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SUMMARY
The recognition of pathogen or cancer-specific epitopes by CD8+ T cells is crucial for the clearance of infec-
tions and the response to cancer immunotherapy. This process requires epitopes to be presented on class I
human leukocyte antigen (HLA-I) molecules and recognized by the T-cell receptor (TCR). Machine learning
models capturing these two aspects of immune recognition are key to improve epitope predictions. Here,
we assembled a high-quality dataset of naturally presented HLA-I ligands and experimentally verified neo-
epitopes. We then integrated these data in a refined computational framework to predict antigen presenta-
tion (MixMHCpred2.2) and TCR recognition (PRIME2.0). The depth of our training data and the algorithmic
developments resulted in improved predictions of HLA-I ligands and neo-epitopes. Prospectively applying
our tools to SARS-CoV-2 proteins revealed several epitopes. TCR sequencing identified a monoclonal
response in effector/memory CD8+ T cells against one of these epitopes and cross-reactivity with the homol-
ogous peptides from other coronaviruses.
INTRODUCTION

CD8+ T cells have the ability to eliminate infected or malignant

cells and play a key role in infectious diseases and cancer immu-

notherapy. CD8+ T-cell recognition is initiated by the binding of

the T-cell receptor (TCR) to peptides displayed on class I human

leukocyte antigen (HLA-I) molecules. Detailed knowledge of

class I epitopes in cancer and infectious diseases has several

translational and clinical applications. Such epitopes can be

used to design vaccines that target the most relevant epitopes,

including neo-epitopes (i.e., peptides containing non-synony-

mous genetic alterations) in cancer.1–3 Class I epitopes can

also be used to select TCRs, study them and reinfuse these

TCRs into patients as part of adoptive T cell therapy.4

Unfortunately, identifying epitopes in cancer or infectious dis-

eases is challenging because of the very high number of possible

candidates and the diversity of HLA-I alleles. For instance, for

each non-synonymous point mutation in a tumor, up to 38

from 8- to 11-mer peptides containing the mutated residue

may be immunogenic. Similarly, the number of potential class I

epitopes of a given length in a pathogen is roughly equal to the

length of the proteome of this pathogen. Major improvements
72 Cell Systems 14, 72–83, January 18, 2023 ª 2022 Elsevier Inc.
have been done for experimentally screening potential epitope

candidates, either with peptide pools5 or tandem mini-genes.6,7

Nevertheless, the most common approach to identify new epi-

topes is to preselect them based on HLA-I ligand predictors.

HLA-I molecules are encoded by three genes (HLA-A, -B

and -C). These genes are highly polymorphic in human and

different alleles are characterized by specific binding motifs

and specific length distributions in their ligands.8 Binding motifs

mainly reflect amino acids favorable for binding to HLA-I mole-

cules at specific positions of the ligands. Peptide length distribu-

tions (typically from 8- to 14-mers with a preference for 9-mers

for most alleles) capture both the binding preferences of HLA-I

molecules as well as the skewed length distribution of peptides

available in the endoplasmic reticulum for loading onto HLA-I

molecules.9

The specificity of HLA-I-binding motifs and peptide length dis-

tributions greatly constrains the repertoire of potential epitopes.

As such, computational tools that accurately capture these two

features of antigen presentation have been developed to narrow

down the list of potential epitopes to be experimentally tested.

Historically, predictors HLA-I ligands were mainly trained on

peptides tested experimentally in binding assays,10 with the
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caveat that many of these peptides had been pre-selected

based on previous versions of the predictors. More recently,

naturally presented HLA-I ligands identified by mass spectrom-

etry (MS) based HLA-I peptidomics provided a rich source of

information about the rules of antigen presentation and the spec-

ificity of HLA-I molecules.11–17 The number of HLA-I ligands iden-

tified by this technology, both in mono-allelic and poly-allelic

samples, surpasses the one from binding assays and HLA-I pep-

tidomics data are now included in the training of most HLA-I

ligand predictors.17–22 For poly-allelic samples, motif deconvolu-

tion has been used to identify HLA-I binding motifs and deter-

mine allelic restriction of HLA-I ligands without relying on HLA-I

ligand predictors.12,13,18,23

Over the years, several attempts have been made to integrate

additional features in epitope predictions linked to antigen presen-

tation and TCR recognition. For instance, gene expression and

protein abundancewere shown to improve HLA-I ligand and class

I epitope predictions.11,17,24 Predictions of cleavage or antigen

transport properties were integrated in epitope prediction tools.25

The concept of antigen presentation hotspot, as determined by

the analysis of HLA-I peptidomics data, was also shown to

improve predictions.26 Some studies further attempted to inte-

grate TCR recognition propensities in epitope predictions, for

instance by investigating the role of dissimilarity-to-self or foreign-

ness.27–30 We and others observed that specific amino acids

found in epitope residues more likely to interact with the TCR in-

crease the propensity for TCR binding.31–33

In this work, we compiled and curated a large dataset of HLA-I

ligands and neo-epitopes. We then integrated these data with

new algorithmic developments to improve predictions of antigen

presentation (MixMHCpred2.2) and TCR recognition propensity

(PRIME2.0). Applying these tools to SARS-CoV-2 proteins

enabled us to predict and validate several epitopes, which we

characterized in terms of TCR functional avidity, clonality, and

cross-reactivity.

RESULTS

Integration and curation of HLA-I peptidomics data
reveal binding motifs and peptide length distributions
for more than hundred alleles
To improve predictions of class I antigen presentation, wemanu-

ally compiled recent studies of naturally presented HLA-I ligands

profiled by MS. Our dataset covers 24 studies for a total of 244

samples (see Table S1). All data were retrieved from the original

publications and were not filtered by any HLA-I ligand predictor,

ensuring that our dataset is not biased by such filtering. All sam-

pleswere processedwith themotif deconvolution toolMixMHCp

and shared motifs across samples containing the same HLA-I

allele were annotated to this allele, following our previously es-

tablished approach (see example in Figure 1A).13,14 All motifs

in each sample were manually verified, and samples or alleles

for which motif deconvolution results were ambiguous were

not considered (e.g., fourth motif of the first sample in Figure 1A).

This enabled us to derive reliable binding motifs and peptide

length distributions for 119 HLA-I alleles, supported by a total

of 384,070 peptides (Table S2, see examples in Figure 1B). Mo-

tifs for HLA-I alleles identified in mono-allelic and poly-allelic

sampleswere highly similar (Figure S1A). Peptide length distribu-
tions for alleles inmono-allelic samples displayed a slightly lower

fraction of 9-mers and a slightly higher fraction of peptides of

other lengths compared with those observed in poly-allelic

samples (Figure 1C).

In addition to determining binding motifs and peptide length

distributions for the different alleles expressed in a sample, motif

deconvolution is useful to identify potential sources of noise in

the data.18,23,34 Noise in HLA-I peptidomics data can consist of

peptides from the same sample (e.g., contaminants pulled

down together with HLA-I ligands, but not binding to HLA-I

molecules), peptides from other samples (e.g., contaminants

due to suboptimal cleaning of MS equipment), or wrongly iden-

tified peptides occurring during the computational annotation

of mass spectra.

To predict contaminants or wrongly identified peptides, we

first collected all peptides assigned to the flat motif by

MixMHCp18 in each sample (see example in Figure 1A, right

box, and Figure S1B). These are referred to as ‘‘unspecific con-

taminants.’’ We further manually retrieved cases where some

motifs predicted by MixMHCp did not match the motifs ex-

pected for the alleles given in the HLA-I typing but displayed

very high similarity with the motifs of other alleles. These cases

are referred to as ‘‘allele-specific contaminants.’’

As previously reported,18 the fraction of predicted unspecific

contaminants is especially large in 8-mers and 11- to 14-mers

both in mono-allelic and poly-allelic samples, representing for

instance more than 50% of 14-mers (Figure 1D, see specific ex-

amples in Figure S1B). Predicted unspecific contaminants show

a relatively flat motif with small preference for arginine and lysine

at the last residue (Figure 1E), which is consistent with the hy-

pothesis that some of these peptides correspond to peptides

that underwent trypsin-based digestion used in standard prote-

omics. The predicted unspecific contaminants had a peptide

length distribution markedly different from the one of HLA-I li-

gands (Figure 1F), further indicating that most of these peptides

are not bona fide HLA-I ligands. Allele-specific contaminants

were observed in some mono-allelic samples (Figure S1C) as

well as one poly-allelic sample with erroneous HLA-I typing

(Figure S1D).

These observations demonstrate the importance of perform-

ing careful quality-control before using mono- or poly-allelic

HLA-I peptidomics data to train HLA-I ligand predictors.35

Models of HLA-I binding specificities and peptide length
distributions improve predictions of naturally presented
HLA-I ligands
To improve predictions of class I antigen presentation, we inte-

grated these data into the training of our HLA-I ligand predictor

MixMHCpred and further refined the modeling of peptide length

distributions (see STARMethods). As withmost HLA-I ligand pre-

dictors, the final score of a peptide is expressed as a %rank,

which represents how the predicted binding of a peptide com-

pares with the one of randompeptides from the human proteome

(see STAR Methods). To benchmark the new version of

MixMHCpred (v2.2) we used two external datasets. The first

one consists of ten HLA-I peptidomics datasets from meningi-

oma samples.18 The second one consists of eleven recently pub-

lished HLA-I peptidomics datasets.20 These datasets were not

included in the training of any predictor considered in this work.
Cell Systems 14, 72–83, January 18, 2023 73
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Figure 1. Motif deconvolution across HLA-I peptidomics datasets reveal bindingmotifs and peptide length distributions of HLA-I molecules,

as well as predicted contaminants in mono- and poly-allelic datasets.

(A) Example of motif deconvolution with MixMHCp in three HLA-I peptidomics samples. This includes determination of HLA-I motifs and predicted unspecific

contaminants (i.e., peptides assigned to the flat motif of MixMHCp), as well as motif annotation by identifying shared motifs across samples sharing the same

allele. The example shows the deconvolvedmotifs in two poly-allelic samples that share the HLA-B*37:01 allele (‘‘donor1’’ and ‘‘HCC1143’’ in Table S1), as well as

the mono-allelic HLA-B*37:01 sample.

(B) Examples of binding motifs and peptide length distributions obtained by motif deconvolution.

(C) Peptide length distributions in mono-allelic and poly-allelic HLA-I peptidomics data. Each curve represents the average peptide length distribution across

alleles with both mono- and poly-allelic HLA-I peptidomics data.

(D) Fraction of predicted unspecific contaminants across different lengths (average over all samples).

(E) Motif of the predicted unspecific contaminants (9-mers) identified by MixMHCp across all samples.

(F) Comparison of the length distribution of peptides assigned to HLA-I alleles and predicted unspecific contaminants.
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In total they contain 78,011 HLA-I ligands (Table S3). 4-fold

excess of randomly selected peptides from the human proteome

were used as negatives to compute receiver operating curves

(ROCs) and positive predictive values (PPVs) (see STARMethods

and Table S3). Both the area under the ROC curve (AUC) and the

PPV were higher for MixMHCpred2.2, compared with NetMHC-
74 Cell Systems 14, 72–83, January 18, 2023
pan4.1,21 MHCflurry2.0,19 HLAthena17 and MixMHCpre2.0.218

(Figures 2A, 2B, and S2A–S2D).

Different performance in predicting naturally presented HLA-I

ligands could originate from differences in modeling either the

amino acid specificity or the peptide length specificity of natu-

rally presented HLA-I ligands. To explore these two aspects of
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Figure 2. Models of HLA-I binding specificities and peptide length distributions improve predictions of naturally presented HLA-I ligands

(A) Boxplot of AUC and PPV values for the different predictors considered in this study applied on the 10 HLA-I peptidomics samples from Gfeller et al.18

(B) AUC and PPV values obtained for HLA-I peptidomics samples from Pyke et al.20

(legend continued on next page)
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HLA-I ligand predictors, we first benchmarked the different pre-

dictors on each peptide length separately. We observed only few

cases with statistically significant differences in AUC values

(Figures 2C and 2D). This suggests that all methods considered

in this work capture relatively well the binding motifs of HLA-I al-

leles and that the differences observed in Figures 2A and 2Bmay

come from the modeling of peptide length distributions.

To further investigate this hypothesis, we computed the pre-

dicted peptide length distributions at different %rank thresholds

(see STAR Methods). We then compared these predicted pep-

tide length distributions with those observed in HLA-I peptido-

mics samples (Figure 2E). Overall, we observed that

MixMHCpred2.2 predictions had the best agreement with the

experimental peptide length distributions across different

thresholds. Both NetMHCpan4.1 and MHCflurry2.0 displayed

good agreement, although with some more pronounced

under-representation of 9-mers at %ranks larger than 1.

MixMHCpred2.0.2 displayed less stable distributions across %

rank thresholds, including an over-representation of longer pep-

tides for high %rank (i.e., %rank between 2% and 10%) and an

under-representation of such peptides for small %rank (i.e., %

rank < 1). HLAthena displayed a very clear under-representation

of 9-mers, and over-representation of 8-, 10-, and 11-mers

across all %rank thresholds. The discrepancy was also

observed when considering peptide length distributions from

mono-allelic HLA-I peptidomics data (Figure S2E). These obser-

vations suggest that integrating peptide lengths, either by stable

renormalization of the raw scores (MixMHCpred2.2), as separate

input nodes in neural networks (NetMHCpan), or by using

padding (MHCflurry), is important to accurately capture the

length distribution of naturally presented HLA-I ligands across

different alleles. The length distribution of naturally presented

HLA-I ligands is a result of both preferences of HLA-I alleles

and a skewed length distribution among peptides available for

loading on HLA-I in the endoplasmic reticulum.9 In particular,

peptide length distributions computed based on naturally pre-

sented HLA-I ligands show higher values for 9-mers and lower

values for other peptide lengths compared with peptide length

distributions computed based on the results of binding assays.9

This may explain the lower predicted distribution of 9-mers for

NetMHCpan and MHCflurry at %rank larger than 1%, since

these two methods include results of binding assays in their

training set.

Models of TCR recognition propensity improve
predictions of neo-epitopes
To expand upon previous attempts to capture biochemical

properties of epitopes that increase TCR recognition propen-

sities,31–33 we collected data from 70 recent neo-antigen

studies. This resulted in 596 verified immunogenic neo-epitopes,

as well as 6,084 non-immunogenic peptides tested experimen-
(C) AUC values computed separately for each peptide length for the ten samples f

smaller than 0.05 are indicated.

(D) AUC values computed separately for each peptide length for eleven samples

smaller than 0.05 are indicated.

(E) Predicted peptide length distributions at different %rank thresholds for each H

lines show the peptide length distributions observed in naturally presented HLA-I

lower/upper quartiles. p values were computed with paired Wilcoxon test.
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tally (see STAR Methods and Table S4). Most of the immuno-

genic and non-immunogenic peptides were previously selected

based on HLA-I ligand predictors and, as a result, show much

higher predicted binding to HLA-I compared with random pep-

tides (Figure 3A). To correct for this bias in our data, we further

included for each neo-epitope 99 peptides randomly selected

from the same source protein as additional negatives

(see STAR Methods and Table S4). We then used these data

to train a PRedictor of Immunogenic Epitope (PRIME2.0).

PRIME2.0 is based on a neural network and uses as input fea-

tures (1) the predicted HLA-I presentation score (�log(%rank)

of MixMHCpred2.2), (2) the amino acid frequency at positions

with minimal impact on binding to HLA-I and more likely to

face the TCR,33 and (3) the length of the peptide (Figure 3B;

see STAR Methods). Compared with our previous work

(PRIME1.033), the training set of PRIME2.0 is more realistic in

terms of predicted HLA-I binding of the negatives (i.e., broad

coverage of the range of %rank values without enrichment in

predicted ligands). Moreover, the use of neural networks can

capture potential correlations between different input features

(see below). We performed multiple cross-validations based on

randomly splitting the data (standard 10-fold cross-validation),

iteratively excluding specific alleles (leave-one-allele-out cross-

validation), or iteratively excluding data from specific studies

(leave-one-study-out cross-validation) (see STAR Methods).

Overall, we observed improved predictions with PRIME2.0

(Figures 3C and S3A), even if most of the neo-epitopes consid-

ered in this work had been predicted by NetMHCpan, and

several of them are part of the training of NetMHCpan,

MHCflurry, and PRIME1.0. We also restricted our benchmark

to peptides experimentally tested (i.e., excluding random nega-

tives from the test sets) (Figures 3D and S3B). These peptides

typically show relatively good predicted binding to HLA-I (Fig-

ure 3A) since most of them were pre-selected based on HLA-I

ligand predictors. On this test set, PRIME2.0 displayed in general

better performance than HLA-I ligand predictors. In this case,

PRIME1.0 had roughly similar performance as PRIME2.0,

consistent with the fact that PRIME1.0 was mainly trained on

peptides (both immunogenic and non-immunogenic) with high

predicted affinity to HLA-I molecules.

To investigate the robustness of our results with respect to the

use of other predictors of HLA-I ligands in PRIME, we retrained

PRIME2.0 using %ranks from NetMHCpan, MHCflurry, or HLA-

thena. Overall, we observed similar results (Figures S3C and

S3D), which demonstrates that the framework of PRIME2.0 is

robust and compatible with different HLA-I ligand predictors.

To explore the impact of the use of neural networks in

PRIME2.0, we retrained PRIME2.0 using a logistic regression

(Figures 3C, 3D, S3A, and S3B, cyan bars). When considering

peptides spanning the whole range of possible binding affinities

to HLA-I, PRIME2.0 based on a neural network outperformed
rom Gfeller et al.18 Only p values between MixMHCpred2.2 and other tools and

from Pyke et al.20 Only p values between MixMHCpred2.2 and other tools and

LA-I ligand predictor (average over alleles available in all predictors). Dashed

ligands (average over all alleles). Boxplots in (A)–(D) represent the median and
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Figure 3. Models of TCR recognition propen-

sity improve predictions of neo-epitopes

(A) Predicted binding affinity to HLA-I (based on %

rank of MixMHCpred2.2.) of experimentally vali-

dated immunogenic (green) and non-immunogenic

(red) peptides, as well as random peptides (orange)

used to train PRIME.

(B) Architecture of neural network of PRIME2.0. The

first input node corresponds to the predicted

binding to the HLA-I allele (�log(%rank) from

MixMHCpred2.2). The next 20 nodes correspond to

amino acid frequencies on residues with minimal

impact on predicted affinity to the HLA-I allele (green

box). These positions were determined as previ-

ously described.33 The last seven nodes correspond

to the length of the peptide (i.e., 8–14, one-hot

encoding).

(C) Benchmarking of PRIME2.0 based on 10-fold

cross-validation. ‘‘Log Reg’’ indicates the model

trained on the same data as PRIME2.0 but with a

logistic regression instead of a neural network.

(D) Same cross-validation as in (C) after excluding

randomly generated negatives in the test set.

(E) Normalized amino acid frequencies at positions

with minimal impact on predicted affinity to HLA-I for

immunogenic versus non-immunogenic peptides

used to train PRIME2.0 within different ranges of

predicted HLA-I binding (%rank of MixMHCpred).

Boxplots in (A), (C), and (D) represent the median

and lower/upper quartiles. p values were computed

with paired Wilcoxon test.
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PRIME2.0 based on a logistic regression, demonstrating that

neural networks are useful to handle peptides with different pre-

dicted binding affinities to HLA-I (Figure 3C). Reversely, when

considering only experimentally validated peptides in the test

set (i.e., peptides with similar predicted binding to HLA-I), we

did not observe significant differences (Figure 3D).

To further interpret the impact of amino acids found in epitope

positions more likely to impact TCR recognition (green box in

Figure 3B), we compared the frequency of these amino acids be-

tween the positives (i.e., epitopes) and the negatives (i.e., non-

immunogenic peptides) used in the training of PRIME2.0 for

different ranges of MixMHCpred %ranks (Figure 3E). Our results

reveal an enrichment in aromatic and hydrophobic residues

among epitopes and a depletion of charged or polar residues,

which is consistent with previous studies.31,33 The enrichment

is especially pronounced for epitopes with predicted low binding

to HLA-I (%rank between 1%and 10%). These results are robust
C

to the use of other HLA-I ligand predictors

(Figure S3E). These observations support

the following model of TCR recognition

propensity. For high affinity HLA-I ligands

the presence of specific amino acids in

the epitope residues which are more likely

to directly interact with the TCR is

less important because the high stability

of the peptide-HLA-I complex increases

the probability of stable TCR binding.

Conversely, for low affinity HLA-I ligands,

the presence of specific amino acids favor-
ing TCR recognition becomes more important and helps coun-

terbalancing the lower stability/affinity of the peptide-HLA-I

complexes. This correlation pattern between different features

of PRIME2.0 (i.e., predicted affinity and amino acid frequency

at positions more likely to interact with the TCR) provides a plau-

sible explanation for the improvement obtained when training

PRIME2.0 with a neural network instead of a logistic regression

(Figure 3C).

Immunogenicity predictions reveal SARS-CoV-2 CD8+

T-cell epitopes
To explore whether PRIME2.0 could be used in a prospective

way to identify immunologically relevant epitopes, we applied

it to the proteome of SARS-CoV-2 and selected a list of 213

peptides with PRIME2.0 %rank lower or equal to 0.5 with at

least one of the 15 most common HLA-I alleles (see STAR

Methods and Tables S5A and S5B). We then in vitro primed
ell Systems 14, 72–83, January 18, 2023 77
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CD8+ T cells from 6 donors (Table S5C) with pools of the pre-

dicted peptides and deconvolved the IFNg ELISpot responses

to the level of single epitopes (see STAR Methods and Fig-

ure 4A). Three donors had been tested positive for SARS-

CoV-2 (i.e., 1GZ0, 1HHU, and 1HHT), and no donor had

been vaccinated (samples collected early 2020). In total, we

could identify 18 immunogenic peptides, with 2 of them

(YFIASFRLF and QWNLVIGFLF) identified in two different

donors (Table 1). Eight of these epitopes had not been

observed in previous studies including the two identified in

multiple donors (Table 1). Three additional epitopes had been

reported with other allelic restrictions (LYLYALVYF,

FTSDYYQLY, and YFPLQSYGF). To validate these observa-

tions, we used peptide-HLA multimers to stain CD8+ T cells

recognizing nine of these epitopes in four donors for which

enough cells were available (Leu163, Leu184, 1HHT, and

1HHU). All epitopes could be confirmed (Figure 4B). We then

measured the functional avidity (EC50) of the CD8+ T cells

recognizing these epitopes. The functional avidity displayed

some variability, ranging from low micro-molar to sub-nano-

molar values (Figure 4C). The highest avidity was observed

for the HLA-A*29:02 restricted YFPLQSYGF epitope in a

SARS-CoV-2 positive donor (1HHU). This epitope had been

previously observed in patients, with a restriction to HLA-A*

24:02.36 HLA-A*29:02 and HLA-A*24:02 are part of the same

HLA-I supertype (A24) and display some overlap in their binding

motifs, including preference for F at both P2 and PU anchor res-

idues. This suggests that the YFPLQSYGF epitope may be

immunogenic in several patients with HLA-I alleles of the A24

supertype.

We next investigated how well these peptides would have

been predicted by different tools. To this end, we first computed

the best score for the alleles of each donor for the different pre-

dictors. The immunogenic peptides had highest scores with

PRIME2.0, as expected since they had been selected with this

tool (Figure S4A). We then computed AUC values in each donor

(see STAR Methods). All predictors had AUC values larger than

0.5 in all donors (Figure S4B). There was substantial variability

across samples, and no method had statistically significantly

better AUC values. However, the limited number of samples

and of immunogenic peptides, as well as the biased selection

of the initial list of 213 peptides with only one algorithm make it

difficult to draw robust conclusions about the performance of

the different algorithms.

To gain insights in the clonality of the CD8+ T cell populations

recognizing these epitopes, we sorted CD8+ T cells recognizing

seven of these epitopes and sequenced separately the alpha
Figure 4. PRIME2.0 identifies SARS-CoV-2 CD8+ T-cell epitopes

(A) IFNg ELISpot results for the peptides tested individually (i.e., after deconvolu

peptides for which enough CD8+ T cells were available for peptide-HLA multim

peptide group. For donor Leu184, two epitopes (LFLTWICLL and QYIKWPWYIW

(B) Staining of CD8+ T cells with peptide-HLA multimers for nine epitopes from d

Leu184, 1HHT, and 1HHU, see Table 1). For QYIKWPWYIW, effector/memory C

(C) Functional avidity (effective concentration 50%, EC50). Error bars represent th

replicate could be performed due to limited amount of CD8+ T cells.

(D) Number of distinct alpha and beta chains identified in TCRs recognizing the

(E) Multimers consisting of different homologs of QYIKWPWYIW found in the spike

used for staining of TCR� Jurkat cells transfected with TCRQYI. The control TCRRA

Barr virus epitope RAKFKQLL in complex with HLA-B*08:01.
and beta chains of their TCRs (Table S6). Different epitopes

were recognized by different numbers of TCRs (Figure 4D). For

epitopes recognized by several TCRs, one or two alpha

and beta chains had significantly higher frequency, suggesting

that the recognition may be primarily driven by the pairing of

such chains (Figure S4C). For the QYIKWPWYIW epitope

from the spike protein (donor Leu184), naive and effector/

memory CD8+ T cells recognizing this epitope were sorted

separately (Figure S4D). We observed a high diversity of TCR

chains among naive CD8+ T cells. Reversely, a unique

clone (TCRQYI: TRAV20*01-CAALNYGGATNKLIF-TRAJ32*01

and TRBV4-3*01-CASSPSGGAYEQYF-TRBJ2-7*01) was found

in the effector/memory CD8+ T cells. This unique TCR

was identified in effector/memory CD8+ T cells recognizing

QYIKWPWYIW displayed both on HLA-A*23:01 and HLA-A*

24:02 (Figure S4E; Table S6), as expected since HLA-A*23:01

and HLA-A*24:02 have very high sequence similarity and almost

identical binding motifs (Figure S1A). We next asked if the same

TCR could be found in other individuals. The same beta chain

was found in 19 SARS-CoV-2+ donors in the ImmuneCODE

database, which is a large repertoire of TCRb chains from

SARS-CoV-2+ donors.37 The same alpha and beta chains were

also found in the TCR repertoire of one of the two SARS-

CoV-2+ donors analyzed in a recent study.38 Moreover, the

same alpha chain and a highly similar beta chain (same CDR3b

sequence) were found in the other donor of the Minervina et al.

study (Figure S4F). Both donors were HLA-A*24:02+. These ob-

servations suggest that the recognition of the QYIKWPWYIW

epitope may be mediated by the same TCR in multiple donors.

The donor where recognition of the QYIKWPWYIW epitope

was observed (Leu184) had not been tested positive for SARS-

CoV-2 and had not received any SARS-CoV-2 vaccine. There-

fore, we hypothesized that the monoclonal population of

effector/memory CD8+ T cells recognizing this epitope could

originate from previous exposure to other coronaviruses. This

hypothesis is supported by the fact that the QYIKWPWYIW

epitope is quite well conserved in the spike protein of other co-

ronaviruses (Table 2). In particular, non-conserved residues are

either found at P1, which has little impact on HLA-A*24:02 bind-

ing and TCR recognition, or involve amino acids with similar

biophysical properties (I / V, Y / W). To further verify our hy-

pothesis, we stained TCRQYI transfected cells with multimers

consisting of these homologous peptides in complex with HLA-

A*24:02. Our results demonstrate that TCRQYI is able to recog-

nize all of these peptides (Figure 4E). These results are consistent

with the observation that previous exposure to other coronavi-

ruses can confer some immunity to SARS-CoV-2.39,40
tion of the pools). Immunogenic peptides are shown in green. Stars indicate

er validation and functional avidity assays. Donors are indicated above each

) were tested with both effector/memory and naive CD8+ T cells.

onors for which enough CD8+ T cells could be obtained (i.e., donors Leu163,

D8+ T cells were used.

e standard deviation of two replicate, except for EYADVFHLYL where only one

seven epitopes for which TCR sequencing could be performed.

protein of other coronaviruses (see Table 2) in complex with HLA-A*24:02 were

K represents TCR
� Jurkat cells transfected with a TCR recognizing the Epstein-
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Table 1. List of immunogenic SARS-CoV-2 epitopes

Donor HLA-I typing

Epitope

sequence

Source

protein

Known epitopes with their

reported allelic restriction

Cells available for

multimer validation

Alleles used in the

multimer validation TCR-seq

Leu163 A0102,A0201,

B4901,B5101,

C0701,C1402

LYLYALVYF AP3A A2402 yes C1402 yes

YFIASFRLF VME1 – yes C1402 yes

Leu158 A1101,A2402,

B1801,B3501,

C0401,C1203

ECSNLLLQY SPIKE – no – no

LWLLWPVTL VME1 A2402 no – no

YFIASFRLF VME1 – no – no

QWNLVIGFLF VME1 – no – no

LPPAYTNSF SPIKE B0702, B3501, B5301 no – no

Leu184 A2301,A2402,

B3502,B4901,

C0401,C0701

QYIKWPWYIW SPIKE A2301 yes A2402/A2301 yes

QWNLVIGFLF VME1 – no – no

RFLYIIKLI VME1 – yes A2402 yes

EYADVFHLYL R1AB – yes A2402/A2301 yes

1GZ0 A0102,A0201,

B0801,B5101,

C0701,C1502

FTSDYYQLY AP3A A0101, A2402, A2902 no – no

LPFGWLIV AP3A B5101 no – no

1HHU A0103,A2902,

B4403,B7301,

C1505,C1601

NRNRFLYII VME1 – no – no

DLSPRWYFYY NCAP A0201, A2902 no – no

LSPRWYFYY NCAP – no – no

YFPLQSYGF SPIKE A2402 yes A2902 no

1HHT A1101,A3201,

B4002,B4402,

C0202,C0501

SASKIITLK AP3A A0301, A1101, B5701 yes A1101 yes

QSASKIITLK AP3A – yes A1101 no

ATSRTLSYYK VME1 A1101, A3001 yes A1101 yes
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In a recent study, the 9-mer peptide (QYIKWPWYI) fully

overlapping with the 10-mer epitope recognized by TCRQYI

was shown to elicit an immuno-dominant CD8+ T-cell response,

and the QYIKWPWYI – HLA-A*24:02 complex was crystallized.41

This structure shows that the three non-anchor aromatic side-

chains shared with the 10-mer investigated in our work (i.e.,

W5, W7, and Y8) are all facing outside of the HLA-I-binding

site and therefore are likely to interact with the TCR (Figure S4G).

The presence and orientation of the aromatic sidechains in this

immuno-dominant epitope of the spike protein are consistent

with the model of improved TCR recognition propensity of

aromatic residues, which underlies the PRIME algorithm.

DISCUSSION

CD8+ T-cell epitopes play central roles in immune responses

against infectious diseases as well as cancer and represent

promising targets for personalized cancer immunotherapy treat-

ments. In this work, we trained both a predictor of antigen pre-

sentation (MixMHCpred2.2) and a predictor of immunogenicity

(PRIME2.0). By expanding the training set and optimizing the

algorithms, we could demonstrate improved predictions for

both HLA-I ligands and class I neo-epitopes.

A key aspect of any machine learning predictor is the quality

and depth of the training data. Consistent with previous

studies,12,18,35 our results reveal that different types of putative

contaminants can be found in both poly- and mono-allelic

HLA-I peptidomics data. Contaminants include peptides with

trypsin-like motifs or peptides coming from other HLA-I alleles,

including in samples that were assumed to be mono-allelic.
80 Cell Systems 14, 72–83, January 18, 2023
These results emphasize the importance of carefully applying

quality controls before using such data for training HLA-I ligand

predictors.35 Another important aspect is the choice of the algo-

rithm. Our benchmark of HLA-I ligand predictors suggest that

accurate modeling of peptide length distribution is important

for such predictions. In particular, we observed important differ-

ence in the benchmarking of HLA-I ligand predictors when

combining peptides of all lengths (Figures 2A and 2B) and

when treating separately peptides of different lengths

(Figures 2C and 2D). By construction, the benchmarking of

each peptide length separately cannot inform us on whether a

predictor accurately models peptide length distributions.

Considering that this is an important aspect of naturally pre-

sented HLA-I ligands and class I epitopes, we advocate for sys-

tematically combining HLA-I ligands of different lengths and us-

ing as negatives random peptides with uniform length

distribution when training and benchmarking HLA-I ligand

predictors.

The analysis of the data used to train our predictor of immuno-

genicity (PRIME2.0) confirmed the importance of aromatic resi-

dues, especially tryptophan. In line with previous studies and

crystal structures of TCR-peptide-MHC complexes,31,33,41,42

we suggest that this preference reflects the ability of tryptophan

(or other aromatic residues) to engage into stable molecular in-

teractions with the TCR. However, we cannot exclude that other

factors play a role in the importance given to tryptophan in

PRIME. First, tryptophan tends to be slightly depleted in MS-

based HLA-I peptidomics studies.11,14 This may bias HLA-I

ligand predictors trained on such data, and PRIME may be cor-

recting for this bias. Second, recent studies have demonstrated



Table 2. Sequences of the Spike peptides homologous to

QYIKWPWYIW in other coronaviruses

Organism Sequence Differences with SARS-CoV-2

SARS-CoV-2 QYIKWPWYIW –

SARS-CoV-1 QYIKWPWYVW I9V

229E TYIKWPWWVW Q1T, Y8W, I9V

OC43 YYVKWPWYVW Q1Y, I3V, I9V

NL63 NYIKWPWWVW Q1N,Y8W, I9V

HKU1 MYVKWPWYVW Q1M, I3V, I9V

Differences with the SARS-CoV-2 epitope are underlined.
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that peptides genomically encoded with aW can undergo aW>F

substitution during protein synthesis.43 Considering that several

studies used tandem mini-genes to identify neo-epitopes, we

cannot exclude that some of the W-containing epitopes used

in the training of PRIME were actually presented on HLA-I mole-

cules with a W>F substitution, which contributed to overcome

central tolerance and increase their immunogenicity. This

supports a model where tryptophan containing protein seg-

ments are especially promising neo-epitope candidates, both

in terms of improving TCR recognition and overcoming central

tolerance.

In our benchmark of PRIME2.0, we observed improved pre-

dictions when training PRIME2.0with neural networks compared

with logistic regressions and when considering negatives span-

ning the whole range of predicted affinity to HLA-I (Figure 3C).

The analysis of amino acid frequencies in Figure 3E suggests

that the importance of specific residues at position interacting

with the TCR changes depending on the affinity of the epitopes

to the HLA-I molecules. This may explain why models that can

capture such correlations (e.g., neural networks) outperform

linear models (e.g., logistic regressions).

Applying our tool to the SARS-CoV-2 proteome, we could

uncover several epitopes, including one (QYIKWPWYIW)

recognized by a monoclonal population of antigen-experienced

CD8+ T cells with an effector/memory phenotype. This epitope

has very high homology with other coronaviruses and is 100%

conserved in all common variants of SARS-CoV-2. This sug-

gests that CD8+ T-cell responses elicited against this epitope

by previous infection, vaccination, or cross-reactivity with other

coronaviruses may be effective across all SARS-CoV-2

variants. Due to limitations in the available samples and the

number of SARS-CoV-2 peptides that could be tested, we

restricted our experimental validation to predictions generated

with PRIME2.0. As such, this part of the work shows that

PRIME2.0 can be prospectively applied for epitope discovery

but should not be used to draw conclusions about the perfor-

mance of other predictors.

Overall, our work provides improved predictions for both an-

tigen presentation (MixMHCpred2.2) and TCR recognition

(PRIME2.0) of class I epitopes. In terms of HLA-I ligand predic-

tions, a decent accuracy had already been reached by many

existing tools.18,19,21 Much harder is the task of predicting

immunogenicity, both because of the smaller size of the training

data and because of the multiple other factors that influence T-

cell recognition (e.g., co-receptors, cytokines, etc.). Efforts

focusing on generating high-quality immunogenicity training
data and developing machine learning frameworks to harness

these data will be key to further improve class I epitope

predictions.
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Therapeutics, Department of Oncology,

Centre Hospitalier Universitaire Vaudois,

Lausanne, Switzerland.

Protocol 235/14 and 2016-02094, 2016-02166

and 2017-00490

Chemicals, peptides, and recombinant proteins
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Deposited data

TCR sequencing data this paper GSE201212

Supplementary Tables this paper https://doi.org/10.17632/2kmmjp4tmm.1

Experimental models: Cell lines

Jurkat cell line Promega T Cell Activation Bioassay (NFAT) # J1601

Schneider’s Drosophila Line 2 ATCC CRL-1963

CD4 blasts In house N/A

Software and algorithms

MixMHCpred2.0.2 Gfeller et al.18 https://github.com/GfellerLab/MixMHCpred/

releases/tag/v2.0.2

PRIME1.0 Schmidt et al.33 https://github.com/GfellerLab/PRIME/releases/

tag/v1.0
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NetMHCpan4.1 Reynisson et al.21 http://www.cbs.dtu.dk/services/NetMHCpan/

MHCflurry2.0.1 O’Donnell et al.19 https://github.com/openvax/mhcflurry

HLAthena Sarkizova et al.17 http://hlathena.tools/ (executable shared by

the authors, private communications)

MixMHCpred2.2 This paper https://doi.org/10.5281/zenodo.7375748
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FlowJo X FlowJo, LLC N/A

ll
Report
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, David

Gfeller (david.gfeller@unil.ch).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d TCR sequencing data were deposited at Gene Expression Omnibus (GEO: GSE201212). The HLA-I ligand and neo-epitope

datasets used to train MixMHCpred and PRIME are available in Tables S2 and S4. Additional Supplemental Items are available

from Mendeley Data: https://doi.org/10.17632/2kmmjp4tmm.1

d MixMHCpred (v2.2, Zenodo: https://doi.org/10.5281/zenodo.7375748) and PRIME (v2.0, Zenodo: https://doi.org/10.5281/

zenodo.7375740) are available at https://github.com/GfellerLab/ and through the web interface http://prime.gfellerlab.org/.

d Any additional information required to reproduce this work is available from the Lead Contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Six donors were recruited (Leu163, Leu158, Leu184, 1GZ0, 1HHT, 1HHU). The HLA-I typing was known for all six donors and the last

three donors (1GZ0, 1HHT, 1HHU) had been tested positive for SARS-CoV-2 (PCR tests) (Table S5C). The recruitment and blood

withdrawal were approved by regulatory authorities and all donors signed informed consents (Protocol 235/14 and 2016-02094,

2016-02166 and 2017-00490).

Jurkat cells (T cell activation bioassay NFAT, Promega) were used to transfect the TCR isolated in this work.

Primary CD8+ T cells were cultured in RPMI 1640 Glutamax media (GIBCO) supplemented with 8% human serum (Biowest), non-

essential amino acids (GIBCO), 2-mercaptoethanol (GIBCO), sodium pyruvate (GIBCO), HEPES (GIBCO), penicillin/streptomycin

(BioConcept) and 150 IU.mL-1 of rhIL2 (Novartis). CD4 blasts were cultured in RPMI supplemented with 10 % FBS (Biowest) and

penicillin/streptomycin (BioConcept). All cells were maintained at 37�C under 5 % CO2.

METHOD DETAILS

Data collection and curation
Naturally presented HLA-I ligands of length 8 to 14 were collected from 244 samples, coming from 24 different HLA-I peptidomics

studies (see Table S1). These comprise both mono- and poly-allelic samples. All data were retrieved from the original studies to

prevent any filtering based on HLA-I ligand predictors. When only filtered data had been published in the original studies, access

to unfiltered data was kindly provided to us by the authors of these studies. All samples were processed with the motif deconvolution

algorithmMixMHCp in order to identify shared HLA-I motifs across samples sharing the same alleles, following our previously estab-

lished procedure.13,14,18 All samples were manually reviewed and peptides assigned to motifs that could not be unambiguously as-

signed to one allele were not considered. Peptides assigned to the flat motif in MixMHCp or to motifs corresponding to alleles not

supposed to be in the sample were considered as predicted contaminants. The final dataset of naturally presented HLA-I ligands

consists of 258,814 unique peptides, representing 384,070 peptide-HLA-I interactions with 119 different HLA-I alleles. 59 alleles

were observed in both mono- and poly-allelic samples, 22 only in poly-allelic samples, and 38 only in mono-allelic samples. This

curated set of naturally presented HLA-I ligands is available in Table S2. Binding motifs of HLA-I alleles were plotted with

ggseqlogo.44
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Immunogenic neo-epitopes were retrieved from several neo-antigen studies and were completed by neo-epitope data from

IEDB45 (tcell_full_v3.csv file, downloaded onMarch 27, 2021), excluding potential overlap. Both immunogenic and non-immunogenic

mutated peptides were considered. This resulted in 596 experimentally verified neo-epitopes (10 8-mers, 391 9-mers, 148 10-mers

and 47 11-mers) and 6084 experimentally verified non-immunogenic peptides (Table S4).

Computing peptide length distributions.

Peptide length distributions were established by computing the fraction of naturally presented HLA-I ligands of each l˛ ½8; 14�
length for each allele. For each of the 59 alleles found in both mono-allelic and poly-allelic samples, peptide length distributions

were also computed separately for ligands coming from mono-allelic and poly-allelic samples (Figure 1C).

Training of MixMHCpred
MixMHCpred2.2 was trained based on our curated set of naturally presented HLA-I ligands, following the procedure described in

Gfeller et al.18 The main difference consists of a more stable modelling of peptide length distributions. In mathematical terms, the

score of a peptides X of length L with allele h is given by:

ShðXÞ =
Mðh;LÞðXÞ � Cðh;LÞ

Dðh;LÞ

Mðh;LÞðXÞ represents the raw score of peptide X given by the Position Weight Matrices representing the motif of allele h for L-mers,

including normalization by background frequencies andBLOSUM62 based pseudocounts, as described in Gfeller et al.18 The correc-

tion factors Dðh;LÞ were computed so ShðXÞ that has a standard deviation of 1 over a set of 100’000 peptides of length L randomly

selected from the human proteome (i.e., Dðh;LÞ represents the standard deviation of the scores of these peptides). The correction fac-

tors Cðh;LÞ were computed so that the length distribution of the top 0.1% of 700’000 random peptides (taken from the human prote-

ome with uniform length distribution between 8- and 14-mers) follows exactly the peptide length distribution of allele h observed in

HLA-I peptidomics data. In mathematical terms, defining PhðLÞ as the experimental peptide length distribution for a given allele h,

Cðh;LÞ corresponds to the raw score Mðh;LÞð bXÞ, where bX represents the L-mer peptide ranked 100000030:0013ðLmax � Lmin + 1Þ3
PhðLÞ among the set of 100’000 random L-mer peptides, with and Lmin = 8 and Lmax = 14. Given the observed discrepancies be-

tween peptide length distributions frommono and poly-allelic samples (Figure 1C), peptide length distributions from poly-allelic sam-

ples were always used, when available. %ranks given as output of MixMHCpred2.2 were estimated based on the distribution of

scores ShðXÞ of a set of 700’000 random peptides (100’000 of each length from 8 to 14), as done in other HLA-I ligand predictors.

Consistent with recommendations for other tools,21 these %rank should be used for ranking candidates to be experimentally vali-

dated. The new version of MixMHCpred (2.2) was benchmarked against NetMHCpan4.1,21 MHCflurry2.0,19 HLAthena17 and

MixMHCpred2.0.218 using naturally presented HLA-I ligands identified in unmodified tissues. To ensure that the HLA-I peptidomics

samples used for this benchmark were not part of the training of any of these tools, we used (i) HLA-I peptidomics datasets coming

from 10 menigioma samples measured in Gfeller et al.18 that were not integrated in the training of any version of MixMHCpred,

NetMHCpan, MHCflurry or HLAthena and were not uploaded in IEDB and (ii) HLA-I peptidomics samples from Pyke et al.20 which

were published after the latest release of these tools, excluding sample ‘1180157F’ due to ambiguity in HLA-I typing. 4-fold excess

of random negatives were added by randomly selecting peptides from the human proteome. For this comparison, we restricted to

peptides of length 8 to 11, since HLAthena cannot be run for longer peptides. These peptides consist of 78,011 HLA-I ligands (count-

ing duplicates across different samples) and 312,004 random peptides (Table S3). PPV in the top 20% (which is equivalent to recall

with 4-fold excess of random negatives) and AUC values were computed for each sample and each predictor.

Comparing predicted and experimental peptide length distributions
As with predicted motifs, peptide length distributions predicted by each predictor at different %rank thresholds were computed

based on 100’000 randomly selected peptides from the human proteome for each length l˛ ½8; 11�. The average predicted peptide

length distributions over all alleles available in all predictors is shown in Figure 2E for each predictor and different %rank thresholds.

Training of PRIME
The new version of PRIME (v2.0) was trained using a fully connected neural network with 5 hidden nodes (mlp package in R46). The

input layer consists of 28 nodes (Figure 3B). The first input node encodes the predicted binding to the HLA-I molecule (-log(%rank),

predicted by MixMHCpred). The twenty next input nodes encode amino acid frequencies at positions with minimal impact on

predicted affinity to HLA-I and more likely to interact with the TCR.33 The last seven input nodes encode the length of the peptide

(one-hot encoding of lengths 8 to 14).

The set of experimentally verified immunogenic and non-immunogenic peptides was used to train PRIME2.0. As this set of pep-

tides is heavily skewed towards peptides with high predicted affinity (Figure 3A), 99-fold excess of negatives were further added by

randomly selecting for each immunogenic neo-epitope 99 peptides from the same source protein (non-mutated), for a total of 58,905

random peptides (for one neo-epitope, the source protein could not be found, and no random peptide was included for this neo-

epitope). The length of these negatives was randomly chosen between 8 and 14. The use of only human (mutated) peptides in

both positives and negatives prevents potential biases in amino acid frequencies due to different GC content across different

organisms.
e3 Cell Systems 14, 72–83.e1–e5, January 18, 2023
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To benchmark the new version (2.0) of PRIME, we first performed a standard 10-fold cross-validation, by randomly splitting the

data in ten groups, iteratively training the model on nine groups and testing on the remaining one. Given that our dataset of immu-

nogenic neo-epitopes is skewed towards frequent HLA-I alleles and towards studies where many neo-epitopes had been reported,

we also performed a leave-one-allele-out, respectively a leave-one-study-out, cross-validation, using iteratively as test set each

allele, respectively each study, with more than two experimentally validated immunogenic and two experimentally validated non-

immunogenic peptides. PRIME2.0 was benchmarked against MixMHCpred2.2 developed in this work, NetMHCpan4.1,21

MHCflurry,19 HLAthena17 and PRIME1.033 (https://github.com/GfellerLab/PRIME/releases/tag/v1.0). PRIME2.0 was also bench-

marked against amodel trained exactly on the same data but using a logistic regression (glmnet package in R, with family="binomial"

and lambda = 147).

Predictions of SARS-CoV-2 epitopes
The SARS-CoV-2 reference proteome was downloaded from UniProt on March 22, 2020 and peptides of length 8 to 11 were

retrieved. The list of HLA-I alleles was established by taking the top 15 most frequent alleles in the TCGA cohort (Table S5B).

Only peptides with a %rank lower or equal to 0.5 for PRIME2.0 for at least one allele and coming from the five proteins SPIKE,

VME1, VEMP, NCAP, AP3A were considered. A few peptides from R1AB were further manually included as they came from regions

with several predicted epitopes for multiple alleles, and some peptides were manually removed from the list. The final list consists of

213 peptides (Table S5A).

Identification of SARS-CoV-2 epitopes
The 213 peptides were purchased at ThermoFisher (>80%purity), solubilized in DMSO at 10 mM, aliquoted and kept at -80�C. CD8+

T cells were isolated (ref 130-045-201, Miltenyi) from cryopreserved PBMC (for SARS-CoV-2 positive donors) or fresh leukapheresis

(for SARS-CoV-2 negative donors). CD4+ T cells were isolated (ref 130-096-533) and used to generate CD4 blasts. For SARS-CoV-2

positive donors (1HHU, 1HHT, 1GZ0), due to the limited number of PBMCs, total CD8+ T cells were used for further in vitro stimula-

tion. For the other three donors (Leu163, Leu158. Leu184), naı̈ve and effector/memory CD8+ T cells were isolated by Fluorescence-

activated Cell Sorting (FACS) upon staining with anti-CD8 antibody (344710 BioLegend), anti-CCR7 antibody (353227 BioLegend)

and anti-CD45RA antibody (304108 BioLegend) for 30 min at 4�C. After three washes with FACS buffer (PBS 0.5 % FBS 2 mM

EDTA) cells were incubated 10 min with DAPI (Sigma 10236276001) at 250 nM and washed again three times. Total CD8+ T cells

(donors 1GZ0, 1HHT, 1HHU), naı̈ve (CCR7+ and CD45RA+) CD8+ T cells (donors Leu163, Leu158, Leu184) and effector/memory

(CD45RA-) CD8+ T cells (donor Leu184 – not enough effector/memory cells available for the other donors) were collected separately

and then co-incubated (106 mL-1) with autologous irradiated CD8-depleted PBMCs and pools of 11 to 24 peptides (1mM) in RPMI

supplemented with 8 % human serum and IL-2 (50 IU mL�1 for 48h and then switch 1mL of media with 150 IU mL�1 every 48h, split

as necessary to get minimum 106 Cell.mL-1). IFNg Enzyme-Linked ImmunoSpot (ELISpot) was performed at day 12 post-stimulation.

One day before ELIspot, cells were incubated in RPMI supplemented with 8 % human serum without IL2. ELISpot assays were per-

formed using pre-coated 96-well ELISpot plates (Mabtech 3420-2APT-10) and counted with Bioreader-6000-E (BioSys). Briefly,

100,000 CD8+ T cells were incubated for 16h with 30,000 CD4+ T cell blasts pulsed for 1h with 1mM peptide pools. All peptide pools

giving a specific response (considered if at least 10 spots for 100 000 incubated cells and 2 times the background signal, obtained by

incubation of cells without peptide) were deconvoluted by repeating ELISpot assays with individual peptides.

Predictability of SARS-CoV-2 epitopes
The %rank of the 213 SARS-CoV-2 peptides tested for immunogenicity was computed with the different predictors in each donor.

The final score for each peptide in a given donor was taken as the best %rank across all alleles of this donor. The distributions of the

scores for the 18 immunogenic peptides in their respective donors are shown in Figure S4A for each predictor. For each patient, AUC

values were also computed based on these scores to illustrate how different tools would have performed (Figure S4B). It should still

be emphasized that this analysis has some biases since, for practical reasons, the initial list of 213 peptides was based on PRIME2.0

predictions and without considering the HLA-I alleles of the actual donors.

Peptide-HLA multimer validation of SARS-CoV-2 epitopes and sorting of CD8+ T cells
Peptides found as immunogenic in the ELISpot assays were resynthesized with a purity >95 % and used for production of peptide-

HLA multimers (Peptide and Tetramer Core Facility of the University Hospital of Lausanne). CD8+ T cells were incubated with multi-

mers (1/50 dilution) 45 min at 4�C in FACS buffer (PBS supplemented with 0.5 % FBS and 2mM EDTA), isolated by FACS and either

directly used for TCR sequencing or expanded with autologous irradiated CD8-depleted feeders in RPMI supplemented with 8%

human serum, phytohemagglutinin (1 mg mL-1) and IL2 (150 IU mL-1).

Functional avidity assay
Functional avidity of antigen-specific CD8+ T-cell responses was assessed by performing in vitro IFNg Enzyme-Linked ImmunoSpot

(Mabtech) assay with limiting peptide dilutions (ranging from 10mM to 100pM) as described earlier.48 For all peptide concentrations,

ELISpot signals were measured in two replicates and the average of the two replicates was used to compute EC50 values. EC50

values reported in Figure 4C were computed by fitting sigmoid curves with the ‘‘ec50estimator’’ package in R (https://github.

com/AlvesKS/ec50estimator). For EYADVFHLYL, enough cells were available for only one replicate. For the HLA-A*29:02 restricted
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YFPLQSYGF epitope, single clones were isolated and the EC50 values represent the average over all clones coming from two

different pools (error bars represent the standard deviation between the average values in the two pools). For this epitope, peptide

concentrations ranging from 10-11 to 10-6 M were used, as the first response was stronger than for other epitopes (Figure 4C).

Bulk TCR sequencing
mRNAwas extracted using the DynabeadsmRNADIRECT purification kit according to the manufacturer instructions (ThermoFisher)

and was then amplified using the MessageAmp II aRNA Amplification Kit (Ambion) with the following modifications: in vitro transcrip-

tion was performed at 37�C for 16 h. First strand cDNA was synthesized using the Superscript III (Thermofisher) and a collection of

TRAV/TRBV specific primers. Unique Molecular identifiers (UMI) of length 9 were added to each read. TCRs were then amplified by

PCR (20 cycles with the Phusion from NEB) with a single primer pair binding to the constant region and the adapter linked to the

TRAV/TRBV primers added during the reverse transcription. A second round of PCR (25 cycles with the Phusion from NEB) was

performed to add the Illumina adapters containing the different indexes. The TCR products were purified with AMPure XP beads

(Beckman Coulter), quantified and loaded on the MiSeq instrument (Illumina) for deep sequencing of the TCRa/TCRb chain.

TCR sequence analyses
The fastq files were processed with MIGEC,49 using default parameters to demultiplex them and identify the TCRa and TCRb clono-

types. For each sample, the frequency of each TCR chain was computed based on UMI corrected counts. Only TCRs with more than

one UMI count and representing more than 1% of the total UMI counts were considered (Table S6). TCRs with the same amino acid

sequences were merged in Figures 4D and S4C.

The beta chain of the TCRQYI (TRBV4-3*01-CASSPSGGAYEQYF-TRBJ2-7*01) recognizing the QYIKWPWYIW epitope and found

in effector/memory CD8+ T cells of Leu184 was used to search TCRb repertoires in the ImmunoCode database37 through the

iReceptor web platform.50 Both the alpha and beta chains were used to query separately the TCRa and TCRb repertoires of the

two SARS-CoV-2+ patients in Minervina et al.38 The closest hits (Figure S4F) were defined as those having the same CDR3 sequence

and the most similar CDR1 and CDR2, based on sequence identity (100% identity for the alpha chain in both donors, 100% identity

for the beta chain in donor M).

TCRQYI transfection in Jurkat cells and recognition of the homologous peptides from other coronaviruses
TCRQYI full-length a and b chains were in silico designed and obtained by Thermo Fisher Scientific as strings. Strings have been

amplified and purified by silica membrane columns (NucleoSpin PCR Clean-up, Macherey-Nagel) and used as individual templates

for mRNA in vitro transcription using the HiScribe T7 In vitro transcription kit (NEB), followed by lithium chloride precipitation, as in-

structed by the manufacturer. RNA polyadenylation and molecular size were assessed by gel electrophoresis in denaturing

conditions. Purified RNA was quantified using a Qubit BR Assay kit (Thermo Fisher Scientific) and resuspended in H2O at

1-2mg/mL followed by storage at -80�C, until used.
TCRa and TCRb pairs were transfected into a recipient Jurkat cell line (T cell activation bioassay NFAT, Promega) that was further

engineered by knocking out the endogenous TCRa and TCRb chains using CRISPR/Cas9 and by stable transduction with CD8A and

CD8B. Cells were propagated following the manufacturer’s instructions. For TCR transfection, 1x106 Jurkat cells were co-electro-

porated with 1.5mg of each TCR chain using a Neon Transfection System 100ml kit (Thermo Fisher Scientific) with the following pa-

rameters: 1325V, 10ms, 3 pulses. After electroporation, cells were immediately resuspended in complete medium and incubated at

37�C for 18-20 hours before staining. TCRQYI electroporated Jurkat cells were stained with a PE conjugated QYIKWPWYVW-,

TYIKWPWWVW-, YYVKWPWYVW-, NYIKWPWWVW-, MYVKWPWYVW-HLA-A*24:02 multimers (Peptide and Tetramer Core Facil-

ity of the University Hospital of Lausanne), washed once and further stained with anti-CD3 APC-Fire (Biolegend) and -CD8 FITC (BD

Biosciences) fluorophore-conjugated anti-human antibodies. Aqua live dye (Thermo Fisher Scientific) was used to access viability.

As control, Jurkat cells electroporated with a TCR recognizing the EBV epitope RAKFKQLL displayed on HLA-B*08:01 were used.

The samples were acquired by LSR Fortessa (BD Biosciences) and analysed by FlowJoX.

QUANTIFICATION AND STATISTICAL ANALYSIS

P-values for the comparison between AUC values obtained for different predictors in the different cross-validation schemes were

computed with paired Wilcoxon test.

IFNg ELISpot results were considered as positives if the number of spots was larger than 10 for 100 000 incubated cells and larger

than 2 times the background signal (obtained by incubation of cells without peptide).
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