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On the Use of Semi-folding in Regular Blocked
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USA

In this article, we consider experimental situations where a blocked regular two-level
fractional factorial initial design is used. We investigate the use of the semi-fold tech-
nique as a follow-up strategy for de-aliasing effects that are confounded in the initial
design as well as an alternative method for constructing blocked fractional factorial
designs. A construction method is suggested based on the full foldover technique and
sufficient conditions are obtained when the semi-fold yields as many estimable effects
as the full foldover.

Keywords Foldover design; Minimum aberration; Maximal rank-minimum aberration;
Word pattern.

Mathematics Subject Classification Primary 62K15; Secondary 62KO05.

1. Introduction

In experimental situations where a two-level fractional factorial (FF) design is initially
used to identify influential system variables, it is often necessary to use a follow-up design
to increase precision of the treatment effects or gain additional information about the
experimental process by de-aliasing effects confounded in the initial design. One type of
follow-up strategy mentioned in many textbooks and which has been studied extensively
in recent years is the “foldover” technique. In using this technique, a “foldover design”
is used reversing the signs of one or more factors in the initial design. By adding the
“foldover design” to the initial design, an overall combined design is often obtained which
has higher resolution and allows the estimation of more effects than the initial design. The
construction of optimal “foldover” designs has been studied by Li and Lin (2003) and Li
and Mee (2002) in cases where the initial design was a regular two level FF. More recently,
the “foldover” follow-up strategy has been considered in experimental situations where the
initial design is a regular blocked two-level FF design, i.e., see Li and Jacroux (2007) and
Wau et al. (2010), and the follow-up “foldover” blocked factorial is obtained as described
above and has the same blocking scheme as the initial design. However, as pointed out in

Received June 29, 2012; Accepted February 22, 2013.
Address correspondence to Mike Jacroux, Department of Statistics, Washington State University,
Pullman, WA 99164, USA; E-mail: jacroux @wsu.edu

2473



2474 Chen and Jacroux

Mee and Peralta (2000), one problem with the foldover technique is that it is very “degrees
of freedom inefficient”, i.e., if the initial and foldover design each have n runs, then addition
of the foldover design provides relatively few additional estimable effects. In fact, Mee and
Peralta (2000) found that addition of the foldover design with n runs generally provided
fewer than 7 additional degrees of freedom for the estimation of two-factor interactions.
To solve this problem, Mee and Peralta (2000) investigated the use of a “semi-fold design”
as a follow-up design. A “semi-fold design” is obtained by taking half the runs from the
initial design but changing the sign of one or more factors in these runs. Mee and Peralta
(2000) found that by appropriately selecting the “semi-fold” follow-up design, the resulting
combined design generally yielded as many degrees of freedom for the estimation of two-
factor interactions as a corresponding “full foldover” design having n runs. In this paper, we
consider the use of the “semi-fold technique” in relation to constructing follow-up designs
for blocked regular FF initial designs as well as a method for constructing alternative
blocked FF designs. We show that in general, when the number of added factors is not too
large, semi-fold follow up designs yield generally as many estimable two-factor interactions
as do complete foldover designs. However, when larger numbers of factors are involved,
the semi-fold process typically allows for the estimability of fewer two-factor interactions
than does a full foldover design.

2. Notation and Definition

In this section, we give the basic definitions and notation that are used throughout the
sequel.

We shall henceforth represent an arbitrary two-level FF design d by an n x m matrix
Xa= (x4, -+, Xa,) Whose columns x,, have entries 41 or —1. Each row of X, corresponds
to a run in d and each column to an experimental factor. An orthogonal two-level main
effects design satisfies X, X, = n I,, where X/, denotes the transpose of X, and I,, is the
m X m identity matrix.

In this article, we will be considering what are typically referred to as regular 2" *
FF designs. A 2"~* regular FF design has m factors and 2"~ runs. Of the m factors, there
are m — k factors, which we shall assume are labeled 1, - - -, m — k, which are called basic
factors and are such that the design contains a complete factorial in these factors. The other
k factors, labeled m — k +1, - - -,m, are called added factors and are obtained by associating
with each added factor an interaction involving basic factors, i.e., for added factors [ =
m—k+1,---m,l=1;---1, where [y, - - -, [; denote basic factors. For | = m — k +1,
- - -,m, the strings of factor labels [, - - - ;] are called treatment defining effects words. The
group formed by taking all possible products among the treatment defining effects words
(according to the rule that if a factor label appears an even number of times in the product it
is eliminated whereas if it appears an odd number of times it is kept) is called the treatment
defining relations group which we denote by G,(d). Including /, the identity element, a
2=k design d has 2¥ words in G,(d) and the number of factor labels in a word is called the
length of the word.

For given values of m and k, there are typically a large number of 2" ~* regular FF
designs that can be constructed using different defining relations. To aid in the construction
of “good” designs, the criteria of resolution and minimum aberration (MA) were introduced.
The resolution of a given design d is given by the length of the shortest word in G,(d).
However, there are often a number of 2% desgins having the same resolution. To select
among the designs having the same resolution a best design, Fries and Hunter (1986)
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proposed a refinement of the resolution criterion which they called MA. For a 2% design d,
let W;,(d) be the number of words of lengthiin G,(d). Then W(d) = (W, (d) , - - -, W, (d))
is called the treatment word length vector of the design. Now, for two designs djand d>, let
r be the smallest integer such that W, (d;) # W, (d). Then d,is said to have less aberration
than d, if W, (d1) < W, (d>). If no design has less aberration than d;, then d;is called an
MA design. Chen et al. (1993) provided a catalog containing many MA designs for various
values of m and k.

In many experimental situations where a 2"~ design is appropriate, blocking is an
effective method for improving the efficiency of an experiment by eliminating sources
of heterogeneity. Blocking can be accomplished in a regular FF design through the use
of blocking factors which are obtained in much the same manner as the added treatment
factors described previously. In particular, a blocking factor b; fori =1, - - -, p is obtained
by associating b; with an interaction i; ---i, among the basic factors i; which has not
already been associated with an added treatment factor. The set of all products that can be
formed between words iy ---i;b; fori = 1, - - -, p by the same product rule as described
for G,(d) is called the block defining relations group of d and is denoted by G (d). Finally,
the set of all products that can be formed between words in G,(d) and G(d) is denoted
by G,xp(d). We will call G(d) = G,(d) U Gp(d) U G;xp(d) the defining relations group
for a blocked 2" ~* design d and we shall denote a regular 2% design that is blocked in
27 blocks as a 20"+P)=(P*+K) design. For a 20"+ ~(P+h) design d, we use W), (d) to denote
the number of words in G,(d) U G;«(d) containing i treatment letters and call W;,(d) =
(Wp, (d), -+, Wy, (d)) the block word length vector of d.

Throughout this article, we will consider the situation where a 2" +P)~(?+h) design
is to be used and where the experimenter is interested in obtaining as much information
on treatment effects and two-factor interactions as possible. We will only be considering
situations in which no main effect is aliased with another main effect or block effect. When
analyzing the data from a given 20"+P)=(P+k) reoular design d, we will assume that three-
factor and higher-order interactions are negligible. Within this context, for given values of
m, k, and p, and a given design d having X; = (x4, - - -, X4, ), the model for analysis is

m

Y =Xg4 81 +Xag,82 + Xay B3 + €, (2.1)

where Y is a 2% x 1 vector of observations, X4, = (an+, X4), 1, is ap x 1 vector of
I’s, B = (Bo, P1, - - -.Bm) Where By represents an overall mean, B, - - -,8,, are the main

effect parameters, B, is the vector of ( ) ) two-factor interaction parameters, X, is the

corresponding two-factor interaction matrix obtained by taking Hadamard products of all
pairs of columns in X, B3 is the vector of block parameters having block design matrix
X4, and ¢ is a vector of uncorrelated random error terms assumed to have mean 0 and

constant variance o2,

3. Foldovers for 2% and 20"+P)~(P+k) designs

In many experimental settings, once a screening experiment has been performed and pos-
sible significant experimental effects identified, a standard follow-up strategy discussed in
many textbooks involves adding a second fraction to help dealias effects associated with
significant contrasts determined from the initial experiment. One type of follow up design
often suggested for usage in such situations is a foldover design which is obtained by
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reversing the signs of one or more columns in X, of the initial design d. In a 2% design,
there are 2™ possible ways to generate a foldover design.

With regard to foldover plans for regular 2% designs, we will adopt much of the
notation used in Li and Lin (2003). In particular, we will let § denote a foldover plan where
4 is a listing of the columns of X; whose signs are to be reversed in the foldover design,
then each foldover design is generated by a foldover plan. The design obtained by joining
the foldover design to the initial design is called the combined design. We will denote the
initial design by d, the foldover design by d’, and the combined design obtained by joining

dandd by D = (j/).

The foldover process as applied to 2"+ ~(P*X) designs is similar to that described
above for 20" designs. When applying the foldover process to a given 20"+P)=(p+h)
design d, we will use the same notation as described previously for a foldover of a regular
2m=k) design. We will let § denote the list of columns from X, whose signs are reversed to
obtain the foldover design denoted by d’. As in Li and Jacroux (2007) and Wu et al. (2010),
we will assume the same blocking factors are used to obtain blocks in d’ as were used in d
and denote the combined design by D. Under these assumptions, we note that G,(d) and
G, (d") are both the same whereas Gy,(D) consists of all those words in Gy,(d) along with a
treatment factor generator word from G(d) (and all its products with words in G, (d)) that is
eliminated through the foldover process, i.e., one the the treatment factor generator words
in G¢(d) becomes a block generator word in G,(D). We shall also use notation such as
W, (d), W,,(d"), and W, (D) to denote the number of words of length i in G,(d), G,(d"), and
G, (D), respectively, for i =3, - - -,m and Wp, (d), W, (d’), and W, (D) to denote the number
of words having i treatment factor labels in them in G,(d) U Gpx,(d), Gp(d") U Gy (d)),
and G,(D) U Gy, (D), respectively, for i = 2, - - -,m and finally let W,(d), W,(d"), W;(D),
Wi (d),Wy(d"), and W, (D) denote the various word length vectors corresponding to d, d’
and D.

For constructing optimal foldover plans for a given 27" +P)~(P+k) design d, we consider
the primary optimality criterion used in Li and Lin (2003) and Li and Jacroux (2007). This
consists of applying the MA criterion to the defining relations group of D. So for a given
2m+p)=(r+k) design d, let § be a foldover plan, let D(8) be the combined design, and let
W;,(D(6)) denote the number of words of length i in G;(D(8)). The MA criterion is then
defined as follows.

Let §; and &, be two foldover plans. We say §; has less aberration than §; if W;,(D(8))
= W, (D($y)) for i = 3,---r-1, and W, (D(6;))<W, (D(82)). If no foldover plan has less
aberration than §;, we call §; an MA optimal foldover plan for d, which we denote by &3, ,.

With regard to actually searching for MA-optimal foldovers, Li and Lin (2003) proved
that for regular FF designs, the actual search could be limited to foldovers only involving
added factors which they called “core” foldovers as all other foldovers are equivalent to
some ‘“core” foldover. It is easily seen using similar arguments that the same holds for
blocked regular FF designs. Using this fact and computer search methods, Li and Jacroux
(2007) found the MA optimal foldover plans for various values of m, p, and k and run sizes
of 16, 32, and 64. Within the context of these MA foldovers, we consider the construction
of semi-foldover designs.

4. Semi-Foldovers

As pointed out in the Introduction, adding a foldover design to an initial regular 2" ~* design
is often inefficient in terms of increasing the number of estimable two-factor interactions
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in the combined design. In fact, Mee and Peralta (2000) found that for most resolution 4
2"~k designs, it is possible to add half the observations from a foldover design to an initial
design and still realize the same increase in number of estimable two-factor interactions as
with adding the full foldover design. The technique of adding half the observations from a
foldover design to the initial design is called a semi-foldover and the observations added is
termed a semi-foldover design.

In general, the authors have found that the semi-foldover technique does not work
quite as well when applied to 16-run blocked regular FF design as it does for regular FF
designs in terms of generating estimable two-factor interactions but that the technique is
quite effective when applied to blocked FF designs having 32 and 64 runs. In this paper,
we explore under what conditions the semi-foldover process is successful in increasing the
number of estimable two-factor interactions to the same level as in the full foldover process.
We begin with an example.

Example 4.1 Consider the case where an initial 2©©*2~(+2) design d is to be run'. The
design that would be recommended in many textbooks has G,(d) = {1235, 1246, 3456}
and G,(d) = {134, 234, 12}. An MA optimal foldover design d’ given in Li and Jacroux
(2007), obtained by folding over factors 5 and 6 in d and maintaining the same blocking
scheme would have G,(d’) = {—1235, —1246, 3456} and G,(d") = {134, 234, 12}. The

combined design D = (j, ) would have G,(D) = {3456} and G,,(D) = {134,234, 12, 1235,

245, 145, 35}. We note that the treatment factor generator word 1235 in d becomes a block
generator word in D. In the combined design D, two-factor interactions 12, 35, and 46 are
all aliased with blocks in d and d’, and hence are nonestimable in D. Also, we have alias
sets 34 = 56 and 36 = 45 that are the same in both d and d’, and hence are the same in D.
All other interactions become estimable after adding d’ to d, thus all main effects and 10
out of 15 two-factor interactions are estimable in D. There is an alternative way of viewing
the above foldover process. We consider this alternative view because (1) it provides a
basis for the semi-foldover technique suggested later by the authors and (2) it allows for the
development of a systematic method for finding the partial confounding scheme (through a
set of weighted defining effect words) associated with the semi-foldover combined designs
generated using the authors’ suggested construction method. In particular, consider the
following.

1. From the original design in d, identify one of the block generators, say b; = 134, as an

added factor generator (thus leaving the blocking generator to be 234) in the 2(6+D~(1+3
. . 1235, 1246, 3456 _
design d(1) having G,(d(1)) = { 134. 245, 236, 156} and Gp(d(1)) = {234}.

2. To obtain a design which is essentially equivalent to d above, foldover factors 4 and 6
. . . 1235, 1246, 3456 _
in d(1) to obtain d(2) having G,(d(2)) = { 134, —245, —236, —156} and G,(d(2)) =

{234}. The reason for folding overs factors 4 and 6 is to generate d(2) such that its first

row is exactly the same as d(/) and its second row has signs opposite to those in d(/)

Zg;) has G,(D(1)) = {1235, 1246, 3456} and

G,(D(1)) = {234, 134, 12}. We note that D(1) has exactly the same alias structure as d

and exactly the same estimable main effects and two factor interactions.

such that the combined design D(1) = (

Basic factors: 1, 2, 3, 4; added factors: 5 = 123, 6 = 124; and blocking factors: b; = 134 and
b, = 234.
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3. To obtain a design D(2) which is essentially equivalent to D in the previous foldover

process, foldover factors 5 and 6 in D(1) to obtain D(1)" and let D(2) = ( g((ll )), ). Unlike
the foldover plan in step 2, the foldover plan in this step is a MA optimal foldover
plan given in Li and Jacroux (2007). We note D(2) and D have exactly the same alias
structure and the same estimable main effects and two factor interactions. We also note

that applying the foldover process to D(1) = (383) to get D(2) is equivalent to folding

over factors 5 and 6 in d(1) and d(2) and getting d(1)’ and d(2) having G,(d(1)") =
{134, —1235, —1246, —245, —236, 3456, 156}, G,(d(1)) = {234} and d(2)’ having
G(d(2)) = {—134, —1235, —1246, 245, 236, 3456, —156}, G,(d(2)") = {234}, and
d(l)
d2)
dcy
a2y

DQ2) =

At this point, we observe that if in D(2) we only keep the runs corresponding to
d(l)
d(1), d(2), and d(1), then the resulting design D = ( d(2) ) has the same estimable
d(1y
main effects and two-factor interactions as does D(2), but the estimates are not orthogonal
to one another as they are in D(2). Thus, in this case, adding the semi-foldover design
d(1) to D(1) to get D is as effective as adding all the observations in D(1)’ to obtain D
(2).
To obtain the full and partial aliasing scheme for effects in D we consider a weighted
treatment defining relations group for D. To obtain this weighted treatment group, we
observe that

G.(d(1)) = {134, 1235, 1246, 245, 236, 3456, 156}
G.(d(2)) = (—134, 1235, 1246, —245, —236, 3456, —156)
G.(d(1Y) = {134, —1235, —1246, —245, —236, 3456, 156}

and assign a weight of q:% to each word in G,(d(1)), G,(d(2)), and G,(d(1)’ depending on
whether the word has a 1 sign in front of it. We then add the corresponding words together
to obtain the weighted group G,(D) = {(5)134, (3)1235, (3)1246, (—3)1245, (—1)236,
3456, (%)156}. We observe that other than the weights, the effects appearing in G,(D) are
exactly the same as the effects appearing in G;(d(1)). The reason that the weight of :F% is
assigned to each word in G¢(d(1)), G¢(d(2)), and G¢(d(1)’) is so that when d(1), d(2), and
d(1)’ are added together to get D, the weights associated with the corresponding words
in G,(D) reflect the amount of confounding between the main effects and interactions
associated with that word. For example, the word 1235 in G,(D) has a weight of 1/3
indicating that the pairs of effects {12, 35}, {13, 25}, and {15, 23} are only 1/3 partially
confounded with each other. On the other hand, the word 3456 in G,(D) has a weight of 1
indicating that the pairs of effects {34, 56}, {35, 46}, and {36, 45} are fully confounded
with one another in D. Using this weighting method, to obtain the effects confounded
with any main effect or two-factor interaction in D, we simply multiply that effect by all
of the words and their weights in G, (D). For example, the effects confounded with main
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effect 1 are

()= () (e ()= ()

1
1236 = 13456 = <§> 56.

Any interaction in the alias set of 1 with a weight of :F% indicates that 1 is partially
confounded with that interaction whereas any interaction with a weight of 1 indicates
that main effect 1 is totally confounded with that interaction. From this, we see that 1
is partially confounded with two-factor interactions 34 and 56. Again we note that since
the effects occurring in the weighted group G,(D) and G,(d(1)) are the same, the alias
set corresponding to 1 is the same in both D and d(1) with the exception of the assigned
weights in D. The meaning of the above set of weighted aliases in terms of the information
matrix for main effects and two-factor interactions in model (2.1) is that the column of
X g, corresponding to main effect 1 has an inner product of 8 with the columns of X5,
corresponding to interaction 34 and 56 and O inner-product with all other columns. Similarly,
the weighted alias set for 36 is

36 = l 146 = 1 1256 = l 1234 = —l 123456 = —l
3 3 3 3 3
1
2=45=(—> 135
3

from which we see that 36 is partially confounded with main effect 2 and is fully confounded
with two-factor interaction 45. The meaning of this weighted alias set in terms of the
information matrix for main effects and two-factor interactions is as above with main effect
1. Overall, the information matrix for main effects and two-factor interactions under model
(2.1) and D will consist of a series of 3x3 matrices on the main diagonal (one for each
weighted alias set) and zeros elsewhere. We do not include columns in X 5; of model (2.1)
for two-factor interactions 12, 35 and 46 because they are completely confounded with
blocks in d(1), d(2), and d(1)" and hence are nonestimable. The total number of estimable
main effects and two-factor interactions in D is simply the sum of the ranks of the square
matrices appearing on the main diagonal of the information matrix of D for main effects
and two-factor interactions which is easily seen to be 18.

Comment. As noted previously, there is often more than one foldover plan which is
MA optimal for a given 2("*+P)=(P+k) design d. In the above example, folding over factor 5,
factor 6, or factors 5 and 6 together all lead to MA optimal combined designs. However,
in terms of the semi-foldover plan given above, all these optimal foldover plans yield the
same number of estimable main effects an two-factor interactions when considered in the
context of the semi-foldover design.

We note that in general, given an initial 20"*P)~(P+k) design d, there is more than
one choice of block generator in G,(d) to identify as an added factor in the reduced
2m+p=D=(p=1+k+D design as d(1) in the previous example. In general, these different
choices lead to different semi-foldover designs having different estimability properties. We
illustrate this by continuing Example 4.1.
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Example 4.1. Continued.

1. Suppose in the original design d, we select 12 from G,(d) as an added factor generator
to obtain the 2[6+2-DI=[2=D+C+D] degion d(1) having G,(d(1)) = {12, 1235, 1246, 35,
46, 3456, 124546}, and G,(d(1)) = {234}.

2. From d(1), for the same purpose as we showed in step 2 in the earlier example, we
foldover factors 2, 5, and 6 in d(1) to obtain d(2) having G (dQ2) = {—12, 1235, 1246,
—35, —46, 3456, —123456}, and G,(d(2)) = {234}. Then the combined design D(1)

(Zg;) has G,(D(1)) = {1235, 1246, 3456} and G,(D(1)) = {12, 134, 234}. We
note that D(1) has exactly the same alias structure as d and exactly the same estimable
main effects and two-factor interactions. For example, 12, 35, and 46 are not estimable
in D(1) because they are completely confounded with the mean in d(1) and d(2).

_ _ d(l)
3. To obtain the semi-foldover design D corresponding to d(1), we let D = ( d(2) ) where
d(y

d(l)/ is obtained from d(1) by folding over factors 5 and 6 in d(1).

We note that D above has fewer estimable main effects and two-factor interactions
than does D. To see this, we obtain the weighted treatment defining relations group for D
as above:

G, (d(1)) = {12, 1235, 1246, 35, 46, 3456, 123456}
G, (d(2)) = {—12, 1235, 1246, — 35, — 46, 3456, — 123456}

G, (m) — {12, — 1235, — 1246, — 35, — 46, 3456, 123456 .

Now, assigning a weight of :t% to each word in G,(d(1)), G,(d(2)), and G,(d(1)’) and
adding the corresponding weighted words, we obtain the weighted group

G, (15) = {(%) 12, <;> 1235, (3) 1246, G) 35, (-%) 46, 3456, (%) 123456}.

The weighted alias classes of G,(B) (excluding all third and higher order interactions)
are

We note that 12, 35, and 46 are completely confounded with the mean in m, E,
and m,) hence are not estimable. From the above weighted alias sets, the number of
estimable main effects and two-factor interactions is again the sum of the ranks of the
squared matrices occurring on the main diagonal of the information matrix for main effects
and two-factor interactions under model (2.1) and D which is easily seen to be 14. Thus
we see that D yields more estimable main effects and two-factor interactions than does D.

Comment. We again observe that all of the MA optimal foldover plans when ap-
plied to d(1) in the above example result in the same number of estimable effects in the
corresponding semi-foldover design.
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Based on the previous example, we suggest the following procedure for constructing
a follow-up semi-foldover design.

1) Select an initial 2"+P)~(P*+5 design d using some optimality criterion.

2) From G(d), select a generator [y - - -[;b; = g; and from g; identify a basic factor from
d, say m—k, as an added factor and then use g; (after eliminating b; from the word)
along with the other generators of d in G,(d) to form a new 2" +(P=DI=l(p=D+k+D]
design d(1). We observe that G,(d(1)) will have all words in it that can be obtained
by taking products of generators in G,(d),other than g, i.e., G,(d(1)) is what is left in
Gp(d) after eliminating all words in G,(d) containing g; in their generator product.

d(l)
3) Construct the combined design D = ( d(2) ), where: (4.2)
d(ly
a. d(2) is obtained from d(1) by folding over m—k and all other added factor generators
in d(1) that contain m—k as part of their generating interaction; and
b. d(1) is obtained from d(1) by folding over those added factors that correspond to one
of the MA optimal foldover plans as given in Li and Jacroux (2007) corresponding
to d.

Comment. We note that in the construction process (4.2) just described, all of d(1),
d(2), and d(1) have the same blocking scheme.
Example 4.2

1. Consider a 242~ design® with G,(d) = {1235, 1246, 1347, 3456, 2457, 2367,
1567} and G,(d) = {12, 13, 23}.

2. Select generator g; = 12 from G,(d) and form the 2[4+C-DI=[C=D+G+DI desion d(1)

having G, (d(1)) = { 1235, 1246, 1347, 3456, 2457, 2367, 1567

! 12, 35, 46, 2347, 123456, 1457, 1367, 2567

row in G,(d(1)) is obtained from G,(d) and the second row from multiplying G,(d) by

8i1-

}. Observe that the first

d(l)
3. Construct the combined design D=(d®2)).
d(1y
a) Foldover factors 1, 3, and 6 in d(I) and obtain d(2) withG,(d(2)) =
1235, 1246, 1347, 3456, 2457, 2367, 1567
{12, 235, —46, —2347, — 123456, — 1457, —1367, —2567) Such that Gi(d(2))
differs from G,(d(1)) only by the signs in its second row. Factors 1, 3, and 6 were
folded over for the sign-changing purpose as in Example 4.1.
b) Fold over factors 5, 6, and 7 in d(I) and obtain d(1) withG,(d(1)) =
—1235, — 1246, — 1347, 3456, 2457, 2367, — 1567
{ 12, —35, —46, —2347, 123456, 1457, 1367, —2567 }
and 7 corresponds to an MA optimal foldover plan as given in Li and Jacroux (2007).
¢) Combine d(1), d(2), and d(1) and form D. Add a weight of :F% to each word
of G,(d(1)), G,(d(2)), and G,(d(1). Add the corresponding words together and
obtain the weighted group G,(D) = {(3)1235, (3)1246, ()1347, 3456, 2457, 2367,
(D1567, (3)12, (—1)35, (—3)46, (—1)2347, (3)123456, (3)1457, (3)1367}.

. Folding over factors 5, 6,

ZBasic factors: 1, 2, 3, 4; added factors: 5 = 123, 6 = 124, and 7 = 134; and blocking factors:
by =12 and b, = 13.
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d) Using G(D), the sets of effects that are fully and partially confounded with one
another are easy to determine and that the number of estimable main effects and two
factor interactions in D is 13.

With regard to the construction process outlined in (4.2) above, there are essentially
two questions to consider once the initial 2"+~ design d is selected.

1. Which generator from G(d) should be used to form the 20" +(P~DI=l(p=D+k+DI design
d(1) (along with which basic factor in this generator to identify as an added factor in
d().)

2. Which MA optimal foldover plan given in Li and Jacroux (2007) for d to apply to d(1)
to optimize the number of estimable main effects and two-factor interactions in D =

d(1)
(d@2)).
d(y

With regard to the above questions, we make the following observations.

1. The choice of a generator from d to form d(1) can make a difference as illustrated
in Example 4.1. Thus it may be necessary to try all possible generators from G(d)
to find the one which optimizes the number of estimable main effects and two-factor
interactions in D of (4.2).

2. Once the generator from G;(d) has been selected, any of the basic factors from d in the
generator can be selected as an added factor in d(1). Without loss of generality, let m-k
denote the basic factor in d selected as an added factor in d(1). To obtain d from d(1),
simply form d(2) by folding over added factor m-k in d(1) along with all other added

d(l)

a2’
then has the same treatment defining relations group as d as well as essentially the same
blocking scheme.

3. To obtain d(1) from d(1) in construction process (4.2), the authors have found by
exhaustive search that applying any of the MA-optimal foldover plans to d(1) to get
d(1) yields the same number of estimable effects for D in (4.2). A theoretical proof of
this finding has not been found.

4. All two-factor interactions that are confounded with block effects or the overall mean
in d(1) remain confounded in D and are not estimable in D. We also note that, as in
Example 4.1, the effects in G,(d(1)) and the weighted class G,(D) are exactly the same.

factors in d(1) that contain factor m-k in their generator interaction. The design (

Using the above construction process (4.2), we now give a Proposition which provides
sufficient conditions for the semi-foldover design D to yield as many estimable main
effects and two-factor interactions as the full foldover design D. However, before giving
the Proposition, we introduce some additional notation.

Consider the 2" +P=DI=l(p=D+*+D] degign d(1), the 2/ +HP=DI=I(p=D+*+D] degion
D and D in construction process (4.2). We have the following easily established facts
concerning the alias sets in each of the designs.

1. The alias sets in d(1) are exactly the same as the “weighted” alias sets in D. The only
difference is that all interactions in an alias set of d(1) are totally confounded with each
{{other while an interaction in an alias set of D may be totally or partially confound
with other interactions in the alias set.

2. If two interactions are totally confounded in D, then they are totally confounded in D
and members of the same alias set in D.
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3. Each alias set in d(1) (hence in D) of size 2¥*! is the union of four mutually exclusive
alias sets of size 2¢~! from the full foldover design D.

Example 4.2. Continued. To illustrate fact 3 just given above, ob-
serve that the alias set of interaction 14 in d(1) consists of the ef-
fects {14,2345,26,37,1356,1257,123467,4567,24,1345,16,1237,2356,57,3467,124567 }.
The full foldover design D obtained after folding over factors 4, 5 and 6 in d has G(D) =
{3456,2457,2367}. Hence, we see that the alias set of interaction 14 in d(1) is the union
of the four alias sets {14,1356,1257,123467}, {26,2345,4567,37}, {24,2356,57,3467},
{16,1345,124567,1237} from D.

Using these facts, we establish the following proposition.

Proposition 4.1 In construction process (4.2), consider the designs d(1), D and D as
above. If each alias set in d(1) containing a main effect or two-factor interaction is the union
of four alias sets from D, at most three of which contain a main effect or interaction, then
D allows for estimation of as many main effects and interactions as does D.

Proof. In Model (2.1) under D, the number of estimable main effects and two factor
interactions in D is the same as the number of the 2”7 **! alias sets in D that contain a main
effect or two-factor interaction. Now consider design D. Each “weighted” alias set in D
has the same members as the corresponding alias set in d(1). Consider model (2.1) under
D. Let o be a main effect or 2-factor interaction in D and let A, (D) be its corresponding
“weighted” alias set and note that, as observed above,

Aq (D) = Uj_, Ap (D), where

B; is an interaction in D and A (D) is its corresponding alias set in D. Then only one
element from each A g, (D) is estimable in D and that single element is partially confounded
with « as well as partially confounded with any other interaction from a different alias set.
Now, under the assumption in the Proposition, at most three of the alias sets from A g, (D)
contain a main effect or two factor interaction. Without loss of generality, assume there are
three such alias sets and they are Ag, (D), 1= 1,2, 3 and from each such alias set, select y;
= o and y», y3 which are either main effects or two factor interactions. Let X,,, X,,, X,,

be the columns in Model (2.1) under D corresponding to X,,, X,,, X,,. Then we note that

Yo Y2

X;_Xy. = 20m+p)=(p+k) | p(m+p)=(p+k+1) gng
| X!, X,,| =200~ HED fori, j = 1, 2, 3, i #].

Using these facts, it follows that the 33 matrix on the main diagonal of the reduced
normal equations for main effects and two-factor interaction corresponding to y, y», and
y3 under D has off diagonal elements such that the sum of the absolute values of the off-
diagonal elements in each row is smaller than the corresponding diagonal element. Such
matrices are well known to be nonsingular, e.g., see Graybill (2001), hence each of yy, y»,
and y; are estimable in D as well as D. Since a similar argument can be made for each
such weighted alias set A, (D) = U}_, Ap (D) and each number 1, 2, or 3 of the A, (D)
containing a main effect or two-factor interaction, it follows that the number of main effects
and two-factor interactions estimable in both D and D is the same.

Using the sufficient conditions given in the previous proposition, it is relatively simple
to identify which 2"*P)~(*h designs are such that D and D have the same number of
estimable main effects and two-factor interactions.
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5. The Tables

In the Appendix, we give Tables 1, 2, and 3 corresponding to regular blocked FF designs
having 16, 32, and 64 runs, respectively. The first column of each table gives the same
labeling to the initial 2"+P~(P+%) design being considered as given in Sun et al. (1997).
The second and fourth columns give the word generators for G,(d) and G,(d) whereas the
third and fifth columns give the word length pattern vectors of G;(d) and G, (d) U [GX »(d).
In the sixth column, the MA-optimal foldovers 8,4 are given and the word length vector
for G;(D(8p14)) is given in column seven. The generator from G,(d) used to obtain d(1)
in construction process (4.2) is given in column 8 and the MA-optimal foldover from d
used to obtain d(1)’ from d(1) is given in column 9. Finally, the number of estimable main
effects and two-factor interactions for G,(D(8374)) is given in column 10 and the number
of estimable main effects and two-factor interactions for D from (4.2) is given in column
11.

6. Major Findings

For the 16 run blocked FF designs given in Table 1, 11 out of the 38 designs considered
yielded semi-foldovers that gave as many estimable main effects and two-factor interactions
as the MA-optimal full foldover design. However, the semi-foldover design in 15 other cases
in Table 1 yielded a number of estimable main effects and two-factor interactions that were
within two of the corresponding MA-optimal full foldover design. We also observe that 15
of the semi-foldover designs D given in Table 1 are saturated, i.e., the number of estimable
main effects and two-factor interactions in D is equal to the number 24 of runs in D minus
the number of blocks. Finally, we note that any of the designs D given in this table can also
be viewed as a possible alternative blocked 2-level FF design to be used in an experimental
situation requiring 24 runs.

For the 32 run blocked FF designs given in Table 2, the semi-foldover process is much
more effective as 44 out of the 58 designs considered yielded semi-foldovers that gave as
many estimable main effects and two-interactions as the MA-optimal full foldover design.
In addition, of the remaining 14 designs considered, only three full-foldover designs yielded
three or more estimable main effects and two-factor interactions than the corresponding
semi-foldover design. We again note that all of the designs D given in this table can be
viewed as a possible blocked two-level FF design to be used in an experimental setting
where 48 runs are required.

In Table 3, for all 50 64-run designs considered, the semi-foldover combined design
yielded as many estimable main effects and two-factor interactions as the full-foldover
combined design. This is in line with our general finding that when the number of main
effect factors is not large compared to the number of runs, the semi-foldover technique is
as useful as the full-foldover for generating additional estimable two-factor interations.
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