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Key points 

 

- AP-1 complexes of the Jun/ATF type promote growth of ABC DLBCL cell lines 

- High expression of ATF3 is a hallmark of samples from patients with non-

GC/ABC DLBCL 
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Abstract 

 

A hallmark of the diffuse large B-cell lymphoma (DLBCL) of the activated B-cell 

(ABC) type, a molecular subtype characterized by adverse outcome, is constitutive 

activation of the transcription factor NF-κB, which controls expression of genes 

promoting cellular survival and proliferation. Much less, however, is known about the 

role of the transcription factor AP-1 in ABC DLBCL. Here we show that AP-1, like 

NF-κB, was controlled by constitutive activation of the B-cell receptor and/or toll-like 

receptor signaling pathways in ABC DLBCL cell lines. In contrast to germinal center 

B-cell (GCB) DLBCL, ABC DLBCL cell lines expressed high levels of the AP-1 

family members c-Jun, JunB and JunD, which formed heterodimeric complexes with 

the AP-1 family members ATF2, ATF3 and ATF7. Inhibition of these complexes by a 

dominant negative approach led to impaired growth of a majority of ABC DLBCL 

cell lines. Individual silencing of c-Jun, ATF2 or ATF3 decreased cellular survival, 

and revealed a c-Jun/ATF2-dependent control of ATF3 expression. As a consequence, 

ATF3 expression was much higher in ABC versus GCB DLBCL cell lines. Samples 

derived from DLBCL patients showed a clear trend towards high and nuclear ATF3 

expression in nodal DLBCL of the non-GC, or ABC subtype. These findings identify 

the activation of AP-1 complexes of the Jun/ATF-type as an important element 

controlling the growth of ABC DLBCL.  
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Introduction 

 

Diffuse large B-cell lymphoma (DLCBL) is the most frequent form of lymphoid 

cancer, accounting for 30-35% of all nodal lymphomas.1 Based on gene expression 

profiling (GEP), three distinct subtypes of DLBCL have been identified, namely the 

germinal center B-cell (GCB), activated B-cell (ABC) and primary mediastinal B-cell 

lymphoma subtypes.2 The ABC subtype of DLBCL is characterized by adverse 

prognosis and constitutive activation of the transcription factor NF-κB.3 This is 

thought to be the consequence of somatic mutations in the genes encoding the B-cell 

receptor (BCR)-associated CD79A and CD79B chains,4 or the BCR signal transducer 

CARMA1 (also known as CARD11),5 and polymorphisms in RNF31 (also known as 

HOIP),6 which result in constitutive BCR signaling. These can be present alone or in 

combination with activating mutations in genes encoding the Toll like receptor (TLR) 

downstream signaling protein MyD887 and inactivation and/or deletion of the gene 

encoding A20, a negative regulator of the NF-κB pathway.8 As a consequence of 

these mutations, ABC DLBCL have a constitutive activation of NF-κB via BCR- 

and/or TLR-signaling pathways, whose natural physiological role is to promote B-cell 

proliferation and survival.1 

Natural engagement of the antigen receptor, or of TLRs, activates not only 

NF-κB, but also transcription factors of the AP-1 family.9,10 However, little is known 

about the relevance of the AP-1 transcription factor family and the molecular 

pathways triggering its activation leading to pathology of ABC DLBCL. The AP-1 

family comprises hetero- and homo-dimeric transcription factors that are formed by 

combinations of members of the Jun, Fos, ATF and Maf subfamilies.11 AP-1 dimers 

have different DNA recognition sequences and are also differentially regulated 

according to the cell type and/or activating stimulus. Various posttranslational 

modifications can modulate AP-1 activity, by controlling the abundance and the 

activity of the individual dimers.12 Ser/Thr kinases of the MAPK family, in particular 

ERK and JNK, have been shown to phosphorylate c-Fos and c-Jun and to thereby 

control their stability and activity.11 Antigen receptor triggering leads to induction 

and/or activation of multiple AP-1 family members, including c-Fos, c-Jun, JunB, 

ATF2 and ATF3, but the individual roles of these AP-1 family transcription factors 

for lymphocyte proliferation remain poorly understood. 11,13-17  
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 Recent studies have provided some insight into how the BCR and the TLR 

signaling pathways activate gene transcription via the AP-1 pathway.18 BCR signaling 

depends on the CARMA1-BCL10-MALT1 (CBM) complex, while TLR signaling 

depends on the adaptor protein MyD88 and the kinases IRAK1 and IRAK4. The 

ubiquitin ligase TRAF6 and the Ser/Thr kinase TAK1 are downstream targets of both, 

BCR/CBM- and TLR/MyD88/IRAK-dependent signals. TAK1 has been reported to 

act as an upstream regulator of the c-Jun N-terminal kinase, JNK,19-22 it is thus 

generally assumed that BCR- and TLR-induced JNK activation is crucial for AP-1 

activation. However, the exact role of JNK in the activation of individual AP-1 family 

heterodimers in lymphocytes remains incompletely understood, and whether JNK is 

strictly required for AP-1 activation in lymphocytes remains controversial. 23-26 

Another particular difficulty in studying the role of AP-1 transcription factors is the 

fact that the AP-1 family comprises more than 20 members that can form numerous 

different heterodimers with partially redundant functions and highly diverse 

mechanisms of regulation.11 Therefore, little is currently known about the exact 

composition and relevance of AP-1 complexes in activated lymphocytes and the 

development of ABC DLBCL. 

Here, we show that cell lines derived from ABC DLBCL are characterized by 

constitutive upregulation of c-Jun, JunB and ATF3, which was mediated by 

CARMA1 and MyD88. Jun members formed complexes with ATF2 or ATF7 

(complexes of type I), or with ATF3 (complexes of type II). Inhibition of these 

complexes by a dominant negative approach impaired the viability of most ABC 

DLBCL cell lines. Amongst the different members of the complexes, ATF3, ATF2 

and c-Jun were the main drivers of cellular survival. Interestingly, ATF3, but not 

ATF2 or ATF7, was exclusively expressed in cell lines derived from the ABC 

subtype of DLBCL, and immuno-histochemical analysis of biopsies of DLBCL 

patients confirmed preferential strong and nuclear ATF3 staining in samples from 

patients with nodal lymphoma of the non-GC or ABC subtype of DLBCL. 

Collectively, these findings identify the activation of specific AP-1 complexes as a 

hallmark of ABC DLBCL.  
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Methods 

 

Cellular transfection and transduction 

Lentiviral transduction and viability assays have been described.28 Expression of A-

Fos in DLBCL lines was achieved by retroviral transduction as described 

previously29. The transduced cells were monitored for live GFP+ cells by flow 

cytometry as described.30  

 

Cell culture, cell stimulation and reporter assays 

Jurkat cells and DLBCL cell lines BJAB, SUDHL-4, SUDHL-6, HT, HBL-1, OCI-

Ly3, OCI-Ly10 and TMD8 were cultured as described.30 For stimulation of Jurkat T 

cells, a mixture of PMA (phorbol 12-myristate 13-acetate; 10 ng/ml; Alexis) and 

ionomycin (1 μM; Calbiochem) was used. In some experiments, cells were 

preincubated with 1 μM of the JNK inhibitor SP600125 (Calbiochem), 1 μM of 

TAK1 inhibitor 5Z7 (Sigma), PKC inhibitors (500 nM bisindoleylmaleimide VIII 

acetate (Alexis) or 1 μM of Gö6976 (Calbiochem)) or with corresponding volumes of 

solvent for the indicated times at 37°C. IL-2 luciferase assays were performed as 

described.28  

 

Cell lysis, immunoprecipitation and Western blot analysis 

Cells were lysed in RIPA buffer containing 50 mM Tris-HCl, pH 7.4, 1% NP-40, 

0.25% sodium deoxycholate, 150 mM NaCl and 1mM EDTA, or in lysis buffer 

containing 50 mM HEPES, pH 7.5, 150 mM NaCl, 1% Triton X-100, protease 

inhibitors (Complete; Roche) and phosphatase inhibitors (NaF, Na4P2O7 and 

Na3VO4). In some experiments, lysates were incubated with or without 0.5 mM BS3 

(Thermo Scientific) for 1h at 4°C. Immunoprecipitation, sample analysis by high 

resolution SDS-PAGE and immunoblot were performed as described.28 

 

Patient populations 

The construction of the tissue microarray (TMA) with samples from de novo 

previously untreated DLBCL patients classified by the Hans algorithm31 has been 

described elsewhere.32 Of the original cohort of 109 patients, sufficient tumor tissue 

for additional immunohistochemical analyses was available from 70 patients. The 

local ethics committee approved this retrospective analysis (KEK 160/14). A second 
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cohort of DLBCL patients consisted of a GEP-characterized subset of a patient cohort 

already published.29 The study of this cohort was approved by the ethics committee of 

Northwestern and Central Switzerland (EKNZ 2014-252). 

 

Immunohistochemistry for ATF3 

Immunohistochemical staining of the ATF3 protein was performed on the TMA slides 

using an automated immunostainer (Leica BOND-III, Leica Biosystems). As a 

pretreatment for antigen retrieval, the TMA section was placed in epitope retrieval 

solution (Tris buffer for 30 min at 95°C). Subsequently, the TMA was incubated at 

room temperature with rabbit anti-human ATF3 antibody (sc-188, Santa Cruz) at a 

working concentration of 1:50 for 30 min. Antigen detection was performed using a 

commercial detection kit (Bond Polymer Refine Detection) with diaminobenzidin as 

the chromogen. 

 

Immunohistochemical scoring 

For assessment of ATF3 expression, the stained TMA slides were scanned with 

Aperio (Vista, USA) and evaluated at 40x magnification. The staining intensity was 

stratified from 0 – 2, where 0 (designated “weak”) = negative or weak staining in 

<10% of neoplastic cells, 1 (designated “intermediate”) = weak or moderate staining 

in >10% neoplastic cells and 2 (designated “strong”) = strong staining in >10% of 

neoplastic cells. Staining was further categorized by its pattern as partially or 

predominantly nuclear (N) or cytoplasmic (C). Staining intensity was semi-

quantitative and used internal samples as reference points.  

 

Plasmids, antibodies, mass spectrometry and fluorescence microscopy 

Detailed information about plasmids, antibodies, mass spectrometry and fluorescence 

microscopy can be found in the supplemental material. 

 

Statistical analysis 

Two-tailed Student's t-test was used for statistical analysis; P values of 0.05 or less 

were considered statistically significant.  
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Results 

 

Jun family proteins are upregulated in ABC DLBCL cell lines in a 

CARMA1/MALT1- and MyD88/IRAK-dependent manner 

To assess whether AP-1 family members are differentially expressed in ABC versus 

GCB DLBCL, we first monitored the expression of different Jun family members in 

four cell lines derived from each of the two DLBCL subtypes. Interestingly, c-Jun and 

JunB protein levels were clearly higher in all ABC DLBCL cell lines compared to 

GCB DLBCL cell lines (Figure 1A), consistent with a recent report.18 In addition, 

JunD levels were generally higher in ABC DLBCL cell lines (Figure 1A). Most of 

the cell lines derived from ABC DLBCL, including all four cell lines used in this 

study, have somatic mutations driving constitutive BCR/CBM- or TLR/MyD88-

dependent signaling.4,5,7,8,33 We thus subsequently assessed the individual requirement 

of these pathways for the expression of Jun family members. Expression of c-Jun and 

JunB, but not of JunD, was clearly dependent on constitutive CBM- and MyD88-

dependent constitutive signaling, as evident from the observed reduction of c-Jun and 

JunB expression upon silencing of CARMA1, MALT1, MyD88 or IRAK1 (Figure 

1B). Consistent with a critical role of PKC family kinases downstream of CD79 and 

upstream of CARMA1,34-36 we observed a reduction of cellular c-Jun protein 

expression in all ABC DLBCL cell lines with CD79 mutations (HBL-1, OCI-Ly10 

and TMD8) upon pretreatment with the pan-PKC inhibitor bisindolyl-maleimide VIII 

(BIM VIII) or the more selective inhibitor of classical PKC isoforms, Gö6976, with 

the exception of the HBL-1 cells, which did not react to Gö6976 (supplemental 

Figure 1A).  

 

c-Jun and JunB expression requires TAK1 activity 

The exact molecular mechanism that controls JunB and JunD upregulation in 

lymphocytes is unknown. c-Jun, however, is stabilized by phosphorylation on Ser 

residues 63 and 73, which inhibits its otherwise constitutive proteasomal 

degradation.37,38 Accordingly, the increased levels of c-Jun expression in ABC 

DLBCL cell lines correlated with constitutive c-Jun phosphorylation on Ser 63 

(Figure 1A). Since phosphorylation on Ser 63 has been described to be a target of 

phosphorylation by the MAPK JNK,37,38 we analyzed the activation status of the 

MAPK JNK, as well as other MAPKs such as p38 and ERK. We detected constitutive 
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JNK, p38 and ERK activation in several ABC and GCB DLBCL cell lines (Figure 

1C), in agreement with recently reported findings.39 However, we saw no obvious 

correlation between MAPK activation and c-Jun phosphorylation and accumulation 

(compare Figure 1A and 1C). When pretreating the DLBCL cell lines with the JNK 

inhibitor SP600125, at a concentration that efficiently prevented PMA/ionomycin-

induced c-Jun accumulation in Jurkat T cells (supplemental Figure 1B), we observed 

a clear reduction of c-Jun levels only in the ABC DLBCL cell line HBL-1 

(supplemental Figure 1C). Thus, JNK activation is unlikely to be a common driving 

factor of c-Jun phosphorylation on Ser 63, which is a specific feature of ABC DLBCL 

cell lines. In contrast, pretreatment of the cells with an inhibitor of the Ser/Thr kinase 

TAK1, 5Z7, which has been reported to act as a downstream signaling component of 

antigen receptor and TLR-induced signaling and an upstream regulator of JNK,19-22 

efficiently reduced c-Jun expression levels and phosphorylation in all ABC DLBCL 

cell lines tested (Figure 1D). The TAK1 inhibitor also affected JunB levels in 3 out of 

4 ABC cell lines, while it had little, or no effect, on JunD levels (Figure 1D).  Thus, 

cell lines derived from ABC DLBCL have high levels of JunB and c-Jun expression 

and c-Jun phosphorylation. Whether this is mediated directly or indirectly by TAK1 

and/or a TAK1-dependent kinase remains to be identified.  

 

Jun family members form constitutive type I complexes with ATF2 or ATF7 in 

ABC and GCB DLBCL cell lines 

AP-1 family members can form homo- or heterodimeric complexes, typically by 

association of two AP-1 family members of the Jun, Fos, ATF and Maf subfamilies.11 

To gain additional insight into the biochemical composition of AP-1 complexes 

formed by c-Jun, JunB and JunD in ABC DLBCL cell lines, we performed chemical 

cross-linking experiments. Upon treatment of cell lysates with the chemical cross-

linker BS3, we observed that all three Jun family members formed two different types 

of higher molecular weight complexes, subsequently called complexes of type I or II 

(Figure 2A). The observed distinct shifts in the relative molecular weight of the Jun-

binding complexes suggested that these contained Jun-binding partners of two distinct 

molecular weights. For c-Jun, type I complexes tended to be more abundant in ABC 

than in GCB DLBCL cell lines, while formation of type II complexes was a distinct 

feature of all Jun family members specifically observed in ABC, but not in GCB 

DLBCL cell lines. By mass spectrometry, we identified ATF2 and ATF7 as specific 
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components of type I complexes of c-Jun in HBL-1 cells (Figure 2B and 

supplemental Table 1), suggesting that type I complexes contain both, c-Jun/ATF2 

and c-Jun/ATF7 heterodimers. ATF2 and ATF7 expression levels were similar in all 

ABC and GCB cell lines tested, with the exception of HBL-1 cells, which had slightly 

higher ATF2 expression levels (Figure 2C). Cross-linking of lysates using BS3 

revealed that ATF2 and ATF7 formed high molecular weight complexes in both GCB 

and ABC DLBCL cell lines, and that these complexes corresponded in molecular 

weight to type I complexes (Figure 2D).  Association of ATF2 and ATF7 with c-Jun, 

JunB and JunD was confirmed by co-immunoprecipitation assays performed on two 

ABC and two GCB DLBCL cell lines (Figure 2E). Amongst these, c-Jun complexes 

with ATF2 and ATF7 were more abundant in ABC than in GCB DLBCL cell lines 

(Figure 2E).  Thus, the Jun family members c-Jun, JunB and JunD form constitutive 

complexes with ATF2 or ATF7 (type I complexes, Figure 2F) in both, ABC and 

GCB DLBCL cell lines. However, c-Jun-containing type I complexes were more 

abundant in ABC DLBCL cell lines (Figure 2, A and E).   

 

ATF3 is specifically upregulated and forms type II complexes with Jun family 

members in ABC DLBCL cell lines 

Protein components present in type II complexes were not sufficiently abundant to be 

identified by mass spectrometry. However, based on the relative molecular weight of 

the chemically cross-linked type II complexes, we hypothesized that these may 

correspond to lower molecular weight members of the ATF subfamily, such as ATF3 

and JDP2. In line with this idea, we found that ATF3 was specifically expressed in 

cell lines derived from ABC, but not from GCB DLBCLs (Figure 3A). In contrast, 

the unconventional ATF family member JDP2, which acts as a repressor of ATF2 and 

ATF3 function,40,41 was less abundant in three out of four ABC as compared to GCB 

DLBCL cell lines. JDP2 has been shown to be targeted for proteasomal degradation 

upon its phosphorylation.42 Indeed, all ABC DLBCL cell lines were characterized by 

the presence of an additional slower-migrating, phosphatase-sensitive isoform of 

JDP2 (Figure 3A, and data not shown), suggesting that JDP2 is constitutively 

phosphorylated and targeted for proteasomal degradation in ABC DLBCL cell lines.  

As for c-Jun and JunB, the expression of ATF3 was strongly reduced upon 

silencing of CARMA1, MALT1, IRAK1 and MyD88 (Figure 3B). Upon treatment 

with the chemical cross-linker BS3, ATF3 shifted towards a higher molecular weight 
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complex that corresponded in size to the previously described type II complexes 

(Figure 3C). Moreover, ATF3 could easily be co-immunoprecipitated with c-Jun, 

JunB and JunD in lysates of ABC DLBCL cell lines (Figure 3D). Collectively, these 

findings suggest that the AP-1 family member ATF3 is selectively expressed in cell 

lines derived from ABC DLBCL, and forms constitutive complexes with c-Jun, JunB 

and JunD (type II complexes, Figure 3E) in these cells. 

 

Inhibition of Jun family members by A-Fos impairs the viability of cell lines 

derived from ABC DLBCL. 

To explore the role of Jun/ATF-type dimers in ABC DLBCL, we made use of a 

previously described dominant negative A-Fos construct.43 A-Fos contains the Jun-

binding leucine zipper region of c-Fos fused to a negatively charged protein domain 

that binds to, and thereby, masks the positively charged DNA-binding domain of c-

Jun (Figure 4A). When stably expressed in Jurkat T cells, the A-Fos construct bound 

to c-Jun, JunB and JunD in both, unstimulated and PMA/ionomycin-stimulated cells 

(Figure 4B), and efficiently inhibited the inducible expression of an IL-2 luciferase 

reporter gene (Figure 4C), which is known to be AP-1 dependent.44 We then 

transduced DLBCL cell lines with a retroviral construct allowing the co-expression of 

A-Fos with green fluorescent protein (GFP), to specifically monitor the viability of 

GFP+, A-Fos expressing cells. Compared to a dominant negative IκB (DN-IκB) 

construct, which inhibits the NF-κB transcriptional pathway and rapidly affects the 

viability of ABC DLBCL cell lines, A-Fos expression led to a slow reduction in cell 

viability in three out of four ABC DLBCL cell lines tested (Figure 4D). No impact on 

cell viability was observed for GCB DLBCL cell lines transduced with either DN-IκB 

or A-Fos (Figure 4D). To further explore the role of individual ATF family members, 

we silenced the expression of ATF2, ATF3 and ATF7 in HBL-1 cells and monitored 

cell survival (Figure 4, E and F). Under these conditions, ATF3 silencing affected 

cell survival to an extent that was similar to that previously seen with A-Fos (Figure 

4E).  Silencing of ATF7 had little effect on survival, while ATF2 silencing clearly 

affected cell survival (Figure 4F). However, silencing of ATF2 simultaneously 

diminished the expression of ATF3, suggesting that the effect of ATF2 silencing on 

cell viability may be indirectly mediated by ATF3 (Figure 4F).  Collectively, this 

suggests that ATF3-containing type II complexes have a major role in cell survival, 
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and that ATF2-containing type I complexes most likely contribute to cell survival 

indirectly by affecting ATF3 levels. Silencing of c-Jun, the major component of type I 

complexes in ABC DLBCL cell lines (Figure 2, A and E), also had a clear impact on 

both cell viability and ATF3 expression in HBL-1 cells (supplemental Figure 2). 

Together with our biochemical data (Figure 2, A and E), these findings suggest that 

c-Jun/ATF2-dependent ATF3 expression is relevant for the viability of a majority of 

ABC DLBCL cell lines.  

 

Strong nuclear ATF3 expression characterizes nodal tumors from non-GC/ABC 

DLBCL patients. 

To validate the relevance of our cell line-based findings, we first assessed the 

expression of ATF3 in tissue samples from a cohort of 350 patient samples classified 

by GEP.45 At the mRNA level, expression of ATF3, but not of ATF2 or ATF7, was 

significantly higher in patients with ABC versus GCB DLBCL (Figure 5A). 

Subsequently, we assessed ATF3 expression in DLBCL samples by 

immunohistochemistry (IHC). To this purpose, staining conditions for ATF3 were 

optimized in DLBCL cell lines to detect strong staining in all four ABC DLBCL cell 

lines tested, and only minimal background staining in GCB DLBCL cell lines (Figure 

5B). We then analysed samples of two different cohorts of DLBCL patients for ATF3 

expression, which was scored according to the intensity (weak, intermediate or strong; 

for scoring details, see materials and methods) and the preferential localisation 

(cytoplasmic (C), exclusively or partially nuclear (N)). First, we analysed a cohort of 

70 DLBCL samples, which were classified into GCB and non-GC DLBCL according 

to the Hans algorithm,32 and were derived from 28 nodal and 42 extranodal tumors. 

These IHC analyses showed various expression patterns, which differed in intensity 

and staining pattern, examples of these are shown in Figure 5C. When scoring ATF3 

expression intensities and patterns in the combined samples, we observed a small 

tendency towards higher and nuclear expression in non-GC versus GCB samples 

(supplemental Figure 3). This tendency was striking in samples obtained from nodal 

tumors (Figure 5D). In contrast, no such tendency was present in samples from 

extranodal tumors (data not shown), most likely because the Hans algorithm has been 

established and validated only for nodal DLBCL. Interestingly, in gastric DLBCL the 

Hans and another algorithm failed in identifying prognostically relevant subgroups46 . 

Furthermore, extranodal DLBCL outside the testicles and the CNS more commonly 
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encompass morphologically and clinically unrecognizable transformed marginal zone 

B-cell lymphomas, for which an algorithm has not been developed. We also analysed 

a second cohort of 17 nodal DLBCL samples, which were classified into the GCB or 

ABC subtype according to GEP.29 Amongst these, ATF3 expression was strong in 7/9 

samples and intermediate in 2/9 ABC DLBCL, while GCB DLBCL showed negative 

or intermediate expression levels in 7/8 samples and strong staining was observed in 

only one GCB DLBCL sample (Fig. 5E). In the majority of non-GC DLBCL samples 

(14 out of 19), or GEP-identified ABC DLBCL samples (6 out of 9), the ATF3 

staining was partially or predominantly nuclear. Collectively, these data identify high 

and preferentially nuclear protein expression of ATF3 as a hallmark of human non-

GC/ABC DLBCL. 

 

Discussion 

In the present study, we demonstrated a new and essential role for the activation of 

the Jun/ATF branch of the AP-1 pathway in the growth of ABC DLBCL, and 

identified strong ATF3 expression as a hallmark of this cancer. When exploring the 

molecular causes of AP-1 activation in ABC DLBCL, we observed that c-Jun, JunB 

and JunD levels were systematically upregulated in ABC DLBCL cell lines, and that 

c-Jun and JunB upregulation occurred in a CARMA1/MALT1- or MyD88/IRAK-1 

dependent manner. Recent studies have shown that CARMA1 can drive c-Jun and 

JunB expression,18 and promote AP-1 activation via the adaptor protein BCL10, 

which recruits MEKK7 to promote JNK2-mediated c-Jun phosphorylation and 

stabilization.47 We extend these findings and show that constitutive activation of 

MyD88 and IRAK also contributes to the increased expression of these AP-1 family 

members in ABC DLBCL cell lines. However, and consistent with a recent study,39 

we saw no correlation of JNK activation with c-Jun upregulation in ABC DLBCL 

(except for HBL-1 cells). Instead, we found that JunB expression and c-Jun 

phosphorylation and expression were efficiently blocked by inhibition of the Ser/Thr 

kinase TAK1. Therefore, TAK1 may directly or indirectly control c-Jun and JunB 

stability. 

Using biochemical approaches, we explored the molecular composition of AP-1 

complexes in DLBCL cell lines, and identified ATF2, ATF7 and ATF3 as specific 

constitutive binding partners of c-Jun, JunB and JunD. Interestingly, c-Jun/ATF2- and 

c-Jun/ATF7-containing complexes were generally much more abundant in ABC 
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DLBCL cell lines, and ATF3-containing AP-1 heterodimers with c-Jun, JunB or JunD 

were identified as a selective feature of ABC DLBCL cell lines. Using a dominant 

negative A-Fos construct or shRNA-mediated silencing of individual AP-1 

components, we demonstrated that Jun/ATF-type complexes are important drivers of 

the proliferation of DLBCL cell lines. These findings are consistent with a previously 

proposed role for Jun/ATF complexes in conducting autocrine cell growth in other 

malignancies.48  

In the present study, we have attained a better understanding of the molecular 

mechanisms driving high expression of ATF3 in ABC DLBCL. An important aspect 

of the regulation of ATF3 levels was its transcriptional upregulation in ABC DLBCL, 

which was controlled by c-Jun and ATF2.  Indeed, the ATF3 promotor has been 

previously shown to be a c-Jun/ATF2-target in HeLa cells.49 Therefore, high levels of 

ATF3 are most likely maintained in ABC DLBCL cells by a positive feedback loop. 

Additionally, our finding of constitutive phosphorylation of JDP2 in ABC as 

compared to GCB DLBCL cell lines may provide another explanation for the 

increased levels of ATF3 in the ABC DLBCL subtype. JDP2 binds the ATF3 

promotor and suppresses ATF3 transcription, and phosphorylation has been reported 

to control JDP2 protein stability.42 Understanding of the mechanism underlying 

constitutive JDP2-phosphorylation and –turnover, and of its relevance for cellular 

transformation in ABC DLBCL will be an interesting aspect of future studies. 

ATF3 has been described to have controversial roles in either oncogenesis or 

tumor suppression in diverse tumor models.50 These seemingly conflicting roles 

depend on the type of ATF3 homo-or heterodimers formed, which have different 

DNA binding specificities, and thus on the expression and activity of individual ATF3 

binding partners in the cellular context.50 In ABC DLBCL, ATF3 was highly 

expressed and constitutively bound to c-Jun, JunB or JunD, suggesting an important 

role for Jun/ATF3 heterodimers in lymphomagenesis that is consistent with several 

previous studies highlighting a proliferation-promoting and/or cell-transforming role 

for ATF3.51-54 We consistently observed a tendency towards strong and nuclear ATF3 

expression in samples from patients with ABC DLBCL that were classified either by 

the Hans algorithm or by GEP. Interestingly, high constitutive ATF3 expression has 

also been described for Hodgkin lymphoma cells, which depend on ATF3 expression 

for viability,55 and in adult T-cell leukemia cells,56 suggesting that ATF3 promotes 

different types of lymphomas by a common mechanism. In conjunction with these 
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data, our findings support an important oncogenic role for ATF3 expression in ABC 

DLBCL that could be of diagnostic relevance and may inspire novel therapeutic 

strategies to interfere with ABC DLBCL by targeting the function and/or expression 

of specific AP-1 family members. 
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Figure legends 

 

Figure 1. Upregulation of c-Jun and JunB in ABC DLBCL cell lines is 

CARMA1-, MALT-1-, MyD88-, IRAK1- and TAK1- dependent. (A) Analysis of 

c-Jun, JunB and JunD protein expression and c-Jun phosphorylation on Ser 63 in 

GCB and ABC cell lines by Western blot. (B) Analysis of c-Jun, JunB and JunD 

protein expression in lysates of HBL-1 (ABC) and BJAB (GCB) cell lines transduced 

with control shRNA or with CARMA1-, MALT1-, IRAK1- or Myd88-specific 

shRNA. Silencing efficiency was assessed by Western blot analysis using anti-

CARMA1, anti-MALT1, anti-IRAK1 and anti-MyD88 antibodies. (C, D) Protein 

expression in GCB and ABC DLBCL cell lines was determined by Western blot using 

the indicated antibodies. In (C), we used lysates of Jurkat cells treated with PMA and 

ionomycin (PI) for 1h as a positive control for MAPK activation. In (D), DLBCL cell 

lines of the GCB (BJAB), or ABC subtype (all others) were treated with the TAK1 

inhibitor 5Z7 or with solvent alone for 24 h. In all figure panels, blotting for tubulin 

served as a loading control. Data are representative of at least three (A, B) or two (C, 

D) independent experiments.  

 

Figure 2. Jun subunits form heterodimers with ATF2 or ATF7 in ABC DLBCL 

cell lines. (A) Lysates from the indicated ABC and GCB DLBCL cell lines were 

treated with the crosslinker BS3 or with solvent alone for 1h at 4°C. Crosslinked 

(open arrowheads) and non-crosslinked (filled arrowheads) proteins were revealed by 

Western blot using anti-c-Jun, anti-JunB and anti-JunD antibodies. (B) BS3-treated 

HBL-1 cell lysates were immunoprecipitated with anti-c-Jun beads or beads alone, 

separated by SDS-PAGE and stained with Coomassie. Proteins present in protein 

complexes of type I and II were analysed by mass spectrometry (MS). ATF2 and 

ATF7 were identified to be part of the protein complex type I, while not enough 

material was present in protein complex type II for MS identification. h.c., heavy 

chain of c-Jun. (C) Protein expression in GCB and ABC cell lines was determined by 

Western blot using anti-ATF2 and anti-ATF7 antibodies. (D) As in (A), but proteins 

were revealed using anti-ATF2 and anti-ATF7 antibodies. Grey arrowhead indicates a 

third, unidentified type of complex. (E) Two ABC and two GCB cell lines were lysed 

and proteins were precipitated using anti-c-Jun, anti-JunB, anti-JunD or anti-IRE1α 

antibodies (Ctr: control antibody). Proteins in lysates were analysed by Western 
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blotting with anti-c-Jun, anti-JunB and anti-JunD antibodies, and co-precipitating 

proteins (IP) with anti-ATF2 and anti-ATF7 antibodies, as indicated. (F) The 

composition of protein complexes of type I is schematically depicted. Data are 

representative of three (A and C) and two (D and E) independent experiments. 

Asterisks indicate a non-specific band recognized by anti-ATF7 (C and E) and 

migration of antibody heavy chains (E). 

 

Figure 3. ATF3 is overexpressed and forms heterodimers with Jun subunits in 

ABC DLBCL cell lines. (A) Analysis of ATF3 and JDP2 protein expression in GCB 

and ABC cell lines was determined by Western blot using ATF3 and JDP2 antibodies. 

Filled arrowhead indicates the position of phosphorylated JDP2, open arrowheads 

indicate non-phosphorylated JDP2. (B) Immunoblot analysis of lysates of HBL-1 

(ABC DLBCL) and BJAB (GCB DLBCL) cell lines, transduced with control shRNA 

or with CARMA1-, MALT1-, IRAK1- or MyD88-specific shRNA. Silencing 

efficiency was assessed by Western blot analysis using anti-CARMA1, anti-MALT1, 

anti-IRAK1 and anti-MyD88 antibodies. ATF2, ATF3 ATF7 protein levels were 

assessed by Western blot. Blotting for tubulin served as loading control in (A) and 

(B). (C) Lysates of indicated ABC and GCB cell lines were treated with the 

crosslinker BS3 or with solvent alone for 1h at 4°C. Crosslinked (open arrowheads) 

and non-crosslinked (filled arrowheads) proteins were assessed by Western blot using 

anti-ATF3 antibodies. White asterisk indicates the position of a non-specific band 

detected by anti-ATF3. (D) ABC DLBCL cell lines were immunoprecipitated with 

anti-c-Jun, anti-JunB, anti-JunD or anti-IRE1α antibodies (Ctr: control antibody). 

Immunoprecipitated proteins (IP) were assessed with anti-c-Jun, anti-JunB and anti-

JunD antibodies, and co-precipitating proteins (co-IP) detected by anti-ATF3. *, 

heavy chain or light chain of the c-Jun, JunB JunD and control antibodies, filled 

arrowhead indicates ATF3 in the co-IP. (E) The composition of protein complexes of 

ATF3 with Jun family members (type 2 complexes) are depicted. Data are 

representative of three (A) and two (B-D) independent experiments. 

 

Figure 4. Inhibition of AP-1 complexes impairs the viability of cell lines derived 

from ABC DLBCL. (A) Schematic representation of the structure of transcriptionally 

active Jun/ATF and inactive Jun/A-Fos complexes illustrating the dominant negative 

function of A-Fos. (B) Jurkat T cells were lentivirally transduced with a FLAG-
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tagged expression construct for A-Fos or an empty vector (mock) as control. Cells 

were treated with PMA and ionomycin (PI) for the indicated times. Lysates were 

immunoprecipitated using anti-FLAG sepharose beads and analyzed by immunoblot 

with the indicated antibodies. (C) Jurkat T cells were electroporated with an IL-2 

firefly luciferase reporter and a renilla luciferase reporter, stimulated with PMA and 

ionomycin for 14 hours and the relative luciferase activity of the cell lysates was 

determined. (D) Viability of ABC DLBCL and GCB DLBCL cell lines transduced 

with constructs co-expressing green fluorescent protein with FLAG-A-Fos (upper 

panel) or DN-IκBα (lower panel), assessed by flow cytometry. (E, F) HBL-1 cells 

were transduced with indicated silencing constructs and cell viability was assessed 

using PMS/MTS assay. Efficiency of protein silencing and equal loading (tubulin) 

was verified by Western blot. Asterisk indicates a non-specific band recognized by 

anti-ATF7. Three independent shRNAs were used for ATF3. (C, E and F) Bars 

represent means ± SD; differences were statistically significant with **P < 0.01, ***P 

< 0.001 (unpaired t-test). Data in figure panels (B-E) are representative of at least two 

independent experiments. 

 

Figure 5. Strong nuclear ATF3 expression is a hallmark of non-GC and ABC 

DLBCL patients. (A) Relative mRNA expression of ATF2, -3 and -7 in ABC versus 

GCB DLBCL biopsies. Error bars indicate SEMs. (B) Immunofluorescence staining 

of ATF3 expression and localization in the indicated GCB and ABC DLBCL cell 

lines. Bar: 5 μm. (C) Histological staining of ATF3 expression in representative 

biopsy samples of DLBCL patients. Bar: 50 μM, magnification 400x. (D, E) Tissue 

microarray (TMA) analysis of DLBCL biopsies previously categorized into GCB or 

non-GC using the Hans algorithm (D), or into ABC or GCB by GEP (E). Bar graphs 

summarizing the classification of non-GC and GCB patients (D) or ABC and GCB 

patients (E) according to staining intensity (weak, intermediate and strong) and 

subcellular localization of ATF3 (C: cytoplasmic, N: partially or predominantly 

nuclear). Analysis was performed on 28 (D) or 17 (E) patients with nodal (lymph 

node) tumors. 
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Supplemental methods 

 

Plasmids 
The FLAG-A-Fos sequence was obtained from Addgene (Plasmid 33353) and 
subcloned into the retroviral vector pMSCV-IRES-GFP.27 The following lentiviral 
vectors (pLKO.1) were used for ATF2, ATF7, ATF3, c-Jun, IRAK1 and MyD88 
silencing in DLBCL cell lines: ATF2 shRNA (TRCN0000229648), and ATF3 
(TRCN0000013568, TRCN0000013571, TRCN0000013572), ATF7 
(TRCN0000017116), c-Jun shRNA (TRCN0000039590), IRAK1 shRNA 
(TRCN0000000544) and MyD88 (TRCN0000008024). For silencing of MALT1 and 
CARMA1, cells were transduced with a lentiviral vector (pAB286.1, a kind gift of R. 
Iggo, Bordeaux, France) containing short hairpin RNA sequences specific for 
CARMA1 (5’-GCTATGATTTCTCTTGCAT-3’) or MALT1 (5’-
GTCACAGAATTGAGTGATTTC-3’).7   
 
Antibodies 
Antibodies against Tubulin (B-5-1-2), FLAG (M2) and P-ERK (MAPK-YT) were 
from Sigma; c-Jun (60A8), JunB (C37F9), JunD (D17G2), ATF2 (20F1), P-p38 
(D3F9), JNK and P-IκBα (5A5) antibodies were from Cell Signaling, and ATF3 (C-
19), MyD88 (E-11), IRAK1 (H-273) and P-c-Jun (KM-1) antibodies were from Santa 
Cruz Biotechnology. Other antibodies used were specific for CARMA1 (AL220; 
Alexis), P-JNK (Invitrogen), ATF7 (NBP1-30071, Novus Biologicals) and JDP2 
(Abcam Ab40916). Affinity-purified anti-MALT1 has been reported.27,28 Horseradish 
peroxidase-coupled goat anti-mouse (115-035-146) and anti-rabbit (111-035-144) 
were from Jackson ImmunoResearch. 
 
Analysis of c-Jun binding partners by mass spectrometry 
Large-scale immunoprecipitation with anti-c-Jun coupled to protein G Sepharose 
beads or protein G Sepharose beads was performed on cross-linked HBL-1 lysates, 



 2 

followed by SDS-PAGE and staining with colloidal Coomassie (Invitrogen). The 
bands corresponding to complexes of type I and II were excised. Proteins were in-gel 
reduced with DTT, alkylated with iodoacetamide and digested with sequencing-grade 
trypsin. Extracted peptides were analyzed by nanoflow liquid chromatography–
tandem mass spectrometry on a LTQ-Velos PRO orbitrap mass spectrometer (Thermo 
Fisher Scientific). Tandem mass spectra of peptides were searched with MASCOT 
(Matrix Science, London) against the UniProtKB protein sequence database. 
Identifications were filtered with Scaffold (Proteome Sciences, Portland, Oregon) to 
have a minimum of 95% probability and two peptides. The ten most abundant 
proteins in the 40-60 and 100-150 kD mass ranges that were identified by this 
approach are listed in the supplemental Table 1. 
 
Immunofluorescence Microscopy  
Lymphoma cells were cytospinned for 6 min at 900 rpm to Superfrost®Plus 
microscope slides (Thermo Scientific). Slides were washed with PBS, the cells fixed 
with ice cold methanol for 30 min and permeabilized with 0.1 % Triton X-100 in PBS 
for 15 min. Nonspecific staining was blocked with 1 % BSA in PBS overnight at 4°C. 
Next, the slides were incubated with anti-ATF3 antibody (1:50) in 1 % BSA for 2 h at 
room temperature. Cells were washed with PBS and stained with labeled F(ab')2 
antibody fragments for 1 h. After washing with PBS, DAPI-containing ProLong 
antifade kit (Molecular Probes) was mounted on dried slides to visualize DNA and 
protect the slides from bleaching. Fluorescence microscopy was performed using Carl 
Zeiss LSM 510 confocal microscopes and the images were analyzed by Carl Zeiss 
LSM or ZEN 2007 image software.  
 
Cell viability assay 
72 h after infection, transduced DLBCL cells were selected with puromycin (1 ug/ml) 
for 24 h, and silencing efficiency was determined by western blot. Cells were replated 
at the same concentration, and cell viability was assessed 5 days later using MTS 
(Promega, 400 µg/mL) and PMS (Sigma, 9 µg/mL), according to the manufacturer's 
instructions.  Reduction of MTS to formazan was measured at 492 nm with Capture 
96 Software on a LEDETECT 96 microplate spectrophotometer (Dynamica).   
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Supplemental table  
 
 
Table S1: List of the 10 most abundant c-Jun binding proteins identified by mass 
spectrometry. The number of independently identified peptides for each sample is 
indicated.  

 
 
 
  

HBL-1            
IP Ctr

HBL-1            
IP Ctr

HBL-1             
IP c-Jun 

HBL-1             
IP c-Jun 

# Identified 
Proteins

Molecular 
Weight

gel slice         
100-150 kDa

gel slice            
40-60 kDa

gel slice          
100-150 kDa

gel slice                
40-60 kDa

1 FBX38 134 kDa 0 0 20 0
2 c-Jun 36 kDa 0 0 9 3
3 CKAP5 226 kDa 0 0 9 0
4 ATF7 53 kDa 0 0 7 0
5 ATF2 55 kDa 0 0 6 1
6 ACTZ 43 kDa 0 0 3 0
7 ITB1 88 kDa 0 0 3 0
8 NOLC1 74 kDa 0 0 3 0
9 MKL1 99 kDa 0 0 3 0

10 EIF3G 36 kDa 0 0 2 0

Juilland et al., Suppl Table 1
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Supplemental figures 
 
 
 

 
 

Figure S1. JNK inhibition efficiently blocks c-Jun upregulation in stimulated 
Jurkat T cells.  
(A) DLBCL cell lines of the ABC type were treated with the PKC inhibitors BIM 
VIII or Gö6976 or with solvent control for 24 h, and c-Jun protein expression was 
assessed by Western blot. Efficiency of PKC inhibition was assessed by blotting for 
IkBα phosphorylation. Blotting for tubulin served as a loading control. (B) Western 
blot analysis of cell lysates from Jurkat T cells that were pretreated for 30 min with 
either 1µM of the JNK inhibitor SP600125 or solvent alone and then stimulated using 
PMA and ionomycin for the indicated times. (C) DLBCL cell lines of the GCB 
(BJAB), or ABC subtype (all others) were treated with the JNK inhibitor SP600125 
or with solvent alone for 24 h, and c-Jun expression was assessed by Western blot. 
Blotting for tubulin served as a loading control. Data in all figure panels are 
representative of two independent experiments.   
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Figure S2. Silencing of c-Jun affects ATF3 expression and HBL-1 cell viability.  
DLBCL cell lines of the GCB (BJAB) or ABC (HBL-1) subtype were transduced 
with a c-Jun-specific or control shRNA and cell viability and protein expression were 
assessed using PMS/MTS assay and Western blot. Blotting for tubulin was used as a 
loading control. Data are representative of two independent experiments. 
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Figure S3. Analysis of ATF3 expression in DLBCL tissue microarrays. Tissue 
microarray analysis of DLBCL biopsies previously categorized into GCB and non-
GC using the Hans algorithm. Bar graphs are summarizing the classification of non-
GC and GCB patients according to staining intensity (weak, intermediate and strong) 
and subcellular localization of ATF3 (C: cytoplasmic, N: partially or entirely nuclear). 
Analysis was performed on all 70 samples available from patients with extra-nodal or 
nodal (lymph node) tumors. 
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