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Abstract: The honey bee Apis mellifera is exposed to a variety of biotic and abiotic stressors, such as the
highly prevalent microsporidian parasite Nosema (Vairimorpha) ceranae and neonicotinoid insecticides.
Both can affect honey bee physiology and microbial gut communities, eventually reducing its lifespan.
They can also have a combined effect on the insect’s survival. The use of bacterial probiotics has been
proposed to improve honey bee health, but their beneficial effect remains an open question. In the
present study, western honey bees were experimentally infected with N. ceranae spores, chronically
exposed to the neonicotinoid thiamethoxam, and/or supplied daily with the homofermentative
bacterium Pediococcus acidilactici MA18/5M thought to improve the honey bees’ tolerance to the
parasite. Deep shotgun metagenomic sequencing allowed the response of the gut microbiota to be
investigated with a taxonomic resolution at the species level. All treatments induced significant
changes in honey bee gut bacterial communities. Nosema ceranae infection increased the abundance of
Proteus mirabilis, Frischella perrara, and Gilliamella apicola and reduced the abundance of Bifidobacterium
asteroides, Fructobacillus fructosus, and Lactobacillus spp. Supplementation with P. acidilactici overturned
some of these alterations, bringing back the abundance of some altered species close to the relative
abundance found in the controls. Surprisingly, the exposure to thiamethoxam also restored the
relative abundance of some species modulated by N. ceranae. This study shows that stressors and
probiotics may have an antagonistic impact on honey bee gut bacterial communities and that P.
acidilactici may have a protective effect against the dysbiosis induced by an infection with N. ceranae.

Keywords: Apis mellifera; pollinators; microsporidia; gut microbiota; probiotic; neonicotinoid

1. Introduction

The holobiont is defined as the functional association of a pluricellular host and its
associated microbial communities [1,2]. It is becoming increasingly clear that the host has
a significant impact on the microbiota composition and vice versa. For instance, the gut
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microbiota can affect animal neurodevelopment and behavior and may even have effects
on the collective behaviors of social organisms, as is suggested for honey bees [3,4]. Honey
bee microbiota assists its host in essential functions, including the digestion of nutrients [5].
It supports general honey bee health and is involved in bee immunity, such as resistance to
pathogens [6–11].

The composition of the honey bee gut microbiota is considered to be relatively simple,
as it is represented by only five to nine bacterial phylotypes [8,12]. The majority of the core
microbiota includes two proteobacteria: Snodgrassella alvi and Gilliamella apicola, with the
latter separated into two species: Gilliamella apicola and Gilliamella apis [13]. It also includes
the actinobacterium Bifidobacterium and two Lactobacillus-related clusters: Lactobacillus
Firm-4, now referred to as Bombilactobacillus spp. (with B. mellis and B. mellifer), and
Lactobacillus Firm-5, corresponding to the amended Lactobacillus genus (with L. apis, L.
helsingborgensis, L. kimbladii, L. kullabergensis, and L. melliventris) [14,15]. The proteobacteria
Frischella perrara, Bartonella apis, and Parasaccharibacter apium, as well as a Gluconobacter-
related species group known as Alpha2.1, are also members of the gut microbiota but are
less abundant in proportion and usually have a lower prevalence [8]. They are considered
rare members but participate in the composition of the dominant set of the honey bee gut
microbiota. Although other non-core species are able to colonize the honey bee, these less
frequently observed taxa are thought to appear in bees that have been stressed or highly
exposed to invasive colonizers in the environment [16,17].

As a holobiont, the honey bee is exposed to a variety of biotic and abiotic stressors
that affect both the insect and its gut microbiota [10,18,19]. Among the biotic threats, the
microsporidia Nosema ceranae is a highly prevalent intestinal parasite known to affect the
gut microbiota [12,20–22]. This ubiquitous parasite is transmitted by its spores via the
feco-oral route between bees, particularly during cleaning activities [23]. Nosema ceranae
infection is known to significantly increase the relative abundance of G. apicola and S. alvi
and to decrease that of Alphaproteobacteria, Bifidobacterium spp., and Lactobacillus spp. Such
dysbiosis could sensitize the honey bee to opportunistic pathogens [20,21].

The gut microbiota may also be impacted by abiotic threats like pesticides and espe-
cially neonicotinoid insecticides. Neonicotinoids are widely used for pest management but
unfortunately also affect non-target insects like honey bees [24,25]. A chronic exposure to
thiacloprid transiently reduced the absolute abundance of Bombella apis and Lactobacillus
Firm-5 [26]. Both imidacloprid and thiamethoxam reduced the relative abundance of Lacto-
bacillus spp. regardless of the season [22]. The thiamethoxam metabolite clothianidin was
found to cause dysbiosis in the gut microbiota [27].

The use of endogenous and exogenous bacterial strains as potential probiotics has
been suggested as a strategy to enhance honey bee health by mitigating the detrimental
effects on the gut microbiota of various pathogens, including N. ceranae [28,29], although
their mode of action remains to be determined. A higher survival, a decrease in N. ceranae
proliferation, and an increase in honey bee population in colonies were reported when
supplementing with Protexin® (ADM Protexin Ltd., Somerset, UK), a formulation based
on Enterococcus faecium [30,31]. The lactic acid bacterium Pediococcus acidilactici appeared
to improve the survival of honey bees that were infected by N. ceranae and/or exposed to
other compounds [32,33], suggesting that it can be used as a potential probiotic.

This study aimed to decipher the impact of N. ceranae and thiamethoxam, alone or in
combination, on the honey bee gut microbiota and to test whether P. acidilactici was able
to counteract some alterations. Honey bee workers were infected with N. ceranae spores,
orally exposed to a low dose of thiamethoxam, and treated with P. acidilactici alone or in
combination. The modulations of the gut microbiota were studied at the species level using
whole-genome shotgun metagenomics.
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2. Materials and Methods
2.1. Honey Bee Rearing and Experimental Procedures

Apis mellifera (genotype Buckfast) workers were sampled from brood frames from
three different colonies (Col1, Col2, and Col3) of the same apiary (UMR 6023, Clermont
Auvergne University, Clermont-Ferrand, France) in September 2021. They were anes-
thetized with CO2 and cohorts of 80 worker bees were distributed in Pain-type cages
containing a 5 mm piece of TempQueen to mimic five queens’ mandibular pheromones
(Intko Supply Ltd., Chiliwack, BC, Canada) and maintained at 35 ◦C. Honey bees were fed
ad libitum with 50% sucrose syrup (w/v) complemented with 1% (w/v) protein supplement
(Provita’Bee, ATZ Dietetic, Mas-Cabardès, France). Seven experimental conditions were
tested for each colony replicate: (1) untreated control (C), (2) treatment with P. acidilactici (P),
(3) chronic exposure to 1.5 ng/mL thiamethoxam (T), (4) infection by N. ceranae (N),
(5) infection by N. ceranae then treatment with P. acidilactici (NP), (6) infection by N. cer-
anae then chronic exposure to 1.5 ng/mL thiamethoxam (NT), and (7) chronic exposure
to 1.5 ng/mL thiamethoxam and treatment with P. acidilactici (TP). Nosema ceranae spores
were freshly purified from experimentally infected honey bees using a Percoll gradient
to obtain 99.9% purity [34]. Nosema ceranae-infected groups were collectively infected by
adding ca. 105 spores per bee in sugar syrup [21]. When the feeders containing N. ceranae
spores were empty (within 12 h), they were removed and replaced with feeders containing
only sucrose syrup. The homofermentative Pediococcus acidilactici MA18/5M (Bactocell®,
Lallemand SAS, Blagnac, France) was grown overnight in MRS medium at 37 ◦C. The cell
concentration was determined by measuring absorbance at 600 nm (absorbance value of
1 at 600 nm ≈ 1.6 × 108 CFU/mL) and the sucrose syrup was supplemented daily with
bacteria for a final concentration of 104 CFU/mL. Honey bees were fed ad libitum with
sucrose syrup supplemented or not with thiamethoxam and/or P. acidilactici based on
their experimental condition. For the TP condition, thiamethoxam and P. acidilactici were
administered in different feeders at 1.5 ng/mL and 104 CFU/mL, respectively. The feeders
were changed and sucrose consumption and mortality were monitored daily. All treatments
were repeated for the three colonies (i.e., replicates).

2.2. Sampling, DNA Purification, and Shotgun Metagenomic Sequencing

Sixteen days after treatment initiation, six whole guts, excluding crops, were dissected
and pooled in 1 mL PBS containing ca. 0.3 g of 1 mm glass beads. The absence or presence
of N. ceranae spores in the guts was confirmed by bright field microscopy. To reduce the
quantity of eukaryotic DNA from both the host and the parasite, bacterial enrichment was
performed as previously described [35]. DNA was extracted using a phenol-chloroform
method. DNA was quantified using QubitTM 3.0 Fluorometer (dsDNA HS assay kit,
Thermo Fisher Scientific Inc, Waltham, MA, USA) and 200 ng total DNA were randomly
fragmented by sonication using a Covaris E220 (Covaris®, Woburn, MA, USA) with a target
fragment length of 500 bp. Paired-end libraries were prepared using the Illumina TruSeq®

DNA Nano library kit. Libraries were sequenced to obtain 2 × 150 bp paired-end reads
using a NovaSeq 6000 apparatus (Illumina®, San Diego, CA, USA).

2.3. Data Processing and Taxonomical Analysis

Sequencing read quality control was performed using fastp with default parame-
ters [36]. Reads from A. mellifera and N. ceranae were removed from the dataset using
bowtie2 [37]. We also verified the absence of N. apis by mapping all the reads on a 382 bp
fragment of the N. apis gene encoding the small subunit ribosomal RNA. No read mapped
this region. All the samples were randomly subsampled to 3.88 million reads based on
the sample with the fewest reads. The relative abundance of microbial communities was
assessed using MetaPhlAn4 (Version Jan 21) with default parameters [38]. Data were
filtered by keeping species that met at least one of the following criteria: (i) The species was
present in at least one sample with a relative abundance higher than 0.1%, (ii) the species
had a relative abundance lower than 0.1% but was present in at least half of the samples,
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or (iii) the species had a relative abundance lower than 0.1% but was present in all the
replicates of a same condition. Significant biomarker and discriminant feature discovery
was performed using LEfSe with default parameters using a linear discriminant analysis
(LDA) score ≥ 2 between conditions [39]. Principal component analyses (PCA), biplots,
and other graphs were generated using R packages ggplot2 (Version 3.3.6), corrplot (V. 0.92),
FactoMineR (V. 2.7), factoextra (V. 1.0.7), and rgl (V. 0.110.2). The raw data were deposited in
NCBI Sequence Read Archive with BioProject accession number PRJNA977416.

2.4. Statistical Analysis

Statistical analysis was performed using Prism (Version 10.0.3) statistical software.
Honey bee survival was analyzed using the Kaplan–Meier method followed by the log-rank
Mantel–Cox test. The pairwise Mann–Whitney U test was used to compare the infection
levels between experimentally infected and not experimentally infected groups.

3. Results
3.1. Honey Bee Survival in Response to Treatments

Honey bee workers were infected with N. ceranae, chronically exposed to a solution
of 1.5 ng/mL of thiamethoxam, and/or fed with the lactic acid bacterium P. acidilactici
(104 CFU/mL). The previous treatments were applied alone or in combination. None of the
treatments led to significant differences in syrup consumption. Honey bees consumed, on
average, 368 CFU/bee/day of P. acidilactici and 0.1 ng/bee/day of thiamethoxam.

Honey bees that were not experimentally infected (considered control bees) exhibited
a natural infection with N. ceranae, with a prevalence of infected bees of 17.6 ± 10.1%,
25.6 ± 15.4%, and 35.7 ± 23.4% for colonies 1, 2, and 3, respectively. Experimentally
infected honey bees showed a significant increase in parasite prevalence (p-value > 0.0001,
reaching almost 100% of infected honey bees (Supplementary Figure S1).

Infection with N. ceranae significantly reduced survival of the honey bees, whether
they were exposed to thiamethoxam or not, compared to uninfected control worker bees
(Figure 1). Thiamethoxam and P. acidilactici administered alone did not significantly affect
honey bee survival. Thiamethoxam associated with P. acidilactici led to a significant decrease
in survival (p-value = 0.0021). In contrast, introducing P. acidilactici to infected honey bees
appeared to boost overall survival (82.2% of survival in NP versus 78.2% in N at day 16),
although the difference was not statistically significant (Table S1).
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Figure 1. Cumulative proportion of survival of honey bees infected by Nosema ceranae (N), exposed
to thiamethoxam (T) at 1.5 ng/mL, and exposed to Pediococcus acidilactici (P), alone or in combination.
The Kaplan–Meier estimator was calculated on pooled replicates (log-rank Mantel–Cox test).
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3.2. More Than Half of the Gut Microbiota Was Represented by Bartonella apis

The mean proportion of total reads assigned to bacteria in all samples was 76.5 ± 3%.
Fifty species were eventually identified, belonging to 31 genera, 20 families, 12 orders,
7 classes, and 3 phyla. The gut microbiota composition from untreated bees was assessed
using the mean values of the three replicates from the control group (C) (Figure 2A). The
core microbiota, described in former studies [40,41], represented 14.1 ± 2.5% of the total rel-
ative abundance. It included Snodgrassella alvi (2.41 ± 0.85%), Gilliamella apis (3.39 ± 2.8%),
Gilliamella apicola (1.38 ± 0.18%), Lactobacillus apis (1.99 ± 0.55%), Lactobacillus melliven-
tris (1.60 ± 0.96%), Lactobacillus helsingborgensis (0.97 ± 0.90%), Lactobacillus kullabergensis
(0.20 ± 0.08%), Lactobacillus kimbladii (0.13 ± 0.06%), Bombilactobacillus mellis (0.22 ± 0.09%),
Bombilactobacillus mellifer (0.02 ± 0.01%), and Bifidobacterium asteroides (1.84 ± 0.16%). Non-
core bacteria represented a high proportion of the microbiota (64.0 ± 4.8%). In this study,
the Alphaproteobacteria Bartonella apis, recently described as a gut symbiont [42], was the
most abundant species (56.48 ± 6.1%). Other species were less abundant on average, such
as Frischella perrara (1.42 ± 0.9%) and Apilactobacillus kunkeei (1.46 ± 0.6%).
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Figure 2. (A) Average taxonomic composition of the gut microbiota of control bees from family
to species (n = 3). Core microbiota, non-core microbiota, and unknown represent 14.1 ± 2.5%,
64.0 ± 4.8%, and 21.9 ± 2.4%, respectively. (B) Taxonomic composition from each sample at the
species level, control (C1, C2, C3), Pediococcus acidilactici (P1, P2, P3), thiamethoxam (T1, T2, T3),
thiamethoxam and P. acidilactici (TP1, TP2, TP3), Nosema ceranae (N1, N2, N3), N. ceranae and P.
acidilactici (NP1, NP2, NP3), and N. ceranae and Thiamethoxam (NT1, NT2, NT3). Same color as in A
except for Proteus spp. (P. mirabilis and P. penneri) (light brown), Providencia spp. (dark brown), and
Arsenophonus spp. (black).

Considering all experimental conditions, Bartonellaceae and Lactobacillaceae were the
most abundant families (56.6 ± 0.8% and 4.1 ± 1.5%, respectively, Figure 2B). Bartonella and
Gilliamella were the most abundant genera (56.6 ± 0.8% and 5.2 ± 2.4%, respectively). The
most abundant species identified in all samples, regardless of the condition, was Bartonella
apis (53.9 ± 6.5%) followed by S. alvi (3.1 ± 1.5%). The comparison of species abundance
showed a high increase in Proteus mirabilis in infected honey bee gut (1.95 ± 1.03%) in
comparison to the control group (0.10 ± 0.03%). Some species appeared to be present only
in some samples, such as Arsenophonus spp., which represented 7.8% in one sample (TP2,
bees co-exposed to thiamethoxam and P. acidilactici), whereas it was undetected in all other
samples (mean of 0.02 ± 0.04%).

PCA based on the relative abundance of bacterial species revealed a separation of the
infected group (N) from the control group (C), N. ceranae and thiamethoxam (NT), and N.
ceranae and P. acidilactici (NP) (Figure 3). Furthermore, the samples of group N appeared to
be closer to each other compared to the other treatments, suggesting a lower within-group
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variability. Of note, pairwise comparisons showed no significant differences in alpha and
beta diversity indices between the tested conditions.
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ditions (n = 3). Control (C, black), thiamethoxam (T, purple), Pediococcus acidilactici (P, mallow),
thiamethoxam and P. acidilactici (TP, gold), Nosema ceranae (N, pink), N. ceranae and P. acidilac-
tici (NP, green), and N. ceranae and thiamethoxam (NT, cyan). The arrows indicate the 15 most
explicative variables: Ga: Gilliamella apicola, Ko: Klebsiella oxytoca, Gap: Gilliamella apis, Sm: Ser-
ratia marcescens, Ak: Apilactobacillus kunkeei, La: Lactobacillus apis, Bmf : Bombilactobacillus mellifer,
Lku: Lactobacillus kullabergensis, Ba: Bifidobacterium asteroides, Bm: Bombilactobacillus mellis, Lmv: Lacto-
bacillus melliventris, Lh: Lactobacillus helsingborgensis, Vp: Virgibacillus proomii, Lk: Lactobacillus kimbladii,
and Bap: Bartonella apis.

3.3. N. ceranae Altered the Abundance of Some Gut Bacterial Species

PCA based on the relative abundance of species seemed to segregate control (C) and
infected (N) samples, with F. perrara, G. apicola, and P. mirabilis strongly contributing to the
clustering towards the infected group, whereas L. kimbladii, B. asteroides, and Bombilacto-
bacillus spp. leaned toward the non-infected group (Figure 4A). LDA analysis highlighted
the significantly enriched or depleted bacterial species in infected honey bee guts. The
relative abundance of P. mirabilis was 20 times higher in infected honey bees (1.95 ± 1.03%)
compared to uninfected ones (0.10 ± 0.03%). The abundance of G. apicola (2.02 ± 0.25%
and 1.38 ± 0.18% in N and C, respectively) and F. perrara (2.75 ± 0.44% and 1.42 ± 0.89%)
was also significantly increased in infected guts. In contrast, infected honey bees were
significantly depleted of lactic acid bacteria (LAB), namely, B. asteroides, L. kimbladii, L.
kullabergensis, L. melliventris, B. mellis, B. mellifer, and F. fructosus, with a decrease in relative
abundance ranging from 2.3 times to 18.4 times compared to the control (Figure 4B).
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Figure 4. Principal component analysis between C and N (PCA). (A) Based on the relative abundance
(Metaphlan4) of the species in the gut microbiota infected by N. ceranae (N, pink) or the not-infected
control group (C, black). (B) Mean log2 ratio of abundance in infected relative to control honey bees
of species significantly enriched (positive values) or depleted (negative values) in response to the
parasite (n = 3). The values above the bars represent the average species abundance in the control
honey bees relative to the total relative abundance in percentage. Species in bold are significantly
different compared to the respective control (N vs. C).

3.4. Pediococcus acidilactici Attenuated the Modulation of Specific Lactic Acid Bacteria by
Nosema ceranae

The addition of P. acidilactici to the syrup had no significant effect by itself on the
composition of the gut microbiota in uninfected bees except for P. mirabilis (Table S2). In
contrast, several species contributed to the separation of the infected samples (N) and the
infected P. acidilactici-treated (NP) groups (Figure 5A). LDA indicated that B. asteroides,
Klebsiella oxytoca, B. mellifer, and B. mellis were significantly increased when infected bees
were fed with P. acidilactici (NP vs. N, Figure 5B). Two species, B. apis and Gottschalkia
acidurici, were depleted (not shown for G. acidurici, as it was undetected in the NP group).
The comparison of infected honey bees fed with P. acidilactici (NP) and the control group
(C) showed that three species were more abundant in the NP group: P. mirabilis, G. apicola,
and Morganella morganii, and one species was 14-fold less abundant: Lactobacillus kimbladii
(Table S2).
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Figure 5. Principal component analysis (PCA) between N and NP. (A) Shows the clustering based on
the relative abundance (Metaphlan4) of the species in the gut microbiota between the group infection
by Nosema ceranae (N, pink) versus the group infection by N. ceranae and fed with Pediococcus acidilactici
(NP, green). (B) Mean log2 ratio of abundance in N. ceranae (N) and N. ceranae and P. acidilactici (NP)
relative to control honey bees of species significantly enriched (positive values) or depleted (negative
values) under either condition (n = 3). The values above the bars represent the average species
abundance in the control honey bees relative to the relative abundance in percentage. G. acidurici is
not on the graph bar because it is totally absent from the NP conditions, but it is significantly enriched
in the N condition (LDA > 3). Species in bold are significantly different compared to the respective
control (N vs. NP).

3.5. Thiamethoxam Also Counteracted Specific Alterations Induced by N. ceranae

The relative abundance of only one species, B. asteroides, was affected by the chronic
and sublethal exposure to thiamethoxam, with a significant decrease compared to the
control group (Table S2). PCA analysis showed that LAB species contributed to the sepa-
ration of the N and NT groups (Figure 6A). A significant increase in the abundance of L.
kullabergensis, A. kunkeii, B. mellis, B. mellifer, B. coryneforme, and B. asteroides and a significant
decrease in F. perrara were observed in infected honey bees exposed to thiamethoxam (NT)
compared to the unexposed group (N, Figure 6B). Interestingly, the abundance of these
species did not significantly differ compared to the untreated control group (NT vs. C),
suggesting that thiamethoxam counteracted the effect of N. ceranae for these species. Only
two species showed different abundance between the infected and thiamethoxam-exposed
group (NT) and the control group (C): P. mirabilis was more abundant and L. kimbladii was
five times less abundant in the NT group (Table S2).
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Figure 6. Principal component analysis (PCA) between N and NT. (A) Shows the clustering based
on the relative abundance (Metaphlan4) of the 15 species in the gut microbiota that contribute to
separating the samples between the group infected by Nosema ceranae (N, pink) and the group infected
and exposed to thiamethoxam (NT, cyan). (B) Mean log2 ratio of abundance in N. ceranae (N) and
N. ceranae and thiamethoxam (NT) relative to control honey bees of species significantly enriched
(positive values) or depleted (negative values) under either condition (n = 3). The values above the
bars represent the average species abundance in the control honey bees relative to the total microbial
content in percentage. Species in bold are significantly different compared to the respective control
(N vs. NP).

4. Discussion

The taxonomic assignation based on numerous genomic markers allowed for unam-
biguous assignments at the species level and for a more accurate estimation of relative abun-
dance in comparison to the DNA metabarcoding approach based on 16S rRNA gene [38].
For example, it allowed the response of the different Gilliamella and Lactobacillus species to
be distinguished.

The taxonomic microbial composition of the untreated bees (C group) differed from
most of those previously reported, which showed a large domination by Lactobacillus and
Bombilactobacillus genera followed by Gilliamella spp. and Snodgrassella alvi [8]. In this
work, the bee guts were largely dominated by Bartonella apis. A high level of Bartonella had
been reported in overwintering honey bees and was associated with a lower abundance
of the core bacterial taxa [43,44]. It has been proposed that this shift could be due to
pollen shortages since B. apis is able to use alternative energetic sources such as lactate
and ethanol [44]. Castelli et al. have shown that nutritional stress (i.e., monofloral vs.
polyfloral pollen) could also increase the relative abundance of B. apis [45]. Here, honey
bees were collected at the transition between the summer and winter population, which can
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potentially explain the high abundance of B. apis. However, a geographic and/or ecotypic
variation of the gut microbiota cannot be excluded, as suggested by [46].

Infection with N. ceranae significantly decreased the survival of the honey bees; how-
ever, this varied between colonies (Figure 1 and Table S1). Previous studies have shown that
N. ceranae can induce a significant decrease in survival [32,33,47] but not consistently [48,49].
The presence of N. ceranae increased the relative abundance of species belonging to the
Proteobacteria phylum and decreased the relative abundance of those belonging to Firmi-
cutes and Actinobacteria in comparison to the C group. This could be seen as a complete
displacement of the gut microbiota [50].

N. ceranae might indirectly impact the microbiota by changing the morphology and
the homeostasis of the bee gut. For instance, F. perrara, which was significantly increased in
presence of N. ceranae, is known to trigger a morphological change in the epithelial surface
in the gut by inducing scab formation that could be linked to immune responses [51]. N.
ceranae can modulate the expression of immune-related genes, including genes coding for
antimicrobial peptides (AMPs) [33,52–55], which could eventually impact the gut microbial
communities. In return, the microbiota modulations following infection by N. ceranae could
affect gut functions. The core species that increased (G. apicola and S. alvi) or decreased
(Lactobacillus and Bombilactobacillus spp.) in response to infection are thought to participate
in digestive functions by breaking down complex sugars and secreting fermentation prod-
ucts [8,56]. Such modifications could thus alter the metabolites available for the host as
well as its sensitivity to other pathogens. For instance, some lactic acid bacteria strains can
produce antimicrobial molecules [8]. P. mirabilis, whose relative abundance increased in
infected honey bees, is thought to have beneficial effects against Paenibacillus larvae, the
causative agent of American foulbrood [57].

The supplementation of infected honey bees with P. acidilactici seemed to partially
restore their gut microbiota (Figure 5B), suggesting that it can act as a potential probiotic
but with limited improvement in survival (Figure 1). Although P. acidilactici impacted some
bacterial species in honey bees infected with N. ceranae, P. acidilactici itself was not detected.
This suggests that the bacteria did not colonize or proliferate in the gut. P. acidilactici would
restore the microbiota indirectly by producing modulating compounds rather than via
direct competition. In broilers, a symbiotic supplement containing P. acidilactici reduces the
amount of Clostridium perfringens in the intestine and raises C. perfringens antibodies in the
mucosa, which lessens the severity of necrotic enteritis [58]. In addition to restoring the gut
microbiota, P. acidilactici can also reestablish the expression of genes encoding catalase and
glutathione peroxidase, which were found to be significantly reduced by N. ceranae [33],
suggesting a potential probiotic effect on the honey bee holobiont.

Thiamethoxam also appeared to mitigate the dysbiosis caused by N. ceranae except for
P. mirabilis and L. kimbladii (Figure 6B and Table S2). It has been shown that thiamethoxam
has an inhibitory effect on N. ceranae proliferation in the stingless bee Melipona colimana [54].
However, in A. mellifera, the effects of neonicotinoids on the parasite’s success seemed
variable [59–61]. In all of these cases, the combination of neonicotinoids and Nosema
led to increased mortality. Moreover, other deleterious effects of thiamethoxam on the
physiology and behaviors of honey bees have been described [24,62–64]. Thus, even if
thiamethoxam may partially restore the microbiota of infected bees, it cannot be seen as
beneficial for the holobiont.

The present work shows that P. acidilactici can offset the strongly altered gut microbiota
of N. ceranae-infected bees. However, it is worth noting that such a restoration of the
microbiota does not necessarily infer improved honey bee health. To prove the probiotic
potential of P. acidilactici, it is necessary to assess its effects on A. mellifera colonies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms12010192/s1, Figure S1: Prevalence of Nosema
ceranae with or without experimental infection; Table S1: Prevalence of Nosema ceranae with or
without experimental infection; Table S2: Species showing significant difference in relative abundance
between the two conditions.
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