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Attenuating the actions of the neurochemical adenosine through a cup of coffee is part of the 

daily wake-up procedure of many amongst us. A large body of accumulating literature, coined as the 

“adenosine story”1, indicates that adenosine is a primary sleep factor and that caffeine, coffee’s 

active ingredient, combats adenosinergic receptor activation2. Adenosine results from the 

degradation of the energy-rich molecule ATP that is consumed in the brain during electrical and 

synaptic activity2,3. Being awake and attentive is energetically costly for the brain and markedly 

increases adenosinergic “tone”2,4,5. By binding to receptor subtypes A1 and A2A, adenosine exerts 

diverse neuromodulatory actions throughout the brain6. A1 receptors are inhibitory, Gi-coupled 

receptors widely expressed in wake-active areas and central to adenosine’s sleep promotion2. But 

many questions about how adenosine relates to sleep homeostasis remain. Which of the cellular 

signaling pathways engaged by A1 receptors are responsible for sleep induction? The new study by 

Deboer and colleagues7 in this issue of SLEEP is the first to specify the molecular basis of an ionic 

pathway for the somnogenic actions of A1 receptor activation: an inhibition of CaV2.1-type Ca2+ 

channels, members of the family of voltage-gated Ca2+ channels. CaV2.1 channels are involved in 

controlling vesicular release from presynaptic terminals, therefore, attenuation of neurotransmission 

at CaV2.1-expressing synapses is an important pathway for sleep induction through adenosine. 

 Voltage-gated, Ca2+-permeable ion channels are found at both presynaptic and postsynaptic 

sites and are key determinants of neuronal excitability and synaptic transmission. The three 

members of the CaV2 channel group, CaV2.1 - CaV2.3, are concentrated at presynaptic terminals of 

excitatory and inhibitory synapses, where they typically co-operate to control synaptic release. 

Cav2.1 channels often mediate highly reliable and temporally precise release8 and are found 

throughout the brain, including in subcortical and cortical areas involved in the regulation of vigilance 

states9-11. Moreover, these channels are susceptible to inhibition by Gi-protein-coupled 

neurotransmitters, such as adenosinergic A1 receptors12. Adenosine dampens glutamate release at 

several excitatory terminals in the brain13, including through A1-receptor-mediated CaV2 channel 
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inhibition14,15, thereby controlling synaptic plasticity16,17 and protecting neurons from insult18. CaV2.1 

channels are thus particularly favorable candidates to contribute to adenosine’s promotion of sleep. 

 However, testing an ion channel’s involvement in adenosinergic regulation of synaptic 

transmission in the intact brain is tricky, since, if modified, network excitability and hence release of 

neurotransmitter will be altered, notably that of adenosine itself. Moreover, loss-of-function of 

CaV2.1 channels causes major motor disorders19 and compensatory upregulation of other voltage-

gated Ca2+ channels20. Therefore, assessing sleep-wake behavior in animals with dysfunctional 

channels is unlikely to provide conclusive insights about adenosine’s molecular targets.  

Deboer et al.7 found an elegant solution when choosing a knock-in mouse carrying the R192Q 

mutation in the Cacna1a gene encoding the pore-forming subunit of CaV2.1 channels. This amino 

acid substitution in the S4 transmembrane domain decreases the sensitivity of the CaV2.1 channel to 

Gi-proteins, while leaving intact the maximal extent of inhibition21. The mutation also results in a 

shift in the voltage dependence of Cav2.1 channels21. Nevertheless, this mouse permitted study of 

the role of a functionally responsive Ca2+ channel with preserved expression levels, but compromised 

primarily in G-protein-mediated inhibition22. The hypothesis to be tested by Deboer et al.7 was clear: 

if CaV2.1 channels mediate some of adenosinergic actions on sleep, then these animals should show 

attenuated sleep behavior when adenosine concentrations are elevated, but not when they are 

exceedingly low or high. Indeed, under natural sleeping conditions, R192Q knock-in mice showed less 

NREM sleep and substantially prolonged wake periods during the dark, active phase, whereas sleep-

wake behavior in the light was unaltered. Additionally, mice responded normally to sleep deprivation 

and showed preserved rebound sleep and elevated slow-wave activity, consistent with the idea that 

high adenosine levels may inhibit CaV2.1 channels close-to-maximally. Again, however, animals were 

more active in the ensuing dark period, during which adenosine levels are lowered. Intriguingly, 

when the mutated animals were injected with either caffeine or the specific A1 receptor agonist 

cyclopentyladenosine, they showed a more rapid reversal to the pre-drug sleep-wake behavior. 

CaV2.1 channels are thus effectors acting in proportion to both increases and decreases in adenosine, 
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indicating that they are on-going bidirectional monitors of adenosinergic “tone” and mediate the 

duration of its actions on sleep-wake behavior. In agreement with this, R192Q mice live under a 

constantly elevated sleep pressure, as adenosine levels are no longer funneled through Cav2.1 

channels to promote sleep. 

 In conclusion, the work presented by Deboer and colleagues7 significantly advances 

understanding of the signaling pathways recruited by adenosine that are important for 

somnogenesis. One should certainly keep in mind that in the R192Q mouse, Gi-mediated channel 

inhibition is compromised throughout the brain, hampering many important presynaptic modulators 

and altering the voltage-dependence of the Cav2.1 channels. In humans, the R192Q substitution 

occurs from a spontaneous missense mutation causing familial hemiplegic migraine22,23. 

Nevertheless, the choice of this mouse is particularly fortuitous, since it reveals much of adenosine’s 

actions. So far, the sleep-inducing properties of adenosine have been dominantly associated to 

adenosine’s direct hyperpolarization of wake-promoting neurons, to the promotion of bursting 

activity in thalamus24, and to concomitant direct excitation of sleep-promoting neurons by A2A 

receptors6. These postsynaptic actions are undoubtedly important, but Deboer et al.7 now bring to 

the forefront that adenosine steadily suppresses an on-going presynaptic drive, notably at terminals 

expressing CaV2.1 channels. How exactly in the brain weakening of this drive leads to sleep remains 

to be discovered, but a potential site for such inhibition is the ascending cholinergic system, a 

primary site of adenosine action25. Indeed, in vitro studies show that glutamate release onto basal 

forebrain cholinergic neurons is dominated by CaV2.1 channels10 and, in pontine tegmentum, 

inhibited by adenosine26. Moreover, adenosine inhibits glutamatergic afferents onto 

hypocretin/orexin neurons via inhibition of presynaptic voltage-gated Ca2+ channels11. Conversely, 

A1-mediated presynaptic effects in thalamus promote desynchronization of thalamic sleep-related 

network activity27. Pioneering work of the kind presented by Deboer et al.7 will help to balance the 

relative importance of adenosine’s multiple sites of action, which is critical for understanding the 
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mechanisms of sleep regulation, and for future endeavours in specific drug development and medical 

treatment for sleep disorders. 
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