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On the Use of Semi-folding in Regular Blocked
Two-level Factorial Designs

YIBING OLIVER CHEN AND MIKE JACROUX

Department of Statistics, Washington State University, Pullman, Washington,
USA

In this article, we consider experimental situations where a blocked regular two-level
fractional factorial initial design is used. We investigate the use of the semi-fold tech-
nique as a follow-up strategy for de-aliasing effects that are confounded in the initial
design as well as an alternative method for constructing blocked fractional factorial
designs. A construction method is suggested based on the full foldover technique and
sufficient conditions are obtained when the semi-fold yields as many estimable effects
as the full foldover.

Keywords Foldover design; Minimum aberration; Maximal rank-minimum aberration;
Word pattern.

Mathematics Subject Classification Primary 62K15; Secondary 62K05.

1. Introduction

In experimental situations where a two-level fractional factorial (FF) design is initially
used to identify influential system variables, it is often necessary to use a follow-up design
to increase precision of the treatment effects or gain additional information about the
experimental process by de-aliasing effects confounded in the initial design. One type of
follow-up strategy mentioned in many textbooks and which has been studied extensively
in recent years is the “foldover” technique. In using this technique, a “foldover design”
is used reversing the signs of one or more factors in the initial design. By adding the
“foldover design” to the initial design, an overall combined design is often obtained which
has higher resolution and allows the estimation of more effects than the initial design. The
construction of optimal “foldover” designs has been studied by Li and Lin (2003) and Li
and Mee (2002) in cases where the initial design was a regular two level FF. More recently,
the “foldover” follow-up strategy has been considered in experimental situations where the
initial design is a regular blocked two-level FF design, i.e., see Li and Jacroux (2007) and
Wu et al. (2010), and the follow-up “foldover” blocked factorial is obtained as described
above and has the same blocking scheme as the initial design. However, as pointed out in
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Mee and Peralta (2000), one problem with the foldover technique is that it is very “degrees
of freedom inefficient”, i.e., if the initial and foldover design each have n runs, then addition
of the foldover design provides relatively few additional estimable effects. In fact, Mee and
Peralta (2000) found that addition of the foldover design with n runs generally provided
fewer than n

2 additional degrees of freedom for the estimation of two-factor interactions.
To solve this problem, Mee and Peralta (2000) investigated the use of a “semi-fold design”
as a follow-up design. A “semi-fold design” is obtained by taking half the runs from the
initial design but changing the sign of one or more factors in these runs. Mee and Peralta
(2000) found that by appropriately selecting the “semi-fold” follow-up design, the resulting
combined design generally yielded as many degrees of freedom for the estimation of two-
factor interactions as a corresponding “full foldover” design having n runs. In this paper, we
consider the use of the “semi-fold technique” in relation to constructing follow-up designs
for blocked regular FF initial designs as well as a method for constructing alternative
blocked FF designs. We show that in general, when the number of added factors is not too
large, semi-fold follow up designs yield generally as many estimable two-factor interactions
as do complete foldover designs. However, when larger numbers of factors are involved,
the semi-fold process typically allows for the estimability of fewer two-factor interactions
than does a full foldover design.

2. Notation and Definition

In this section, we give the basic definitions and notation that are used throughout the
sequel.

We shall henceforth represent an arbitrary two-level FF design d by an n × m matrix
Xd = (xd1 , · · ·, xdm

) whose columns xdi
have entries +1 or −1. Each row of Xd corresponds

to a run in d and each column to an experimental factor. An orthogonal two-level main
effects design satisfies X′

dXd = n Im where X′
d denotes the transpose of Xd and Im is the

m × m identity matrix.
In this article, we will be considering what are typically referred to as regular 2m−k

FF designs. A 2m−k regular FF design has m factors and 2m−k runs. Of the m factors, there
are m − k factors, which we shall assume are labeled 1, · · ·, m − k, which are called basic
factors and are such that the design contains a complete factorial in these factors. The other
k factors, labeled m − k +1, · · ·,m, are called added factors and are obtained by associating
with each added factor an interaction involving basic factors, i.e., for added factors l =
m − k +1, · · ·,m, l = l1 · · · lt where l1, · · · , lt denote basic factors. For l = m − k +1,
· · ·,m, the strings of factor labels l1 · · · lt l are called treatment defining effects words. The
group formed by taking all possible products among the treatment defining effects words
(according to the rule that if a factor label appears an even number of times in the product it
is eliminated whereas if it appears an odd number of times it is kept) is called the treatment
defining relations group which we denote by Gt (d). Including I, the identity element, a
2m−k design d has 2k words in Gt (d) and the number of factor labels in a word is called the
length of the word.

For given values of m and k, there are typically a large number of 2m−k regular FF
designs that can be constructed using different defining relations. To aid in the construction
of “good” designs, the criteria of resolution and minimum aberration (MA) were introduced.
The resolution of a given design d is given by the length of the shortest word in Gt (d).
However, there are often a number of 2m−k desgins having the same resolution. To select
among the designs having the same resolution a best design, Fries and Hunter (1986)
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proposed a refinement of the resolution criterion which they called MA. For a 2m−k design d,
let Wti (d) be the number of words of length i in Gt (d). Then Wt (d) = (Wt3 (d) , · · · ,Wtm (d))
is called the treatment word length vector of the design. Now, for two designs d1and d2, let
r be the smallest integer such that Wtr (d1) �= Wtr (d2). Then d1is said to have less aberration
than d2 if Wtr (d1) < Wtr (d2). If no design has less aberration than d1, then d1is called an
MA design. Chen et al. (1993) provided a catalog containing many MA designs for various
values of m and k.

In many experimental situations where a 2m−k design is appropriate, blocking is an
effective method for improving the efficiency of an experiment by eliminating sources
of heterogeneity. Blocking can be accomplished in a regular FF design through the use
of blocking factors which are obtained in much the same manner as the added treatment
factors described previously. In particular, a blocking factor bi for i = 1, · · ·, p is obtained
by associating bi with an interaction i1 · · · it among the basic factors ij which has not
already been associated with an added treatment factor. The set of all products that can be
formed between words i1 · · · it bi for i = 1, · · ·, p by the same product rule as described
for Gt (d) is called the block defining relations group of d and is denoted by Gb(d). Finally,
the set of all products that can be formed between words in Gt (d) and Gb(d) is denoted
by Gt×b(d). We will call G(d) = Gt (d) ∪ Gb(d) ∪ Gt×b(d) the defining relations group
for a blocked 2m−k design d and we shall denote a regular 2m−k design that is blocked in
2p blocks as a 2(m+p)−(p+k) design. For a 2(m+p)−(p+k) design d, we use Wbi

(d) to denote
the number of words in Gb(d) ∪ Gt×b(d) containing i treatment letters and call Wb(d) =
(Wb2 (d) , · · · ,Wbm

(d)) the block word length vector of d.
Throughout this article, we will consider the situation where a 2(m+p)−(p+k) design

is to be used and where the experimenter is interested in obtaining as much information
on treatment effects and two-factor interactions as possible. We will only be considering
situations in which no main effect is aliased with another main effect or block effect. When
analyzing the data from a given 2(m+p)−(p+k) regular design d, we will assume that three-
factor and higher-order interactions are negligible. Within this context, for given values of
m, k, and p, and a given design d having Xd = (xd1 , · · ·, xdm

), the model for analysis is

Y = Xd1β1 + Xd2β2 + Xd3β3 + ε, (2.1)

where Y is a 2m−k × 1 vector of observations, Xd1 = (12m−k , Xd ), 1p is a p × 1 vector of
1’s, β ′

1 = (β0, β1, · · ·,βm) where β0 represents an overall mean, β1, · · ·,βm are the main

effect parameters, β2 is the vector of (
m

2
) two-factor interaction parameters, Xd2 is the

corresponding two-factor interaction matrix obtained by taking Hadamard products of all
pairs of columns in Xd , β3 is the vector of block parameters having block design matrix
Xd3 , and ε is a vector of uncorrelated random error terms assumed to have mean 0 and
constant variance σ 2.

3. Foldovers for 2m−k and 2(m+ p)−( p+k) designs

In many experimental settings, once a screening experiment has been performed and pos-
sible significant experimental effects identified, a standard follow-up strategy discussed in
many textbooks involves adding a second fraction to help dealias effects associated with
significant contrasts determined from the initial experiment. One type of follow up design
often suggested for usage in such situations is a foldover design which is obtained by
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reversing the signs of one or more columns in Xd of the initial design d. In a 2m−k design,
there are 2m possible ways to generate a foldover design.

With regard to foldover plans for regular 2m−k designs, we will adopt much of the
notation used in Li and Lin (2003). In particular, we will let δ denote a foldover plan where
δ is a listing of the columns of Xd whose signs are to be reversed in the foldover design,
then each foldover design is generated by a foldover plan. The design obtained by joining
the foldover design to the initial design is called the combined design. We will denote the
initial design by d, the foldover design by d ′, and the combined design obtained by joining

d and d ′ by D = (
d

d ′ ).

The foldover process as applied to 2(m+p)−(p+k) designs is similar to that described
above for 2(m−k) designs. When applying the foldover process to a given 2(m+p)−(p+k)

design d, we will use the same notation as described previously for a foldover of a regular
2(m−k) design. We will let δ denote the list of columns from Xd whose signs are reversed to
obtain the foldover design denoted by d ′. As in Li and Jacroux (2007) and Wu et al. (2010),
we will assume the same blocking factors are used to obtain blocks in d ′ as were used in d
and denote the combined design by D. Under these assumptions, we note that Gb(d) and
Gb(d ′) are both the same whereas Gb(D) consists of all those words in Gb(d) along with a
treatment factor generator word from Gt(d) (and all its products with words in Gb(d)) that is
eliminated through the foldover process, i.e., one the the treatment factor generator words
in Gt(d) becomes a block generator word in Gb(D). We shall also use notation such as
Wti (d), Wti (d

′), and Wti (D) to denote the number of words of length i in Gt (d), Gt (d ′), and
Gt (D), respectively, for i = 3, · · ·,m and Wbi

(d), Wbi
(d ′), and Wbi

(D) to denote the number
of words having i treatment factor labels in them in Gb(d) ∪ Gb×t (d), Gb(d ′) ∪ Gb×t (d ′),
and Gb(D) ∪ Gb×t (D), respectively, for i = 2, · · ·,m and finally let Wt (d), Wt (d ′), Wt (D),
Wb(d),Wb(d ′), and Wb(D) denote the various word length vectors corresponding to d, d ′

and D.
For constructing optimal foldover plans for a given 2(m+p)−(p+k) design d, we consider

the primary optimality criterion used in Li and Lin (2003) and Li and Jacroux (2007). This
consists of applying the MA criterion to the defining relations group of D. So for a given
2(m+p)−(p+k) design d, let δ be a foldover plan, let D(δ) be the combined design, and let
Wti (D(δ)) denote the number of words of length i in Gt (D(δ)). The MA criterion is then
defined as follows.

Let δ1 and δ2 be two foldover plans. We say δ1 has less aberration than δ2 if Wti (D(δ1))
= Wti (D(δ2)) for i = 3,· · ·,r-1, and Wtr (D(δ1))<Wtr (D(δ2)). If no foldover plan has less
aberration than δ1, we call δ1 an MA optimal foldover plan for d, which we denote by δ∗

MA.
With regard to actually searching for MA-optimal foldovers, Li and Lin (2003) proved

that for regular FF designs, the actual search could be limited to foldovers only involving
added factors which they called “core” foldovers as all other foldovers are equivalent to
some “core” foldover. It is easily seen using similar arguments that the same holds for
blocked regular FF designs. Using this fact and computer search methods, Li and Jacroux
(2007) found the MA optimal foldover plans for various values of m, p, and k and run sizes
of 16, 32, and 64. Within the context of these MA foldovers, we consider the construction
of semi-foldover designs.

4. Semi-Foldovers

As pointed out in the Introduction, adding a foldover design to an initial regular 2m−k design
is often inefficient in terms of increasing the number of estimable two-factor interactions



Semi-folding 2477

in the combined design. In fact, Mee and Peralta (2000) found that for most resolution 4
2m−kdesigns, it is possible to add half the observations from a foldover design to an initial
design and still realize the same increase in number of estimable two-factor interactions as
with adding the full foldover design. The technique of adding half the observations from a
foldover design to the initial design is called a semi-foldover and the observations added is
termed a semi-foldover design.

In general, the authors have found that the semi-foldover technique does not work
quite as well when applied to 16-run blocked regular FF design as it does for regular FF
designs in terms of generating estimable two-factor interactions but that the technique is
quite effective when applied to blocked FF designs having 32 and 64 runs. In this paper,
we explore under what conditions the semi-foldover process is successful in increasing the
number of estimable two-factor interactions to the same level as in the full foldover process.
We begin with an example.

Example 4.1 Consider the case where an initial 2(6+2)−(2+2) design d is to be run1. The
design that would be recommended in many textbooks has Gt (d) = {1235, 1246, 3456}
and Gb(d) = {134, 234, 12}. An MA optimal foldover design d ′ given in Li and Jacroux
(2007), obtained by folding over factors 5 and 6 in d and maintaining the same blocking
scheme would have Gt (d ′) = {−1235, −1246, 3456} and Gb(d ′) = {134, 234, 12}. The

combined design D = (
d

d ′ ) would have Gt (D) = {3456} and Gb(D) = {134, 234, 12, 1235,

245, 145, 35}. We note that the treatment factor generator word 1235 in d becomes a block
generator word in D. In the combined design D, two-factor interactions 12, 35, and 46 are
all aliased with blocks in d and d ′, and hence are nonestimable in D. Also, we have alias
sets 34 = 56 and 36 = 45 that are the same in both d and d ′, and hence are the same in D.
All other interactions become estimable after adding d ′ to d, thus all main effects and 10
out of 15 two-factor interactions are estimable in D. There is an alternative way of viewing
the above foldover process. We consider this alternative view because (1) it provides a
basis for the semi-foldover technique suggested later by the authors and (2) it allows for the
development of a systematic method for finding the partial confounding scheme (through a
set of weighted defining effect words) associated with the semi-foldover combined designs
generated using the authors’ suggested construction method. In particular, consider the
following.

1. From the original design in d, identify one of the block generators, say b1 = 134, as an
added factor generator (thus leaving the blocking generator to be 234) in the 2(6+1)−(1+3)

design d(1) having Gt (d(1)) = { 1235, 1246, 3456
134, 245, 236, 156

} and Gb(d(1)) = {234}.

2. To obtain a design which is essentially equivalent to d above, foldover factors 4 and 6

in d(1) to obtain d(2) having Gt (d(2)) = { 1235, 1246, 3456
−134,−245,−236,−156

} and Gb(d(2)) =
{234}. The reason for folding overs factors 4 and 6 is to generate d(2) such that its first
row is exactly the same as d(1) and its second row has signs opposite to those in d(1)

such that the combined design D(1) = (
d(1)
d(2)

) has Gt (D(1)) = {1235, 1246, 3456} and

Gb(D(1)) = {234, 134, 12}. We note that D(1) has exactly the same alias structure as d
and exactly the same estimable main effects and two factor interactions.

1Basic factors: 1, 2, 3, 4; added factors: 5 = 123, 6 = 124; and blocking factors: b1 = 134 and
b2 = 234.
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3. To obtain a design D(2) which is essentially equivalent to D in the previous foldover

process, foldover factors 5 and 6 in D(1) to obtain D(1)′ and let D(2) = (
D(1)
D(1)′ ). Unlike

the foldover plan in step 2, the foldover plan in this step is a MA optimal foldover
plan given in Li and Jacroux (2007). We note D(2) and D have exactly the same alias
structure and the same estimable main effects and two factor interactions. We also note

that applying the foldover process to D(1) = (
d(1)
d(2)

) to get D(2) is equivalent to folding

over factors 5 and 6 in d(1) and d(2) and getting d(1)′ and d(2)′ having Gt (d(1)′) =
{134, −1235, −1246, −245, −236, 3456, 156}, Gb(d(1)′) = {234} and d(2)′ having
Gt (d(2)′) = {−134, −1235, −1246, 245, 236, 3456, −156}, Gb(d(2)′) = {234}, and

D(2) =

⎛
⎜⎜⎝

d(1)
d(2)
d(1)′

d(2)′

⎞
⎟⎟⎠.

At this point, we observe that if in D(2) we only keep the runs corresponding to

d(1), d(2), and d(1)′, then the resulting design D̃ = (
d(1)
d(2)
d(1)′

) has the same estimable

main effects and two-factor interactions as does D(2), but the estimates are not orthogonal
to one another as they are in D(2). Thus, in this case, adding the semi-foldover design
d(1)′ to D(1) to get D̃ is as effective as adding all the observations in D(1)′ to obtain D
(2).

To obtain the full and partial aliasing scheme for effects in D̃ we consider a weighted
treatment defining relations group for D̃. To obtain this weighted treatment group, we
observe that

Gt (d(1)) = {134, 1235, 1246, 245, 236, 3456, 156}
Gt (d(2)) = {−134, 1235, 1246, −245, −236, 3456,−156}
Gt (d(1)′) = {134,−1235,−1246,−245,−236, 3456, 156}

and assign a weight of ∓ 1
3 to each word in Gt (d(1)), Gt (d(2)), and Gt (d(1)′ depending on

whether the word has a ∓1 sign in front of it. We then add the corresponding words together
to obtain the weighted group Gt (D̃) = {( 1

3 )134, ( 1
3 )1235, ( 1

3 )1246, (− 1
3 )1245, (− 1

3 )236,
3456, ( 1

3 )156}. We observe that other than the weights, the effects appearing in Gt (D̃) are
exactly the same as the effects appearing in Gt (d(1)). The reason that the weight of ∓ 1

3 is
assigned to each word in Gt(d(1)), Gt(d(2)), and Gt(d(1)’) is so that when d(1), d(2), and
d(1)’ are added together to get D̃, the weights associated with the corresponding words
in Gt (D̃) reflect the amount of confounding between the main effects and interactions
associated with that word. For example, the word 1235 in Gt (D̃) has a weight of 1/3
indicating that the pairs of effects {12, 35}, {13, 25}, and {15, 23} are only 1/3 partially
confounded with each other. On the other hand, the word 3456 in Gt (D̃) has a weight of 1
indicating that the pairs of effects {34, 56}, {35, 46}, and {36, 45} are fully confounded
with one another in D̃. Using this weighting method, to obtain the effects confounded
with any main effect or two-factor interaction in D̃, we simply multiply that effect by all
of the words and their weights in Gt (D̃). For example, the effects confounded with main
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effect 1 are

1 =
(

1

3

)
34 =

(
1

3

)
235 =

(
1

3

)
246 =

(
−1

3

)
245 =

(
−1

3

)

1236 = 13456 =
(

1

3

)
56.

Any interaction in the alias set of 1 with a weight of ∓ 1
3 indicates that 1 is partially

confounded with that interaction whereas any interaction with a weight of 1 indicates
that main effect 1 is totally confounded with that interaction. From this, we see that 1
is partially confounded with two-factor interactions 34 and 56. Again we note that since
the effects occurring in the weighted group Gt (D̃) and Gt (d(1)) are the same, the alias
set corresponding to 1 is the same in both D̃ and d(1) with the exception of the assigned
weights in D̃. The meaning of the above set of weighted aliases in terms of the information
matrix for main effects and two-factor interactions in model (2.1) is that the column of
XD̃1

corresponding to main effect 1 has an inner product of 8 with the columns of XD̃2

corresponding to interaction 34 and 56 and 0 inner-product with all other columns. Similarly,
the weighted alias set for 36 is

36 =
(

1

3

)
146 =

(
1

3

)
1256 =

(
1

3

)
1234 =

(
−1

3

)
123456 =

(
−1

3

)

2 = 45 =
(

1

3

)
135

from which we see that 36 is partially confounded with main effect 2 and is fully confounded
with two-factor interaction 45. The meaning of this weighted alias set in terms of the
information matrix for main effects and two-factor interactions is as above with main effect
1. Overall, the information matrix for main effects and two-factor interactions under model
(2.1) and D̃ will consist of a series of 3×3 matrices on the main diagonal (one for each
weighted alias set) and zeros elsewhere. We do not include columns in XD̃2

of model (2.1)
for two-factor interactions 12, 35 and 46 because they are completely confounded with
blocks in d(1), d(2), and d(1)′ and hence are nonestimable. The total number of estimable
main effects and two-factor interactions in D̃ is simply the sum of the ranks of the square
matrices appearing on the main diagonal of the information matrix of D̃ for main effects
and two-factor interactions which is easily seen to be 18.

Comment. As noted previously, there is often more than one foldover plan which is
MA optimal for a given 2(m+p)−(p+k) design d. In the above example, folding over factor 5,
factor 6, or factors 5 and 6 together all lead to MA optimal combined designs. However,
in terms of the semi-foldover plan given above, all these optimal foldover plans yield the
same number of estimable main effects an two-factor interactions when considered in the
context of the semi-foldover design.

We note that in general, given an initial 2(m+p)−(p+k) design d, there is more than
one choice of block generator in Gb(d) to identify as an added factor in the reduced
2(m+p−1)−(p−1+k+1) design as d(1) in the previous example. In general, these different
choices lead to different semi-foldover designs having different estimability properties. We
illustrate this by continuing Example 4.1.
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Example 4.1. Continued.

1. Suppose in the original design d, we select 12 from Gb(d) as an added factor generator
to obtain the 2[6+(2−1)]−[(2−1)+(2+1)] design d(1) having Gt (d(1)) = {12, 1235, 1246, 35,
46, 3456, 124546}, and Gb(d(1)) = {234}.

2. From d(1), for the same purpose as we showed in step 2 in the earlier example, we
foldover factors 2, 5, and 6 in d(1) to obtain d(2) having Gt (d(2)) = {−12, 1235, 1246,
−35, −46, 3456, −123456}, and Gb(d(2)) = {234}. Then the combined design D(1)

= (
d(1)
d(2)

) has Gt (D(1)) = {1235, 1246, 3456} and Gb(D(1)) = {12, 134, 234}. We

note that D(1) has exactly the same alias structure as d and exactly the same estimable
main effects and two-factor interactions. For example, 12, 35, and 46 are not estimable
in D(1) because they are completely confounded with the mean in d(1) and d(2).

3. To obtain the semi-foldover design ˜̄D corresponding to d(1), we let ˜̄D = (
d(1)
d(2)
d(1)

′
) where

d(1)
′
is obtained from d(1) by folding over factors 5 and 6 in d(1).

We note that ˜̄D above has fewer estimable main effects and two-factor interactions
than does D̃. To see this, we obtain the weighted treatment defining relations group for ˜̄D
as above:

Gt

(
d(1)

) = {12, 1235, 1246, 35, 46, 3456, 123456}
Gt

(
d(2)

) = {−12, 1235, 1246, − 35, − 46, 3456, − 123456}
Gt

(
d(1)

′) = {12, − 1235, − 1246, − 35, − 46, 3456, 123456} .

Now, assigning a weight of ± 1
3 to each word in Gt (d(1)), Gt (d(2)), and Gt (d(1)′) and

adding the corresponding weighted words, we obtain the weighted group

Gt

(˜̄D)
=

{(
1

3

)
12,

(
1

3

)
1235,

(
1

3

)
1246,

(
1

3

)
35,

(
−1

3

)
46, 3456,

(
1

3

)
123456

}
.

The weighted alias classes of Gt (˜̄D) (excluding all third and higher order interactions)
are

1 = (
1
3

)
2, 3 = (− 1

3

)
5, 4 = (− 1

3

)
6, 13 = (

1
3

)
23 = (

1
3

)
25 = (− 1

3

)
15, 14 = (

1
3

)
24 = (

1
3

)
26 = (− 1

3

)
16, 34 = (− 1

3

)
45 = (− 1

3

)
36 = 56.

We note that 12, 35, and 46 are completely confounded with the mean in d(1), d(2),
and d(1)

′
) hence are not estimable. From the above weighted alias sets, the number of

estimable main effects and two-factor interactions is again the sum of the ranks of the
squared matrices occurring on the main diagonal of the information matrix for main effects
and two-factor interactions under model (2.1) and ˜̄D which is easily seen to be 14. Thus
we see that D̃ yields more estimable main effects and two-factor interactions than does ˜̄D.

Comment. We again observe that all of the MA optimal foldover plans when ap-
plied to d(1) in the above example result in the same number of estimable effects in the
corresponding semi-foldover design.
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Based on the previous example, we suggest the following procedure for constructing
a follow-up semi-foldover design.

1) Select an initial 2(m+p)−(p+k) design d using some optimality criterion.
2) From Gb(d), select a generator l1 · · · lt bj = g1 and from g1 identify a basic factor from

d, say m−k, as an added factor and then use g1 (after eliminating bj from the word)
along with the other generators of d in Gt (d) to form a new 2[m+(p−1)]−[(p−1)+(k+1)]

design d(1). We observe that Gb(d(1)) will have all words in it that can be obtained
by taking products of generators in Gb(d),other than g1, i.e., Gb(d(1)) is what is left in
Gb(d) after eliminating all words in Gb(d) containing g1 in their generator product.

3) Construct the combined design D̃ = (
d(1)
d(2)
d(1)′

), where: (4.2)

a. d(2) is obtained from d(1) by folding over m−k and all other added factor generators
in d(1) that contain m−k as part of their generating interaction; and

b. d(1)′ is obtained from d(1) by folding over those added factors that correspond to one
of the MA optimal foldover plans as given in Li and Jacroux (2007) corresponding
to d.

Comment. We note that in the construction process (4.2) just described, all of d(1),
d(2), and d(1)′ have the same blocking scheme.

Example 4.2

1. Consider a 2(4+2)−(2+3) design2 with Gt (d) = {1235, 1246, 1347, 3456, 2457, 2367,
1567} and Gb(d) = {12, 13, 23}.

2. Select generator g1 = 12 from Gb(d) and form the 2[4+(2−1)]−[(2−1)+(3+1)] design d(1)

having Gt (d(1)) = { 1235, 1246, 1347, 3456, 2457, 2367, 1567
12, 35, 46, 2347, 123456, 1457, 1367, 2567

}. Observe that the first

row in Gt (d(1)) is obtained from Gt (d) and the second row from multiplying Gt (d) by
g1.

3. Construct the combined design D̃ = (
d(1)
d(2)
d(1)′

).

a) Foldover factors 1, 3, and 6 in d(1) and obtain d(2) withGt (d(2)) =
{ 1235, 1246, 1347, 3456, 2457, 2367, 1567
−12,−35,−46,−2347,−123456,−1457,−1367,−2567

} such that Gt (d(2))

differs from Gt (d(1)) only by the signs in its second row. Factors 1, 3, and 6 were
folded over for the sign-changing purpose as in Example 4.1.

b) Fold over factors 5, 6, and 7 in d(1) and obtain d(1)′ withGt (d(1)′) =
{−1235, − 1246, − 1347, 3456, 2457, 2367, − 1567

12,−35,−46,−2347, 123456, 1457, 1367,−2567
}. Folding over factors 5, 6,

and 7 corresponds to an MA optimal foldover plan as given in Li and Jacroux (2007).
c) Combine d(1), d(2), and d(1)′ and form D̃. Add a weight of ∓ 1

3 to each word
of Gt (d(1)), Gt (d(2)), and Gt (d(1)′. Add the corresponding words together and
obtain the weighted group Gt (D̃) = {( 1

3 )1235, ( 1
3 )1246, ( 1

3 )1347, 3456, 2457, 2367,
( 1

3 )1567, ( 1
3 )12, (− 1

3 )35, (− 1
3 )46, (− 1

3 )2347, ( 1
3 )123456, ( 1

3 )1457, ( 1
3 )1367}.

2Basic factors: 1, 2, 3, 4; added factors: 5 = 123, 6 = 124, and 7 = 134; and blocking factors:
b1 = 12 and b2 = 13.
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d) Using Gt(D̃), the sets of effects that are fully and partially confounded with one
another are easy to determine and that the number of estimable main effects and two
factor interactions in D̃ is 13.

With regard to the construction process outlined in (4.2) above, there are essentially
two questions to consider once the initial 2(m+p)−(p+k) design d is selected.

1. Which generator from Gb(d) should be used to form the 2[m+(p−1)]−[(p−1)+(k+1)] design
d(1) (along with which basic factor in this generator to identify as an added factor in
d(1).)

2. Which MA optimal foldover plan given in Li and Jacroux (2007) for d to apply to d(1)
to optimize the number of estimable main effects and two-factor interactions in D̃ =

(
d(1)
d(2)
d(1)′

).

With regard to the above questions, we make the following observations.

1. The choice of a generator from d to form d(1) can make a difference as illustrated
in Example 4.1. Thus it may be necessary to try all possible generators from Gb(d)
to find the one which optimizes the number of estimable main effects and two-factor
interactions in D̃ of (4.2).

2. Once the generator from Gb(d) has been selected, any of the basic factors from d in the
generator can be selected as an added factor in d(1). Without loss of generality, let m-k
denote the basic factor in d selected as an added factor in d(1). To obtain d from d(1),
simply form d(2) by folding over added factor m-k in d(1) along with all other added

factors in d(1) that contain factor m-k in their generator interaction. The design (
d(1)
d(2)

)

then has the same treatment defining relations group as d as well as essentially the same
blocking scheme.

3. To obtain d(1)′ from d(1) in construction process (4.2), the authors have found by
exhaustive search that applying any of the MA-optimal foldover plans to d(1) to get
d(1)′ yields the same number of estimable effects for D̃ in (4.2). A theoretical proof of
this finding has not been found.

4. All two-factor interactions that are confounded with block effects or the overall mean
in d(1) remain confounded in D̃ and are not estimable in D̃. We also note that, as in
Example 4.1, the effects in Gt (d(1)) and the weighted class Gt (D̃) are exactly the same.

Using the above construction process (4.2), we now give a Proposition which provides
sufficient conditions for the semi-foldover design D̃ to yield as many estimable main
effects and two-factor interactions as the full foldover design D. However, before giving
the Proposition, we introduce some additional notation.

Consider the 2[m+(p−1)]−[(p−1)+(k+1)] design d(1), the 2[m+(p−1)]−[(p−1)+(k+1)] design
D and D̃ in construction process (4.2). We have the following easily established facts
concerning the alias sets in each of the designs.

1. The alias sets in d(1) are exactly the same as the “weighted” alias sets in D̃. The only
difference is that all interactions in an alias set of d(1) are totally confounded with each
{{other while an interaction in an alias set of D̃ may be totally or partially confound
with other interactions in the alias set.

2. If two interactions are totally confounded in D̃, then they are totally confounded in D
and members of the same alias set in D.



Semi-folding 2483

3. Each alias set in d(1) (hence in D̃) of size 2k+1 is the union of four mutually exclusive
alias sets of size 2k−1 from the full foldover design D.

Example 4.2. Continued. To illustrate fact 3 just given above, ob-
serve that the alias set of interaction 14 in d(1) consists of the ef-
fects {14,2345,26,37,1356,1257,123467,4567,24,1345,16,1237,2356,57,3467,124567}.
The full foldover design D obtained after folding over factors 4, 5 and 6 in d has Gt(D) =
{3456,2457,2367}. Hence, we see that the alias set of interaction 14 in d(1) is the union
of the four alias sets {14,1356,1257,123467}, {26,2345,4567,37}, {24,2356,57,3467},
{16,1345,124567,1237} from D.

Using these facts, we establish the following proposition.
Proposition 4.1 In construction process (4.2), consider the designs d(1), D̃ and D as

above. If each alias set in d(1) containing a main effect or two-factor interaction is the union
of four alias sets from D, at most three of which contain a main effect or interaction, then
D̃ allows for estimation of as many main effects and interactions as does D.

Proof . In Model (2.1) under D, the number of estimable main effects and two factor
interactions in D is the same as the number of the 2m−k+1 alias sets in D that contain a main
effect or two-factor interaction. Now consider design D̃. Each “weighted” alias set in D̃

has the same members as the corresponding alias set in d(1). Consider model (2.1) under
D̃. Let α be a main effect or 2-factor interaction in D̃ and let Aα(D̃) be its corresponding
“weighted” alias set and note that, as observed above,

Aα

(
D̃

) = ∪4
i=1 ABi

(D) , where

Bi is an interaction in D and ABi
(D) is its corresponding alias set in D. Then only one

element from each ABi
(D) is estimable in D and that single element is partially confounded

with α as well as partially confounded with any other interaction from a different alias set.
Now, under the assumption in the Proposition, at most three of the alias sets from ABi

(D)
contain a main effect or two factor interaction. Without loss of generality, assume there are
three such alias sets and they are ABi

(D), i = 1, 2, 3 and from each such alias set, select γ1

= α and γ2, γ3 which are either main effects or two factor interactions. Let Xγ1 , Xγ2 , Xγ3

be the columns in Model (2.1) under D̃ corresponding to Xγ1 , Xγ2 , Xγ3 . Then we note that

X′
γi
Xγi

= 2(m+p)−(p+k) + 2(m+p)−(p+k+1) and∣∣X′
γi
Xγj

∣∣ = 2(m+p)−(p+k+1) fori, j = 1, 2, 3, i �= j.

Using these facts, it follows that the 3×3 matrix on the main diagonal of the reduced
normal equations for main effects and two-factor interaction corresponding to γ1, γ2, and
γ3 under D̃ has off diagonal elements such that the sum of the absolute values of the off-
diagonal elements in each row is smaller than the corresponding diagonal element. Such
matrices are well known to be nonsingular, e.g., see Graybill (2001), hence each of γ1, γ2,
and γ3 are estimable in D̃ as well as D. Since a similar argument can be made for each
such weighted alias set Aα

(
D̃

) = ∪4
i=1 ABi

(D) and each number 1, 2, or 3 of the ABi
(D)

containing a main effect or two-factor interaction, it follows that the number of main effects
and two-factor interactions estimable in both D̃ and D is the same.

Using the sufficient conditions given in the previous proposition, it is relatively simple
to identify which 2(m+p)−(p+k) designs are such that D and D̃ have the same number of
estimable main effects and two-factor interactions.
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5. The Tables

In the Appendix, we give Tables 1, 2, and 3 corresponding to regular blocked FF designs
having 16, 32, and 64 runs, respectively. The first column of each table gives the same
labeling to the initial 2(m+p)−(p+k) design being considered as given in Sun et al. (1997).
The second and fourth columns give the word generators for Gt (d) and Gb(d) whereas the
third and fifth columns give the word length pattern vectors of Gt (d) and Gb(d) ∪ G

t×b(d).
In the sixth column, the MA-optimal foldovers δMA are given and the word length vector
for Gt (D(δMA)) is given in column seven. The generator from Gb(d) used to obtain d(1)
in construction process (4.2) is given in column 8 and the MA-optimal foldover from d
used to obtain d(1)′ from d(1) is given in column 9. Finally, the number of estimable main
effects and two-factor interactions for Gt (D(δMA)) is given in column 10 and the number
of estimable main effects and two-factor interactions for D̃ from (4.2) is given in column
11.

6. Major Findings

For the 16 run blocked FF designs given in Table 1, 11 out of the 38 designs considered
yielded semi-foldovers that gave as many estimable main effects and two-factor interactions
as the MA-optimal full foldover design. However, the semi-foldover design in 15 other cases
in Table 1 yielded a number of estimable main effects and two-factor interactions that were
within two of the corresponding MA-optimal full foldover design. We also observe that 15
of the semi-foldover designs D̃ given in Table 1 are saturated, i.e., the number of estimable
main effects and two-factor interactions in D̃ is equal to the number 24 of runs in D̃ minus
the number of blocks. Finally, we note that any of the designs D̃ given in this table can also
be viewed as a possible alternative blocked 2-level FF design to be used in an experimental
situation requiring 24 runs.

For the 32 run blocked FF designs given in Table 2, the semi-foldover process is much
more effective as 44 out of the 58 designs considered yielded semi-foldovers that gave as
many estimable main effects and two-interactions as the MA-optimal full foldover design.
In addition, of the remaining 14 designs considered, only three full-foldover designs yielded
three or more estimable main effects and two-factor interactions than the corresponding
semi-foldover design. We again note that all of the designs D̃ given in this table can be
viewed as a possible blocked two-level FF design to be used in an experimental setting
where 48 runs are required.

In Table 3, for all 50 64-run designs considered, the semi-foldover combined design
yielded as many estimable main effects and two-factor interactions as the full-foldover
combined design. This is in line with our general finding that when the number of main
effect factors is not large compared to the number of runs, the semi-foldover technique is
as useful as the full-foldover for generating additional estimable two-factor interations.

References

Box, G. E. P., Hunter, J. S. (1961). 2k−p fractional factorial designs. Technometrics 3:311–351,
449–458.

Chen, H., Hedayat, A. S. (1996). 2n−m fractional factorial designs with weak minimum aberrations.
Ann. Statist. 24:2536–2540.

Chen, J. (1992). Some results on 2m−k fractional factorial designs and search for minimum aberration
designs. Ann. Statist. 20:2124–2141.



Semi-folding 2485

Chen, J., Sun, D. X., Wu, C. F. J. (1991). Some results on sn−k fractional factorial designs with
minimum aberration and optimal moments. Ann. Statist. 19:1028–1941

Chen, J., Sun, D. X., Wu, C. F. J. (1993). A catalogue of two-level and three-level fractional factorial
designs with small runs. Int. Statist. Rev. 61:131–145.

Cheng, C. S., Steinberg, D. M., Sun, D. X. (1999). Minimum aberration and model robustness for
two-level fractional factorial designs. J. Roy. Statist. Soc. B. 61:85–93.

Franklin, M. F. (1984). Constructing tables of minimum aberration Pn−m designs. Technometrics
26:225–232.

Graybill, F. A. (2001). Matrices with Applications in Statistics. Belmont, CA: Duxbury Press.
Fries, A. W., Hunter, W. G. (1980). Minimum aberration 2k−p designs. Technometrics 22:601–608.
Li, F., Jacroux, M. (2006). Optimal foldover plans for blocks 2m−k fractional factorial designs. J.

Statist. Plann. Inference. 137:1473–1492.
Li, W., Mee, R. W. (2002). Better foldover fractions for resolution III 2k−p designs. Technometrics

44:278–283.
Li, W., Lin, D. K. J. (2003). Optimal foldover plans for two-level fractional factorial designs. Tech-

nometrics 45:142–149.
Meyer, R. D., Steinberg, D. M., Box, G. E. P. (1996). Follow-up designs to resolve confounding in

fractional factorials. Technometrics 38:303–332.
Mukerjee, R., Wu, C. F. J. (2001). Minimum aberration designs for mixed factorials in terms of their

complementary sets. Statist. Sinica II 225–239.
Shah, K. R., Sinha, B. K. (1989). Lecture Notes in Statistics: Theory of Optimal Designs. Berlin:

Springer.
Sitter, R. R., Chen, J., Feder, N. (1997). Fractional resolution and minimum aberration in blocked

2n−k designs. Technometrics 39:382–390.
Suen, C. Y., Chen, H., Wu, C. F. J. (1997). Some identities on 2n−m designs with application to

minimum aberrations. Ann. Statist. 25:1176–1188.
Sun, D. X., Wu, C. F. J., Chen, J. (1997). Optimal blocking schemes for 2n and 2n−p designs.

Technometrics 39:298–307.
Tang, B., Wu, C. F. J. (1996). Characterization of minimum aberration 2n−k designs in terms of their

complementary designs. Ann. Statist. 24:2549–2559.



6.
A

pp
en

di
x

Ta
bl

e
1

Fe
as

ib
ili

ty
fo

r
16

-r
un

bl
oc

ke
d

FF
de

si
gn

s

D
es

ig
n

C
ol

um
n(

t)
W

t(
d)

C
ol

um
n(

b)
W

b
(d

)
δ

∗ M
A

W
t(

D
(δ

∗ M
A

))

G
en

er
at

or
fr

om
G

b
(d

)
fo

r
d(

1)

δ
∗ M

A

fo
ld

ov
er

fo
r

d
(1

)′

Fu
ll

fo
ld

ov
er

es
tim

ab
le

ef
fe

ct
s

Se
m

i-
fo

ld
ov

er
es

tim
ab

le
ef

fe
ct

s

6-
2.

1/
B

1.
1

5
=

12
3

6
=

12
4

0
3

0
0

b 1
=

13
4

0
4

0
0

0
5,

6,
56

0
1

0
0

13
4

56
18

18

6-
2.

2/
B

1.
1

5
=

12
6

=
13

4
1

1
1

0
b 1

=
23

1
2

1
0

0
56

0
0

1
0

23
56

20
19

6.
2.

2/
B

1.
2

5
=

12
6

=
13

4
1

1
1

0
b 1

=
13

2
1

0
1

0
56

0
0

1
0

13
56

19
18

6-
2.

4/
B

1.
1

5
=

12
6

=
13

2
1

0
0

b 1
=

23
4

0
2

2
0

0
56

0
1

0
0

23
4

56
18

18

6-
2.

1/
B

2.
1

5
=

12
3

6
=

12
4

0
3

0
0

b 1
=

13
4

b 2
=

23
4

3
8

0
0

1
5,

6,
56

0
1

0
0

13
4

56
16

16

6-
2.

2/
B

2.
1

5
=

12
6

=
13

4
1

1
1

0
b 1

=
24

b 2
=

12
34

4
5

2
1

0
56

0
0

1
0

12
34

56
17

17

6-
2.

2/
B

2.
2

5
=

12
6

=
13

4
1

1
1

0
b 1

=
13

b 2
=

14
6

3
0

3
0

56
0

0
1

0
13

56
15

15

6-
2.

2/
B

3.
1

5
=

12
3

6
=

12
4

0
3

0
0

b 1
=

13
b 2

=
23

b 3
=

14

14
0

12
0

1
5,

6,
56

0
0

1
0

13
56

6
6

(C
on

ti
nu

ed
on

ne
xt

pa
ge

)

2486



7-
3.

1/
B

1.
1

5
=

12
3

6
=

12
4

7
=

13
4

0
7

0
0

b 1
=

23
4

0
7

0
0

1
5,

56
,5

67
6,

7
56

,6
7

0
3

0
0

0
23

4
56

7
20

20

7-
3.

1/
B

1.
2

5
=

12
3

6
=

12
4

7
=

13
4

0
7

0
0

b 1
=

12
3

0
4

0
1

5,
56

,5
67

6,
7

56
,6

7

0
3

0
0

0
12

56
7

18
16

7-
3.

2/
B

1.
1

5
=

12
6

=
13

7
=

23
4

2
3

2
0

b 1
=

14
1

4
2

0
1

56
7

0
1

2
0

0
14

56
7

24
20

7-
3.

2/
B

1.
2

5
=

12
6

=
13

7
=

23
4

2
3

2
0

b 1
=

24
2

2
2

2
0

56
7

0
1

2
0

0
24

56
7

23
19

7-
3.

3/
B

1.
1

5
=

12
6

=
13

7
=

24

3
2

1
1

b 1
=

34
1

3
3

1
0

56
7

0
2

0
1

0
34

56
7

21
20

7-
3.

3/
B

1.
2

5
=

12
6

=
13

7
=

24

3
2

1
1

b 1
=

23
2

3
1

1
1

56
7

0
2

0
1

0
23

56
7

21
19

7-
3.

4/
B

1.
1

5
=

12
6

=
13

7
=

14

3
3

0
0

b 1
=

23
4

0
4

4
0

0
56

7
0

3
0

0
23

4
56

7
20

20

7-
3.

5/
B

1.
1

5
=

12
6

=
13

7
=

23

4
3

0
0

b 1
=

12
34

0
3

4
0

0
56

7
0

3
0

0
12

34
56

7
20

20

7-
3.

1/
B

2.
1

5
=

12
3

6
=

12
4

7
=

13
4

0
7

0
0

b 1
=

12
b 2

=
13

9
0

12
0

3
0

5,
56

,5
67

,
6,

7,
57

,6
7

0
3

0
0

12
56

7
14

13

7-
3.

2/
B

2.
1

5
=

12
6

=
13

7
=

23
4

2
3

2
0

b 1
=

23
b 2

=
12

34
5

10
4

2
56

7
0

1
2

0
12

34
56

7
21

17

(C
on

ti
nu

ed
on

ne
xt

pa
ge

)

2487



Ta
bl

e
1

Fe
as

ib
ili

ty
fo

r
16

-r
un

bl
oc

ke
d

FF
de

si
gn

s

D
es

ig
n

C
ol

um
n(

t)
W

t(
d)

C
ol

um
n(

b)
W

b
(d

)
δ

∗ M
A

W
t(

D
(δ

∗ M
A

))

G
en

er
at

or
fr

om
G

b
(d

)
fo

r
d(

1)

δ
∗ M

A

fo
ld

ov
er

fo
r

d
(1

)′

Fu
ll

fo
ld

ov
er

es
tim

ab
le

ef
fe

ct
s

Se
m

i-
fo

ld
ov

er
es

tim
ab

le
ef

fe
ct

s

7-
3.

2/
B

2.
2

5
=

12
6

=
13

7
=

23
4

2
3

2
0

b 1
=

24
b 2

=
13

4
6

7
6

4
56

7
0

1
2

0
12

3
56

7
20

18

7-
3.

5/
B

2.
1

5
=

12
6

=
13

7
=

23

4
3

0
0

b 1
=

14
b 2

=
23

4
5

8
4

4
3

56
7

0
3

0
0

23
4

56
7

17
17

7-
3.

1/
B

3.
1

5
=

12
3

6
=

12
4

7
=

13
4

0
7

0
0

b 1
=

12
b 2

=
13

b 3
=

14

21
0

28
0

7
5,

56
,5

67
,

6,
7,

57
,6

7
0

3
0

0
12

56
7

7
7

8-
4.

1/
B

1.
1

5
=

12
3

6
=

12
4

7
=

13
4

8
=

23
4

0
14

0
0

b 1
=

12
4

0
8

0
56

78
,5

6,
57

,5
8,

67
,

68
,7

8

0
6

0
0

12
56

78
19

17

8-
4.

2/
B

1.
1

5
=

12
6

=
13

7
=

14
8

=
23

4

3
7

4
0

b 1
=

12
34

1
7

4
0

56
78

0
3

4
0

12
34

56
78

27
21

8-
4.

2/
B

1.
2

5
=

12
6

=
13

7
=

14
8

=
23

4

3
7

4
0

b 1
=

23
3

3
4

4
56

78
0

3
4

0
23

56
78

26
21

(C
on

ti
nu

ed
on

ne
xt

pa
ge

)

2488



8-
4.

4/
B

1.
1

5
=

12
6

=
13

7
=

23
8

=
12

34

4
6

4
0

0
b 1

=
14

2
4

4
4

2
56

7
0

3
4

0
14

56
7

26
21

8-
4.

6/
B

1.
1

5
=

12
6

=
13

7
=

23
8

=
12

3

7
7

0
0

1
b 1

=
14

1
3

4
4

3
56

7
0

7
0

0
14

56
7

21
21

8-
4.

1/
B

2.
1

5
=

12
3

6
=

12
4

7
=

13
4

8
=

23
4

0
14

0
0

b 1
=

12
b 2

=
13

12
0

24
0

12
56

78
,5

6,
57

,5
8,

67
,

68
,7

8

0
6

0
0

12
56

78
15

14

8-
4.

2/
B

2.
1

5
=

12
6

=
13

7
=

14
8

=
23

4

3
7

4
0

b 1
=

23
b 2

=
24

9
9

12
12

3
56

78
0

3
4

0
23

56
78

22
18

8-
4.

3/
B

2.
1

5
=

12
6

=
13

7
=

24
8

=
34

4
5

4
2

b 1
=

12
4

b 2
=

13
4

7
14

10
8

7
56

78
0

5
0

2
12

4
56

78
20

18

8-
4.

4/
B

2.
1

5
=

12
6

=
13

7
=

23
8

=
12

34

4
6

4
0

b 1
=

14
b 2

=
23

4
8

12
8

12
56

7
0

3
4

0
23

4
56

7
22

18

8-
4.

5/
B

2.
1

5
=

12
6

=
13

7
=

23
8

=
14

5
5

2
2

b 1
=

24
b 2

=
13

4
7

13
10

10
7

56
78

0
5

0
2

13
4

56
78

20
18

(C
on

ti
nu

ed
on

ne
xt

pa
ge

)

2489



Ta
bl

e
1

Fe
as

ib
ili

ty
fo

r
16

-r
un

bl
oc

ke
d

FF
de

si
gn

s

D
es

ig
n

C
ol

um
n(

t)
W

t(
d)

C
ol

um
n(

b)
W

b
(d

)
δ

∗ M
A

W
t(

D
(δ

∗ M
A

))

G
en

er
at

or
fr

om
G

b
(d

)
fo

r
d(

1)

δ
∗ M

A

fo
ld

ov
er

fo
r

d
(1

)′

Fu
ll

fo
ld

ov
er

es
tim

ab
le

ef
fe

ct
s

Se
m

i-
fo

ld
ov

er
es

tim
ab

le
ef

fe
ct

s

8-
4.

1/
B

3.
1

5
=

12
3

6
=

12
4

7
=

13
4

8
=

23
4

0
14

0
0

b 1
=

12
b 2

=
13

b 3
=

14

28
0

56
0

28
56

78
,5

6,
57

,5
8,

67
,

68
,7

8

0
6

0
0

0
12

56
78

8
8

9-
5.

1/
B

1.
1

5
=

12
3

6
=

12
4

7
=

13
4

8
=

23
4

9
=

12
34

4
14

8
0

b 1
=

23
4

4
8

8
4

56
78

0
6

8
0

23
56

78
28

18

9-
5.

2/
B

1.
1

5
=

12
6

=
13

7
=

24
8

=
34

9
=

12
34

6
9

9
6

b 1
=

23
3

7
6

6
7

56
78

9
0

9
0

6
0

23
56

78
9

24
21

D
es

ig
n

C
ol

um
n(

t)
W

t(
d)

C
ol

um
n(

b)
W

b
(d

)
δ

∗ M
A

W
t(

D
(δ

∗ M
A

))
G

en
er

at
or

fr
om

G
b
(d

)
fo

r
d(

1)

δ
∗ M

A

fo
ld

ov
er

fo
r

d
(1

)′

Fu
ll

fo
ld

ov
er

es
tim

ab
le

ef
fe

ct
s

Se
m

i-
fo

ld
ov

er
es

tim
ab

le
ef

fe
ct

s
(C

on
ti

nu
ed

on
ne

xt
pa

ge
)

2490



9-
5.

3/
B

1.
1

5
=

12
6

=
13

7
=

23
8

=
14

9
=

23
4

6
10

8
4

b 1
=

12
34

2
8

8
4

6
56

78
0

1
0

0
4

12
34

56
78

23
21

9-
5.

4/
B

1.
1

5
=

12
6

=
13

7
=

23
8

=
14

9
=

24

7
9

6
6

3
0

b 1
=

13
4

2
7

9
6

4
56

78
9

0
9

0
6

0
13

4
56

78
9

23
21

9-
5.

1/
B

2.
1

5
=

12
3

6
=

12
4

7
=

13
4

8
=

23
4

9
=

12
34

4
14

8
0

4
b 1

=
23

b 2
=

24
12

12
24

24
12

56
78

0
6

8
0

0
23

56
78

24
18

9-
5.

2/
B

2.
1

5
=

12
6

=
13

7
=

24
8

=
34

9
=

12
34

6
9

9
6

0
b 1

=
23

b 2
=

12
4

9
21

18
18

21
56

78
9

0
9

0
6

0
12

4
56

78
9

20
18

2491



Ta
bl

e
2

Fe
as

ib
ili

ty
fo

r
32

-r
un

bl
oc

ke
d

FF
de

si
gn

s

D
es

ig
n

C
ol

um
n(

t)
W

t(
d)

C
ol

um
n(

b)
W

b
(d

)
δ

∗ M
A

W
t(

D
(δ

∗ M
A

))

G
en

er
at

or
fr

om
G

b
(d

)
fo

r
d(

1)

δ
∗ M

A

fo
ld

ov
er

fo
r

d
(1

)′

Fu
ll

fo
ld

ov
er

es
tim

ab
le

ef
fe

ct
s

Se
m

i-
fo

ld
ov

er
es

tim
ab

le
ef

fe
ct

s

7-
2.

1/
B

1.
1

6
=

12
3

7
=

12
45

0
1

2
0

0
b 1

=
13

4
0

2
2

0
0

6,
67

0
0

1
0

0
13

4
67

28
28

7-
2.

1/
B

1.
5

6
=

12
3

7
=

12
45

0
1

2
0

0
b 1

=
12

2
1

0
0

0
1

6,
67

0
0

1
0

0
0

12
67

26
26

7.
2.

3/
B

1.
1

6
=

12
3

7
=

12
4

0
3

0
0

0
b 1

=
13

45
0

0
4

0
0

0
6,

7,
67

0
1

0
0

0
0

13
45

67
25

25

7-
2.

4/
B

1.
1

6
=

12
7

=
13

45
1

0
1

1
0

b 1
=

23
4

0
2

2
0

0
0

67
0

0
0

1
0

23
4

67
28

28

7-
2.

6/
B

1.
1

6
=

12
7

=
13

4
1

1
1

0
0

b 1
=

23
5

0
1

2
1

0
0

67
0

0
1

0
0

23
5

67
28

28

7-
2.

8/
B

1.
1

6
=

12
7

=
13

2
1

0
0

0
b 1

=
23

45
0

0
2

2
0

0
67

0
1

0
0

0
23

45
67

25
25

7-
2.

1/
B

2.
1

6
=

12
3

7
=

12
45

0
1

2
0

0
b 1

=
13

5
b 2

=
23

45
1

6
4

0
1

0
6,

67
0

0
1

0
0

0
23

45
67

27
27

7-
2.

1/
B

2.
3

6
=

12
3

7
=

12
45

0
1

2
0

0
b 1

=
13

4
b 2

=
23

4
2

5
4

0
0

1
6,

67
0

0
1

0
0

0
13

4
67

26
26

7-
2.

3/
B

2.
1

6
=

12
3

7
=

12
4

0
3

0
0

0
b 1

=
12

5
b 2

=
23

45
0

7
4

0
0

1
6,

7,
67

0
1

0
0

0
23

45
67

25
25

(C
on

ti
nu

ed
on

ne
xt

pa
ge

)

2492



7-
2.

4/
B

2.
1

6
=

12
7

=
13

45
1

0
1

1
0

b 1
=

23
5

b 2
=

24
5

1
5

5
1

0
0

67
0

0
0

1
0

0
23

5
67

27
27

7-
2.

5/
B

2.
1

6
=

12
7

=
34

5
1

1
0

0
1

b 1
=

13
4

b 2
=

23
5

0
6

6
0

0
0

67
0

0
0

0
1

13
4

67
28

27

7-
2.

1/
B

3.
1

6
=

12
3

7
=

12
45

0
1

2
0

0
0

b 1
=

23
4

b 2
=

23
5

b 3
=

13
45

5
12

6
2

3
0

6,
67

0
0

1
0

0
0

23
4

67
23

23

7-
2.

2/
B

3.
1

6
=

12
3

7
=

14
5

0
2

0
1

0
b 1

=
13

5
b 2

=
23

5
b 3

=
34

5

5
12

5
4

2
0

67
0

0
0

1
0

13
5

67
23

23

7-
2.

2/
B

4.
1

6
=

12
3

7
=

14
5

0
2

0
1

0
b 1

=
12

b 2
=

13
b 3

=
14

b 4
=

15

21
0

33
0

6
0

67
0

0
0

1
0

12
67

7
7

7-
2.

3/
B

4.
1

6
=

12
3

7
=

12
4

0
3

0
0

0
b 1

=
12

b 2
=

13
b 3

=
14

b 4
=

15

21
0

32
0

7
0

6,
7,

67
0

1
0

0
0

12
67

7
7

8-
3.

1/
B

1.
1

6
=

12
3

7
=

12
4

8
=

13
45

0
3

4
0

0
0

b 1
=

12
5

0
3

4
0

0
1

0
6,

7,
67

,6
8,

78
,6

78
0

1
2

0
0

12
5

67
8

33
33

8-
3.

1/
B

1.
5

6
=

12
3

7
=

12
4

8
=

13
45

0
3

4
0

0
0

b 1
=

13
2

1
2

2
0

1
0

6,
7

0
1

2
0

0
13

6
31

30

8-
3.

3/
B

1.
1

6
=

12
3

7
=

12
4

8
=

12
5

0
6

0
0

0
1

b 1
=

13
45

0
0

8
0

0
0

0
78

,6
78

,6
7,

68
,7

8
0

2
0

0
0

1
13

45
67

8
30

26

(C
on

ti
nu

ed
on

ne
xt

pa
ge

)

2493



Ta
bl

e
2

Fe
as

ib
ili

ty
fo

r
32

-r
un

bl
oc

ke
d

FF
de

si
gn

s

D
es

ig
n

C
ol

um
n(

t)
W

t(
d)

C
ol

um
n(

b)
W

b
(d

)
δ

∗ M
A

W
t(

D
(δ

∗ M
A

))

G
en

er
at

or
fr

om
G

b
(d

)
fo

r
d(

1)

δ
∗ M

A

fo
ld

ov
er

fo
r

d
(1

)′

Fu
ll

fo
ld

ov
er

es
tim

ab
le

ef
fe

ct
s

Se
m

i-
fo

ld
ov

er
es

tim
ab

le
ef

fe
ct

s

8-
3.

4/
B

1.
1

6
=

12
3

7
=

12
4

8
=

13
4

0
7

0
0

0
0

b 1
=

23
45

0
0

7
0

0
0

1
6,

7,
8,

67
,

68
,7

8,
67

8
0

3
0

0
0

0
23

45
67

28
28

8-
3.

5/
B

1.
1

6
=

12
7

=
13

4
8

=
23

5

1
2

3
1

0
0

b 1
=

14
5

0
3

3
1

1
0

0
67

8
0

0
2

1
0

14
5

67
8

36
36

8-
3.

7/
B

1.
1

6
=

12
7

=
13

4
8

=
13

5

1
3

2
0

1
0

b 1
=

12
34

1
2

1
2

1
67

,6
8

0
1

1
0

1
12

34
67

32
31

8-
3.

8/
B

1.
1

6
=

12
7

=
34

8
=

13
5

2
1

2
2

0
0

b 1
=

24
5

0
2

4
2

0
0

67
8

0
0

2
1

0
0

24
5

67
8

36
36

8-
3.

1/
B

2.
1

6
=

12
3

7
=

12
4

8
=

13
45

0
3

4
0

0
0

b 1
=

12
5

b 2
=

23
45

1
10

8
0

3
2

0
6,

7,
67

,6
8,

78
,6

78
0

1
2

0
0

23
45

67
8

32
32

8-
3.

1/
B

2.
8

6
=

12
3

7
=

12
4

8
=

13
45

0
3

4
0

0
0

b 1
=

13
b 2

=
14

6
3

6
6

0
3

0
6,

7,
67

,6
8,

78
,6

78
0

1
2

0
0

13
67

8
28

28

8-
3.

5/
B

2.
1

6
=

12
7

=
13

4
8

=
23

5

1
2

3
1

0
0

0
b 1

=
14

5
b 2

=
34

5
2

8
7

3
3

1
0

67
8

0
0

2
1

0
14

5
67

8
34

34

(C
on

ti
nu

ed
on

ne
xt

pa
ge

)

2494



8-
3.

7/
B

2.
1

6
=

12
7

=
13

4
8

=
13

5

1
3

2
0

1
0

b 1
=

12
35

b 2
=

14
5

2
7

6
4

4
67

8
0

1
0

2
0

0
12

34
5

67
8

31
31

8-
3.

1/
B

3.
1

6
=

12
3

7
=

12
4

8
=

13
45

0
3

4
0

0
0

b 1
=

23
4

b 2
=

15
b 3

=
25

8
16

11
12

8
0

1
6,

7,
67

,6
8,

78
,6

78
0

1
2

0
0

23
4

67
8

26
26

8-
3.

1/
B

3.
2

6
=

12
3

7
=

12
4

8
=

13
45

0
3

4
0

0
0

b 1
=

25
b 2

=
12

35
b 3

=
23

45

9
12

16
12

3
4

0
6,

7,
67

,6
8,

78
,6

78
0

1
2

0
0

12
35

67
8

25
25

8-
3.

1/
B

3.
4

6
=

12
3

7
=

12
4

8
=

13
45

0
3

4
0

0
0

b 1
=

13
b 2

=
23

b 3
=

14

15
6

12
16

16
0

6,
7,

67
,6

8,
78

,6
78

0
1

2
0

0
13

67
8

21
21

8-
3.

5/
B

3.
1

6
=

12
7

=
13

4
8

=
23

5

1
2

3
1

0
0

b 1
=

15
b 2

=
24

5
b 3

=
12

34
5

7
17

13
9

9
2

0
67

8
0

0
2

1
0

12
34

5
67

8
29

29

8-
3.

8/
B

3.
2

6
=

12
7

=
34

8
=

13
5

2
1

2
2

0
0

b 1
=

24
b 2

=
12

45
b 3

=
23

45

8
14

13
14

6
0

1
67

8
0

0
2

1
0

0
12

45
67

8
28

27

8-
3.

12
/B

3.
1

6
=

12
7

=
13

8
=

45

3
1

0
2

1
0

b 1
=

12
34

b 2
=

25
b 3

=
35

7
15

14
12

7
1

0
67

8
0

1
0

2
0

0
12

35
67

8
27

27

8-
3.

2/
B

4.
1

6
=

12
3

7
=

12
4

8
=

13
5

0
5

0
2

0
0

b 1
=

12
b 2

=
13

b 3
=

14
b 4

=
15

28
0

65
0

26
0

1
78

0
1

0
2

0
0

12
78

8
8

8-
3.

3/
B

4.
1

6
=

12
3

7
=

12
4

8
=

12
5

0
6

0
0

0
1

b 1
=

12
b 2

=
13

b 3
=

14
b 4

=
15

28
0

64
0

28
0

0
67

,6
8,

78
0

2
0

0
0

0
12

67
8

8

(C
on

ti
nu

ed
on

ne
xt

pa
ge

)

2495



Ta
bl

e
2

Fe
as

ib
ili

ty
fo

r
32

-r
un

bl
oc

ke
d

FF
de

si
gn

s

D
es

ig
n

C
ol

um
n(

t)
W

t(
d)

C
ol

um
n(

b)
W

b
(d

)
δ

∗ M
A

W
t(

D
(δ

∗ M
A

))

G
en

er
at

or
fr

om
G

b
(d

)
fo

r
d(

1)

δ
∗ M

A

fo
ld

ov
er

fo
r

d
(1

)′

Fu
ll

fo
ld

ov
er

es
tim

ab
le

ef
fe

ct
s

Se
m

i-
fo

ld
ov

er
es

tim
ab

le
ef

fe
ct

s

9-
4.

1/
B

1.
1

6
=

12
3

7
=

12
4

8
=

12
5

9
=

13
45

0
6

8
0

0
1

0
b 1

=
23

45
0

4
8

0
0

4
0

0
67

,6
8,

78
0

2
4

0
0

1
0

23
45

67
39

35

9-
4.

2/
B

1.
1

6
=

12
3

7
=

12
4

8
=

13
4

9
=

23
45

0
7

7
0

0
0

1
b 1

=
15

1
3

4
4

3
1

0
0

67
,6

8,
78

,
67

89
0

3
3

0
0

0
1

15
67

89
36

36

9-
4.

2/
B

1.
3

6
=

12
3

7
=

12
4

8
=

13
4

9
=

23
45

0
7

7
0

0
0

1
b 1

=
12

3
1

4
4

1
3

0
0

67
,6

8,
78

,
67

89
0

3
3

0
0

0
1

12
67

89
35

33

9-
4.

5/
B

1.
1

6
=

12
3

7
=

12
4

8
=

13
4

9
=

23
4

0
14

0
0

0
1

0
b 1

=
12

5
0

4
0

8
0

4
0

0
67

,6
8,

69
,

78
,7

9,
89

,
67

89

0
6

0
0

0
1

0
12

5
67

89
30

30

9-
4.

6/
B

1.
1

6
=

12
7

=
13

4
8

=
13

5
9

=
24

5

1
5

6
2

1
0

0
b 1

=
34

5
0

5
5

2
2

1
1

0
67

89
0

1
4

2
0

0
0

34
5

67
89

42
42

(C
on

ti
nu

ed
on

ne
xt

pa
ge

)

2496



9-
4.

7/
B

1.
1

6
=

12
7

=
13

4
8

=
13

5
9

=
14

5

1
7

4
0

3
0

0
b 1

=
23

45
0

3
7

4
0

1
1

0
67

,6
8,

69
,

67
8,

67
9,

68
9

0
3

2
0

2
0

0
23

45
67

8
37

36

9-
4.

13
/B

1.
1

6
=

12
7

=
13

8
=

14
9

=
23

45

3
3

4
4

1
0

0
b 1

=
12

34
0

5
7

0
0

3
1

0
67

89
0

3
1

3
0

0
0

12
34

67
89

37
37

9-
4.

20
/B

1.
1

6
=

12
7

=
13

8
=

23
9

=
12

34
5

4
3

3
4

0
0

1
b 1

=
14

1
3

4
4

3
1

0
0

67
8

0
3

0
4

0
0

0
14

67
8

36
36

9-
4.

20
/B

1.
2

6
=

12
7

=
13

8
=

23
9

=
12

34
5

4
3

3
4

0
0

1
b 1

=
12

3
3

5
0

0
5

3
0

0
67

8
0

3
0

4
0

0
0

12
3

67
8

36
33

9-
4.

27
/B

1.
1

6
=

12
7

=
13

8
=

23
9

=
45

5
3

0
4

3
0

0
b 1

=
12

34
0

3
7

4
0

1
1

0
67

89
0

3
0

4
0

0
0

12
34

67
89

37
37

9-
4.

1/
B

2.
1

6
=

12
3

7
=

12
4

8
=

12
5

9
=

13
45

0
6

8
0

0
1

0
b 1

=
13

b 2
=

23
45

4
8

16
8

4
8

0
0

67
,6

8,
78

0
2

4
0

0
1

0
23

45
67

35
34

9-
4.

2/
B

2.
1

6
=

12
3

7
=

12
4

8
=

13
4

9
=

23
45

0
7

7
0

0
0

1
b 1

=
15

b 2
=

12
34

5
3

13
8

8
13

3
0

0
67

,6
8,

78
,

67
89

0
3

3
0

0
0

1
12

34
5

67
89

34
34

(C
on

ti
nu

ed
on

ne
xt

pa
ge

)

2497



Ta
bl

e
2

Fe
as

ib
ili

ty
fo

r
32

-r
un

bl
oc

ke
d

FF
de

si
gn

s

D
es

ig
n

C
ol

um
n(

t)
W

t(
d)

C
ol

um
n(

b)
W

b
(d

)
δ

∗ M
A

W
t(

D
(δ

∗ M
A

))

G
en

er
at

or
fr

om
G

b
(d

)
fo

r
d(

1)

δ
∗ M

A

fo
ld

ov
er

fo
r

d
(1

)′

Fu
ll

fo
ld

ov
er

es
tim

ab
le

ef
fe

ct
s

Se
m

i-
fo

ld
ov

er
es

tim
ab

le
ef

fe
ct

s

9-
4.

2/
B

2.
2

6
=

12
3

7
=

12
4

8
=

13
4

9
=

23
45

0
7

7
0

0
0

1
b 1

=
15

b 2
=

25
5

7
12

12
7

5
0

0
67

,6
8,

78
,

67
89

0
3

3
0

0
0

1
15

67
89

33
33

9-
4.

2/
B

2.
3

6
=

12
3

7
=

12
4

8
=

13
4

9
=

23
45

0
7

7
0

0
0

1
b 1

=
12

b 2
=

13
9

3
12

12
3

9
0

0
67

,6
8,

78
0

3
3

0
0

0
1

12
67

31
30

9-
4.

20
/B

2.
1

6
=

12
7

=
13

8
=

23
9

=
12

34
5

4
3

3
4

0
0

1
b 1

=
14

b 2
=

15
3

9
12

12
9

3
0

0
67

8
0

3
0

4
0

0
0

12
3

67
8

34
34

9-
4.

20
/B

2.
2

6
=

12
7

=
13

8
=

23
9

=
12

34
5

4
3

3
4

0
0

1
b 1

=
14

b 2
=

23
4

5
11

8
8

11
5

0
0

67
8

0
3

0
4

0
0

0
23

4
67

8
34

34

9-
4.

1/
B

3.
1

6
=

12
3

7
=

12
4

8
=

12
5

9
=

13
45

0
6

8
0

0
1

0
b 1

=
13

b 2
=

14
b 3

=
23

45

12
16

32
24

12
16

0
0

67
,6

8,
78

,
67

89
0

2
4

0
0

1
0

23
45

67
89

29
28

(C
on

ti
nu

ed
on

ne
xt

pa
ge

)

2498



9-
4.

2/
B

3.
1

6
=

12
3

7
=

12
4

8
=

13
4

9
=

23
45

0
7

7
0

0
1

b 1
=

15
b 2

=
25

b 3
=

35

13
15

28
28

15
13

0
0

67
,6

8,
78

,
67

89
0

3
3

0
0

0
1

15
67

89
27

27

9-
4.

2/
B

3.
2

6
=

12
3

7
=

12
4

8
=

13
4

9
=

23
45

0
7

7
0

0
1

b 1
=

12
b 2

=
13

b 3
=

14

21
7

28
28

7
21

0
0

67
,6

8,
78

,
67

89
0

3
3

0
0

0
1

12
67

89
24

24

9-
4.

3/
B

3.
1

6
=

12
3

7
=

12
4

8
=

13
5

9
=

14
5

0
9

0
6

0
0

0
b 1

=
13

4
b 2

=
23

4
b 3

=
12

34
5

9
27

18
27

21
9

0
1

69
,7

8,
67

8,
67

9,
68

9,
78

9

0
3

0
4

0
0

0
12

34
5

67
8

30
30

9-
4.

4/
B

3.
1

6
=

12
3

7
=

12
4

8
=

13
4

9
=

12
5

0
10

0
4

0
1

0
b 1

=
14

5
b 2

=
24

5
b 3

=
34

5

10
24

18
32

18
8

2
0

89
0

3
0

4
0

0
0

14
5

89
30

30

9-
4.

20
/B

3.
1

6
=

12
7

=
13

8
=

23
9

=
12

34
5

4
3

3
4

0
0

1
b 1

=
14

b 2
=

23
4

b 3
=

25

9
23

24
24

23
9

0
0

67
8

0
3

0
4

0
0

0
23

4
67

8
30

30

9-
4.

3/
B

4.
1

6
=

12
3

7
=

12
4

8
=

13
5

9
=

14
5

0
9

0
6

0
0

0
b 1

=
12

b 2
=

13
b 3

=
14

b 4
=

15

36
0

11
7

0
78

0
9

0
69

,7
8,

67
8,

67
9,

68
9,

78
9

0
3

0
4

0
0

0
12

67
8

9
9

9-
4.

4/
B

4.
1

6
=

12
3

7
=

12
4

8
=

13
4

9
=

12
5

0
10

0
4

0
1

0
b 1

=
12

b 2
=

13
b 3

=
14

b 4
=

15

36
0

11
6

0
80

0
80

89
0

3
0

4
0

0
0

12
89

9
9

2499



Ta
bl

e
3

Fe
as

ib
ili

ty
fo

r
64

-r
un

bl
oc

ke
d

FF
de

si
gn

s

D
es

ig
n

C
ol

um
n(

t)
W

t(
d)

C
ol

um
n(

b)
W

b
(d

)
δ

∗ M
A

W
t(

D
(δ

∗ M
A

))

G
en

er
at

or
fr

om
G

b
(d

)
fo

r
d(

1)

δ
∗ M

A

fo
ld

ov
er

fo
r

d
(1

)′

Fu
ll

fo
ld

ov
er

es
tim

ab
le

ef
fe

ct
s

Se
m

i-
fo

ld
ov

er
es

tim
ab

le
ef

fe
ct

s

7-
1.

1/
B

1.
1

7
=

12
34

56
0

0
0

0
1

b 1
=

12
3

0
1

1
0

0
0

7
0

0
0

0
0

12
3

7
28

28
7-

1.
2/

B
1.

1
7

=
12

34
5

0
0

0
1

0
b 1

=
12

36
0

0
2

0
0

0
7

0
0

0
0

0
12

36
7

28
28

7-
1.

3/
B

1.
1

7
=

12
34

0
0

1
0

0
b 1

=
12

56
0

0
1

1
0

0
7

0
0

0
0

0
12

56
7

28
28

7-
1.

4/
B

1/
1

7
=

12
3

0
1

0
0

0
b 1

=
12

45
6

0
0

0
2

0
0

7
0

0
0

0
0

12
45

6
7

28
28

7-
1.

1/
B

2.
1

7
=

12
34

56
0

0
0

0
1

b 1
=

12
3

b 2
=

14
5

0
3

3
0

0
0

7
0

0
0

0
0

12
3

7
28

28

7-
1.

2/
B

2.
1

7
=

12
34

5
0

0
0

1
0

b 1
=

14
6

b 2
=

23
46

0
3

2
1

0
0

7
0

0
0

0
0

14
6

7
28

28

7-
1.

4/
B

2.
1

7
=

12
3

0
1

0
0

0
b 1

=
12

45
b 2

=
13

46
0

0
6

0
0

0
7

0
0

0
0

0
12

45
7

28
28

7-
1.

1/
B

3.
1

7
=

12
34

56
0

0
0

0
1

b 1
=

12
3

b 2
=

14
5

b 3
=

24
6

0
7

7
0

0
0

7
0

0
0

0
0

12
3

7
28

28

7-
1.

4/
B

3.
1

7
=

12
3

0
1

0
0

0
b 1

=
23

45
b 2

=
13

46
b 3

=
45

6

0
7

6
0

0
1

7
0

0
0

0
0

23
45

7
28

28

7-
1.

1/
B

4.
1

7
=

12
34

56
0

0
0

0
1

b 1
=

12
b 2

=
13

b 3
=

45
b 4

=
46

6
9

9
6

0
0

7
0

0
0

0
0

14
6

7
22

22

(C
on

ti
nu

ed
on

ne
xt

pa
ge

)

2500



7-
1.

2/
B

4.
1

7
=

12
34

5
0

0
0

1
0

b 1
=

12
b 2

=
34

b 3
=

13
5

b 4
=

16

5
12

7
4

2
0

7
0

0
0

0
0

13
5

7
23

23

7-
1.

3/
B

4.
1

7
=

12
34

0
0

1
0

0
b 1

=
12

b 2
=

13
b 3

=
45

b 4
=

14
6

5
12

7
3

3
0

7
0

0
0

0
0

12
7

23
23

7-
1.

2/
B

5.
1

7
=

12
34

5
0

0
0

1
0

b 1
=

12
b 2

=
13

b 3
=

14
b 4

=
15

b 5
=

16

21
0

34
0

7
0

7
0

0
0

0
0

12
7

7
7

7-
1.

4/
B

5.
1

7
=

12
3

0
1

0
0

0
b 1

=
12

b 2
=

13
b 3

=
14

b 4
=

15
b 5

=
16

21
0

34
0

7
0

7
0

0
0

0
0

14
7

7
7

8-
2.

1/
B

1.
1

7
=

12
34

8
=

12
56

0
0

2
1

0
0

b 1
=

13
5

0
1

2
1

0
0

0
78

0
0

0
1

0
0

13
5

78
36

36

(C
on

ti
nu

ed
on

ne
xt

pa
ge

)

2501



Ta
bl

e
3

Fe
as

ib
ili

ty
fo

r
64

-r
un

bl
oc

ke
d

FF
de

si
gn

s

D
es

ig
n

C
ol

um
n(

t)
W

t(
d)

C
ol

um
n(

b)
W

b
(d

)
δ

∗ M
A

W
t(

D
(δ

∗ M
A

))

G
en

er
at

or
fr

om
G

b
(d

)
fo

r
d(

1)

δ
∗ M

A

fo
ld

ov
er

fo
r

d
(1

)′

Fu
ll

fo
ld

ov
er

es
tim

ab
le

ef
fe

ct
s

Se
m

i-
fo

ld
ov

er
es

tim
ab

le
ef

fe
ct

s

8-
2.

2/
B

1.
1

7
=

12
3

8
=

12
45

6
0

1
0

2
0

0
b 1

=
13

45
0

0
4

0
0

0
0

7,
78

0
0

0
1

0
0

13
45

7
36

36

8-
2.

4/
B

1.
1

7
=

12
3

8
=

12
45

0
1

2
0

0
0

b 1
=

13
46

0
0

2
2

0
0

0
7,

78
0

0
1

0
0

0
13

46
7

36
36

8-
2.

7/
B

1.
1

7
=

12
3

8
=

12
4

0
3

0
0

0
0

b 1
=

13
45

6
0

0
0

4
0

0
0

7,
8,

78
0

1
0

0
0

0
13

45
6

7
33

33

8-
2.

1/
B

2.
1

7
=

12
34

8
=

12
56

0
0

2
1

0
0

b 1
=

13
5

b 2
=

24
6

0
4

5
2

1
0

0
78

0
0

0
1

0
0

13
5

78
36

36

8-
2.

2/
B

2.
1

7
=

12
3

8
=

12
45

6
0

1
0

2
0

0
b 1

=
14

5
b 2

=
13

56
0

4
4

4
0

0
0

78
0

0
0

1
0

0
14

5
78

36
36

8-
2.

3/
B

2.
1

7
=

12
3

8
=

14
56

0
1

1
0

1
0

b 1
=

24
5

b 2
=

34
6

0
3

6
3

0
0

0
7,

8,
78

0
0

1
0

0
0

24
5

7
36

36

8-
2.

5/
B

2.
1

7
=

12
3

8
=

45
6

0
2

0
0

0
1

b 1
=

12
45

b 2
=

13
46

0
0

12
0

0
0

0
78

0
0

0
0

0
1

12
45

78
36

36

8-
2.

1/
B

3.
1

7
=

12
34

8
=

12
56

0
0

2
1

0
0

b 1
=

14
6

b 2
=

24
6

b 3
=

13
45

6

2
8

10
6

1
0

1
78

0
0

0
1

0
0

14
6

78
34

34

8-
2.

1/
B

3.
2

7
=

12
34

8
=

12
56

0
0

2
1

0
0

b 1
=

23
5

b 2
=

14
6

b 3
=

24
56

2
9

9
4

3
1

0
78

0
0

0
1

0
0

23
5

78
34

34

2502



8-
2.

2/
B

3.
1

7
=

12
3

8
=

12
45

6
0

1
0

2
0

0
b 1

=
13

6
b 2

=
23

46
b 3

=
23

56

1
10

10
4

1
2

0
7,

78
0

0
0

1
0

0
23

46
7

35
35

8-
2.

1/
B

4.
1

7
=

12
34

8
=

12
56

0
0

2
1

0
0

b 1
=

13
b 2

=
14

b 3
=

25
b 4

=
26

7
18

15
10

8
2

0
7,

78
0

0
0

1
0

0
12

35
78

29
29

8-
2.

2/
B

4.
1

7
=

12
3

8
=

12
45

6
0

1
0

2
0

0
b 1

=
13

b 2
=

14
b 3

=
25

b 4
=

12
6

7
18

14
12

7
2

0
7,

78
0

0
0

1
0

0
12

6
7

29
29

8-
2.

3/
B

4.
1

7
=

12
3

8
=

14
56

0
1

1
0

1
0

b 1
=

12
b 2

=
34

b 3
=

13
5

b 4
=

13
6

7
18

14
11

9
1

0
7,

78
0

0
1

0
0

0
13

5
7

29
29

8-
2.

2/
5.

1
7

=
12

3
8

=
12

45
6

0
1

0
2

0
0

b 1
=

12
b 2

=
13

b 3
=

14
b 4

=
15

b 5
=

16

28
0

69
0

26
0

1
78

0
0

0
1

0
0

12
78

8
8

8-
2.

5/
B

5.
1

7
=

12
3

8
=

45
6

0
2

0
0

0
1

b 1
=

12
b 2

=
13

b 3
=

14
b 4

=
15

b 5
=

16

28
0

68
0

28
0

0
78

0
0

0
0

0
1

12
78

8
8

9-
3.

1/
B

1.
1

7
=

12
3

8
=

12
45

9
=

13
46

0
1

4
2

0
0

0
b 1

=
12

56
0

1
4

2
0

1
0

0
7,

78
,7

9,
78

9
0

0
2

1
0

0
12

56
7

45
45

(C
on

ti
nu

ed
on

ne
xt

pa
ge

)

2503



Ta
bl

e
3

Fe
as

ib
ili

ty
fo

r
64

-r
un

bl
oc

ke
d

FF
de

si
gn

s
(C

on
ti

nu
ed

)

D
es

ig
n

C
ol

um
n(

t)
W

t(
d)

C
ol

um
n(

b)
W

b
(d

)
δ

∗ M
A

W
t(

D
(δ

∗ M
A

))

G
en

er
at

or
fr

om
G

b
(d

)
fo

r
d(

1)

δ
∗ M

A

fo
ld

ov
er

fo
r

d
(1

)′

Fu
ll

fo
ld

ov
er

es
tim

ab
le

ef
fe

ct
s

Se
m

i-
fo

ld
ov

er
es

tim
ab

le
ef

fe
ct

s

9-
3.

1/
B

1.
11

7
=

12
3

8
=

12
45

9
=

13
46

0
1

4
2

0
0

0
b 1

=
23

2
0

1
4

0
0

1
0

78
,7

9
0

0
2

1
0

0
23

78
43

43

9-
3.

2/
B

1.
1

7
=

12
3

8
=

14
5

9
=

12
46

0
2

3
1

1
0

0
b 1

=
35

6
0

1
3

3
1

0
0

0
78

0
0

1
1

1
0

35
6

78
45

45

9-
3.

3/
B

1.
1

7
=

12
3

8
=

12
45

9
=

12
46

0
2

4
0

0
1

0
b 1

=
12

56
0

0
4

4
0

0
0

0
78

,7
9

0
0

2
0

0
1

12
56

78
45

45

9-
3.

12
/B

1.
1

7
=

12
3

8
=

12
4

9
=

13
4

0
7

0
0

0
0

0
b 1

=
23

45
6

0
0

0
7

0
0

0
1

7,
8,

9,
78

,
79

,8
9,

78
9

0
3

0
0

0
0

23
45

6
7

37
37

9-
3.

1/
B

2.
1

7
=

12
3

8
=

12
45

9
=

13
46

0
1

4
2

0
0

0
b 1

=
15

6
b 2

=
12

34
56

0
6

8
5

4
0

0
1

78
9

0
0

2
1

0
0

15
6

78
9

45
45

9-
3.

1/
B

2.
2

7
=

12
3

8
=

12
45

9
=

13
46

0
1

4
2

0
0

0
b 1

=
13

5
b 2

=
12

56
0

6
9

4
2

2
1

0
79

,7
89

0
0

2
1

0
0

13
5

79
45

45

9-
3.

2/
B

2.
1

7
=

12
3

8
=

14
5

9
=

12
46

0
2

3
1

1
0

0
b 1

=
15

6
b 2

=
34

56
0

6
8

5
3

1
1

0
78

9
0

0
2

1
0

0
15

6
78

9
45

45

9-
3.

3/
B

2.
1

7
=

12
3

8
=

12
45

9
=

12
46

0
2

4
0

0
1

0
b 1

=
13

4
b 2

=
23

45
6

0
4

12
4

0
4

0
0

78
,7

9
0

0
2

0
0

1
13

4
78

45
45

2504



9-
3.

6/
B

2.
1

7
=

12
3

8
=

12
4

9
=

13
56

0
3

2
0

2
0

0
b 1

=
13

46
b 2

=
12

45
6

0
4

11
6

0
2

1
0

79
,8

9,
78

9
0

1
1

0
1

0
13

46
79

42
42

9-
3.

1/
B

3.
1

7
=

12
3

8
=

12
45

9
=

13
46

0
1

4
2

0
0

0
b 1

=
12

6
b 2

=
13

56
b 3

=
23

45
6

2
14

17
8

8
6

1
0

78
,7

89
0

0
2

1
0

0
12

6
78

42
43

9-
3.

1/
B

3.
3

7
=

12
3

8
=

12
45

9
=

13
46

0
1

4
2

0
0

0
b 1

=
15

6
b 2

=
25

6
b 3

=
34

56

3
13

14
11

11
3

0
1

78
9

0
0

2
1

0
0

15
6

78
9

42
42

9-
3.

1/
B

3.
15

7
=

12
3

8
=

12
45

9
=

13
46

0
1

4
2

0
0

0
b 1

=
15

6
b 2

=
25

6
b 3

=
35

6

6
10

9
16

12
2

1
0

78
9

0
0

2
1

0
0

15
6

78
9

39
39

9-
3.

2/
B

3.
1

7
=

12
3

8
=

14
5

9
=

12
46

0
2

3
1

1
0

0
b 1

=
13

6
b 2

=
23

46
b 3

=
15

6

2
14

16
9

9
5

1
0

78
9

0
0

2
1

0
0

13
6

78
9

43
43

9-
3.

3/
B

3.
1

7
=

12
3

8
=

12
45

9
=

12
46

0
2

4
0

0
1

0
b 1

=
15

6
b 2

=
25

6
b 3

=
34

56

2
14

16
8

10
6

0
0

78
,7

9
0

0
2

0
0

1
15

6
78

43
43

9-
3.

1/
B

4.
1

7
=

12
3

8
=

12
45

9
=

13
46

0
1

4
2

0
0

0
b 1

=
12

b 2
=

13
4

b 3
=

15
b 4

=
13

6

9
27

26
23

25
9

0
1

78
,7

89
0

0
2

1
0

0
13

4
78

36
36

9-
3.

1/
B

4.
4

7
=

12
3

8
=

12
45

9
=

13
46

0
1

4
2

0
0

0
b 1

=
12

b 2
=

13
b 3

=
14

b 4
=

56

12
20

25
36

18
4

5
0

78
,7

89
0

0
2

1
0

0
12

78
33

33

2505



Ta
bl

e
3

Fe
as

ib
ili

ty
fo

r
64

-r
un

bl
oc

ke
d

FF
de

si
gn

s
(C

on
ti

nu
ed

)

D
es

ig
n

C
ol

um
n(

t)
W

t(
d)

C
ol

um
n(

b)
W

b
(d

)
δ

∗ M
A

W
t(

D
(δ

∗ M
A

))

G
en

er
at

or
fr

om
G

b
(d

)
fo

r
d(

1)

δ
∗ M

A

fo
ld

ov
er

fo
r

d
(1

)′

Fu
ll

fo
ld

ov
er

es
tim

ab
le

ef
fe

ct
s

Se
m

i-
fo

ld
ov

er
es

tim
ab

le
ef

fe
ct

s

9-
3.

4/
B

5.
1

7
=

12
3

8
=

12
4

9
=

13
45

6

0
3

0
4

0
0

0
b 1

=
12

b 2
=

13
b 3

=
14

b 4
=

15
b 5

=
16

36
0

12
3

0
80

0
9

0
78

,7
89

0
1

0
2

0
0

12
78

9
9

9-
3.

5/
B

5.
1

7
=

12
3

8
=

14
5

9
=

24
6

0
3

0
4

0
0

0
b 1

=
12

b 2
=

13
b 3

=
14

b 4
=

15
b 5

=
16

36
0

12
3

0
80

0
9

0
78

9
0

0
0

3
0

0
12

78
9

9
9

9-
3.

9/
B

5.
1

7
=

12
3

8
=

12
4

9
=

15
6

0
4

0
2

0
1

0
b 1

=
12

b 2
=

13
b 3

=
14

b 4
=

15
b 5

=
16

36
0

12
2

0
82

0
8

0
78

9
0

1
0

2
0

0
12

78
9

9
9

2506


