ON IDEALS OF A_p WITH BOUNDED APPROXIMATE UNITS AND CERTAIN CONDITIONAL EXPECTATIONS

JACQUES DELAPORTE AND ANTOINE DERIGHETTI

1. Introduction

Let G be an abelian locally compact group and H a closed subgroup. Hauenschild and Ludwig [11, Theorem 2.3, p. 170] obtained an explicit bijective correspondence between the set of all closed ideals of $L^1(H)$ and the set of all closed ideals of $L^1(G)$ invariant under the pointwise action of $L^{\infty}(G/H)$.

In this work, we obtain similar results for the Figà-Talamanca Herz algebra $A_p(G)$ of an amenable locally compact group G. For $1 , <math>A_p(G)$ is the Banach algebra of all functions $\sum_{n=1}^{\infty} \bar{k}_n * \tilde{l}_n$ such that $\sum_{n=1}^{\infty} ||k_n||_p ||l_n||_{p'} < \infty$ with the usual norm [12].

Given a closed normal subgroup H, we prove (Theorem 5) the existence of a bijection e between the set of all closed ideals of $A_n(G/H)$ and the set of all closed ideals of $A_{p}(G)$ invariant under translations by elements of H. We show moreover (Corollary 12) that a closed ideal I of $A_{r}(G/H)$ has a bounded approximate unit if and only if e(I) has a bounded approximate unit. The converse part of this assertion is delicate: it requires, in the L^1 case (as shown by Bekka [1]), different tools of integration theory on the dual of G which are missing for G non-abelian and even for G abelian if $p \neq 2$. We avoid this by considering $PM_p(G)$, the set of all ppseudomeasures on G and the Banach algebra $\operatorname{Hom}_{A_p(G)}(PM_p(G))$ of all linear norm continuous maps Φ from $PM_{p}(G)$ into itself such that $\Phi(uT) = u\Phi(T)$ for $u \in A_{n}(G)$ and $T \in PM_{n}(G)$. We recall that $PM_{n}(G)$ is the ultraweak closure of the linear span of the set of right translations by elements of G in the space of all bounded operators of $L^{p}(G)$; for G abelian, $PM_{2}(G)$ is isomorphic to $L^{\infty}(\hat{G})$. There is a natural inclusion of $\operatorname{Hom}_{A_p(G/H)}(PM_p(G/H))$ into $\operatorname{Hom}_{A_p(G)}(PM_p(G))$. We prove (Theorem 10) the existence of a conditional expectation of $\operatorname{Hom}_{A_{n}(G)}(PM_{p}(G))$ onto $\operatorname{Hom}_{A_p(G/H)}(PM_p(G/H))$. This result seems to be new even for G abelian and p = 2. As an application we obtain the above mentioned result concerning the existence of approximate units in ideals of $A_n(G/H)$ and $A_n(G)$.

2. Main definitions and notation

We use notation and results of [4, 5]. We recall here the most important ones. The Banach space $PM_p(G)$ is the norm dual of $A_p(G)$, the duality being given by

$$\langle \overline{k} * \overline{l}, T \rangle_{A_{p}(G), PM_{p}(G)} = \overline{\langle T\tau_{p} k, \tau_{p'} l \rangle}_{L^{p}(G), L^{p'}(G)}$$

where $\tau_p k = \check{k} \Delta_G^{-1/p}$ and $\langle f, g \rangle_{L^{p}(G), L^{p'}(G)} = \int_G f(x) \overline{g(x)} dx$. For $u \in A_p(G)$ and $T \in PM_p(G), uT$ is the operator defined by $\langle v, uT \rangle_{A_p(G), PM_p(G)} = \langle uv, T \rangle_{A_p(G), PM_p(G)}$ for all $v \in A_p(G)$; with the mapping $(u, T) \mapsto uT$, $PM_p(G)$ is a left Banach $A_p(G)$ -module.

Received 26 July 1991; revised 3 October 1991.

¹⁹⁹¹ Mathematics Subject Classification 43A22.

J. London Math. Soc. (2) 47 (1993) 497-506

Let ω be the canonical map from G onto G/H and β a Bruhat function for the pair (G, H) (that is, β is a non-negative continuous function on G, $\operatorname{supp} \beta \cap \omega^{-1}(K)$ is compact for every compact K of G/H and $\int_{H} \beta(xh) dh = 1$ for every $x \in G$ [16, p. 163]).

For $r, s \in C_{00}(G)$ (the space of continuous functions with compact support),

$$\langle f_{r,s}(T)m,n\rangle_{L^{p}(G/H),L^{p'}(G/H)} = \int_{G/H} \langle T[((_{y}m\Delta_{G/H}^{1/p})\circ\omega)r],((_{y}n\Delta_{G/H}^{1/p'})\circ\omega)s\rangle_{L^{p}(G),L^{p'}(G)}dy$$

defines a bounded linear map $f_{r,s}$ of $PM_p(G)$ into $PM_p(G/H)$. Conversely, for $k, l \in C_{00}(G)$,

$$\langle \Omega_{k,l}(T)\phi,\psi\rangle_{L^{p}(G),L^{p'}(G)} = \int_{G} \langle TT_{H}[t^{-1}(\check{k}\beta^{1/p'})\phi], T_{H}[t^{-1}(\check{l}\beta^{1/p})\psi]\rangle_{L^{p}(G/H),L^{p'}(G/H)}dt,$$

where $T_H \alpha(\dot{x}) = \int_H \alpha(xh) dh$, defines a bounded linear map of $PM_p(G/H)$ into $PM_p(G)$. A compactness argument involving the maps $f_{r,s}$ allows one to define, in a canonical way, a linear contraction R of $cv_p(G)$ (the norm closure in $PM_p(G)$ of $\{T \in PM_p(G) | \text{supp } T \text{ compact}\}$) onto $cv_p(G/H)$ which coincides on $L^1(G)$ with T_H . See [4] for details.

We also need several important subspaces of $PM_p(G)$: $PF_p(G)$ is the norm closure of $L^1(G)$ in $PM_p(G)$ and $C_p(G)$ the set of all $T \in PM_p(G)$ such that $TS \in PF_p(G)$ for every $S \in PF_p(G)$. We recall that $PF_p(G) \subset cv_p(G) \subset C_p(G) \subset PM_p(G)$.

If we assume G abelian and p = 2, the preceding spaces have a very concrete and very simple description. Via the Fourier transform, $PF_2(G)$ is isomorphic to the space of all continuous functions on \hat{G} vanishing at infinity, $cv_2(G)$ to the space of all bounded uniformly continuous functions on \hat{G} and $C_2(G)$ to the space $C^b(\hat{G})$ of all bounded continuous functions on \hat{G} . Moreover, for $T \in cv_2(G)$, $\widehat{R(T)} = \operatorname{Res}_{H^\perp} \hat{T}$ where $H^\perp = \{\chi \in \hat{G} | \chi(h) = 1 \text{ for every } h \in H\}.$

For G arbitrary, $A_2(G)$ is the Fourier algebra of G introduced and investigated by Eymard, $PF_2(G)$ is the reduced C*-algebra of G and $PM_2(G)$ is the von Neumann algebra of G [6].

Let $W_p(G)$ be the norm dual of $PF_p(G)$; we identify it as a subalgebra of $C^b(G)$ in such a way that for all $f \in L^1(G)$ and $w \in W_p(G)$,

$$\langle \lambda_G^p(f), w \rangle_{PF_p(G), W_p(G)} = \int_G f(x) \overline{w(x^{-1})} dx.$$

For G abelian, $W_2(G)$ is isomorphic to the Banach space of all bounded Radon measures on \hat{G} . For G amenable, $W_2(G)$ is the Fourier-Stieltjes algebra of G [6]. In analogy with the abelian case, there is a duality between $C_p(G)$ and $W_p(G)$: we can define it by $\langle T, w \rangle_{C_p(G), W_p(G)} = \lim \langle T \lambda_G^p(f_i), w \rangle_{PF_p(G), W_p(G)}$ where $(f_i)_{i \in I}$ is any bounded approximate unit in $L^1(G)$ (see [2, 3]). In [3], the interested reader can find, among other results, a detailed investigation of the duality between $C_p(G)$ and $W_p(G)$. We first need a little complement to that work.

LEMMA 1. Let
$$T \in cv_p(G)$$
, $u, v \in W_p(G)$ and $w \in W_p(G/H)$. Then
(1) $\langle T, uv \rangle_{C_p(G), W_p(G)} = \langle uT, v \rangle_{C_p(G), W_p(G)}$,
(2) $R(w \circ \omega T) = wR(T)$.

Proof. (1) Let (u_{α}) be a bounded approximate unit of $A_p(G)$, then we have by [2, Théorème 2, p. 136]

$$\langle T, uv \rangle_{C_p(G), W_p(G)} = \lim \langle u_\alpha T, uv \rangle_{C_p(G), W_p(G)} = \lim \langle u_\alpha uv, T \rangle_{A_p(G), PM_p(G)}$$
$$= \lim \langle u_\alpha uT, v \rangle_{C_n(G), W_n(G)} = \langle uT, v \rangle_{C_p(G), W_p(G)}.$$

(2) From [2, Théorème 3, p. 137], we have for all $v \in W_p(G/H)$

$$\langle R(w \circ \omega T), v \rangle_{C_p(G/H), W_p(G/H)} = \langle w \circ \omega T, v \circ \omega \rangle_{C_p(G), W_p(G)} = \langle T, w \circ \omega v \circ \omega \rangle_{C_p(G), W_p(G)}$$
$$= \langle R(T), wv \rangle_{C_p(G/H), W_p(G/H)} = \langle wR(T), v \rangle_{C_p(G/H), W_p(G/H)}.$$

3. A bijective correspondence between ideals of $A_p(G/H)$ and invariant ideals of $A_n(G)$

DEFINITIONS. Let I be a closed ideal of $A_p(G/H)$. The closure in $A_p(G)$ of the linear span of $\{uv \circ \omega | u \in A_p(G), v \in I\}$ is a closed ideal e(I) of $A_p(G)$. Observe that e(I) is invariant by right and left translations by elements of H. Let I be closed ideal of $A_p(G)$. The closure in $A_p(G/H)$ of $T_H(I \cap C_{00}(G))$ is a closed ideal r(I) of $A_p(G/H)$.

In the L^1 -case, for G abelian, the corresponding definitions are the following ones. For a closed ideal I of $L^1(H)$, e(I) is the closure in $L^1(G)$ of the linear span of $C_{00}(G) *_H I$. For a closed ideal I of $L^1(G)$, r(I) is the closure in $L^1(H)$ of the linear span of $\{\operatorname{Res}_H f | f \in I * C_{00}(G)\}$ [11, p. 168].

Let I be closed ideal of $A_p(G)$, we recall that I^{\perp} is the set of all $T \in PM_p(G)$ such that $\langle u, T \rangle_{A_p(G), PM_p(G)} = 0$ for all $u \in I$. The amenability of G implies that

$$I^{\perp} = \{T \in PM_{p}(G) \mid uT = 0 \text{ for all } u \in I\}.$$

The main result of this paragraph requires the following lemmas.

LEMMA 2. Let I be a closed ideal of $A_p(G)$ and $T \in PM_p(G)$ such that $R(uT) \in r(I)^{\perp}$ for every $u \in A_p(G)$. Then $T \in I^{\perp}$.

Proof. Let $u \in I$, $v, w \in A_p(G) \cap C_{00}(G)$ and $r, s \in C_{00}(G)$. Observe that for every $y \in G$,

$$R(_{y^{-1}}w\,\overline{\tau_p}\,r*(\tau_p\,s)\,T) = f_{r,s}(_{y^{-1}}wT)$$

(see [5, Proposition 3(iii), p. 98]). From [5, Proposition 13a), p. 104], we deduce that

$$\int_{H} \overline{v * w(h^{-1})} f_{r,s}(u_h T) dh = \int_{G} T_H(y^{-1} v u) f_{r,s}(y^{-1} w T) dy = 0.$$

This implies $f_{r,s}(uT) = 0$ and therefore uT = 0.

LEMMA 3. Let I be a closed ideal in $A_p(G)$ such that $u_h \in I$ for $h \in H$ and $u \in I$. Then $R(vT) \in r(I)^{\perp}$ for every $v \in A_p(G)$ and $T \in I^{\perp}$.

Proof. It suffices to consider $v \in A_p(G) \cap C_{00}(G)$. Let $u \in I \cap C_{00}(G)$ and $r, s \in C_{00}(G)$. We have

$$\int_{H} f_{r,s}(vu_h T) \, dh = 0$$

From [5, Proposition 13b), p. 104], it follows that $T_H(u)f_{r,s}(vT) = 0$. This implies $T_H(u) R(\overline{\tau_n}r * (\tau_n \cdot s) vT) = 0$

and therefore $T_H(u) R(vT) = 0$. We finally obtain $R(vT) \in r(I)^{\perp}$.

LEMMA 4. Let I be a closed ideal of $A_p(G/H)$ and $T \in PM_p(G/H)$. Then $T \in I^{\perp}$ if and only if $\Omega_{k,l}(T) \in e(I)^{\perp}$ for every $k, l \in C_{00}(G)$. *Proof.* Recall that for $u \in A_p(G)$ and $v \in A_p(G/H)$, we have [5, Proposition 19, p. 111]

$$uv \circ \omega \Omega_{k,l}(T) = u \Omega_{k,l}(vT).$$

THEOREM 5. Let G be an amenable locally compact group and H a closed normal subgroup of G.

(1) We have I = r(e(I)) for every closed ideal I of $A_n(G/H)$.

(2) For every closed ideal I of $A_p(G)$ such that $u_h \in I$ for $u \in I$ and $h \in H$, we have also I = e(r(I)).

Hence e is a bijection between the set of all closed ideals of $A_p(G/H)$ and the set of all closed ideals of $A_p(G)$ invariant under H.

Proof. (1) From the very definitions we get $r(e(I)) \subset I$. For the reverse inclusion, we shall show that $r(e(I))^{\perp} \subset I^{\perp}$. Let $T \in r(e(I))^{\perp}$, and consider $v \in r(e(I))$, $u \in A_p(G)$ and $k, l \in C_{00}(G)$. From $vR(u\Omega_{k,l}(T)) = R(u\Omega_{k,l}(vT))$, we get $R(u\Omega_{k,l}(T)) \in r(e(I))^{\perp}$. Lemma 2 implies $\Omega_{k,l}(T) \in e(I)^{\perp}$, finally from Lemma 4 we conclude that $T \in I^{\perp}$.

(2) Taking into account (1) we need only to prove that for two closed ideals I, J of $A_p(G)$ with $u_h \in I$, $v_h \in J$ for $h \in H$, $u \in I$, $v \in J$ and r(I) = r(J), it follows that I = J. Let $T \in I^{\perp}$; by Lemma 3, $R(uT) \in r(J)^{\perp}$ for $u \in A_p(G)$. Lemma 2 implies $T \in J^{\perp}$.

REMARKS. (1) For $A \subset G$, define I(A) to be the ideal of $A_p(G)$ consisting of those functions which vanish on A. Let F be a closed subset of G/H, then $e(I(F)) = I(\omega^{-1}(F))$ and $r(I(\omega^{-1}(F))) = I(F)$.

(2) We conjecture that Theorem 5 is true for non-amenable groups. However amenability is used several times in our proof (existence of R, characterization of I^{\perp}, \ldots).

(3) Let I be a closed ideal of $A_p(G)$ such that ${}_h u \in I$ for every $u \in I$ and $h \in H$, then we have $u_h \in I$ for every $u \in I$ and $h \in H$. It suffices to apply the preceding theorem to the ideal $\{\tilde{u} | u \in I\}$ of $A_{w'}(G)$.

It is possible to extend partially the second part of Theorem 5 to arbitrary closed ideals of $A_{\nu}(G)$.

PROPOSITION 6. Let I be a closed ideal of $A_p(G)$, then e(r(I)) coincides with I_H , the closure in $A_p(G)$ of the linear span of $\{u_h | u \in I, h \in H\}$. (Remark that I_H is the smallest H-invariant closed ideal of $A_p(G)$ containing H.)

Proof. Because of Theorem 5, it suffices to verify that $r(I_H) \subset r(I)$, the converse inclusion being a direct consequence of $I \subset I_H$. Take $v \in I_H \cap C_{00}(G)$ and $\varepsilon > 0$ and let K be a compact neighbourhood of supp v. We recall the existence of C > 0 such that $\|T_H u\|_{A_p(G/H)} \leq C \|u\|_{A_p(G)}$ for every $u \in A_p(G)$ with $\sup u \subset K$ [14, lemme 1, p. 188]. Choose $w \in A_p(G)$ with w = 1 on $\sup v$, $\sup v \subset K$ and $\|w\|_{A_p(G)} \leq 2$. Now there exists $u_1, \ldots, u_n \in I$ and $h_1, \ldots, h_n \in H$ such that

$$\left\| v - \sum_{i=1}^{n} (u_{j})_{h_{j}} \right\|_{A_{p}(G)} < \frac{\varepsilon}{2C}.$$

$$w_{j} = u_{j} w_{h_{j}^{-1}}, \text{ so}$$

$$\left\| T_{H} v - \sum_{i=1}^{n} T_{H}((w_{j})_{h_{j}}) \right\|_{A_{p}(G/H)} < \varepsilon.$$

Let

From $T_H((w_j)_{h_i}) \in r(I)$, we deduce finally $T_H v \in r(I)$ and the conclusion.

4. A natural inclusion of $\operatorname{Hom}_{A_p(G/H)}(PM_p(G/H))$ into $\operatorname{Hom}_{A_p(G)}(PM_p(G))$

DEFINITION. For $T \in cv_p(G)$ and $\phi \in cv_p(G)^*$, there is a unique $\phi \cdot T \in cv_p(G)$ with

$$\phi(uT) = \overline{\langle u, \phi \cdot T \rangle}_{A_p(G), PM_p(G)} \quad \text{for every} \quad u \in A_p(G).$$

For $\phi, \psi \in cv_p(G)^*$, we define $(\phi \cdot \psi)(T) = \phi(\psi \cdot T)$ for $T \in cv_p(G)$.

With this operation $cv_p(G)^*$ becomes a Banach algebra. We also have $\phi(vT) = \langle \phi \cdot T, v \rangle_{C_n(G), W_p(G)}$ for every $\phi \in cv_p(G)^*, v \in W_p(G)$ and $T \in cv_p(G)$.

PROPOSITION 7. For $\phi \in cv_p(G)^*$ and $T \in PM_p(G)$, there is a unique

 $\sigma_{G}(\phi)(T) \in PM_{p}(G)$

such that

$$\phi(uT) = \overline{\langle u, \sigma_{G}(\phi)(T) \rangle}_{A_{p}(G), PM_{p}(G)}$$

for every $u \in A_p(G)$; σ_G is a Banach algebra isometry from $cv_p(G)^*$ onto $\operatorname{Hom}_{A_p(G)}(PM_p(G))$. For every $\Phi \in \operatorname{Hom}_{A_p(G)}(PM_p(G))$ and $T \in cv_p(G)$, we have

$$\sigma_G^{-1}(\Phi)(T) = \langle \Phi(T), 1_G \rangle_{C_p(G), W_p(G)}.$$

REMARKS. (1) This proposition is not new! All these assertions can be deduced, for example, from [9, p. 140]. The fact that σ_{g} is a bijective linear isometry is also due to Granirer [8, Proposition 2.1, p. 160]. We present here a very short self-contained approach.

(2) σ_G is onto if and only if G is amenable [8, Theorem 2.1, p. 160].

(3) Note that $\sigma_G(\phi)(S) = \phi \cdot S$ for every $S \in cv_p(G)$.

Proof of Proposition 7. (I) σ_{g} is a linear isometry.

It is clear that $\|\sigma_G(\phi)\| \leq \|\phi\|$. Let $\Phi \in \operatorname{Hom}_{A_p(G)}(PM_p(G))$. Define $\phi \in cv_p(G)^*$ by $\phi(T) = \langle \Phi(T), 1_G \rangle_{C_n(G), W_p(G)}$. We have $\|\phi\| \leq \|\Phi\|$ and, for $u \in A_p(G)$ and $T \in PM_p(G)$,

 $\overline{\langle u, \sigma_G(\phi)(T) \rangle}_{A_p(G), PM_p(G)} = \phi(uT) = \langle u\Phi(T), 1_G \rangle_{C_p(G), W_p(G)} = \overline{\langle u, \Phi(T) \rangle}_{A_p(G), PM_p(G)},$ hence $\sigma_G(\phi) = \Phi$ and $\|\phi\| = \|\Phi\|.$

(II) $\sigma_G(\phi \cdot \psi) = \sigma_G(\phi) \sigma_G(\psi)$.

For $T \in PM_p(G)$ and $u \in A_n(G)$, we have

$$\overline{\langle u, \sigma_G(\phi) \sigma_G(\psi)(T) \rangle}_{A_p(G), PM_p(G)} = \phi(u(\sigma_G(\psi)(T))) = \phi(\psi \cdot (uT))$$
$$= (\phi \cdot \psi)(uT) = \overline{\langle u, \sigma_G(\phi \cdot \psi)(T) \rangle}_{A_p(G), PM_p(G)}$$

THEOREM 8. Let j be the map $\sigma_{G} \circ R^* \circ \sigma_{G/H}^{-1}$.

(1) j is a Banach algebra isometry from $\operatorname{Hom}_{A_p(G/H)}(PM_p(G/H))$ into $\operatorname{Hom}_{A_p(G)}(PM_p(G))$.

(2) For $T \in PM_p(G)$, $u \in A_p(G)$, $v \in W_p(G/H)$ and $\Phi \in \operatorname{Hom}_{A_p(G/H)}(PM_p(G/H))$, we have

$$\langle uv \circ \omega, j(\Phi)(T) \rangle_{A_p(G), PM_p(G)} = \overline{\langle \Phi(R(uT)), v \rangle}_{C_p(G/H), W_p(G/H)}$$

(3) Let I be a closed ideal of $A_p(G/H)$. Assume the existence of a projection P of $PM_p(G/H)$ onto I^{\perp} with $P \in \operatorname{Hom}_{A_p(G/H)}(PM_p(G/H))$. Then j(P) is a projection of $PM_p(G)$ onto $e(I)^{\perp}$.

Proof. (1) From [4, Theorem 6, p. 21], we know that R^* is an isometry from $cv_p(G/H)^*$ into $cv_p(G)^*$; so it suffices to show that R^* is an algebra homomorphism. For $u \in A_p(G)$, $T \in cv_p(G)$ and $\phi \in cv_p(G/H)^*$, we have

$$\langle u, R(R^*(\phi) \cdot T) \rangle_{A_p(G/H), PM_p(G/H)} = \overline{\langle R^*(\phi) \cdot T, u \circ \omega \rangle}_{C_p(G), W_p(G)}$$

[2, théorème 2, p. 136].

But $\overline{\langle R^*(\phi) \cdot T, u \circ \omega \rangle}_{C_p(G), W_p(G)} = \langle u, \phi \cdot R(T) \rangle_{A_p(G/H), PM_p(G/H)}$, so we get $R(R^*(\phi) \cdot T) = \phi \cdot R(T)$. Letting $\phi, \psi \in cv_p(G/H)^*$ and $T \in cv_p(G)$, we have

$$(R^*(\phi) \cdot R^*(\psi))(T) = \phi(R(R^*(\psi) \cdot T)) = \phi(\psi \cdot R(T)) = (R^*(\phi \cdot \psi))(T).$$

(2)
$$\langle v \circ \omega u, j(\Phi)(T) \rangle_{A_p(G), PM_p(G)} = R^*(\sigma_{G/H}^{-1}(\Phi))(v \circ \omega uT)$$

$$= \overline{\langle \Phi(R(v \circ \omega uT)), 1_{G/H} \rangle_{C_p(G/H), W_p(G/H)}}$$

$$= \overline{\langle \Phi(vR(uT)), 1_{G/H} \rangle_{C_p(G/H), W_p(G/H)}}$$

$$= \overline{\langle \Phi(R(uT)), v \rangle_{C_p(G/H), W_p(G/H)}}.$$

(3) Letting $u \in A_p(G)$, $v \in I$ and $T \in PM_p(G)$, we have

$$\langle v \circ \omega u, j(P)(T) \rangle_{A_p(G), PM_p(G)} = \overline{\langle P(R(uT)), v \rangle_{C_p(G/H), W_p(G/H)}}$$

and therefore $j(P)(T) \in e(I)^{\perp}$. Let $T \in e(I)^{\perp}$. For $u \in A_p(G)$ and $v \in A_p(G/H)$, we have $R(uT) \in I^{\perp}$ and using (2)

 $\langle v \circ \omega \, u, j(P)(T) \rangle_{A_p(G), PM_p(G)} = \langle v, R(uT) \rangle_{A_p(G/H), PM_p(G/H)} = \langle u \, v \circ \omega, T \rangle_{A_p(G), PM_p(G)};$ this implies j(P)(T) = T.

REMARK. Putting $v = 1_{G/H}$ in (2), we get $\langle u, j(\Phi)(T) \rangle_{A_p(G), PM_p(G)} = \overline{\langle \Phi(R(uT)), 1_{G/H} \rangle}_{C_p(G/H), W_p(G/H)}.$

5. A conditional expectation of $\operatorname{Hom}_{A_p(G)}(PM_p(G))$ onto $\operatorname{Hom}_{A_p(G/H)}(PM_p(G/H))$. An application

We first need some complements to [14, lemme 1] and [4, p. 13 and 17].

THEOREM 9. Let $u \in A_p(G)$, $T \in PM_p(G/H)$, $k, l \in C_{00}(G)$ and $k' = \check{k}\beta^{1/p'}$, $l' = \check{l}\beta^{1/p}$. Then,

(1)
$$\|\Delta_{G/H}^{1/p'} T_H(u\tilde{k}' * l'\Delta_G^{-1/p'})\|_{A_p(G/H)} \leq \|k\|_p \|l\|_{p'} \|u\|_{A_p(G)}$$

and

Proof. (1) We only need to consider $u = \overline{r} * \overline{s}$ with $r, s \in C_{00}(G)$. We have

$$\left\langle \bar{r} \ast \check{S}, \Omega_{k,l}(T) \right\rangle_{A_p(G), PM_p(G)} = \int_G \left\langle w(t), T \right\rangle_{A_p(G/H), PM_p(G/H)} dt,$$

where

$$w(t) = \overline{\tau_p(T_H(t^{-1}k'\tau_p r))} * (\tau_{p'}(T_H(t^{-1}l'\tau_{p'} s))))^*.$$

It is easy to verify that w is a continuous map from G into the Banach space $A_p(G/H)$ and that

$$\int_{G} \|w(t)\|_{A_{p}(G/H)} dt \leq \|k\|_{p} \|l\|_{p'} \|r\|_{p} \|s\|_{p'}$$

There is a unique $a \in A_p(G/H)$ with

$$\langle a, S \rangle_{A_p(G/H), PM_p(G/H)} = \int_G \langle w(t), S \rangle_{A_p(G/H), PM_p(G/H)} dt$$

for every $S \in PM_p(G/H)$. For $x \in G$ we obtain

$$\begin{aligned} a(\dot{x}) &= \int_{G} \left(\Delta_{G/H}^{1/p'} T_{H}(_{t^{-1}} k' \tau_{p} r)^{*} \right) * \left(\Delta_{G/H}^{1/p'} T_{H}(_{t^{-1}} l' \tau_{p'} s) \right) (\dot{x}) \, dt \\ &= \Delta_{G/H}^{1/p'} (\dot{x}) \int_{G} \int_{H} \int_{G} \Delta_{G}^{-1/p'} (xh) \overline{k'(t^{-1}y^{-1})} \overline{r(y)} \, l'(t^{-1}y^{-1}xh) \, \check{s}(y^{-1}xh) \, dy \, dh \, dt \\ &= \Delta_{G/H}^{1/p'} (\dot{x}) \, T_{H} (\Delta_{G}^{-1/p'} \check{k'} * l' \overline{r} * \check{s}) (\dot{x}), \end{aligned}$$

this implies $\langle \overline{r} * \check{s}, \Omega_{k, l}(T) \rangle_{A_p(G), PM_p(G)} = \langle a, T \rangle_{A_p(G/H), PM_p(G/H)}$ and $\|\Delta_{G/H}^{1/p'} T_H(\Delta_G^{-1/p'} \check{k}' * l' \overline{r} * \check{s})\|_{A_p(G/H)} \leq \|k\|_p \|l\|_{p'} \|r\|_p \|s\|_{p'}.$

(2) Using again [2, Théorème 2, p. 136], we have for $w \in W_p(G/H)$

$$\begin{split} \langle R(u\,\Omega_{k,\,l}(T)),w\rangle_{C_p(G/H),\,W_p(G/H)} &= \langle u\Omega_{k,\,l}(T),w\circ\omega\rangle_{C_p(G),\,W_p(G)} \\ &= \overline{\langle u\,w\circ\omega,\Omega_{k,\,l}(T)\rangle}_{A_p(G),\,PM_p(G)} \\ &= \overline{\langle \Delta^{1/p'}_{G/H}\,T_H(\Delta^{-1/p'}_Gu\,w\circ\omega\,\tilde{k'}*l'),T\rangle}_{A_p(G/H),\,PM_p(G/H)} \\ &= \langle (\Delta^{1/p'}_{G/H}\,T_H(\Delta^{-1/p}_Gu\,\tilde{k'}*l'))\,T,w\rangle_{C_p(G/H),\,W_p(G/H)}. \end{split}$$

REMARK. The amenability of G is not needed for (1).

THEOREM 10. There is a linear contraction E of $\operatorname{Hom}_{A_p(G)}(PM_p(G))$ onto $\operatorname{Hom}_{A_p(G/H)}(PM_p(G/H))$ such that

- (1) $E(j(\Psi)) = \Psi$ for $\Psi \in \operatorname{Hom}_{A_p(G/H)}(PM_p(G/H))$,
- (2) $E(\Phi j(\Psi)) = E(\Phi) \Psi$ for

 $\Phi \in \operatorname{Hom}_{A_p(G)}(PM_p(G))$ and $\Psi \in \operatorname{Hom}_{A_p(G/H)}(PM_p(G/H))$.

(3) Let I be a closed ideal of A_p(G/H). Assume the existence of a projection P∈Hom_{A_p(G)}(PM_p(G)) of PM_p(G) onto e(I)[⊥]. Then E(P) is a projection of PM_p(G/H) onto I[⊥].

Proof. (I) Existence of E with (1) and (2).

Let X be the Banach space of all continuous bilinear functionals on $cv_p(G/H) \times cv_p(G)^*$. For a subset C of X, \overline{C} denotes the closure of C in X for the topology $\sigma(X, cv_p(G/H) \times cv_p(G)^*)$. For $k, l \in C_{00}(G/H)$, we define $\alpha_{k,l} \in X$ by $\alpha_{k,l}(T,\phi) = \phi(\Omega_{v_p(k),v_p(l)}(T))$ where $v_p(k) = \check{\Delta}_G^{1/p}\check{\beta}^{1/p}(k\Delta_{G/H}^{1/p}) \circ \omega$. For $\varepsilon > 0$ and F an arbitrary finite subset of $A_p(G/H)$, let $C_{F,\varepsilon}$ be the set of all $\alpha_{k,l}$ such that $k, l \in C_{00}(G/H)$, $||k||_p ||l||_{p'} = 1$ and $||u - u\bar{k} * \check{l}||_{A_p(G/H)} < \varepsilon$ for every $u \in F$. There is $\alpha \in \cap \{\overline{C}_{F,\varepsilon}\} F$ finite subset of $A_p(G/H), \varepsilon > 0\}$. For every $\phi \in cv_p(G)^*$ there is a unique $Q(\phi) \in cv_p(G/H)^*$ such that $\alpha(T,\phi) = Q(\phi)(T)$ for every $T \in cv_p(G/H)$. The map Q is a linear contraction of $cv_p(G)^*$ into $cv_p(G/H)^*$.

We show that $Q(R^*(\phi)) = \phi$ for every $\phi \in cv_p(G/H)^*$.

Choose $T \in cv_p(G/H)$ and $\varepsilon > 0$. By the Cohen-Hewitt factorization theorem [13, 32.22], there is $w \in A_p(G/H)$ and $T' \in cv_p(G/H)$ such that T = wT'. There is also

 $\alpha_{k,l} \in C_{\{w\}, \varepsilon/2(1+||T'||_p)(1+||\phi||)} \quad \text{such that} \quad |\alpha(T, R^*(\phi)) - \alpha_{k,l}(T, R^*(\phi))| < \frac{\varepsilon}{2}.$

We have $\alpha(T, R^*(\phi)) = Q(R^*(\phi))(T)$, $\alpha_{k,l}(T, R^*(\phi)) = \phi(\overline{k} * \overline{l}T)$ and $|\phi(\overline{k} * \overline{l}T) - \phi(T)| < \varepsilon/2.$

We conclude that $|Q(R^*(\phi))(T) - \phi(T)| < \varepsilon$ and therefore $Q(R^*(\phi)) = \phi$. For $\psi \in cv_p(G)^*$ and $\phi \in cv_p(G/H)^*$, we have $Q(\psi \cdot R^*(\phi)) = Q(\psi) \cdot \phi$. Let $\varepsilon > 0$, $S \in cv_p(G/H)$ and $w \in A_p(G/H)$. There is $\alpha_{k,l} \in C_{\{w\},\varepsilon}$ with

$$|\alpha(S,\psi\cdot R^*(\phi))-\alpha_{k,l}(S,\psi\cdot R^*(\phi))|<\frac{\varepsilon}{2} \quad \text{and} \quad |\alpha(\phi\cdot S,\psi)-\alpha_{k,l}(\phi\cdot S,\psi)|<\frac{\varepsilon}{2}.$$

We have $\alpha(S, \psi \cdot R^*(\phi)) = Q(\psi \cdot R^*(\phi))(S)$, $\alpha(\phi \cdot S, \psi) = (Q(\psi) \cdot \phi)(S)$ and

$$\alpha_{k,l}(S,\psi\cdot R^*(\phi))=\psi(R^*(\phi)\cdot\Omega_{\nu_p(k),\nu_p(l)}(S))$$

For $u \in A_p(G)$ we have

$$\overline{\langle u, R^{*}(\phi) \cdot \Omega_{\nu_{p}(k), \nu_{p'}(l)}(S) \rangle}_{A_{p}(G), PM_{p}(G)} = \phi(R(u\Omega_{\nu_{p}(k), \nu_{p'}(l)}(S)))$$

= $\phi((\Delta_{G/H}^{1/p'} T_{H}(\Delta_{G}^{-1/p'}uv)) S),$

where

$$v = ((v_p(k)) \,\check{\beta}^{1/p}) \,\check{\ast} \, (v_{p'}(l)) \,\check{\beta}^{1/p})$$

We obtain

$$\langle u, R^*(\phi) \cdot \Omega_{\nu_p(k), \nu_p(l)}(S) \rangle_{A_p(G), PM_p(G)} = \langle u, \Omega_{\nu_p(k), \nu_p(l)}(\phi \cdot S) \rangle_{A_p(G), PM_p(G)},$$

which implies

$$R^{*}(\phi) \cdot \Omega_{\nu_{p}(k), \nu_{p'}(l)}(S) = \Omega_{\nu_{p}(k), \nu_{p'}(l)}(\phi \cdot S).$$

We finally get

$$|Q(\psi \cdot R^*(\phi))(S) - (Q(\psi) \cdot \phi)(S)| < \varepsilon.$$

The map $E = \sigma_{G/H} \circ Q \circ \sigma_G^{-1}$ is therefore a linear contraction of $\operatorname{Hom}_{A_p(G)}(PM_p(G))$ onto $\operatorname{Hom}_{A_p(G/H)}(PM_p(G/H))$ which satisfies (1) and (2).

(II) Let Φ be an element of $\operatorname{Hom}_{A_p(G)}(PM_p(G))$. For $T \in PM_p(G/H)$, F a finite subset of $A_p(G/H)$, $\varepsilon, \varepsilon' > 0$, there is $\alpha_{k,l} \in C_{F,\varepsilon'}$ with

$$\left\langle w, E(\Phi)(T) \right\rangle_{A_{p}(G/H), PM_{p}(G/H)} - \overline{\left\langle \Phi(\Omega_{v_{p}(k), v_{p'}(l)}(T)), w \circ \omega \right\rangle}_{C_{p}(G), W_{p}(G)} \right| < \varepsilon$$

for every $w \in F$.

For there is $\alpha_{k,l} \in C_{F,\varepsilon'}$ with $|\alpha(wT, \sigma_G^{-1}(\Phi)) - \alpha_{k,l}(wT, \sigma_G^{-1}(\Phi))| < \varepsilon$ for every $w \in F$. We have $\alpha(wT, \sigma_G^{-1}(\Phi)) = \overline{\langle w, E(\Phi)(T) \rangle}_{A_p(G/H), PM_p(G/H)}$

and

$$\begin{aligned} \alpha_{k,l}(wT, \sigma_{G}^{-1}(\Phi)) &= \langle \Phi(\Omega_{v_{p}(k), v_{p'}(l)}(wT)), 1_{G} \rangle_{C_{p}(G), W_{p}(G)} \\ &= \langle w \circ \omega \, \Phi(\Omega_{v_{p}(k), v_{p'}(l)}(T)), 1_{G} \rangle_{C_{p}(G), W_{p}(G)} \\ &= \langle \Phi(\Omega_{v_{p}(k), v_{p'}(l)}(T)), w \circ \omega \rangle_{C_{p}(G), W_{p}(G)}. \end{aligned}$$

(III) We prove (3).

(a) For every $T \in PM_p(G/H)$ we have $E(P)(T) \in I^{\perp}$.

Let w be an element of the ideal I. For $\varepsilon > 0$, there is $\alpha_{k,l} \in C_{\{w\},\varepsilon}$ with

$$\left| \langle w, E(P)(T) \rangle_{A_{p}(G/H), PM_{p}(G/H)} - \overline{\langle P\Omega_{v_{p}(k), v_{p'}(l)}(T), w \circ \omega \rangle}_{C_{p}(G), W_{p}(G)} \right| < \varepsilon.$$

Choose $u \in A_p(G) \cap C_{00}(G)$ equal to 1 on a neighbourhood of the support of $P(\Omega_{\nu_n(k), \nu_n(l)}(T))$. We have

$$\langle P\Omega_{\nu_p(k),\nu_p(l)}(T), w \circ \omega \rangle_{C_p(G),W_p(G)} = \langle P\Omega_{\nu_p(k),\nu_p(l)}(T), uw \circ \omega \rangle_{C_p(G),W_p(G)} = 0.$$

This implies $E(P)(T) \in I^{\perp}$.

(b) We prove that E(P)(T) = T for every $T \in I^{\perp}$.

Let $\varepsilon > 0$ and $w \in A_p(G/H)$. There is $\alpha_{k,l} \in C_{\{w\}, e/2(1+||T|||_p)}$ with

$$|\langle w, E(P)(T) \rangle_{A_p(G/H), PM_p(G/H)} - \overline{\langle P\Omega_{v_p(k), v_p(l)}(T), w \circ \omega \rangle}_{C_p(G), W_p(G)}| < \frac{\varepsilon}{2}.$$

Taking into account Proposition 4 and Theorem 8, we obtain

$$\begin{split} \langle P\Omega_{\mathbf{v}_{p}(k), \mathbf{v}_{p}(l)}(T), w \circ \omega \rangle_{C_{p}(G), W_{p}(G)} &= \langle \Omega_{\mathbf{v}_{p}(k), \mathbf{v}_{p}(l)}(T), w \circ \omega \rangle_{C_{p}(G), W_{p}(G)} \\ &= \langle R(\Omega_{\mathbf{v}_{p}(k), \mathbf{v}_{p}(l)}(T)), w \rangle_{C_{p}(G/H), W_{p}(G/H)} \\ &= \langle \overline{k} * \tilde{l}T, w \rangle_{C_{p}(G/H), W_{p}(G/H)}. \end{split}$$

This implies

$$|\langle w, E(P)(T) \rangle_{A_p(G/H), PM_p(G/H)} - \langle w, T \rangle_{A_p(G/H), PM_p(G/H)}| < \varepsilon$$

We conclude that E(P)(T) = T.

REMARK. We are not able to show that $E(j(\Psi)\Phi) = \Psi E(\Phi)$ for $\Psi \in \operatorname{Hom}_{A_p(G/H)}(PM_p(G/H))$ and $\Phi \in \operatorname{Hom}_{A_p(G)}(PM_p(G))$.

PROPOSITION 11. Let A be a commutative normed algebra with an approximate unit bounded by 1. Let I be a closed ideal of A and C > 0. The ideal I has an approximate unit bounded by C if and only if there is a projection P of A^* onto I^{\perp} with $||id - P|| \leq C$ and such that P(af) = aP(f) for $a \in A$ and $f \in A^*$.

This proposition is due to Françoise Lust-Piquard [15, pp. 7 and 15]. The condition on C is not there but requires no new idea. See also [7, Proposition 6.4, p. 17].

COROLLARY 12. Let I be a closed ideal of $A_p(G/H)$ and C > 0. The ideal I has an approximate unit bounded by C if and only if e(I) has an approximate unit bounded by C.

Proof. This corollary is a direct consequence of Proposition 11, Theorem 8(3) and Theorem 10(3).

REMARKS. (1) Assume that I has an approximate unit bounded by C. It is possible to prove directly that e(I) has an approximate unit bounded by C. It suffices to adapt the proof of the L^1 -case (see [10, Lemma 1, p. 170; 1, Theorem, p. 392]).

Let $u \in e(I)$ and $\varepsilon > 0$. There is $u_1, \ldots, u_n \in A_n(G)$ and $v_1, \ldots, v_n \in I$ such that

$$\left\| u - \sum_{k=1}^n u_k v_k \circ \omega \right\|_{A_p(G)} < \frac{\varepsilon}{4(1+C)}.$$

There is $b \in A_p(G)$ such that $||b||_{A_p(G)} \leq 1$ and

$$\left\| \sum_{k=1}^n u_k v_k \circ \omega - \left(\sum_{k=1}^n u_k v_k \circ \omega \right) b \right\|_{A_p(G)} < \frac{\varepsilon}{4(1+C)}.$$

One can find $w \in I$ such that

$$\|w\|_{A_p(G/H)} \leq C$$
 and $\|v_j - v_j w\|_{A_p(G/H)} < \frac{3}{4\left(1 + \sum_{k=1}^n \|u_k\|_{A_p(G)}\right)}$

for every $1 \leq j \leq n$. If we choose $d = b w \circ \omega$, we conclude that $d \in e(I)$, $||d||_{A_{n}(G)} \leq C$ and $\|u - ud\|_{A_{p}(G)} < \varepsilon$.

The proof of the converse assertion seems to require the map E (Theorem 10) and Proposition 11.

(2) As far as we know, Theorem 10 seems to be new even for G abelian and p = 2.

References

- 1. M. BEKKA, 'On bounded approximate units in ideals of group algebras', Math. Ann. 266 (1984) 391-396.
- 2. J. DELAPORTE, 'Convoluteurs continus et topologie stricte', Harmonic Analysis. Proceedings, Luxembourg 1987. Lecture Notes in Mathematics, 1359 (Springer, Berlin, 1988), 135-141.
- 3. J. DELAPORTE, 'Convoluteurs continus et topologie stricte', Thèse, Université de Lausanne 1989.
- 4. A. DERIGHETTI, 'A propos des convoluteurs d'un groupe quotient', Bull. Sci. Math. 107 (1983) 3-23.
- 5. A. DERIGHETTI, 'Quelques observations concernant les ensembles de Ditkin d'un groupe localement compact', Monatsh. Math. 101 (1986) 95-113.
- 6. P. EYMARD, 'L'algèbre de Fourier d'un groupe localement compact', Bull. Soc. Math. France 92 (1964) 181-236.
- 7. B. FORREST, 'Amenability and bounded approximate identities in ideals of A(G)', Illinois J. Math. 34 (1990) 1-25.
- 8. E. E. GRANIRER, 'Some results on $A_p(G)$ submodules of $PM_p(G)$ ', Collog. Math. 51 (1987) 155–163.
- 9. M. GROSSER and V. LOSERT, 'The norm-strict bidual of a Banach algebra and the dual of $C_u(G)$ ', Manuscripta Math. 45 (1984) 127–146.
- 10. W. HAUENSCHILD and E. KANTUTH, 'Ideale mit beschränkter approximativer Eins in Gruppenalgebren von Moore-Gruppen', *Manuscripta Math.* 27 (1979) 167–182. 11. W. HAUENSCHILD and J. LUDWIG, 'The injection and the projection theorem for spectral sets',
- Monatsh. Math. 92 (1981) 167-177.
- 12. C. HERZ, 'Harmonic synthesis for subgroups', Ann. Inst. Fourier (Grenoble) (3) 23 (1973) 91-123.
- 13. E. HEWITT and K. A. Ross, Abstract harmonic analysis II (Springer, Berlin, 1970).
- 14. N. LOHOUÉ, 'Remarques sur les ensembles de synthèse des algèbres de groupe localement compact', J. Functional Analysis 13 (1973) 185-194.
- 15. F. LUST-PIQUARD, 'Propriétés harmoniques et géométiques des sous-espaces invariants par translation de $L^{\infty}(G)$ ', Thèse, Université de Paris-Sud 1978.
- 16. H. REITER, Classical harmonic analysis and locally compact groups (Oxford University Press, London, 1968).

Institut de Mathématiques Université de Lausanne CH-1015 Lausanne Switzerland

506