

Cortico-cortical connectivity reorganizations during intentional switching tasks depend on the stability of the required bimanual patterns.

Jérôme Barral¹, Jessica Tallet² & Claude-Alain Hauert^{3,4}

¹ Institut des Sciences du Sport de l'Université de Lausanne, Suisse

² Laboratoire Adaptation Perceptivo-Motrice et Apprentissage (EA3691) - UFR STAPS - Université Paul Sabatier Toulouse III, France

³Laboratoire du Développement et des Apprentissages Moteurs, Faculté de Psychologie et des Sciences de l'Éducation, Université de Genève, Suisse

⁴ Centre Inter-Facultaire de Neurosciences, Université de Genève, Suisse

jerome.barral@unil.ch

INTRODUCTION

Daily motor tasks require switching between coordinated movements of the upper limbs, i.e. reorganizing the ongoing behaviour in order to engage in a more or less complex one. Bimanual coordination paradigm revealed that 1) the switching time depends on the stability of the tapping modes [1] and 2) alternate or anti-phase tapping (Anti) is less stable than synchronous or in-phase tapping (In) [2]. Anti requires also greater inter-regional coupling than In, as measured by ElectroEncephaloGraphy (EEG) [3]. The goal of the present study is to examine whether the behavioural and electro-cortical reorganizations induced by bimanual switching tasks are stability-dependent. As In-Anti switching requires engaging in a less stable mode, we expect an increase of behavioural perturbations and additional neural resources than the inverse Anti-In switching. As the functional connectivity seems to depend on the stability of the tapping mode, the In-Anti switching may induce an increase in inter-regional coupling over sensori-motor regions while the Anti-In switching may lead to a decrease in inter-regional coupling.

METHODS

- Participants: 7 right-handed adults (2 women); mean age: 26 years (+/- 4 years)
- **Tasks**: Bimanual In-phase or Anti-phase fingers' tapping / auditory metronome (tempo = 700 ms)
- Experimental conditions: when the metronome changes from low-pitched to high-pitched tones
- 2 experimental conditions: In-Anti vs. Anti-In switching (each : 2 x 24 trials)
 1 rest condition (2 x 24 trials)
- EEG from 64 surface electrodes (BioSemi)

Data analyses:

- Behavioural data: tempo of the tapping and its variability
- EEG data:
 - Task-Related Power :
 - Task-Related Coherence :
 - bherence : $TRCohxy = tanh(Cohxy_{act}) tanh(Cohxy_{rest})$

 $TRPow = log(Pow_{act}) - log(Pow_{rest})$

- 2 epochs: the pre-switching tapping (P1) and the very moment of the switching (P2)
- 4 regions of interest (ROI) and 3 pairs of interest (POI) over the sensori-motor regions
- 2 ranges of frequencies: alpha (8-12 Hz) and beta (13-30 Hz)

RESULTS

 \rightarrow **Behaviour** : Overall increase of variability at P2 in both conditions / deceleration of tempo at P2 in the In-Anti condition only (*** *p*<.05).

→ alpha TRPow (left panel) : decrease for all the ROI whatever the condition (*** p<.05) → beta TRPow (right panel) : increase for FCz-Cz only in the Anti-In condition (*** p<.05)

DISCUSSION

Our results revealed that the intentional In-Anti switching is associated to :

> greater behavioural perturbations

supplementary neural activation over the frontal region that reflects an increase of the sensorimotor resources required to switch to the less stable and more attention-demanding antiphase tapping mode.

> enhanced inter-regional coupling as compared to the Anti-In switching suggesting that the cortico-cortical connectivity increase is stabilitydependent.

REFERENCES

Scholz, J.P. & Kelso, J.A.S. (1990). Intentional switching between patterns of bimanual coordination depends on the intrinsic dynamics of the patterns. *J Mot Behav*, 22(1):98-124.
Kelso, J.A.S.. (1984). Phase switchings and critical behavior in human bimanual coordination. *Am J Physiol Regul Integr Comp Physiol*, 15: R1000-R1004.
Serrien, D. J., Cassidy, M. J., Brown, P. (2003). The importance of the dominant hemisphere in the organization of bimanual movements. *Hum. Brain Mapp*, 18: 296-305.