying a rank-based multivariate analysis procedure
after the 2-step reduction of data. At least three options
may be considered for further developments: ranking
expression values at the level of the probesets, at the
level of the genesets, or at the level of the whole dataset.

The evaluation of significance may also lead to several
adaptations. First, it would be interesting to add a third
significance evaluation strategy based on simultaneous
label sampling, where permutations would be performed
without breaking the association with the cel file. Such a
null distribution would provide an appropriate p-value
for the evaluation of highly correlated genesets. How-
ever, the small number of available permutations would
not allow for discrimination between genesets when the
number of replicates is small. Both approaches intro-
duce a bias during the p-value evaluation procedure: (i)
the independent model assumes that the genes are not
correlated, under-evaluating the p-value of co-occurring
events; and (ii) the correlated model accordingly over-
evaluates the p-value when the correlation between
genes is not perfect. As the correlation pattern between
genes is complex, the most appropriate p-value
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evaluation procedure should be somewhere in between
the independent and correlated permutation models,
with a geneset-specific balance between these two
models.

Another interesting perspective for evaluation of the
p-value would be to improve the model used to generate
the null distribution from random data. By studying sev-
eral datasets first using individual and geneset analyses,
it would be possible to characterize the correlation
between genes in several situations. Then the network
of associations could be used to count the average num-
ber of connections, to catch patterns of association, etc.
Using such a strategy, the evaluation of the null hypoth-
esis would consist in generating random networks with
similar patterns of association and similar distributions
of connectivity, and to use these patterns using multi-
variate random data built from the simulated correlation
matrices. As an extension of this model, it would also
be possible to include a supplemental parameter during
simulation of the null distribution: the correlation pat-
tern between genes may differ between the two groups.

Performance evaluation of geneset analysis methods is
not a trivial task, as each method is based on distinct
null hypotheses. Previously published methods have
been validated following several simulation schemes
(using a limited number of scenarios) or running ana-
lyses on specific biological datasets (featuring more than
10 replicates for each tested condition). Nevertheless,
those validations usually focused on the method devel-
oped by the authors, compared with only one method
(usually GSEA), if any, and a limited number of gene-
sets. Conversely, publication of individual analysis meth-
ods requires extensive validations on real-world,
simulated and spike-in datasets. The validations
reported here reproduce the simulation scheme used by
Ackerman et al. (2009) as it represents the most com-
prehensive scenario we could find in the scientific litera-
ture (in a paper that compares the parameterization of
current methods). The example analysis reported here
was performed on small datasets (3 replicates associated
with each condition), as this kind of dataset is far more
frequent and more difficult to analyze. We hope that
the validation strategy reported here will be reproduced
by authors of future methodologies to compare their
findings with current methods and to provide a compre-
hensive evaluation of their methods with regards to sev-
eral biological scenarios and the underlying
mathematical properties of the expression values.

In a previous work, we reported a new benchmarking
strategy for individual expression analysis on real-world
data involving several datasets [55]. In future work, this
procedure will be tailored for a similar evaluation of
geneset analysis methods with regard to the mathemati-
cal structure of the sets, as depicted in this paper on
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simulated data, and in agreement with the benchmark-
ing study reported by Song et al. [56].

Availability

FAERI and the ANOVA-2 procedure were implemented
using R language, and the source code is included in
PEGASE, an R package we designed for differential
expression analysis [49]. URL: (http://urbm-cluster.
urbm.fundp.ac.be/phoenix)

Additional material

Additional file 1: Procedure section, describing the mathematical
computing of FAERI. Pearson’s correlation coefficients computed on
ranks, for each method between 3 datasets, for each geneset definition.
Figure 1 in negative logarithmic scale. Histograms of the p-values under
HO for each method.
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