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1. Introduction

Let G be an abelian locally compact group and H a closed subgroup. Hauenschild
and Ludwig [11, Theorem 2.3, p. 170] obtained an explicit bijective correspondence
between the set of all closed ideals of L\H) and the set of all closed ideals of L\G)
invariant under the pointwise action of LX(G/H).

In this work, we obtain similar results for the Figa-Talamanca Herz algebra Ap(G)
of an amenable locally compact group G. For 1 < p < oo, Ap(G) is the Banach algebra
of all functions Yin-iK*L s u c n that Yjn-i IIKIIPIILlip- < °° w i t n t n e usual norm
[12].

Given a closed normal subgroup H, we prove (Theorem 5) the existence of a
bijection e between the set of all closed ideals of AV(G/H) and the set of all closed
ideals of AP(G) invariant under translations by elements of H. We show moreover
(Corollary 12) that a closed ideal / of AP(G/H) has a bounded approximate unit if
and only if e{I) has a bounded approximate unit. The converse part of this assertion
is delicate: it requires, in the L1 case (as shown by Bekka [1]), different tools of
integration theory on the dual of G which are missing for G non-abelian and even for
G abelian if p ^ 2. We avoid this by considering PMP(G), the set of all p-
pseudomeasures on G and the Banach algebra Hom^ (G){PMp{G)) of all linear
norm continuous maps <D from PMP{G) into itself such that S(uT) = u$>(T) for
ueAp(G) and TePMp(G). We recall that PMp(G) is the ultraweak closure of the
linear span of the set of right translations by elements of G in the space of all
bounded operators of LP(G); for G abelian, PM2(G) is isomorphic to U°{G). There
is a natural inclusion of Hom^ {G/H)(PMp(G/H)) into Horn,, {G){PMp(G)). We prove
(Theorem 10) the existence of a conditional expectation of Horn,, (G)(PMp(G))
onto Horn,, (GIH)(PMp(G/H)). This result seems to be new even for G abelian and
p = 2. As an application we obtain the above mentioned result concerning the
existence of approximate units in ideals of Ap(G/H) and AP(G).

2. Main definitions and notation

We use notation and results of [4,5]. We recall here the most important ones. The
Banach space PMp(G) is the norm dual of Ap(G), the duality being given by

(Jk. * I, TyAp(G) <PMp(G) = \ ^ P M P ' ' ) L 1 ' ( G ) 1 I P ' ( C )

where rpk = kAG
llp and <f,g>Lp{G)<Lr\G) = JGJ{x)g(x)dx. For ueAp(G) and

Te PMp(G), uTis the operator denned by <u, uT}Ap(G) PMp(G) = (uv, T}Ap{G) PMp{G) for
all veAp(G); with the mapping (w, T)\-+uT, PMp{G) is a left Banach ^p(G)-module.
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Let co be the canonical map from G onto G/H and fi a Bruhat function for the pair
(G,H) (that is, fi is a non-negative continuous function on G, supp 0 0 co~\K) is
compact for every compact K of G/H and J /?(x/i) dh = 1 for every x e G [16, p. 163]).

For r, seC00(G) (the space of continuous functions with compact support),

</r. ,(T) m, ri)Lv{GIHh Lv(GIH) = < T[(^ wAJ^) o a>) r], ((, nAG%) o co) S>LP(G)) LP-(G) dy
JG/H

defines a bounded linear map fr t of PMP(G) into PMP{G/H). Conversely, for
k,leC00(G),

= f
JG

where 7], a(x) = fH a(xh) dh, defines a bounded linear map of PMp(G/H) into
PMp(G). A compactness argument involving the maps/r<8 allows one to define, in a
canonical way, a linear contraction R of cvp(G) (the norm closure in PMp(G) of
{TePMp(G) | supp 7compact}) onto cvp(G/H) which coincides on L^G) with TH. See
[4] for details.

We also need several important subspaces of PMV(G): PFP(G) is the norm closure
of L\G) in PMP{G) and CP(G) the set of all TePMp(G) such that TSePFp(G) for
every SePFp(G). We recall that Pi^(G) c cvp{G) c CP(G) <= />Mp((7).

If we assume G abehan and p = 2, the preceding spaces have a very concrete and
very simple description. Via the Fourier transform, PF2(G) is isomorphic to the space
of all continuous functions on G vanishing at infinity, cvz(G) to the space of all
bounded uniformly continuous functions on G and C2(G) to the space C\G) of all
bounded continuous functions on G. Moreover, for Tecv2(G), R(T) = Reswi f where
Hx = ixed\x(h) = 1 for every heH).

For G arbitrary, A2{G) is the Fourier algebra of G introduced and investigated by
Eymard, PF2(G) is the reduced C ""-algebra of G and PM2(G) is the von Neumann
algebra of G [6].

Let Wp{G) be the norm dual of PFp{G); we identify it as a subalgebra of C\G) in
such a way that for aWfeL^G) and we WP(G),

= I
For G abelian, ^(G) is isomorphic to the Banach space of all bounded Radon
measures on G. For G amenable, W2(G) is the Fourier-Stieltjes algebra of G [6]. In
analogy with the abelian case, there is a duality between CP(G) and WJG): we can
define it by (T, w}Cp(G) Wp(G) = lim <JXG(J^ w>PFp(G) Wp(G) where (/,)<6/ is any bounded
approximate unit in L\G) (see [2, 3]). In [3], the interested reader can find, among
other results, a detailed investigation of the duality between Cp(G) and Wp(G). We
first need a little complement to that work.

LEMMA 1. Let Tecvp(G), u,ve WP(G) and we WP(G/H). Then
(1) <i,wu>Cj)(G)<Wp(G) = \uT,vyCp(G) Wp(G),
(2) R(wocoT) = wR(T).

Proof. (1) Let (MJ be a bounded approximate unit of Ap(G), then we have by [2,
Theoreme 2, p. 136]

P> M y/C_(G), WAG) — " m \"<x ^> M y )c_(G) , W_(G) — U m \ W a My> ^/A-iG), PMAG)
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(2) From [2, Theoreme 3, p. 137], we have for all ve Wp(G/H)

<R(wocoT),v)Cp{G/HhWp{G/H) = (wocoT,voco)Cp{G)Wp(G) = (T,wocovoco)Cp{G)WpiG)

= \-*H-* )» WV/Cp(G/H), Wp(G/H) = \WR(1 ) , V)Cp(G/H) Wp(GjHy

3. A bijective correspondence between ideals of Ap(G/H)
and invariant ideals of Ap{G)

DEFINITIONS. Let / be a closed ideal of AP(G/H). The closure in AP(G) of the
linear span of {u v o co \ u e Ap(G), v e /} is a closed ideal e(I) of Ap(G). Observe that e{l)
is invariant by right and left translations by elements of H. Let / be closed ideal of
AV{G). The closure in Ap(G/H) of TH{I(] CW(G}) is a closed ideal r(/) ofAp(G/H).

In the L^case, for G abelian, the corresponding definitions are the following
ones. For a closed ideal / of L\H), e(I) is the closure in L\G) of the linear span of
C00(G) *HI. For a closed ideal IofL\G), r(J) is the closure in L\H) of the linear span
of {ResH/|/6/*C00(G)} [11, p. 168].

Let / be closed ideal of AP(G), we recall that I1 is the set of all TePMp(G)
such that (u,T}A (G)iPM (G) = 0 for all uel. The amenability of G implies that

Ix = {TePMp(G)\uT=0 for all uel}.

The main result of this paragraph requires the following lemmas.

LEMMA 2. Let I be a closed ideal of Ap{G) and Te PMp(G) such that R{uT) e r(/)x

for every ueAp(G). Then Tel1.

Proof. Let uel, v,weAp(G)C\C00(G) and r,seC00(G). Observe that for every
yeG,

Riy-iwrp-tiz^yT) =frg(y-lWT)

(see [5, Proposition 3(iii), p. 98]). From [5, Proposition 13a), p. 104], we deduce that

f v*w(h-l)frt8(uhT)dh= f TH(y-
J H JG

This implies/,iS{uT) = 0 and therefore uT= 0.

LEMMA 3. Let I be a closed ideal in Ap{G) such that uh e I for heH and uel. Then
R(vT)er(I)xfor every veAp{G) and Tel1.

Proof. It suffices to consider veAp(G) 0 C00(G). Let ueI(]C00(G) and
r,seC00(G). We have

J.frtg(vuhT)dh = 0.

From [5, Proposition 13b), p. 104], it follows that TH(u)fr JyT) = 0. This implies

TH(U)R(TP7*(TP.SYVT) = 0

and therefore TH(u)R(vT) = 0. We finally obtain R(vT)er(I)L.

LEMMA 4. Let I be a closed ideal ofAp(G/H) and Te PMP{G/H). Then Te Ix if
and only if Qk t(T) ee(I)x for every k, le C00(G).
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Proof. Recall that for ueAp{G) and veAp(G/H), we have [5, Proposition 19,
P- HI]

uvocoQ,k t(T) — uQkj(vT).

THEOREM 5. Let G be an amenable locally compact group and H a closed normal
subgroup of G.

(1) We have I = r(e(I))for every closed ideal I of AP{G/H).
(2) For every closed ideal I ofAp(G) such that uh e I for uel and heH,we have also

Hence e is a bijection between the set of all closed ideals ofAp{G/H) and the set of
all closed ideals of Ap(G) invariant under H.

Proof. (1) From the very definitions we get r{e{I)) a I. For the reverse inclusion,
we shall show that r{e{I))L c I1. Let Ter{e{J))L, and consider ver(e(I)), ueAp(G)
and k,leCw(G). From vR(uQkl(T)) = R{unkl(vT)), we get R(uQKl(T))er(e(r})1.
Lemma 2 implies Qkj(T)ee(I)1, finally from Lemma 4 we conclude that Tel1.

(2) Taking into account (1) we need only to prove that for two closed ideals / , /
of AP(G) with uhel, vheJ for heH, uel, veJ and r(I) = r(J), it follows that
/ = J. Let Tel1; by Lemma 3, RiuT^eriJ)1 for ueAp{G). Lemma 2 implies TeJ1.

REMARKS. (1) For A c (?, define I(A) to be the ideal of Ap{G) consisting
of those functions which vanish on A. Let F be a closed subset of G/H, then
e(I(F)) = Kar\F)) and r(I(a)-\F))) = I(F).

(2) We conjecture that Theorem 5 is true for non-amenable groups. However
amenability is used several times in our proof (existence of R, characterization of

(3) Let / be a closed ideal of AP(G) such that h ue/ for every uel and heH, then
we have uhelfor every uel and heH. It suffices to apply the preceding theorem to
the ideal {«| ue/} of ,4p,(G).

It is possible to extend partially the second part of Theorem 5 to arbitrary closed
ideals of AV{G).

PROPOSITION 6. Let I be a closed ideal ofAp(G), then e(r{I)) coincides with IH, the
closure in Ap(G) of the linear span of{uh\ueI,heH). (Remark that IH is the smallest
H-invariant closed ideal of Ap{G) containing H.)

Proof Because of Theorem 5, it suffices to verify that r(IH) c r{I), the converse
inclusion being a direct consequence of /c= IH. Take veIH0 CQQ(G) and e > 0 and let
A' be a compact neighbourhood of supp v. We recall the existence of C > 0 such that
\\THu\\Ap{G/in ^C\\u\\Av(G) for every ueAp{G) with suppw c K[14, lemme 1, p. 188].
Choose"weAp(G) witn w = 1 on suppv, supp w c K and ||w||^ (G) < 2. Now there
exists «! , . . . ,«„€/and h^...,hneHsuch that

Let wt = u, whJi, so

A^G/H)
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From T^w^)e/•(/), we deduce finally THver{I) and the conclusion.

4. A natural inclusion of YiomA {G/H)(PMp(G/H)) into ¥LomA {G)(PMp(G))

DEFINITION. For Te cvp(G) and </> e cvp(G)*, there is a unique <fi • Te cvp(G) with

(j>{uT) = (u,<j>-TyAp(G)PMp(G) for every ueAp{G).

For <j>,y/ecvp(G)*, we define ((p'f^T) = <f>(\f/- T) for Tecvp(G).

With this operation cvp(G)* becomes a Banach algebra. We also have
<f>(vT) = (<f>-T,VyCpiGhWp(G) for every (f>ecvp(G)*, ve WP(G) and T G C ^ G ) .

PROPOSITION 7. For <j)ecvp(G)* and TePMp(G), there is a unique

aM(T)ePMp(G)
such that

<j>{uT) = (u,oG(<j)){Ty)A PM

for every ueAp(G); oG is a Banach algebra isometry from cvp(G)* onto
HomAp(G)(PMp(G)). For every ®<=HomAp{G)(PMp(G)) and Tecvp(G), we have

REMARKS. (1) This proposition is not new! All these assertions can be deduced,
for example, from [9, p. 140]. The fact that aG is a bijective linear isometry is also due
to Granirer [8, Proposition 2.1, p. 160]. We present here a very short self-contained
approach.

(2) aG is onto if and only if G is amenable [8, Theorem 2.1, p. 160].
(3) Note that aG(</>)(S) = <f>-S for every Secvp(G).

Proof of Proposition 7. (I) aG is a linear isometry.
It is clear that ||<TG(0)|| < \\<j>\\. Let 0>eHom^ (G){PMp{G)). Define <f>ecvp(G)* by

<f>(T) = <O(r), lG>Cp(G)iHyG). We have ||^|| ^ liofand, for ueAp(G) and TePMp(G),

), iGy

hence aG{<j>) = d> and | |0 | | = | |O| | .
(II) aG{(j> • y/) = oG(<j>) aG(i//).
For TePMp(G) and ueAp(G), we have

<u,aG(<t>)aG(y,)(T))Ap{GhPMp{G) =
= (u,oG(sJ>-y,){T)yAp{G)<PMp(Gy

THEOREM 8. Let j be the map aGoR*oo-G)H.
(1) j is a Banach algebra isometry from Hom^ (G/H)(PMP(G/H)) into

Horn (G)(PMp(G)).
(2) For TePMp{G), ueAp(G), veWp(G/H) and<S>eHomAp(G/H)(PMp(G/H)), we

have

<uvoco,j(<&KT)}Ap(O)PMp{G) = <®(R(uT)),v)CpiG/H)iWp{G/H).

(3) Let I be a closed ideal of Ap(G/H). Assume the existence of a projection P of
PMp(G/H) onto I1 with PeHom,, (GIH)(PMp{G/H)). Then j{P) is a projection of
PMp(G) onto e(/)x. *
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Proof. (1) From [4, Theorem 6, p. 21], we know that R* is an isometry from
cvp(G/H)* into cvp(G)*; so it suffices to show that R* is an algebra homomorphism.
For ueAp(G), Tecvp(G) and </>ecvp(G/H)*, we have

<«, R(R*(<f>) • T))Ap(G/H)> PMp{G/H) = (R*{<t>)'T,uoco)Cp{Gh Wp{G)

[2, theoreme 2, p. 136].
But <R*(<f>)T,uoco)c (C)> „ (0) = <M, 0 • R(T)yA{a/H)t PM {G/H), so we get

R(R*(<f>)T) = <j>R(T). Letting 0, y/ecvp(G/H)* anci Tecv/G), we have

(2)

i Wp{G/H).

(3) Letting M6^P(G), y e / a n d TePMp(G), we have

= (®(R(v o cw uT)), 1 a,H>c9{GiH). WP(G/H)

V G ) P M p ( G ) = <P{R(uT)),v)Cp{G/HhWp(G/H)

and thereforeXP)(7)ee(I)L. Let TeeC/)1. For wey4p(G) and veAp(G/H), we have
l1 and using (2)

this implies j(P){T) = T.

REMARK. Putting v = \G/H in (2), we get

5. A conditional expectation of HomA (G)(PMP(G)) onto Hom^ (G/H)(PMP(G/H)).
An application

We first need some complements to [14, lemme 1] and [4, p. 13 and 17].

THEOREM 9. Let u e AP(G), Te PMP(G/H), k, /e C00(G) and k' = kfiw, I' = If*.
Then,

CD \\*G%TH{uk'*i'w«)\\Ap{GIH) ^ wkunjuw^
and

\M>^t,l(-'))ilJ,(G),PMJ,(C) ~ \^G/HTH(&C Uk * ' )> ^/Av(GIH),PMp(GIHY

(2) R(uQki t(T)) = (AG% UW'k' * I'u)) T.

Proof (1) We only need to consider u = r*s with r,seC00(G). We have

\r*S, LZj. , ( i )/i4j)(G),PAfp(G) == \ W (0> •* /Ap(G/H),PMp(G/H)dt,
J G

where
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It is easy to verify that w is a continuous map from G into the Banach space AP(G/H)
and that

[ V
G

There is a unique aeAp(G/H) with

\a>S/Ap{G/H),PMp{G/H)= (Wv
J G

for every SePMp(G/H). For x e G we obtain

J G J H J G

this implies <r*s,Qkil(T)}Ap(G)PMp(G) = <a,T)Ap{a/H)tPM9{aiH) and

(2) Using again [2, Theoreme 2, p. 136], we have for we Wp{G/H)

<R(uQk<l(T)),w}c {G/H)tW(G/H) = (unk<l(T),woa))c ,GhW(G)

= (AG% TH{AG^'u wocok' * I'), T}ApiGIHhPM(GIH)

<{t% T{Wk> /')) T, w>Cp(GIHh Wp(GIHy

REMARK. The amenability of G is not needed for (1).

THEOREM 10. There is a linear contraction E of Hom^ (G)(PMp(G)) onto
HomAp{Gm(PMp(G/H)) such that

(1) EUm) = Vfor VeHomAp{G/H)(PMp(G/H)),

(2) £ ( < W ) ) = £(<*>)¥ for

OeHomVG)(i>Mp(G)) and VeHomAp(G/H)(PMp(G/H)).

(3) Let I be a closed ideal of AP{G/H). Assume the existence of a projection

(G)(PMp(G)) of PMp(G) onto e(/)x. Then E(P) is a projection of
p(G/H

^ (G)(p(
PMp(G/H) onto I1.

Proof (I) Existence of E with (1) and (2).
Let X be the Banach space of all continuous bilinear functionals on

cvp{G/H) x cvp(G)*. For a subset C of X, C denotes the closure of C in X for
the topology a(X,cvp(G/H)xcvp(G)*). For k,leC00(G/H), we define <xk teX by
<xktl(T,<f>) = <f>(QVp{k)Vp<l)(T)) where vp{k) = AG

f*F*(fcAj/*,)oco. For e > 6 and F
an arbitrary finite subset of Ap(G/H), let CFe be the set of all afci, such that
k,l€C02(G/H), \\k\\Jl\\p. = I and ||w —M^*/ | | ^^ ( G / W ) < e for every we/1. There is
a e 0{CFe\F finite subset of AP(G/H),e > 0}." For every <f>ecvp(G)* there is a
unique Q(<p)ecvp(G/H)* such that a ( r , 0 ) = Q(<j>)(T) for every Tecvp(G/H).
The map g is a linear contraction of cvp(G)* into cvp(G/H)*.
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We show that Q(R*($)) = <f) for every <f>ecvp(G/H)*.
Choose Te cvp{G/H) and e > 0. By the Cohen-Hewitt factorization theorem [13,

32.22], there is weAp{G/H) and T'ecvp{G/H) such that T= wT. There is also

*kjeC{wU/mmp){1+m such that \<x(T,R*(<f>))-<xkl(T,R*(</>))\ < | .

We have a(TtR*(4>)) = Q{R\<l>)){T), akJ(T,R*(<f>)) = <f>(k*lT) and

\<f>(k*lT)-<f>(T)\<e/2.

We conclude that |fiCR*(0))(r)-c/>(T)\ < e and therefore Q(R*(<f>)) = <j>.
For ^ecyp(G)* and <f>ecvp(G/H)*, we have Q(y/• R*(<f>)) = Q{w)-<f>-
Let £ > 0, Secvp(G/H) and weAp(G/H). There is afciIeC{w)i, with

! and |

We have a ( S , r * * ( 0 ) = fi(^^*(0))(5), o#-S,y/) = ( f i ^ ) ^ ) ^ ) and

For ueAp(G) we have

where

We obtain

<M, R*(<f>) ' QVp{k)t VP,(1)(S)}AP(G), PMp(G) = (U> "vp(fc), vp.(l)W S)/Ap(G), PMp(G)>

which implies

We finally get

The map E = aGIHoQoa'^ is therefore a linear contraction of Hom^ <G)(PMP(G))
onto Hom^ {G/fl)(PMp(G/H)) which satisfies (1) and (2).

(II) Let <D be an element of Hom^^CPM^G)). For TePMp(G/H), F a finite
subset of AV{G/H), e,e' > 0, there is <x.kl€CF e. with

PM (G/H) \~*r\**« iu\ ., m\-» lit rrysuj/f, in\ W m\ ^ £

for every
For there is aktleCFi^ with |a(wr,cTG1(<l)))-afc,t(M;71»0'G1(^)))l < c for every wef.

and
khVp.(l)(wT)), lG)CpiGhWp{G)

J , p

(III) We prove (3).
(a) For every TePMp(G/H) we have E(P){T)eIL.
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Let w be an element of the ideal /. For e > 0, there is <xk te C{w) e with

(w, E(P)(T))Ap{G/H) PMp(GIH)-<PnVp(k)< v ( 0 ( r ) , woco}Cp(Gh Wp{G) < e.

Choose ueAp(G)f] C00(G) equal to 1 on a neighbourhood of the support of

piG)>Wp{G) = (PQVp(k)tVp,{l)(T),uwoco)Cp{G)tWp{G) = 0.

This implies £(i>)(7)el1.
(b) We prove that E(P)(T) = T for every Tel1.
Let e > 0 and weAp(G/H). There is aMeCM i { / 2 ( 1 + | | r | j ) with

Taking into account Proposition 4 and Theorem 8, we obtain

^ Vj,(fc), VP.VAT), WO tt/cp(G), w y o = \^%(fc>, vp.(i)\T), woco}Cp(G) Wp(G)

— \k* IT, w)CpiG/H) p

This implies

|<W, E(P)\T )}A iG/M) iPM (GIH)~ \W> T/A tG/H)PM ,G/H)\ < 6.
p{G/H) \rv> * /Ap(G/H),PMp(G/H)\

We conclude that E(P)(T) = T

REMARK. We are not able to show that E(jQ¥) O) = ¥£(0) for
VeHomAp{G/H)(PMp(G/H)) and<i>eHomAp{G)(PMp(G)).

PROPOSITION 11. Let A be a commutative normed algebra with an approximate
unit bounded by 1. Let I be a closed ideal of A and C > 0. The ideal I has an approximate
unit bounded by C if and only if there is a projection P of A* onto I1 with pd — P\\ ^ C
and such that P(af) = aP(f)for aeA andfeA*.

This proposition is due to Franchise Lust-Piquard [15, pp. 7 and 15]. The condition
on C is not there but requires no new idea. See also [7, Proposition 6.4, p. 17].

COROLLARY 12. Let I be a closed ideal ofAp{G/H) and C > 0. The ideal I has
an approximate unit bounded by C if and only ife(I) has an approximate unit bounded
by C.

Proof. This corollary is a direct consequence of Proposition 11, Theorem 8(3)
and Theorem 10(3).

REMARKS. (1) Assume that / has an approximate unit bounded by C. It is
possible to prove directly that e(J) has an approximate unit bounded by C. It suffices
to adapt the proof of the Z^-case (see [10, Lemma 1, p. 170; 1, Theorem, p. 392]).

Let uee(I) and e > 0. There is uv...,uneAp(G) and vli...,vnelsuch that

A-(G)
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There is beAp(G) such that \\b\\A (G) ^ 1 and

» / « \ II

* - l \fc-l / \\Ap(G)

One can find we I such that

:C and H^-^wH

E H«JI Av(G)

for every 1 ^ 7 ' ^ «. If we choose d = b woco, we conclude that dee(I), \\d\\A (G) ^ C
and ||«-Mfi?||VG)<e.

The proof of the converse assertion seems to require the map E (Theorem 10) and
Proposition 11.

(2) As far as we know, Theorem 10 seems to be new even for G abelian and
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