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Abstract
Successful weather forecasts on subseasonal time-scales can support societal
preparedness and mitigate the impacts of extreme events. Heatwaves in particu-
lar can, in certain cases, be predicted on time-scales of several weeks in advance.
Heatwave predictability is commonly assessed in terms of heatwave intensity.
In addition to heatwave intensity, we assess the predictability of heatwave onset
and duration, which are crucial components of early-warning systems and emer-
gency preparedness plans. The forecast skill of heatwaves is investigated over
the European region in the subseasonal forecasting system of the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF). The heatwaves are first
detected in ERA-Interim reanalysis data over the period 1998–2017 and then
allocated into six clusters in the following regions: Black Sea (BSea), Russia
(Ru), Western Europe (WEu), North Sea (NSea), Scandinavia (Sc), and Eastern
Europe (EEu). The European regions with the highest predictability in heat-
wave onset and duration are the clusters Ru, Sc, and NSea. The WEu cluster has
the lowest bias in heatwave intensity and is found to be the most predictable
region in terms of the number of heatwave events with predictable intensity at
lead week 2. Heatwave intensity is generally found to be the most predictable
characteristic of European heatwaves, being predictable by the model ensemble
mean up to lead times of 3 weeks. Furthermore, this analysis identifies the most
predictable heatwaves, allowing for a further investigation of the physical mech-
anisms and heatwave characteristics leading to enhanced heatwave forecast skill
over different European regions.
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1 INTRODUCTION

Extreme summer temperatures have catastrophic impacts
on a range of different sectors. For instance, heatwaves

are responsible for a substantial increase in mortality
and morbidity with respect to normal seasonal temper-
atures (Fouillet et al., 2008; Li et al., 2015), account-
ing for a high percentage of weather-related deaths in
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2 PYRINA and DOMEISEN

developing and high-income countries (Nissan et al.,
2017). For example, the heatwave event that occurred over
Western Europe in 2003 was responsible for over 70,000
deaths (Trigo et al., 2005; Fouillet et al., 2006; Robine et al.,
2008). Moreover, heatwaves have disastrous impacts other
than human health. Heatwaves impact plants and ecosys-
tems (Breshears et al., 2021) and sectors such as agriculture
and infrastructure (Forzieri et al., 2018; Brás et al., 2021).
Extreme heat exacerbated 500 wildfires over Russia in 2010
and Russian grain harvests suffered a loss of 30% after the
heatwave event of the same year (Barriopedro et al., 2011).
In the summer of 2003, more than 30 nuclear power plant
units in Europe had to reduce their production because of
limitations in the possibilities to discharge cooling water
(Koch and Vögele, 2009; Linnerud et al., 2011).

Heatwaves will continue to be relevant in the future,
with anthropogenic activity imposing changes on heat-
wave characteristics, that is, heatwave frequency and
intensity (Meehl and Tebaldi, 2004; Perkins-Kirkpatrick
and Gibson, 2017). It is certain now that human influence
has warmed the climate at a rate that is unprecedented in
the last 2000 years and that this change is already affect-
ing many weather and climate extremes across the globe
(IPCC, 2021). Specifically, heatwaves have become more
frequent and intense since the 1950s, largely due to the
increasing global mean temperature (Perkins-Kirkpatrick
and Lewis, 2020). Consequently, heatwave prediction will
remain of high societal relevance.

Early-warning systems can reduce the risk from tem-
perature extremes effectively at seasonal and short-term
(3–10 days) prediction time-scales over Europe, as well as
over other regions of the globe (De Perez et al., 2018; Merz
et al., 2020). Disaster early warnings on the subseasonal
time-scale, which consider forecasts of more than 10 days
and less than a season, were also found crucial for the
preparedness of society in a wide range of sectors (White
et al., 2017; White et al., 2021). However, early-warning
systems require robust forecasts of heatwave characteris-
tics, including not only the expected heatwave intensity
but also heatwave onset and duration.

The prediction of heatwave features such as heatwave
onset and duration would benefit impact prediction and
early warnings. Heatwave intensity has a direct impact
on human health by exacerbating underlying medical
conditions (Martiello and Giacchi, 2010), but mortality
and morbidity increase dramatically when extreme tem-
peratures last longer than 2 days (Pantavou et al., 2008).
Heatwave duration can also determine the probability of
an impacted system recovering, as longer-lasting heat-
waves can lead to stronger ecosystem impacts (von Buttlar
et al., 2018). Moreover, during a heatwave, the drying out
of vegetation can significantly increase the probability of
occurrence of catastrophic bushfires (Pezza et al., 2012).

Heatwave timing is important for ecosystems as well.
For example, changes in lake-water temperature can dif-
ferently affect zooplankton phenology and abundance,
depending on the timing of the heatwave onset (Huber
et al., 2010).

While seasonal forecasts have limited skill in predict-
ing the timing and location of observed European heat-
wave events, they are able to indicate if a season is pre-
disposed to the occurrence of heatwaves (Prodhomme
et al., 2022). The onset and end of European heatwaves,
including all small- and large-scale events, were found
to be less predictable than heatwave intensity on subsea-
sonal time-scales (Lavaysse et al., 2019). An average of
about 35% of observed heatwave onsets or ends were fore-
cast correctly with a five-day lead time during the period
1995–2015 (Lavaysse et al., 2019). Predictability decreases
further with increasing lead time; however, extended heat-
wave predictability exists for large-scale events and specific
case studies (Domeisen et al., 2022; Vitart and Robertson,
2018).

Case studies on heatwave predictability showed that
heatwaves are globally among the most predictable
extreme events on subseasonal time-scales, in particular
compared with cold-air outbreaks, storms, or precipita-
tion extremes (Domeisen et al., 2022). The long-range
predictability of the intensity of large-scale European heat-
waves on subseasonal time-scales is well known for spe-
cific heatwave events, such as the events of 2003, 2010,
and 2018 (Vitart and Robertson, 2018; Kueh and Lin,
2020; Domeisen et al., 2022). Moreover, large-scale heat-
wave predictability over different European regions was
previously assessed for heatwave occurrence, but in terms
of single heatwave days without considering heatwave
persistence, onset, and duration (Wulff and Domeisen,
2019). Even though it is known that large-scale heatwaves
are in general more predictable than small-scale events
(Lavaysse et al., 2019), (a) which large-scale events were
most and least predictable and (b) at which subseasonal
lead times their onset and duration can be predicted are
currently undetermined.

This study investigates the subseasonal predictabil-
ity of large-scale European heatwaves in terms of inten-
sity, onset, and duration, and provides detailed informa-
tion on the predictability of each heatwave that occurred
during the study period. For this analysis, we use the
European Centre for Medium-Range Weather Forecasts
(ECMWF) subseasonal hindcasts for the period 1998–2017
and explore heatwave predictability for lead times of
1–3 weeks. This study is presented in four sections. After
an introduction, the data and methods are described in
Section 2, while in Section 3 we present and discuss the
results. Finally, Section 4 presents a summary and the
conclusions of the study.
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PYRINA and DOMEISEN 3

2 DATA AND METHODOLOGY

2.1 Hindcast and verification data

We retrieved the subseasonal hindcasts from ECMWF,
available through the subseasonal to seasonal (S2S) pre-
diction project (Vitart et al., 2017). The ECMWF forecast
system is initialized twice per week (Mondays and Thurs-
days) and provides hindcasts with 11 ensemble members
integrated over 46 days. The hindcasts used here cover
the period 1998–2017 and use the model version of the
Integrated Forecasting System (IFS) cycle 45r1 (Haiden
et al., 2018a) with a horizontal spectral resolution of TL511
(equivalent to a 40-km spacing on a reduced Gaussian
grid: Rémy et al., 2019). The hindcasts cover a period
of 20 years, and are commonly used to compute the cli-
matology and bias-correct the operational forecasts. The
most recent version of the ECMWF forecasting system (IFS
Cycle 47r2) includes substantial upgrades compared with
the older versions (Haiden et al., 2021). For example, the
increase in vertical resolution from 91 to 137 levels has led
to statistically significant improvements in forecast evalu-
ation metrics of about 0.5–2% throughout most of the free
atmosphere. Even though there have been changes in 2-m
temperature biases due to the changes in the modeling sys-
tem, the biases are relatively robust in the different model
versions in terms of geographical patterns and annual and
diurnal variations (Haiden et al., 2018b; Sandu et al., 2020).
For example, the main systematic 2-m temperature fore-
cast error over Europe in summer is an underestimation
of the diurnal cycle by about 1–2 K. Given the small dif-
ferences in the surface temperature biases between the
newest model version and the model version used in this
study, we would not expect major changes to the results
found by the current analysis.

The ECMWF hindcasts for the IFS cycle 45r1 used in
this study are initialized from the ERA-Interim reanaly-
sis data (Vitart et al., 2019). The ERA-Interim reanalysis
data are provided with a spectral T255 horizontal resolu-
tion that corresponds to approximately 79-km spacing on
a reduced Gaussian grid (Dee et al., 2011). In this study,
we assess the predictability of European heatwaves in the
ECMWF prediction system with respect to ERA-Interim
reanalysis, which has been shown to be of good quality
for 2-m temperature in the global mean and over Europe
(Simmons et al., 2014; 2017). In the remainder of this arti-
cle, we will refer to the reference data as ERA-Interim or
reanalysis data and to the ECMWF prediction system as
the ECMWF model or the prediction system. The reanal-
ysis and prediction system data considered in this study
are daily summer (June, July, August) 2-m temperatures
over 20 years. The daily mean 2-m temperature is retrieved
directly from the output of the prediction system, whereas

for the reanalysis data we calculate the daily mean 2-m
temperature as the daily mean of 6-hr data.

2.2 Methods

2.2.1 Calculation of climatology
and anomalies

The ERA-Interim daily 2-m temperature (t2m) anoma-
lies are calculated by removing the daily t2m climatology
with respect to the reference period 1998–2017. Given
the relatively short historical period used, daily percentile
values at a given location can fluctuate due to sampling
variability rather than changes in seasonally varying cli-
mate. To minimize this effect, the climatology is calculated
based on a 31-day running window centered on the daily
t2m value under consideration. The prediction-system t2m
anomalies are computed by removing the lead-time depen-
dent climatology using as reference period the available
hindcast years, 1998–2017, consistent with the climatology
period in the reanalysis. Calculating anomalies with ref-
erence to a lead-time dependent climatology is expected
to remove the systematic bias due to the forecast model
drift (Manzanas, 2020) and provide with a good reference
climatology for bias adjustment (Manrique-Suñén et al.,
2020). The daily ECMWF model climatology is calculated
based on a 31-day window centered around the day of the
hindcast start date in question. Due to the model hind-
casts being initialized twice a week (Mondays and Thurs-
days), to compute the lead-time dependent climatology for
a Monday run, that is, using a 7-day window, we would
consider the date of that Monday plus the dates of the
Thursdays immediately before and after, which represents
a total of 660 integrations (3 start dates × 20 years × 11
members). In this study, we consider a 31-day window, rep-
resenting a total of 1,980 integrations (9 start dates × 20
years × 11 members), which are used to calculate the daily
t2m lead-time dependent climatology for the model. This
large window brings the benefit of defining the climatol-
ogy tails, that is, the more extreme values, better, which
is important for consistent computations of hot days in
the prediction system. For more information refer to the
ECMWF documentation.1

2.2.2 Hot days and heatwave events

After the daily climatology is removed from the
ERA-Interim data, the 75th percentile of the daily mean

1https://www.ecmwf.int/en/forecasts/documentation-and-support/
extended-range/re-forecast-medium-and-extended-forecast-range

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4394 by B
ibliothèque C

antonale E
t U

niversitaire D
e L

ausanne, W
iley O

nline L
ibrary on [19/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.ecmwf.int/en/forecasts/documentation-and-support/extended-range/re-forecast-medium-and-extended-forecast-range
https://www.ecmwf.int/en/forecasts/documentation-and-support/extended-range/re-forecast-medium-and-extended-forecast-range


4 PYRINA and DOMEISEN

t2m anomaly is calculated applying a 31-day running
window centered on the day of interest taking into account
the years of the period 1998–2017. The ERA-Interim
75th percentile of the daily t2m anomaly is calculated
and applied separately at each grid point of the study
region and is used as a threshold to define hot days in
both ERA-Interim and the ECMWF model. The same
percentile threshold is used for both data and model, in
order to compare simulated hot days of similar magni-
tude with the reanalysis data. In this way we can define a
predictability threshold for average intensity that is inde-
pendent of lead time. This method has the advantage of
identifying events with a predictable intensity, being real-
istically close to observations, even for long lead times.
Moreover, using percentiles of the distribution of anoma-
lies eliminates contributions to the forecast skill resulting
from a successful reproduction of the seasonal cycle.
Heatwave events are defined as periods with at least three
consecutive hot days, with successive heatwaves having a
minimum distance of three nonhot days.

Heatwave definitions generally use temperature
thresholds higher than the 90th percentile (see table 2
in Perkins, 2015). We investigate the predictability of
large-scale heatwave events, meaning that hot days occur
for at least three days and simultaneously for a large
number of grid points within a given region. The 90th
percentile threshold is too strict for detecting such events
for forecast lead times longer than 1–2 weeks. For those
longer lead times, it is already known from heatwave case
studies that the forecast heatwave magnitude is under-
estimated (Vitart and Robertson, 2018; Domeisen et al.,
2022). In addition to separating temperature anomalies
above and bellow the 75th percentile, we proceed with
an additional separation of the heatwave events into two
heatwave classes within the upper quartile (75th–100th
percentile range) in order to study the more extreme
events (further details in Section 3.2).

2.2.3 Spatial clustering

Agglomerative hierarchical clustering (Müllner, 2013) was
applied to the ERA-Interim t2m data, to define the Euro-
pean regions that experience above-normal temperatures
simultaneously. Prior to applying the clustering algorithm,
the hot days of the period 1998–2017 were set equal to
1 and the nonhot days equal to 0, so that the algorithm
takes into account only the time and region of hot-day
occurrence and not the hot-day intensity. In this clustering
method each element (data point) initially belongs to its
own cluster. Based on a chosen measure of distance (here
we choose the complete linkage method), the elements
are grouped into clusters until finally the desired number

of clusters remains. Following the study of Stefanon et al.
(2012), which uses agglomerative clustering for the classi-
fication of European heatwave patterns, we choose n = 6
as the preferred number of clusters. This choice leads to
the six heatwave clusters shown in Figure 1, indicated by
black dots in each subpanel. The defined clusters have
a spatial extent of roughly 3,000,000 km2 (51 grid points
of 2.5◦ latitude by 2.5◦ longitude, where 1◦ ≈ 100 km for
the regions considered here), that is, considerably larger
than the 151,000 km2 suggested by Lyon et al. (2019) as
the minimum spatial extent for heatwaves. The large heat-
wave area was chosen to emphasize large-scale heatwave
events, being more likely to be tied to distinct variations
in atmospheric circulation and prominent impacts. More-
over, as shown later in the definition of heatwave onset, a
heatwave region is also allowed to be slightly smaller than
3,000,000 km2 as long as a minimum of 70% of the cluster’s
grid points experience a heatwave.

2.2.4 Onset dates of heatwaves
in ERA-Interim

The onset dates of each cluster’s heatwaves are based on
the ERA-Interim data set. The cluster onset dates signify
the onset of a hot extreme in a cluster (i.e., first hot day of
at least three consecutive hot days) when at least 70% of
the cluster’s grid points experience a heatwave simultane-
ously. This definition of heatwave onset dates allows for a
more flexible location of the hot extreme, but within the
same cluster and still with a large heatwave spatial extent,
having a minimum of approximately 2,000,000 km2. The
onset dates of ERA-Interim heatwaves are shown in Table
S1 in the Supporting Information.

2.2.5 ECMWF model lead time

In terms of temperature anomalies and occurrence of hot
days, lead week 1 represents the temperature anomalies
or occurrence of hot days exactly within the model week
1, which is 1–7 days off model initialization. In the same
way, lead week 2 includes the hindcast days 8–14, and
lead week 3 the hindcast days 15–21. Since the ECMWF
model forecasts are initialized twice per week, there is the
opportunity to sample a heatwave from the model fore-
cast that captures the heatwave onset at the first half of,
for example, week 1 or from the model forecast that cap-
tures the heatwave onset in the second half of the same
lead week. Here, we select for lead week 1 heatwave events
with onset occurring between days 1–4 after model initial-
ization, for lead week 2 between days 8–11, and for lead
week 3 between days 15–18. We have, however, calculated
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PYRINA and DOMEISEN 5

F I G U R E 1 ERA-Interim summer t2m anomaly patterns obtained by hierarchical clustering for the wider European continent during
1998–2017. Daily mean summer t2m anomalies are shown for the following clusters: (a) Black Sea (BSea), (b) Russia (Ru), (c) Western
Europe (WEu), (d) North Sea (NSea), (e) Scandinavia (Sc), and (f) Eastern Europe (EEu). The grid points shaded with black dots denote the
area considered for each cluster [Colour figure can be viewed at wileyonlinelibrary.com]

the predictability of heatwave events with onset occur-
ring in the second half of the respective lead week (not
shown), and found that the model prediction skill falls in
between the adjacent lead times. The ECMWF lead-time
definition used here is also presented with a schematic in
the Supporting Information (SI), Figure A1.

2.2.6 Evaluation of heatwave intensity,
duration, and onset in the ECMWF model

To evaluate the ECMWF predictability for heatwave onset,
duration, and intensity separately, we choose onset, dura-
tion, and intensity definitions that are as independent from
each other as possible.

The onset of a heatwave event is considered predicted
by the ECMWF model if (a) the event starts a maximum of
2 days after the onset date shown by ERA-Interim, and (b)
at least 6 out of 11 ensemble members (54%) predict the
event’s onset. The threshold of a maximum of 2 days after
the ERA-Interim onset date is set in order to give some
flexibility to the prediction system. Moreover, the thresh-
old is set to +2 days and not ±2 days off the ERA-Interim
onset date, as it is not possible for all heatwaves to select
the 2 days before the ERA-Interim onset date for the lead
time of week 1.

Normally, the average intensity of a heatwave
(HW-AVI) is calculated by averaging the daily t2m for the

heatwave duration. According to the definition of ECMWF
model lead times we set here, at lead week 1 a heatwave
that lasts five days would have its last day a minimum of
6 and at a maximum of 9 days away from model initial-
ization. Therefore, the average intensity of events that last
longer than 5 days would not be indicative of an average
intensity evaluated at lead week 1. Moreover, the aim is
to evaluate the model predictability of heatwave average
intensity without taking into account the ability of the
model to predict heatwave duration. For these reasons, the
average intensity of heatwaves for either ERA-Interim or
the ECMWF prediction system is calculated considering
the onset date and the duration of the event shown by the
ERA-Interim data (SI Table S1). Consequently, the fore-
cast average intensity is independent of the forecast onset.
In the case in which the heatwave event lasts for more
than 5 days, the average intensity of the event for either
ERA-Interim or the ECMWF prediction system is calcu-
lated by the average of t2m anomalies over the first 5 days
of the event. If the event has a duration of 3 or 4 days, then
the average intensity of the extreme event is expressed by
the average of t2m anomalies over 3 or 4 days, respectively.
The average intensity is integrated over all grid points of
a particular cluster and is based on the model ensemble
mean. Evaluating the heatwave intensity over the whole
cluster rather than only over the grid points that are pre-
dicted to experience the heatwave provides an estimate of
the predictability of the heat extreme over the full region.
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6 PYRINA and DOMEISEN

Note that, by definition, we choose ERA-Interim heat-
waves that are present during the full heatwave length in
at least 70% of the cluster area.

The duration of heatwave events for each cluster is
equal to the number of consecutive hot days with at least
70% of a cluster’s grid points experiencing a hot day. If less
than 70% of the cluster’s grid points experience a hot day,
then this day is defined as a nonhot day for the cluster.
These definitions are used equally for both ERA-Interim
and the ECMWF model. The duration in the ECMWF
model is calculated based on the t2m anomalies of the
ensemble mean. As described in Section 2.2.5, for the eval-
uation of heatwaves predicted at lead week 3 the onset date
of heatwaves is within the first 4 days of lead week 3 (days
15–18). Therefore, at lead week 3 the prediction system
can simulate a maximum heatwave duration of 28 days
(46 days minus 18 days). According to the model ensem-
ble mean, there were no events simulated with such a
long duration. We evaluate how well the duration of the
heatwaves shown in ERA-Interim data is predicted by the
ECMWF model. In order to count the ECMWF simulated
duration for the heatwaves found in ERA-Interim, (a) an
ECMWF heatwave must have its onset on the indicated
ERA-Interim onset date, or (b) an ECMWF heatwave may
start a maximum of 2 days after the ERA-Interim onset
date. If either (a) or (b) is not satisfied, then the ECMWF
simulated duration for that particular heatwave is set to
zero, indicating that the duration of that heatwave was not
predictable by the ECMWF model.

Heatwave intensity and duration are evaluated accord-
ing to the ensemble mean, whereas heatwave onset is eval-
uated according to the ensemble members. As described
above, the duration is predictable only when the onset of
the event in the ensemble mean is predicted a maximum
of 2 days off the ERA-Interim onset date. Hence, the eval-
uation of duration indirectly provides information on how
predictable the heatwave onset would be if its evaluation
was based on the ensemble mean. For this reason, we have
proceeded with an evaluation of heatwave onset that is
based on the individual ensemble members and provides
additional information on the overall performance of the
ensemble members.

3 RESULTS AND DISCUSSION

3.1 Hot-day statistics in reanalysis
and prediction system

To evaluate the ECMWF predictability of heatwaves
that have spatial locations coherent with the heatwave
locations indicated by the reanalysis data, we first identify
in ERA-Interim the typical hot-day spatial patterns for the

summers of 1998–2017 over the wider European continent
(Figure 1). To check the stability of our classification we
applied the same methodology to the full data period avail-
able for the ERA-Interim reanalysis data (1979–2018) and
found equivalent hot-day patterns (not shown). Moreover,
the hot-day patterns found in this study are very similar
to the heatwave patterns obtained by Stefanon et al. (2012)
for the Euro-Mediterranean region during the summers of
1950–2009 with the observational data set E-OBS (Klein
Tank et al., 2002). The grid points shaded with black dots in
Figure 1 denote the representative regions of each cluster
over which we evaluate the ECMWF heatwave predictabil-
ity (51 grid points per cluster). van Straaten et al. (2020)
showed that the longest t2m forecast horizons are obtained
for hardly any spatial aggregation (1,158 clusters) or for full
aggregation to the European scale. A comparison between
the t2m forecast horizon for no spatial aggregation and
for spatial aggregation with n = 7 (figure 5 of van Straaten
et al., 2020) indicates that the spatial clustering used in the
current study is not expected to impact the forecast skill
horizon of the t2m regional anomalies significantly.

As a first step, we compare the number of hot days
found in the reanalysis (black dots) with the ECMWF fore-
casts at lead weeks 1–3 (Figure 2). A cluster hot day is
considered to be a day with at least 70% of cluster grid
points experiencing a hot day simultaneously, following
the definition of cluster hot days given for heatwave onset
dates and duration (Section 2.2.6). For this reason, we
expect fewer hot days compared with a definition using
the cluster’s spatially averaged t2m anomalies and 75th
percentile to define cluster hot days (SI, Figure A2). The
clusters Ru and Sc have the highest number of cluster hot
days in reanalysis and forecast data (≈180 hot days), while
the number of hot days is lower by 50–80% for the other
clusters. The Ru and Sc clusters are not under maritime
influence, and are therefore expected to have generally
higher climate variability with an increased number of hot
days (Zschenderlein et al., 2019).

The number of hot days and their distribution among
the different clusters is well predicted by the ensemble
mean of the forecast system at lead week 1 (left bars).
The predicted hot-day number decreases significantly in
lead weeks 2 and 3, indicating that for longer model lead
times there are fewer hot days per grid point over Europe
and only a small amount of cases where hot days occur
simultaneously in at least 70% of the cluster. The decrease
of hot days with lead time is more prominent in the
EEu and WEu clusters. A similar result is also shown by
Lavaysse et al. (2019) (see their figure 7), although a differ-
ent method is used to transform the probabilistic ensemble
prediction into a discrete prediction.

The extended-range prediction of European heatwaves
tends to be related to the predictability of atmospheric
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PYRINA and DOMEISEN 7

F I G U R E 2 Number of hot days
per cluster for the 1998–2017 summers.
The number of hot days is given for
ERA-Interim with a black dot and for
the ECMWF prediction system for the
lead times of week 1 (left bar), week 2
(middle bar), and week 3 (right bar)
[Colour figure can be viewed at
wileyonlinelibrary.com]

blocking or persistent weather regimes (Pfahl and Wernli,
2012; Sousa et al., 2018). Whereas high near-surface tem-
peratures over Scandinavia or Russia are often accompa-
nied by omega-like blocking structures, heatwaves over
the Mediterranean are connected to comparably flat ridges
with lower magnitude (Zschenderlein et al., 2019). These
weaker disturbances of the zonal flow might be harder for
the forecast model to predict at longer lead times, espe-
cially when the ridges relate to the occurrence of a single
hot day.

To evaluate how well the magnitude of t2m anoma-
lies for cluster hot and nonhot days can be simulated by
the ECMWF ensemble mean, the mean daily summer t2m
anomalies are averaged over the areas shaded with black
dots for each cluster (Figure 1) using the cosine of latitude
to weight the data. The ECMWF ensemble mean t2m dis-
tributions are narrower compared with the ERA-Interim
t2m distribution for all clusters (Figure 3). The interquar-
tile range becomes even narrower for longer lead times,
exemplifying the lower t2m variability predicted by the
forecast system’s ensemble mean. Focusing on the hot
extremes (upper whisker) of the ECMWF t2m anomaly
distributions, it is also evident that the predicted magni-
tude of hot t2m anomalies for all clusters is lower at lead
weeks 2 and 3 compared with lead week 1. For longer
lead times, the ensemble mean is expected to reproduce
lower t2m variability compared with the individual ensem-
ble members. However, model evaluation according to the
ensemble mean is a standard approach to reduce climate
noise in model predictions (Kharin et al., 2001).

The ERA-Interim 75th percentile of the cluster t2m
anomalies is the threshold above which the t2m cluster
values correspond to a hot day and is indicated by the
upper edge of the ERA-Interim box (e.g., approximately

equal to 1.5◦C for the BSea cluster: Figure 3). The t2m
anomaly values simulated by the ECMWF model that are
above this threshold also correspond to a hot day, as the
threshold used for reanalysis is also used for model data in
this study. For this reason, the 75th percentile value shown
by the upper edge of the ERA-Interim box is an indica-
tion of the lower limit of predictability of hot-day intensity
for the model predictions. The ECMWF 75th percentile
of hot t2m anomalies at lead week 1 is lower than in the
reanalysis, indicating that there are fewer predictable hot
days. The cold bias of the ECMWF 75th percentile at lead
week 1 is approximately equal to 0.3, 0.2, 0.1, 0.3, 0.2, and
0.2◦C for the BSea, Ru, Sc, EEu, WEu, and NSea clusters,
respectively, and increases for longer lead times.

3.2 Predictability of heatwave
characteristics

3.2.1 Predictability of heatwave intensity

To evaluate the ECMWF model predictability of heat-
wave average intensity (HW-AVI), the simulated average
intensity of cluster heatwave events is compared with the
reanalysis data (Figure 4). Figure 4 shows the distribution
of HW-AVI for the heatwaves detected in ERA-Interim,
computed for ERA-Interim data (left box) and for the
ECMWF ensemble mean for lead times of weeks 1, 2,
and 3. At lead week 1, the prediction system reproduces the
width of the HW-AVI distribution shown by ERA-Interim
for all clusters except for the Ru cluster, where the
model’s HW-AVI distribution is clearly narrower com-
pared with the reanalysis. The ECMWF HW-AVI dis-
tribution becomes wider than in the reanalysis in lead
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8 PYRINA and DOMEISEN

F I G U R E 3 Distribution of daily t2m-anomalies for the 1998–2017 summers. The anomalies are given for ERA-Interim (left box) and
the ECMWF prediction system at lead times of weeks 1, 2, and 3. The distribution’s interquartile range (IQR: i.e., the range between the
quartiles Q1 (25th percentile) and Q3 (75th percentile)) is shown by the edges of the boxes. The whiskers represent the minimum
(Q1−1.5*IQR) and maximum (Q3+1.5*IQR) values of the distribution, being the 0.35th and 99.65th percentiles, respectively. The values
below and above the whiskers show the outliers of the distribution. The distribution’s median is given by a black line [Colour figure can be
viewed at wileyonlinelibrary.com]

weeks 2 and 3, with negative average intensities indi-
cating that the prediction system produces t2m anoma-
lies below climatology. The 75th percentile of the t2m

anomalies in the reanalysis spatially averaged over each
full cluster (upper edge of ERA-Interim box in Figure 3
and shown in Figure 4 with a dashed black line) indicates
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PYRINA and DOMEISEN 9

F I G U R E 4 Distribution of the average intensity of the heatwaves (HW-AVI) found in ERA-interim during the summers 1998-2017,
shown for ERA-interim data (left box) and for the ECMWF ensemble mean for lead times of week-1, week-2, and week-3. Details on the
boxes and whiskers are given in Figure 3. The reanalysis 75th percentile calculated for the spatially averaged t2m anomalies of the full cluster
is shown with a dashed black line. This line indicates the lower limit of HW-AWI predictability defined in this study. The stars in (b, d, e)
denote the average heatwave intensity of the most intense (b) 2010 heatwave in the Ru cluster (start date July 27, 2010), (d) 2015 heatwave in
the EEu cluster (start date August 28, 2015), and (e) 2003 heatwave in the WEu cluster (start date August 02, 2010) [Colour figure can be
viewed at wileyonlinelibrary.com]
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10 PYRINA and DOMEISEN

which HW-AVI values correspond to days predicted with
a cluster intensity that corresponds to a heatwave inten-
sity, as defined here. Therefore, in this study we set the
dashed black line as an indication of the lower limit of
HW-AVI predictability, as explained in detail in the previ-
ous subsection.

The predictability of HW-AVI is high for lead week 1 for
all clusters, with a general model cold bias of around 1◦C in
the maximum, minimum, and median values of event dis-
tribution. The Ru cluster exhibits a stronger cold bias in the
maximum values (≈2◦C) and a small warm bias in the min-
imum values of the event distribution (≈0.3◦C). For lead
week 2, the HW-AVI of approximately 50% of the events
lies above the lower limit of predictability in all clusters,
except for the WEu cluster. The WEu cluster has the high-
est HW-AWI predictability, with 75% of its events crossing
the predictability line (8 events). As expected from the low
number of cluster hot days (Figure 2), there are few events
with HW-AVI above the predictability threshold at lead
week 3.

Three record-breaking heatwaves struck Europe dur-
ing our study period: in 2003, 2010, and 2015 (Russo et al.,
2015). The HW-AVI of these heatwaves is shown with a red
star for the most intense 2003 heatwave identified in the
WEu cluster (start date August 2, 2003), the most intense
2010 heatwave of the Ru cluster (start date July 27, 2010),
and the most intense 2015 heatwave of the EEu cluster
(start date August 28, 2015). As these heatwaves had a
large spatial extent and an extended duration, they can
also be found in other clusters for close-by start dates (SI,
Table S1). For example, the 2015 heatwave began in late
June in Western Europe and then spread towards Eastern
Europe (Sippel et al., 2016). We find that the 2003 and 2015
events have a predictable HW-AVI for lead weeks 1 and 2
in the ECMWF forecast system, agreeing with other stud-
ies (Rodwell and Doblas-Reyes, 2006; Magnusson et al.,
2015; Ardilouze et al., 2017). The 2010 event is predicted as
an exceptionally warm event at lead times of weeks 1 and
2, also previously shown by Vitart and Robertson (2018).
Moreover, these authors showed that the most intense
week of the Russian heatwave event, corresponding to the
dates August 1–7, was predictable by the ECMWF forecast
system in terms of heatwave intensity even at lead week 3.
Here, even though we evaluate the 5 days prior to August
1, Figure 4b indicates that the HW-AVI value at lead week
3 is very close to the HW-AVI predictability limit.

To understand whether the heatwave events indicated
by ERA-Interim as high HW-AVI events are better pre-
dicted in terms of HW-AVI and heatwave onset compared
with low HW-AVI events, we separate the ERA-Interim
events into these two event classes. The first class corre-
sponds to 50% of the highest ERA-Interim HW-AVI events
and the second class to 50% of the lowest ERA-Interim

HW-AVI events. The predictability of these events by the
ECMWF forecast system is assessed by computing the
HW-AVI relative bias (Figure 5). The forecast model at
lead week 1 tends to predict better the heatwave intensities
of the high HW-AVI events of clusters BSea (Figure 5a),
EEu (Figure 5d), and Sc (Figure 5c), and the low HW-AVI
events of clusters Ru (Figure 5b), WEu (Figure 5e), and
NSea (Figure 5f). The same tendency applies for lead
weeks 2 and 3 for all clusters, except for the Sc clus-
ter, which has a lower HW-AVI bias for the low HW-AVI
events at lead week 2.

The HW-AVI biases might occur due to a misrep-
resentation by the forecast model of the exact atmo-
spheric circulation, soil moisture, and processes such as
land–atmosphere coupling (Fischer et al., 2007a; Wehrli
et al., 2019). For example, land–atmosphere coupling was
found to increase mean and maximum temperatures aver-
aged for anomalously warm summers, amplifying daily
temperature extremes during the hottest summer days
(Fischer et al., 2007a). Further investigation is needed in
order to understand why the ECMWF model predicts bet-
ter the average intensity of either high or low HW-AVI
events in specific clusters.

Even though the events of 2015 and 2010 belong to the
category that is overall less well predicted in their respec-
tive clusters, both of these events were predicted with very
low relative biases in their respective category. The same is
not true for the WEu 2003 heatwave, which was predicted
with a relative bias at the high end of the bias distribu-
tion at lead weeks 1 and 3 (−35 and −105%, respectively),
and with a bias approximately equal to the median of the
bias distribution at lead week 2 (−50%). A reason for that
might be the high soil moisture bias over the WEu clus-
ter (see figure 2j in Dutra et al., 2021), in combination
with the fact that soil moisture anomalies had a substan-
tial impact on the intensity of the 2003 heatwave (Fischer
et al., 2007b). However, even though land-surface hydrol-
ogy played a crucial role for the seasonal prediction of
this event, to forecast the 2003 event successfully with the
ECMWF forecasting system S3 (Anderson et al., 2007),
revised formulations of the radiative and convective model
parameterizations were also required (Weisheimer et al.,
2011).

3.2.2 Predictability of heatwave onset

The predictability of heatwave onset at lead week 1 (see
definition in Section 2.2.6) is better for high HW-AVI
events than for low HW-AVI events for all clusters
(Figure 6). The higher predictability of the onset of high
HW-AVI events is related to the ECMWF model’s abil-
ity to predict the occurrence of hot days better compared
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PYRINA and DOMEISEN 11

F I G U R E 5 Distribution of the HW-AVI bias in percentage (ECMWF model minus reference data, divided by reference data) for the
heatwaves found in ERA-interim during the summers 1998-2017, for the lead times of week-1, week-2, and week-3. The bias is given
separately for the high HW-AVI (left box) and the low HW-AVI (right box) ERA-interim events. The median of the distributions is indicated
by a black line. The events with HW-AVI bias above the zero line have their HW-AVI overestimated by the model. The stars in (b, d, e) denote
the average heatwave intensity bias of the most intense (b) 2010 heatwave in the Ru cluster (start date July 27, 2010), (d) 2015 heatwave in the
EEu cluster (start date August 28, 2015), and (e) 2003 heatwave inthe WEu cluster (start date August 02, 2010) [Colour figure can be viewed
at wileyonlinelibrary.com]
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12 PYRINA and DOMEISEN

F I G U R E 6 Distribution of percentage of ECMWF ensemble members predicting the onset of ERA-interim high HW-AVI events (left
box) and low HW-AVI events (right box) at lead times of week-1, week-2, and week-3. The model extreme events may have an onset at the
latest 2 days after the ERA start date. The dashed line denotes the lowest limit of onset predictability defined in this study, being at least 6 out
of 11 ensemble members predicting the heatwave onset. The stars in (b, d, e) denote the percentage of ensemble members predicting the
onset of the most intense (b) 2010 heatwave in the Ru cluster (start date July 27, 2010), (d) 2015 heatwave in the EEu cluster (start date August
28, 2015), and (e) 2003 heatwave in the WEu cluster (start date August 02, 2010) [Colour figure can be viewed at wileyonlinelibrary.com]
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PYRINA and DOMEISEN 13

with average t2m days. Higher predictability for the occur-
rence of extreme hot days compared with the occurrence
of days with average temperature was previously shown by
Wulff and Domeisen (2019). Upper-level ridges or blocks
are commonly located above the regions experiencing the
heatwave and are found to be directly related to heat-
wave onset (Pfahl and Wernli, 2012; Sousa et al., 2018;
Zschenderlein et al., 2019). Consequently, the percentage
of ensemble members predicting the heatwave onset could
be related to the strength and location of the simulated
ridge or block that is responsible for the heatwave.

In general, the onset of heatwaves is predicted compa-
rably worse in the EEu and WEu clusters, possibly due to
the sensitivity of heatwave-related dynamical processes to
small-scale microphysical and convective processes impor-
tant for heatwave predictions on subseasonal time-scales
(Zschenderlein et al., 2020). For example, the influence
of diabatic heating is larger for heatwave-related anticy-
clones in northern Europe and western Russia and smaller
in southern Europe (Zschenderlein et al., 2020).

Regarding the predictability of heatwave onset at lead
weeks 2 and 3, there is no clear distinction between high
and low HW-AVI events, as the number of events with pre-
dicted onset is very low for these lead times (0–5 events
in total, depending on the cluster). Varying the threshold
set for a predictable heatwave onset by the model for lead
weeks 2 and 3 from +2 days to the range between ±2 days
and ±5 days does not noticeably change the probability of
the model capturing heatwave onset with more than five
ensemble members (SI Figures A3, A4). This is expected,
as the number of cluster hot days is low for these lead times
(Figure 2).

3.2.3 Predictability of heatwave duration

The ability of the ECMWF model to simulate the dura-
tion of ERA-Interim heatwaves is shown in Figure 7.
As described in Section 2.2, an event has a predictable
duration only when the onset of the event in the ensem-
ble mean is predicted a maximum of 2 days after
the ERA-Interim onset date. More than half of the
ERA-Interim heatwaves have a predictable duration at
lead week 1, for all clusters. Specifically, 60% (9/15) of
events have a predictable duration in the cluster BSea, 80%
(20/25) in Ru, 78% (21/27) in Sc, 60% (11/18) in EEu, 73%
(8/11) in WEu, and 83% (15/18) in NSea. Moreover, the
duration distributions between model and reanalysis at
lead week 1 are similar, with the values of maximum dura-
tion ranging from 10–18 days depending on the cluster.
However, the model cannot reproduce the long-duration
events of the WEu cluster. Specifically, there is no event

with a duration longer than 9 days simulated by the model
in the WEu cluster at lead week 1.

The events of 2003 in WEu, 2010 in Ru, and 2015 in
EEu, were predicted at lead week 1 with durations equal
to 6 days (13 days in ERA), 11 days (17 days in ERA), and
5 days (4 days in ERA), respectively. Among these three
extreme events, only the 2010 Ru event has a predictable
duration at lead week 2, which is equal to 7 days. Gen-
erally, the duration of only a few events is simulated by
the model ensemble mean for lead week 2 and of only
one event in the NSea cluster for lead week 3. The evo-
lution of heatwaves, and by extension their duration, is
affected by land–atmosphere coupling through both local
and remote effects (Fischer et al., 2007a). As defined in
this study, a predictable duration is related to the skill
of the model to predict high t2m over 70% of the spa-
tial cluster. Higher boreal summer t2m prediction skill
was demonstrated by an accurate soil-moisture initial-
ization (Seo et al., 2019). However, the improvement by
soil-moisture initialization is limited to specific regions
where the large-scale wavetrain-like teleconnection pat-
terns driving the heatwaves wane in the model forecasts.

The predictability of the duration is dependent on the
way duration is assessed. As an alternative to the definition
of duration in this study, the duration can be evaluated
without requiring the ensemble mean to produce a hot day,
but only requiring a certain percentage of ensemble mem-
bers. In this case the duration, as well as the HW-AVI of the
event, could be calculated either according to the ensem-
ble mean of the ensemble members that produce a hot day
or probabilistically. Here we choose to evaluate duration
according to the ensemble mean, to be consistent with the
evaluation of HW-AVI, which is commonly shown as the
mean over all ensemble members (Vitart and Robertson,
2018; Wulff and Domeisen, 2019).

As seen previously in the evaluation of onset, where
predictability is assessed probabilistically, there are
extremely few cases at lead weeks 2 and 3 with at least
6 out of 11 ensemble members predicting the onset
of a heatwave. It might be that, for these lead times,
using fewer ensemble members (30%) might already be
indicative of capturing the onset of a heatwave (Lavaysse
et al., 2019). However, even if we consider onsets as pre-
dictable when 30% of the ensemble members capture
them, that still only accounts for 1–2 more predictable
events in the EEu and WEu clusters and 2–4 more pre-
dictable events in the Ru and Sc clusters for lead week
2 (Figure 6). Regarding lead week 1, preselecting the
ensemble members that produce a hot day is expected to
increase the prediction skill of the model for HW-AVI and
possibly increase the number of HWs with predictable
duration.
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14 PYRINA and DOMEISEN

F I G U R E 7 Duration of ERA-interim heatwaves for all events in ERA-interim (boxplot) and for the part of the ERA-interim events
with simulated duration by the ECMWF ensemble mean for lead times of week-1, week-2 and week-3 (right triangles). The duration of the
ECMWF events at different lead times is shown by the black dots. For each lead time and each cluster, the number of right triangles is equal
to the number of black dots, as they correspond to the same heatwaves (those with predictable duration). The diamond (right-hand y-axis)
denotes the total number of ERA-interim extreme events and the number of ERA-interim events simulated by the ECMWF model at lead
times of week-1, week-2, and week-3. The stars in (b, d, e) denote the ERA-interim and ECMWF heatwave duration for the most intense (b)
2010 heatwave in the Ru cluster (start date July 27, 2010), (d) 2015 heatwave in the EEu cluster (start date August 28, 2015), and (e) 2003
heatwave in the WEu cluster (start date August 02, 2010) [Colour figure can be viewed at wileyonlinelibrary.com]

3.2.4 Most predictable European heatwaves

The ERA-Interim number of heatwave events per clus-
ter, together with the heatwave onset dates, HW-AVI, and
heatwave duration, is given in the SI Table S1. The most
predictable events in terms of HW-AVI are marked with
an asterisk when their HW-AVI was predicted as far as 2
weeks lead time and with a red I when their HW-AVI was
predicted as far as 3 weeks lead time. Moreover, the events
marked with a green L13 have their HW-AVI predicted at
lead weeks 1 and 3. There are several events in each cluster
with predicted HW-AVI at lead times of more than a week,
starting with a minimum of 50% of events in the Sc cluster
and reaching a maximum of 82% of events in the WEu clus-
ter. These events include the most extreme 2003, 2010, and
2015 heatwaves identified in the WEu, Ru, and EEu clus-
ters, respectively. However, not all identified 2010 and 2015
heatwave events were predictable at long lead times (e.g.,
the Ru event with start date July 6, 2010), highlighting the
need to understand what drives inter-event differences in
predictability within the same cluster.

The events with the highest predictability, meaning
that all their characteristics (HW-AVI, onset, duration)

were predicted as far as 2 weeks lead time, are few. These
events are highlighted by grey shading in Table S1. The
most predictable events took place during years 2010 and
2016 in BSea, 2001, 2010, 2014, and 2017 in Ru, 2013
and 2014 in Sc, 2012 in EEu, and 2007 in NSea. In con-
trast, there is a higher number of events with poorly pre-
dicted HW-AVI at lead week 2. Note that HW-AVI is the
most predictable heatwave characteristic. The least pre-
dictable events include, for example, all events of 2006
and 2016 in the Ru cluster and the event of 2017 in WEu.
The 2017 WEu heatwave was characterised as the earli-
est European summer mega-heatwave (Sánchez-Benítez
et al., 2018).

4 SUMMARY AND CONCLUSIONS

The ECMWF forecast system is used to evaluate the sub-
seasonal predictability of large-scale heatwaves over six
European regions during the period 1998–2017. The pre-
dictability of three heatwave characteristics, that is, the
onset, duration, and average intensity, is assessed for lead
times of 1–3 weeks.
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PYRINA and DOMEISEN 15

The forecast model’s tendency is to predict with low
relative bias the average intensity of the high-intensity
heatwaves that occurred in the Black Sea, East Europe,
and Scandinavia clusters and the low-intensity heatwaves
of the Russia, West Europe, and North Sea clusters.
However, the onset of high-intensity events is consis-
tently better predicted than the onset of low-intensity
events for all clusters. The European regions experi-
encing the highest predictability of onset and duration
are the clusters Russia, Scandinavia, and North Sea.
The West Europe cluster is the most predictable in
terms of the number of heatwave events that at lead
week 2 have predictable average intensity, as defined in
this study.

The evaluation of heatwave average intensity does not
depend on the prediction of heatwave duration in this
study. Therefore, average intensity is found to be the most
predictable characteristic of European heatwaves. Heat-
wave average intensity is predictable by the model ensem-
ble mean up to lead times of 3 weeks, even in the case when
the onset (probabilistic evaluation) and duration (evalua-
tion based on ensemble mean) of the particular heatwave
are not considered to be predicted successfully. Taking into
account only events with predictable duration, we find that
the forecast system follows the duration distribution well
for all clusters at lead week 1. However, the prediction of
duration at lead weeks 2 and 3 is much more challenging.
The same finding applies for the predictability of heatwave
onset.

We expect that the subseasonal predictability of heat-
waves found in the current study is similar for other
subseasonal forecasting systems. For example, an investi-
gation of the predictability of heatwave occurrence over
Europe for the period 1999–2010 showed that four fore-
casting systems, including the ECMWF prediction model
used in the current study, had small differences in fore-
cast skill at subseasonal lead times (Wulff and Domeisen,
2019).

The midlatitude circulation is difficult to predict, being
dominated by unpredictable weather noise. However, we
have shown that subseasonal forecasts from the ECMWF
forecast system can predict the intensity, onset, and dura-
tion of several heatwaves, including the extreme heat-
waves of 2003, 2010, and 2015. Given the importance of
predicting such strong extreme events, it is crucial that the
processes leading to their predictability are investigated
and consequently modelled correctly in state-of-the-art
subseasonal forecasting models. This study identified the
most and least predictable heatwaves, which sets the
basis for a further investigation of the causes of dif-
ferences in predictability for different heatwave events
in Europe.
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