ON IDEALS OF 4, WITH BOUNDED APPROXIMATE UNITS
AND CERTAIN CONDITIONAL EXPECTATIONS

JACQUES DELAPORTE anp ANTOINE DERIGHETTI

1. Introduction

Let G be an abelian locally compact group and H a closed subgroup. Hauenschild
and Ludwig [11, Theorem 2.3, p. 170] obtained an explicit bijective correspondence
between the set of all closed ideals of L'(H) and the set of all closed ideals of LY(G)
invariant under the pointwise action of L*(G/H).

In this work, we obtain similar results for the Figa-Talamanca Herz algebra 4_(G)
of an amenable locally compact group G. For 1 <p < 00, 4 »(G) is the Banach algebra
of all functions Y@ k,+[, such that 2 [k,|,lZ,],- < co with the usual norm
(12].

Given a closed normal subgroup H, we prove (Theorem 5) the existence of a
bijection e between the set of all closed ideals of 4,(G/H) and the set of all closed
ideals of 4,(G) invariant under translations by elements of H. We show moreover
(Corollary 12) that a closed ideal I of 4,(G/H) has a bounded approximate unit if
and only if e(Z) has a bounded approximate unit. The converse part of this assertion
is delicate: it requires, in the L' case (as shown by Bekka [1]), different tools of
integration theory on the dual of G which are missing for G non-abelian and even for
G abelian if p# 2. We avoid this by considering PM, (G), the set of all p-
pseudomeasures on G and the Banach algebra Hom, (G)(PM (G)) of all linear
norm continuous maps ® from PM (G) into itself such that OuT) = ud(T) for
ue A,(G) and Te PM (G). We recall that PM (G) is the ultraweak closure of the
linear span of the set of right translations by elements of G in the space of all
bounded operators of L?(G); for G abelian, PM,(G) is isomorphic to L®(G). There
is a natural inclusion of Hom (G,H)(PM (G/H)) into Hom , (G)(PM (G)). We prove
(Theorem 10) the existence of a conditional expectatlon of Hom, (G)(PM (@)
onto Hom, (G,H)(PM (G/H)). This result seems to be new even for G "abelian and
p=2. As an application we obtain the above mentioned result concerning the
existence of approximate units in ideals of 4,(G/H) and 4,(G).

2. Main definitions and notation

We use notation and results of [4, 5]. We recall here the most important ones. The
Banach space PM(G) is the norm dual of 4,(G), the duality being given by

Ck+l,T D 4,0, PM @) = {Te bty Dver, v

where 7,k =kAG"? and {f,8)) 17 = f fix)g(x)dx. For ueA,(G) and
TePM (G), uTis the operator defined by v, uT)A 6, PM &) = uv, T4 e, P fOT
all veA »(G); with the mapping (v, T)—uT, PM. (G) is a left Banach 4 AG)- module.
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Let o be the canonical map from G onto G/H and f a Bruhat function for the pair
(G, H) (that is, 8 is a non-negative continuous function on G, suppfn w™(K) is
compact for every compact K of G/H and f , B(xh)dh = 1 for every xe G [16, p. 163]).

For r,s€e C,,(G) (the space of continuous functions with compact support),

S DYMn) oy, 17 6imy = f <T[((y mAg/’;l) ow)r], ((y ”A};/ﬁ;) ow)s >L"(G). L (6) dy
GIH

defines a bounded linear map f, , of PM(G) into PM (G/H). Conversely, for
k’leCUO(G))

<Qx, (1) ¢, g L J; (T TH[:“(k’ﬂl/p,) él TH[;"(I:BHP) YD 1oy, L 9

where T, a(x) = fH ®(xh)dh, defines a bounded linear map of PM (G/H) into
PM (G). A compactness argument involving the maps f, , allows one to define, in a
canonical way, a linear contraction R of cv (G) (the norm closure in PM (G) of
{Te PM _(G)|supp T compact}) onto cv,(G/H) which coincides on L(G) with T;,. See
[4] for details.

We also need several important subspaces of PM,(G): PE(G) is the norm closure
of L'(G) in PM,(G) and C,(G) the set of all Te PM,(G) such that TSe PF, 7(G) for
every S€ PF,(G). We recall that PF(G) < cv,(G) = CP(G) < PM(G).

If we assume G abelian and p = 2, the preceding spaces have a very concrete and
very simple description. Via the Fourier transform, PF(G) is isomorphic to the space
of all continuous functions on G vanishing at infinity, cv,(G) to the space of all
bounded uniformly continuous functions on G and C,(G) to the space C°(G) of all
bounded continuous functions on G. Moreover, for Te cv,(G), R(T') = Resy« T where

= {xeG|x(h) = 1 for every heH}.

For G arbitrary, 4,(G) is the Fourier algebra of G introduced and investigated by
Eymard, PF(G) is the reduced C*-algebra of G and PM,(G) is the von Neumann
algebra of G [6].

Let W,(G) be the norm dual of PE,(G); we identify it as a subalgebra of C*(G) in
such a way that for all fe L'(G) and we W,(G),

e, W)Ppp(c). Wye) = ch(x) w(x™") dx.

For G abelian, W,(G) is isomorphic to the Banach space of all bounded Radon
measures on G. For G amenable, W,(G) is the Fourier-Stieltjes algebra of G [6]. In
analogy with the abelian case, there is a duality between C,(G) and W,(G): we can
define it by (T, w)c @, wye = UM KTAE(S), W)er ), w e Where (/)i is any bounded
approximate unit in L‘(G) (see [2, 3]). In [3], the interested reader can find, among
other results, a detailed investigation of the duality between C,(G) and W, (G). We
first need a little complement to that work.

LemMMA 1. Let Tecv,(G), u,ve W,(G) and we W,(G/H). Then
(1) LT, w0)c (o), wyer = UT V)¢ 61, wyor
(2) RwowT) = wR(T).

Proof. (1) Let (u,) be a bounded approximate unit of 4,(G), then we have by [2,
Théoréme 2, p. 136]

(T, uv)c,(c) w6 = = lim {u, T, w) O, W (E) = lim Cu, u», T, 4(G), PM ,(G)

= lim {u, uT, v)c,,(a).w,,(c) = (uT, v>C,(G).W,,(G)
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(2) From [2, Théoréme 3, p. 137], we have for all ve W, (G/H)

CRWooT), )¢ iaimy, wyemy = WORT,00W)c ) w (6) = T, WODVOWDc () w (6
= (R(T), Wv)cp(c/u),wp(a/m = (wR(T), v>c,(c/H),wp(c/m-

3. A bijective correspondence between ideals of A(G/H)
and invariant ideals of A,(G)

DerINITIONS.  Let I be a closed ideal of 4,(G/H). The closure in 4,(G) of the
linear span of {uvow|ue 4,(G),vel}is aclosed ideal e(1) of A,(G). Observe that e(l)
is invariant by right and left translations by elements of H. Let I be closed ideal of
A,(G). The closure in 4,(G/H) of T,(In Cy(G)) is a closed ideal r(/) of A (G/H).

In the L'-case, for G abelian, the corresponding definitions are the following
ones. For a closed ideal I of L*(H), e(I) is the closure in L'(G) of the linear span of
Coo(G) *,, I. For a closed ideal I of L'(G), r(I) is the closure in L'(H) of the linear span

of {Res,, f|fel*C,(G)} [11, p. 168].
Let I be closed ideal of 4,(G), we recall that I* is the set of all Te PM_(G)
such that (u, T >A,,(G), porye =0 for all uel. The amenability of G implies that

I* ={Te PM_(G)|uT = 0 for all uel}.

The main result of this paragraph requires the following lemmas.

LEMMA 2. Let I be a closed ideal of A,(G) and Te PM (G) such that R(uT)e r(I)*
Sfor every ue A,(G). Then Tel*.

Proof. Let uel, v,we 4,(G) N Cy(G) and r,s€ C,o(G). Observe that for every
yeQG,
'R(y_l w’t’,,_f * (Tp S)VT) =f;‘, a(y_l WT)

(see [5, Proposition 3(iii), p. 98]). From [5, Proposition 13a), p. 104], we deduce that
J vxw(h™)f, (u, T)dh = J T,(,~vw)f, (~wT)dy =0.
H G
This implies f, ,(«T) = 0 and therefore uT = 0.

LeMMA 3. Let I be a closed ideal in A,(G) such that u, €I for he H and uel. Then
R@T)er(I)* for every ve A,(G) and Tel*.

Proof. It suffices to consider veA,(G)NCy(G). Let ueln Cy(G) and
r,s€ Cyo(G). We have

f Jr (ou, T)dh = 0.
H
From [5, Proposition 13b), p. 104], it follows that T;,(w)f, ,(vT) = 0. This implies

T W) R(T, P (7, 5)vT) =0
and therefore T, (u) R(vT) = 0. We finally obtain RwT)er(l)*.

LemMA 4. Let I be a closed ideal of A(G/H) and Te PM (G/H). Then Tel* if
and only if Q, (T)ee(I)* for every k,le Cyy(G).



500 JACQUES DELAPORTE AND ANTOINE DERIGHETTI

Proof. Recall that for ue 4,(G) and ve 4,(G/H), we have [5, Proposition 19,

p. 111]
uvow€, (T) = uQ, (vT).

THEOREM 5. Let G be an amenable locally compact group and H a closed normal
subgroup of G.

(1) We have I = r(e(I)) for every closed ideal I of A,(G/H).

(2) For every closed ideal I of A,(G) such that u, € for ue I and he H, we have also
I=e(r(D)).

Hence e is a bijection between the set of all closed ideals of A,(G/H) and the set of
all closed ideals of A,(G) invariant under H.

Proof. (1) From the very definitions we get r(e(l)) < I. For the reverse inclusion,
we shall show that r(e(I))* < I*. Let Ter(e(I))*, and consider ver(e(l)), ue A,(G)
and k,le Cy(G). From vRuQ, (T)) = RuL, (vT)), we get RuQ, (T))er(el))*.
Lemma 2 implies Q, (T)ee(I)*, finally from Lemma 4 we conclude that TeI*.

(2) Taking into account (1) we need only to prove that for two closed ideals I, J
of A,(G) with u,el, v,eJ for heH, uel, veJ and r(I) =r(J), it follows that
I=J. Let Tel*; by Lemma 3, RuT)er(J)* for ue A (G). Lemma 2 implies TeJ*.

ReMARKS. (1) For 4 < G, define I(4) to be the ideal of 4,(G) consisting
of those functions which vanish on 4. Let F be a closed subset of G/H, then
e(I(F)) = l(w™(F)) and r(l(w™'(F))) = I(F).

(2) We conjecture that Theorem 5 is true for non-amenable groups. However
amenability is used several times in our proof (existence of R, characterization of
F,..).

(3) Let I be a closed ideal of 4,(G) such that ,uel for every ue and he H, then
we have u, e for every uel and he H. It suffices to apply the preceding theorem to
the ideal {#fjuel} of 4,(G).

It is possible to extend partially the second part of Theorem 5 to arbitrary closed
ideals of 4,(G).

PROPOSITION 6.  Let I be a closed ideal of A,(G), then e(r(I) coincides with I, the
closure in A,(G) of the linear span of {u,|uel,he H}. (Remark that I,; is the smallest
H-invariant closed ideal of A, (G) containing H.)

Proof. Because of Theorem §, it suffices to verify that r(1,,) < r(I), the converse
inclusion being a direct consequence of I < I,,. Take vel, N Cy(G) and ¢ > 0 and let
K be a compact neighbourhood of suppv. We recall the existence of C > 0 such that
T ull . e S Cllull o, for every ue 4,(G) with suppu < K [14, lemme 1, p. 188].
Choose’ we A ,(G) with w=1 on suppv,suppw < K and |wll, ERN 2. Now there
exists u,,...,u,€l and h,,...,h, € H such that

€

v—Y. (u) < =—.
i-Zl 7 AP(G) 2C

Let w, = u, Was1, SO

<&
AQ(G/H)

T0— Y. To(wh)

{1
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From TH((w,),,J)er(I ), we deduce finally T, ver(I) and the conclusion.

4. A natural inclusion of Hom A,,(c/m(PMp(G/H )) into Hom AP(G)(PM,,(G))
DEerINITION.  For Tecv,(G) and ¢ e cv,(G)*, there is a unique ¢ Te cv,(G) with
PwT) = (u, - TSAP(G),PMP(G) for every ued (G).

For ¢, y e cv,(G)*, we define (¢-y)(T) = ¢(y " T) for Tecw,(G).

With this operation c¢v,(G)* becomes a Banach algebra. We also have
¢wT) ={($' T, ’U>cp<c),wp(c) for every ¢ecv,(G)*, ve W, (G) and Tecv,(G).

ProposITION 7. For ¢ € cv (G)* and Te PM (G), there is a unique

os($)(T)e PM,(G)

¢uT) = {u, 0G(¢5(T)SAP(G),PM,,(G)

Jor every ueA/(G); o, is a Banach algebra isometry from cv, (G)* onto
Hom A,(a)(PMp(G))- For every ®e Hom A,,(G)(PMp(G)) and Te cv,(G), we have

05" (P)(T) = (D(T), lc>cp(c), w6

RemMARrks. (1) This proposition is not new! All these assertions can be deduced,
for example, from [9, p. 140]. The fact that o, is a bijective linear isometry is also due
to Granirer (8, Proposition 2.1, p. 160]. We present here a very short self-contained
approach.

(2) o is onto if and only if G is amenable [8, Theorem 2.1, p. 160].

(3) Note that g(¢)(S) = ¢S for every Secv,(G).

such that

Proof of Proposition 7. (I) o, is a linear isometry.
It is clear that ||og(¢) | < [@ll. Let ®eHom, ., (PM(G)). Define ¢ e cv, (G)* by
¢(T) = KT), 1¢dc ), wyierr Wehave @] < |®| and, for ue A, (G)and Te PM (G),

{u, UGZ¢5(T55A,,<G),PM,,(G) = ¢uT) = u®(T), 1G>Cp(0).Wp(G) =y, (DZT)SAP(G),PMP(G)’
hence 4(¢) = @ and | ¢|| = |D@].
(D) o5(¢°y) = a5() o4(w).
For Te PM (G) and ue 4,(G), we have
Cu, 04(P) aG(W)(T)>Ap(G).PMp(G) = ¢(u(as(¥)(T))) = ¢y (uT))
= (¢ W)T) = {u, 00(¢'W)(T)SAP(G),PMP(G)-

THEOREM 8. Let j be the map o0 R* o 07)y. :

(1) j is a Banach algebra isometry from Hom Ap(a,H)(PM JG/H)) into
Hom,_,(PM(G)).
(2) For Te PM (G), ue A,(G), ve W,(G/H) and QeHomAp(G,H)(PMp(G/H)), we
have )

Kuvo @, (PNT)) 4 6), prrer = {ORuT)),v SCP(G,,,)' W(GIH"

(3) Let I be a closed ideal of A,(G/H). Assume the existence of a projection P of
PM(G/H) onto I* with PeHompr/H)(PMp(G/H)). Then j(P) is a projection of
PM,(G) onto e(I)*.
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Proof. (1) From [4, Theorem 6, p. 21}, we know that R* is an isometry from
cv,(G/H)* into cv,(G)*; so it suffices to show that R* is an algebra homomorphism.
For ue 4,(G), Tecv,(G) and ¢ecv(G/H)*, we have

{u, R(R*(¢) T))A,(G/H),PM,(G/H) = (R¥¢) T, u°w>c,,(c). W(6)

[2, théoreme 2, p. 136).

But ZR‘Z¢§~T,uow$cP(G)_W @ =@ R(T)4 c/my pm iy SO We get
R(R*(¢)'T) = ¢ R(T). Letting ¢‘: yecv,(G/H)* and Te cv,,(G), we have

(R*() R*(W))(T) = (R(R*(y)* T)) = p(y* R(T)) = (R*(¢" w)NT).
¥)] (vowu,j(®)T)) AL6), PML(@) = RY05)(®)) (vowuT)
= (D(Rvowul)), IG/H>C’(G/H), Wp(G/H)
= (D@WR(T)), 1cm>c,<cm), Wy (GIH)
= ch(c/m, Wy(GIH)*

(3) Letting ue 4,(G), vel and Te PM(G), we have
<v°wu:j(P)(T)>Ap(G),PMP(G) = (P(R(uT)), U>c,(a/m,w,,(a/u)

and therefore j(P)(T)ee(I)*. Let Tee(l)*. For ue A,(G) and ve 4,(G/H), we have
R(uT)eI* and using (2)

{vowu,j(P) (T)>Ap(G), PMyG) = <v, R(“T»Ap(a/m, PMy(GIH) = {uvow, T>AP(G). PMy(G)>

this implies j(P)(T) = T.

REMARK. Putting v = 1, in (2), we get
<“aj(¢')(T)>A,,(c),pM,(a) = (O(R(uT)), lc/n>cp(c/m. Wy(G/IH)"

5. A conditional expectation of Hom Ay(a)(PMp(G)) onto Hom Ap(a,H,(PMp(G/H ).
An application

We first need some complements to [14, lemme 1] and [4, p. 13 and 17].
THEOREM 9. Letue A, (G), Te PM(G/H), k,le Cy(G) and k' = kpY?, I’ = Ipv».
Then,
(1) |AYE: Tk # VAP | orary < KNIl 0
and
(u’ Qk. l(T)>Ap(G). PMF(G) = <A:Cl¥//11’; TH(Aal,p‘ukﬁ’/ * l,), T>A,,(G/H), PMP(G/H)'

@ R, (T)) = (A% T(AG"K + 1'u)) T.

Proof. (1) We only need to consider u = 7§ with r,se C,(G). We have

(Fes,Q, t(T»A,(G).PM,(G) = f <w(d), T>Ap(G/H)'PMp‘G/")dt’
¢

where

w(t) = T (Tg( K7, 1) * (2, (Ty(~ 17, 5)))"
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It is easy to verify that w is a continuous map from G into the Banach space 4, (G/H)
and that

f WO ajcomy dt < NN 71 IS5
G
There is a unique ae 4,(G/H) with

<a,§ >.4,,(G/H), PM,(GIH) = J‘G w(), S >AP(G/H),PMP(G/H) dt

for every Se PM (G/H). For xe G we obtain
a(%) =f (AYZ, T, (k)Y (AYE Ty ey ) (D)

= A} ,H(x)f f f AGYP (xh) Ky ) r(p) I (¢ y 2 xh) S(y~'xh) dy dh dt
= AYR(X) Ty (AGMPE # I'7 % 5)(3),
this implies (75, Q,, t(T»A,(G) PMLG) = <a, T>A,(G/H),PM,,(G/H) and
IAYE, T AZE w Fa ) sy < NI 1P lIs] -
(2) Using again [2, Théoréme 2, p. 136}, we have for we W,(G/H)
(R, (T)), W>c,,(a/H), Wh(GIH) = uld, (T), W°w>cp(c), Wp(G)
= uwow, z(T)>.4p(c) PM (G)
= <A};,/’;I T,(Ag llpuwowlg «0),T>, p(GIH), PM (G/H)

= ((Aé’,’}, T(AGY?u kxl NT,w) AGIH), W (G/H)*

REMARK. The amenability of G is not needed for (1).

THEOREM 10. There is a linear contraction E of Hom, (G,(PM (@) onto
Hom,, (G,,,,(PM (G/H)) such that

(1) EG(Y)) =Y for ¥ eHomA,,(G/H)(PMp(G/H))a
(2) E(@j(¥)) = E(@) Y for
®eHom A,,(c)(PM (@) and ¥YeHom A pCIH \(PM (G/H)).

(3) Let I be a closed ideal of A,(G/H). Assume the existence of a projection
PeHom, ,(PM_(G)) of PM(G) onto e(I)*. Then E(P) is a projection of
PM (G/H) onto I'.

Proof. (I) Existence of E with (1) and (2).

Let X be the Banach space of all continuous bilinear functionals on
cv,(G/H) x cv,(G)*. For a subset C of X, C denotes the closure of C in X for
the topology (X, cv,(G/H) x cv,(G)*). For k,le Cy(G/H), we define a, ,€ X by
a, (T, ¢) = $(Q, vy, v(T)) Where v, (k) = A””ﬂ””(kA‘,H)oa) For ¢>0 and F
an arbitrary finite subset of 4,(G/H), let Cy, be the set of all o, , such that
k,1e Coo(G/H), |kl lll, =1 and lu—uk+lj, e <€ for every ueF. There is
ae N{Cs,|F finite subset of A,(G/H),e> 0} For every ¢ecv,(G)* there is a
unique Q(@)ecv,(G/H)* such that T, ¢) = Q($)(T) for every Tecv,(G/H).
The map Q is a linear contraction of cv,(G)* into cv (G/H)*.
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We show that Q(R*(¢)) = ¢ for every decv (G/H)*.
Choose Tecv,(G/H) and ¢ > 0. By the Cohen-Hewitt factorization theorem [13,
32.22], there is we A (G/H) and T’ ecv,(G/H) such that T = wT". There is also

e
% 1€ Coup epasurnpasigy  SUCh that (T, R*(@)) —a, (T, R*($))] < 3

We have o(T, R*()) = QR*@)(T), &, (T, R*(@)) = $(k »IT) and
9k » IT)— §(T)| < e/2.

We conclude that |Q(R*(4))(T)—¢(T)| < ¢ and therefore Q(R*(¢)) = ¢.
For yecv,(G)* and pecv,(G/H)*, we have Q(y - R*(¢)) = Q(v) ¢
Let £ > 0, Secv,(G/H) and we A (G/H). There is a, ,€ C, , With

oS,y RH@) — 0, (S,p R¥@)] <5 and (3" S,y) =004 S,¥)| <35.

We have «(S, y - R*(#)) = Q(y - R*(@))(S), «($" S, y) = (Q(y) $)(S) and
%, (S, ¥ R*($)) = '//(R*(¢).va(k),vp,(l)(s))'
For ue 4,(G) we have

{u, R*(¢) 'va(m, vp.aKS )>AP(G), PM(G) = ¢(R(uva(k), vp.(l)(S )
= $((AFH: T(AG " w)) S),

v = ((v,(R) B7) " (v, (D)) B

where
We obtain
{u, R*(¢) .va(k), vp.(l)(S)>Ap(G). PM(& = {u, va(k). v,,,(z)(¢ ’ S))A,,(G). PM ,(G)

which implies
R*(¢)- Qv,(k), v,,.(l)(S) = va(k), v,,.u)(¢ -S).

10(y - R*@))(S)—(Q(W)- ) (S)| <.

The map E = g,,0 Qo0 is therefore a linear contraction of Hom Ay(c,(PM,,(G))
onto Hom Ap(g,H)(PM,,(G/H)) which satisfies (1) and (2).

We finally get

(II) Let ® be an element of Hom Ap(c)(PMp(G)). For Te PM(G/H), F a finite
subset of 4,(G/H), ¢,¢ > 0, there is «, ;€ Cy. , With

(w, E((D)(T»A,,(G/H), PM(GIH) <(D(va(k), v,,.(z)(T))s wo w)c,,(c), wye| <€

for every weF.
For there is a, ,€ Cy , with [a(wT, o3}(®)) —a, (wT, a5 (D))| < & for every we F.

We have _ :
a(wT, o (®)) = {w, E(q)jo);Ap(GIH),PM‘,(G/H)

., (WT,051(®) = <(D(va(lc), vp.(l)(WT))’ 1c>c,,(a>, Wp(6)
=<wo®(Q, 4, (T 1edc @, wy@

= <(D(Qv,,(k),v,,,a)(T))a W°w>cp<a>, Wy(G)*
(1) We prove (3).

(a) For every Te PM_(G/H) we have E(P)(T)el*.

and
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Let w be an element of the ideal 1. For ¢ > 0, there is a, ;€ C,, , with

{w, E(P)(T»Ap(c/m,PMp(a/H)_<Pva(k).vp,(z>(T), WOBSCP(G), W, (G) <e.

Choose ueA4,(G)n Cy(G) equal to 1 on a neighbourhood of the support of
P(Q w(T)). We have

vp(k),vp
<mvv<k),v,,,(z)(T), W°w>cp(c), wye) = <Pva(k),vp,a)(T)a “W°w>cp<c), LA 0.
This implies E(P)(T)eI*.

(b) We prove that E(P)(T) = T for every Tel*.

Let ¢ > 0 and we 4,(G/H). There is &, ;€ Cy) oy204yry,y With

[

KW, B(PY(T)) a om0y, pyairony = P iy, (T WO 0D i), wo)l < 2

Taking into account Proposition 4 and Theorem 8, we obtain

(P Qv’,(lc),vp,(l)(T)S wo w)cp(c), W) = <va(k), v,,(z)(T), wo w>cp(a), Wp(6)
= <R(va(k),vp,(l)(T )2 W>c,,(G/H),W,(G/H)

This implies = <klT, WDearm, wycis:

[<w, E(P)(T»Ap(c/n),zwp(c/y)_<Ws T>A,,(G/H),PM,,(G/H)' <e.

We conclude that E(P)(T) =T.

REMARK. We are not able to show that E((¥)®)=YEW®) for
¥ eHom, (o) (PM,(G/H)) and ®eHom, (;,(PM(G)).

PROPOSITION 11. Let A be a commutative normed algebra with an approximate
unit bounded by 1. Let I be a closed ideal of A and C > 0. The ideal I has an approximate
unit bounded by C if and only if there is a projection P of A* onto I* with [id—P| < C
and such that P(af) = aP(f) for ac A and fe A*.

This proposition is due to Frangoise Lust-Piquard [15, pp. 7 and 15]. The condition
on C is not there but requires no new idea. See also [7, Proposition 6.4, p. 17].

COROLLARY 12. Let I be a closed ideal of A,(G/H) and C > 0. The ideal I has
an approximate unit bounded by C if and only if e(I) has an approximate unit bounded
by C.

Proof. This corollary is a direct consequence of Proposition 11, Theorem 8(3)
and Theorem 10(3).

ReEMARKS. (1) Assume that I has an approximate unit bounded by C. It is
possible to prove directly that e(I) has an approximate unit bounded by C. It suffices
to adapt the proof of the L'-case (see [10, Lemma 1, p. 170; 1, Theorem, p. 392)).

Let uee(l) and & > 0. There is u,,...,u, € 4,(G) and v,,...,v,€7 such that

u—Y v, 0w
k=1

4
< —=—.
e 40+0)
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There is be A (G) such that 5| 4@ S 1 and

€
< .
ae  H1+C)

Zukukoa)—(z ukvkow)b

k=1 k=1

One can find we [ such that

3
IWlayom <C and [lo,—2, W, ) < .

1+ Z “ulc"Ap(G)

k=1

for every 1 <j < n. If we choose d = bwo w, we conclude that dee(]), ||d||A?(G, <C
and ||u-—ud||Ap(G) <e.

The proof of the converse assertion seems to require the map £ (Theorem 10) and

Proposition 11.

p'-_.—

10.
11.
12.
13.
14.
15.

16.

(2) As far as we know, Theorem 10 seems to be new even for G abelian and
2.
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