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Abstract: Let {χk(t), t ≥ 0} be a stationary χ-process with k degrees of freedom being independent of some

non-negative random variable T . In this paper we derive the exact asymptotics of P
{

supt∈[0,T ] χk(t) > u
}

as

u→∞ when T has a regularly varying tail with index λ ∈ [0, 1). Three other novel results of this contribution

are the mixed Gumbel limit law of the normalised maximum over an increasing random interval, the Piterbarg

inequality and Seleznjev pth-mean theorem for stationary χ-processes.
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1 Introduction

Let {X(t), t ≥ 0} be a Gaussian process with continuous sample paths, and let T be a non-negative random

variable independent of this process. In several important contributions Dȩbicki and his co-authors (see e.g.,

Dȩbicki (2002), Dȩbicki et al. (2004), Zwart et al. (2005), Dȩbicki and van Uitert (2006), Arendarczyk and

Dȩbicki (2011,2012)) have derived exact tail asymptotic behaviour of the supremum M(T ) = supt∈[0,T ]X(t) of

this process over the random interval [0, T ], i.e., there is a known function h such that

P {M(T ) > u} = h(u)(1 + o(1)), u→∞. (1)

The function h(·) is determined therein assuming that {X(t), t ≥ 0} is either a standard (with mean zero and unit

variance) stationary Gaussian process or it has stationary increments, and supposing further that T has either

regularly varying tail behaviour at∞ or it is a Weibullian random variable. As pointed out in Zwart et al. (2005),

Palmowski and Zwart (2007) several important applications in queuing theory, insurance and hydrodynamics are

related to the tail asymptotics of the supremum of random processes over some random intervals.

If T is not random, say it is a deterministic constant and {X(t), t ≥ 0} is a standard stationary Gaussian process,

then h(·) in (1) is given by the classical Pickands result (see Pickands (1969), Berman (1992), Leadbetter et al.

(1983) or Piterbarg (1996))

P {M(T ) > u} = T Hαu
2/αΨ(u)(1 + o(1)), u→∞, (2)

where Ψ(·) is the survival function of a N(0, 1) random variable, provided that the correlation function r(t) of

X satisfies
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(A1). r(t) = 1− |t|α + o(|t|α) as t→ 0, with α ∈ (0, 2]

and further r(t) < 1 for all t > 0. We note in passing that a deep contribution which gives the first rigorous

proof of Pickands theorem presented in Pickands (1969) is Piterbarg (1972). Further we remark that Pickands

constant Hα is defined as

Hα = lim
S→∞

S−1E

{
exp
(

sup
t∈[0,S]

Z(t)
)}
∈ (0,∞),

with {Z(t), t ≥ 0} a fractional Brownian motion with continuous sample paths, mean function E {Z(t)} = −tα

and covariance function

cov(Z(s), Z(t)) = |t|α + |s|α − |t− s|α.

In this paper we are interested in the tail asymptotics of supremum M(T ) of a stationary χ-process when T has

a regularly varying tail. The impetus for this investigation comes from Arendarczyk and Dȩbicki (2012) where

a standard stationary Gaussian process with correlation function r(t) is considered. If the non-negative random

variable T has a finite expectation, then T in (2) can be substituted by E{T }. Another tractable case is when

E{T } =∞ and T has a regularly varying tail with index λ ∈ [0, 1), i.e.,

lim
t→∞

P {T > xt}
P {T > t}

= x−λ, ∀x > 0. (3)

Since T can be large with large probability, as shown in Arendarczyk and Dȩbicki (2012) the Berman condition

(A2). limt→∞ r(t) ln t = 0

is crucial for the derivation of the exact tail asymptotics of M(T ). The result derived in the aforementioned

paper (which we formulate below) is important for our deviations.

Theorem AD. Let {X(t), t ≥ 0} be a standard stationary Gaussian process with continuous sample paths and

correlation function r(t) satisfying (A1).

i) If the non-negative random variable T independent of this process is such that E{T } <∞, then

P {M(T ) > u} = E{T }µ(u)(1 + o(1)), u→∞,

where µ(u) = Hαu
2/αΨ(u).

ii) If both (A2) and (3) hold, then

P {M(T ) > u} = Γ(1− λ)P {µ(u)T > 1} (1 + o(1)), u→∞, (4)

where Γ(·) is the Euler gamma function.

The recent paper Tan and Hashorva (2013a) discusses extensions of Arendarczyk-Dȩbicki Theorem AD for

strongly dependent Gaussian processes. In this paper we are concerned with the tail asymptotics of the supre-

mum over random intervals of χ-processes. The major difficulty when dealing with this class of non-Gaussian

processes is that several important results like Berman’s Normal Comparison Lemma and other well-established

techniques presented in Piterbarg (1996) are not directly available.

Guided by the findings of Arendarczyk and Dȩbicki (2012) it is reasonable to conjecture that both cases E{T } <∞

and E{T } = ∞ should be dealt with separately leading to two different results. Clearly, instead of Pickands

result (2) we need to rely on Piterbarg theorem for χ-processes, see (6) below.
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Our main results show that Arendarczyk-Dȩbicki theorem can be extended to χ-processes by choosing the ap-

propriate substitute of the function µ(·) appearing in Piterbarg theorem on supremum of χ-processes.

In this paper we also present limit theorems for T → ∞. Since for approximation purposes Seleznjev pth-mean

convergence theorem is of certain important, we conclude this paper with an extension of the aforementioned

theorem for χ-processes.

Organisation of the paper: In the next section, we present the Arendarczyk-Dȩbicki theorems in the settings

of this paper considering weakly and strongly dependent stationary χ-processes. Section 3 then contains two

results, namely the limit theorem when T →∞ and Seleznjev pth-mean convergence theorem. All the proofs are

relegated to Section 4.

2 Exact Tail Asymptotics

Define a stationary χ-process with k degrees of freedom as

χk(t) = ||X(t)|| =
(
X2

1 (t) + · · ·+X2
k(t)

)1/2
, t ≥ 0, (5)

where X(t) = (X1(t), · · · , Xk(t)) is a Gaussian vector process whose components are independent copies of a

standard stationary Gaussian process {X(t), t ≥ 0} with correlation function r(t). If r(t) satisfies condition (A1)

and r(t) < 1 for all t > 0, then by Piterbarg (1994) (see also Corollary 7.3 in Piterbarg (1996)) for any fixed

T > 0 and Mk(T ) := supt∈[0,T ] χk(t) we have

P {Mk(T ) > u} = Tµk(u)(1 + o(1)), u→∞, (6)

where

µk(u) =
21−k/2Hα

Γ(k/2)
u2/α+k−2 exp(−u2/2).

The asymptotic properties of Mk(T ) have been studied by many authors, see e.g., Adler (1990), Albin (1990),

Piterbarg (1994, 1996), Albin and Jarušková (2003), Konstantinides et al. (2004), Piterbarg and Stamatovic

(2004), Jarušková (2010), Stamatovic and Stamatovic (2010), Jarušková and Piterbarg (2011) and Tan and

Hashorva (2013b, 2013c) for various results.

We know from Tan and Hashorva (2013a) that Arendarczyk-Dȩbicki theorem can be extended to strongly de-

pendent stationary Gaussian processes, which are naturally introduced replacing (A2) by

(A3). limt→∞ r(t) ln t = r ∈ [0,∞).

When the correlation function of the standard Gaussian process {X(t), t ≥ 0} satisfies (A3) with r > 0 we refer

to {χk(t), t ≥ 0} as a strongly dependent stationary χ-process.

Clearly, the properties of χ-process {χk(t), t ≥ 0} are determined by those of the standard Gaussian process

{X(t), t ≥ 0}. Next we present the analogous result of Theorem AD for weakly and strongly dependent χ-

processes. The claim for k = 1 i.e., for stationary Gaussian processes follows immediately from Tan and Hashorva

(2013a), therefore the proof of Theorem 2.1 will be given for k ≥ 2.

Theorem 2.1. Let {X(t), t ≥ 0} be a standard stationary Gaussian process with continuous sample paths and

correlation function r(t) satisfying (A1). Define {χk(t), t ≥ 0} as in (5) and suppose that it is independent of
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T ≥ 0.

i) If E{T } ∈ (0,∞), then

P {Mk(T ) > u} = E{T }µk(u)(1 + o(1)), u→∞. (7)

ii) If both (A3) and (3) hold, then

P {Mk(T ) > u} = gr,k(λ)P {µk(u)T > 1} (1 + o(1)), u→∞, (8)

where

gr,k(λ) =

∫ ∞
0

E
{

exp
(
−xe−r+

√
2rχk(1)

)}
x−λdx.

Note in passing that when r = 0, then g0,k(λ) = Γ(1− λ).

3 Limit Theorems

The Gumbel limit theorem for aT (M1(T )−bT ) with T →∞ has been discussed in many important contributions,

see e.g., the classical manuscripts Leadbetter et al. (1983), Adler (1990), Berman (1992), Piterbarg (1996) and

Azäıs and Wschbor (2009). Typically, under the Berman condition the limit law is the Gumbel distribution

Λ(x) = exp(− exp(−x)), and

aT = bT (1 + o(1)) =
√

2 lnT , T →∞.

When the Berman condition is substituted by the strong dependence assumption (A3) with r > 0, then the limit

theorems still hold (see e.g., Mittal and Ylvisaker (1975), Piterbarg (1996), Kudrov and Piterbarg (2007), or Tan

et al. (2012)). The limiting distribution is not Gumbel but a mixed Gumbel distribution. A direct consequence

of a mixed Gumbel limit law is the convergence in probability

Mk(T )√
2 lnT

p→ 1, T →∞. (9)

In general, (9) does not imply the mean convergence limT→∞ E{Mk(T )/bT } = 1.

A key contribution in the approximation of the distribution function of maxima of Gaussian random fields is

Seleznjev (2006) which shows that the above convergence holds also in the pth mean, for any p > 0.

The aforementioned paper shows for the case r = 0 and k = 1 under a global condition on the Gaussian processes

that in fact not only the mean convergence above is true, but also the pth-mean convergence; we shall refer to

such a result as Seleznjev pth-mean convergence theorem, see Theorem 3.2 below.

It is intuitive that when T is a non-negative random variable, then there is a certain connection of the result in

(8) and the limit law for the normalised maximum.

Theorem 3.1. Let {X(t), t ≥ 0} and {χk(t), t ≥ 0} be as in Theorem 2.1, and let Tt be a non-negative random

variable such that TT /T
p→ T in probability, as T →∞. If further {χk(t), t ≥ 0} and {Tt, t ≥ 0} are independent

and the correlation function r(t) of X satisfies (A1) and (A3), then

lim
T→∞

sup
x∈R

∣∣∣∣P{aT (Mk(TT )− bT ) ≤ x
}
− E

{(
Λr,k(x)

)T }∣∣∣∣ = 0, (10)
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where

aT =
√

2 lnT , bT = aT + a−1T ln
(
Ka

2/α−2+k
T

)
, K =

21−k/2Hα

Γ(k/2)

and for any x ∈ R

Λr,k(x) = E
{

exp
(
−e−x−r+

√
2rχk(1)

)}
. (11)

In view of Theorem 3.1

lim
T→∞

sup
x∈R

∣∣∣∣P {aT (Mk(T )− bT ) ≤ x} − Λr,k(x)

∣∣∣∣ = 0, (12)

which yields further (9).

In order to state Seleznjev pth-mean convergence theorem for χ-processes we show first Piterbarg inequality

for χ-processes which is given for multiparameter Gaussian processes in Theorem 8.1 of Piterbarg (1996), see

alternatively Theorem 8.1 in the seminal contribution Piterbarg (2001).

Proposition 3.2. Let {X(t), t ∈ Rn}, n ∈ N be a centered Gaussian random field with continuous sample paths

and set σ(t) =
√
V ar{X(t)} > 0, t ∈ Rn. Suppose that the global Hölder condition

E{(X(t)−X(s))2} ≤ G||t− s||γ , ∀s, t ∈ (0,∞)n (13)

holds for some G > 0, γ ∈ (0,∞), and define χk(t) =
√
X2

1 (t) + · · ·+X2
k(t) with X1, · · · , Xk independent copies

of X. Then for any u > 0, T > 0 and any closed set E ⊂ [0, T ]n we have

P
{

sup
t∈E

χk(t) > u
}
≤ CTnu2n/γΨ

( u

sups∈E σ(s)

)
, (14)

with C > 0 not depending on u and T . We conclude this section with Seleznjev pth-mean convergence theorem.

Theorem 3.3. Let {X(t), t ≥ 0} be a standard stationary Gaussian process with continuous sample paths and

correlation function r(t) and define {χk(t), t ≥ 0} as in (5). If both (A1) and (A3) hold, then for any p > 0 we

have

lim
T→∞

E
{(Mk(T )√

2 lnT

)p}
= 1. (15)

Remarks: a) For k = 1 a uniform version of (12) motivated by Seleznjev (1991) is shown in Tan et al. (2012).

In the aforementioned paper Λr,1 is not given by (11) but from the following equivalent formula

Λr,1(x) = E
{

exp
(
−e−x−r−ln 2

(
e
√
2rW − e−

√
2rW))} , (16)

with W a N(0, 1) random variable. We note that a uniform version of the limit theorem presented above for

χ−processes is possible to derive.

b) Clearly, for any integer k we have that Λ0,k(x) = exp(− exp(−x)) is the unit Gumbel distribution. Thus in

the weak dependence case corresponding to r = 0 (i.e., when the Berman condition holds) the limit law of the
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normalised maximum is Gumbel, which is a well-known result for Gaussian processes, see e.g., Lifshits (1995),

Leadbetter and Rootzén (1988) and Piterbarg (1996). In case of χ-processes the Gumbel limit law is shown in

Piterbarg and Stamatovic (2004) and Stamatovic and Stamatovic (2010).

4 Proofs

This section consists of five lemmas and the proofs of the claimed results in Section 2 and 3. We first present some

notation and details which will be useful for the proofs below. Crucial in the following is the construction of a grid

Rb,u,ε of points originally designated by Piterbarg and Stamatovic (2004), see also Konstantinides et al. (2004).

For simplicity we shall consider the case k ≥ 2 partitioning the sphere Sk−1 onto N(ε) parts A1, · · · , AN(ε) as

follows: consider polar coordinates on the sphere Sk−1, (x1, · · · , xk) = S(ϕ1, · · · , ϕk−1), ϕ1, · · · , ϕk−2 ∈ [0, π),

ϕk−1 ∈ [0, 2π). Divide the interval [0, π] on intervals of length ε (or less for the last interval), and do the same

for the interval [0, 2π]. This partition of [0, π]k−2 × [0, 2π] generates the partition A1, · · · , AN(ε) of the sphere.

Set next Lu = Lµ−1k (u), with L > 0.

In order to construct Rb,u,ε we choose in any Aj an inner point and consider the tangent plane to [0, Lu]× Sk−1
at the chosen point. Introduce in the tangent plane rectangular coordinates, with origin at the tangent point;

the first coordinate is assigned to the direction t. Consider the grid of points

Rj,P
b,u,ε :=

(
bi1u

− 2
α , bi2u

−1, · · · , biku−1
)
, j = 1, · · · , N(ε),

where (i1, · · · , ik) ∈ Zk. Suppose that ε is so small that the orthogonal projection of all [0, T ] × Aj onto the

corresponding tangent planes are one-to-one. Denote by APj the projection of Aj at the tangent plane, and by

Rj
b,u,ε the prototype of Rj,P

b,u,ε under this projection. The grid

Rb := Rb,u,ε =

N(ε)⋃
j=1

Rj
b,u,ε,

with an appropriate choice of its parameters, will be used in the proofs below.

For a given δ > 0 we partition the interval [0, Lu] onto intervals of length one intermittent with intervals of length

δ. If Mu = [ Lu1+δ ] = O(µ−1k (u)), then the number of all intervals with length one is Mu; such intervals are index

as K1, · · · ,KMu
and we set for their union

K∗u =

Mu⋃
j=1

Kj .

In view of Piterbarg (1996), see also Lifshits (2012) for any closed non-empty set E ⊂ [0, T ] we have

sup
t∈E

χk(t) = sup
(t,v)∈E×Sk−1

Y (t,v),

where the Gaussian field {Y (t,v), (t,v) ∈ [0, T ]× Sk−1} is given by

Y (t,v) = X1(t)v1 + · · ·+Xk(t)vk, t ∈ [0, T ], (17)
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with

v = (v1, · · · , vk) ∈ Sk−1 := {(x1, · · · , xk) : x21 + · · ·+ x2k = 1}.

Denote by rY (t, s) the correlation function of the field Y (t,v), we have rY (t, s) = r(t, s)A(v,w), where

A(v,w) = 1− ||v −w||2

2
≤ 1, v,w ∈ Sk−1.

Denote by Yj(t,v), (t,v) ∈ Kj × Sk−1, j = 1, · · · ,Mu independent copies of the Gaussian field Y (t,v), (t,v) ∈

Kj × Sk−1 and let Z1, · · · , Zk be standard Gaussian random variables so that the components of the random

vector (
Y (t,v), Y1(t,v), · · · , YMu

(t,v), Z1, · · · , Zk
)

are mutually independent and set

Z(v) := Z1v1 + · · ·+ Zkvk, v ∈ Sk−1.

Further, set %(Lu) = r/ lnLu and define

Y0(t,v) =
√

1− %(Lu)Yj(t,v) +
√
%(Lu)Z(v), (t,v) ∈ K∗u × Sk−1

if (t,v) ∈ Kj × Sk−1, j = 1, · · · ,Mu. Denote by rY0
((t,v), (s,w)) the correlation function of the field Y0(t,v).

We have

rY0((t,v), (s,w)) = r∗(t, s)A(v,w),

where

r∗(t, s) =

 %(Lu) + (1− %(Lu))r(t, s), t ∈ Ki, s ∈ Kj , i = j,

%(Lu), t ∈ Ki, s ∈ Kj , i 6= j.
(18)

Both Lemma 4.1 and Lemma 4.2 below are taken from Piterbarg and Stamatovic (2004).

Lemma 4.1. For given positive constants θ1 < θ2 there exits a grid Rb := Rb,u,ε on [0, Lu]×Sk−1, Lu = Lµ−1k (u)

such that

P
{

max
(t,v)∈([0,Lu]×Sk−1)∩Rb

Y (t,v) > u
}
− P

{
max

(t,v)∈[0,Lu]×Sk−1

Y (t,v) > u
}
→ 0, u→∞, b ↓ 0 (19)

holds uniformly for L ∈ [θ1, θ2]. Further, for the gird Rb := Rb,u,ε the convergence

P
{

max
(t,v)∈(K∗u×Sk−1)∩Rb

Y (t,v) > u
}
− P

{
max

(t,v)∈([0,Lu]×Sk−1)∩Rb
Y (t,v) > u

}
→ 0, b ↓ 0 (20)

holds uniformly for L ∈ [θ1, θ2].

Lemma 4.2. The claim in (19) holds with the same grid Rb also for the field Y0(t,v).

Lemma 4.3. For given positive constants θ1 < θ2 and the grid Rb := Rb,u,ε

P
{

max
(t,v)∈(K∗u×Sk−1)∩Rb

Y (t,v) > u
}
− P

{
max

(t,v)∈(K∗u×Sk−1)∩Rb
Y0(t,v) > u

}
→ 0, u→∞ (21)

holds uniformly for L ∈ [θ1, θ2].
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Proof. The proof uses similar arguments as that of Lemma 15.4 in Piterbarg (1996) and Lemma 5 in Stamatovic

and Stamatovic (2010). Introduce next the Gaussian random field

Yh(t,v) =
√
hY (t,v) +

√
1− hY0(t,v), (t,v) ∈ K∗u × Sk−1,

with h ∈ (0, 1) and denote by rh((t,v), (s,w)), (t,v), (s,w) ∈ K∗u × Sk−1 its covariance function. It is easy to

calculate rh((t,v), (s,w)) = rh(t, s)A(v,w), where rh(t, s) = hr(t, s) + (1 − h)r∗(t, s). By Berman’s inequality

(see Piterbarg (1996))∣∣∣∣P{ max
(t,v)∈(K∗u×Sk−1)∩Rb

Y (t,v) > u
}
− P

{
max

(t,v)∈(K∗u×Sk−1)∩Rb
Y0(t,v) > u

}∣∣∣∣
≤ 1

2π

∑
(t,v),(s,w)∈[K∗u×Sk−1]∩Rb,

(t,v)6=(s,w)

|rY ((t,v), (s,w))− rY0
((t,v), (s,w))|

×
∫ 1

0

1√
(1− rh(t, s))

exp

(
− u2

1 + rh((t,v), (s,w))

)
dh. (22)

As in Piterbarg (1996) the summands in the last sum above will be denoted by β(t, s,v,w). Next, let Bi, i ≤

4, Ci, i ≤ 13 be positive constants and consider first s, t that belong to the same interval from K∗u. The condition

(A1) implies that there exists a number τ ∈ (0, 2−1/α) such that for all |t− s| < τ ,

1

2
|t− s|α ≤ 1− r(t, s) ≤ 2|t− s|α. (23)

By the assumptions %(Lu) < B1

u2 . Further, from the construction of Rb the number of points from (Kj ×Sk−1)∩

Rb, j = 1, · · · ,Mu does not exceed B2u
2/α+k−1, and the number of points from Kj ∩Rb, j = 1, · · · ,Mu does not

exceed B3u
2/α. Similarly, the number of points from Sk−1 ∩Rb is not greater than B4u

k−1. Next for some x > 0

define

Ax :=
∑

(t,v),(s,w)∈[K∗u×Sk−1]∩Rb,
(t,v) 6=(s,w),|t−s|≤x

β(t, s,v,w)

and similarly Acx which is as above where we require further |t− s| > x. We have with Ku,j = Kj ∩{biu−2/α, i =

1, · · · }, j = 1, 2, · · · ,Mu

Aτ ≤ C1u
−2

∑
w,v∈Sk−1∩Rb,|t−s|∈Ku,j,|t−s|≤τ

j=1,2,··· ,Mu

√
1− r(t, s) exp

(
− u2

1 + r(t, s)|A(v,w)|

)

= C1u
−2 exp

(
−u

2

2

) ∑
w,v∈Sk−1∩Rb,|t−s|∈Ku,j,|t−s|≤τ

j=1,2,··· ,Mu

√
1− r(t, s)

× exp

(
−u2 1− r(t, s)|A(v,w)|

2(1 + r(t, s)|A(v,w)|)

)
,

= C1u
−2 exp

(
−u

2

2

) ∑
w,v∈Sk−1∩Rb,|t−s|∈Ku,j,|t−s|≤τ

j=1,2,··· ,Mu

√
1− r(t, s) exp

(
−u2 1− r(t, s)

2(1 + r(t, s))

)

× exp

(
−u2 r(t, s)(1− |A(v,w)|)

2(1 + r(t, s))(1 + r(t, s)|A(v,w)|)

)
= C1u

k−3 exp

(
−u

2

2

) ∑
w∈Sk−1∩Rb,|t−s|∈Ku,j,|t−s|≤τ

j=1,2,··· ,Mu

√
1− r(t, s) exp

(
−u2 1− r(t, s)

2(1 + r(t, s))

)
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× exp

(
−u2 r(t, s)(1− |A(v0,w)|)

2(1 + r(t, s))(1 + r(t, s)|A(v0,w)|)

)

where v0 is a fixed point on Sk−1 ∩Rb. Since∑
w∈Sk−1∩Rb,|t−s|∈Ku,j,|t−s|≤τ

j=1,2,··· ,Mu

exp

(
−u2 r(t, s)(1− |A(v0,w)|)

2(1 + r(t, s))(1 + r(t, s)|A(v0,w)|)

)

≤
∑

w∈Sk−1∩Rb

exp
(
−C2u

2||v0 −w||2
)
≤ C3,

then by (23)

Aτ ≤ C4u
k−3 exp

(
−u

2

2

) ∑
|t−s|∈Ku,j,|t−s|≤τ

j=1,2,··· ,Mu

√
2|t− s|α exp

(
−u

2|t− s|α

8

)

≤ C4Muu
2/α+k−3 exp

(
−u

2

2

) ∑
|z|∈Ku,1,|z|≤τ

√
2|z|α exp

(
−u

2|z|α

8

)

≤ C5u
−2
∞∑
i=1

iα/2 exp

(
− (bi)α

8

)
= O(u−2), u→∞.

Denote by γ = 1
4 inf |t−s|>τ (1− |r(t, s)|). For any |t− s| > τ

exp

(
−u2 1− |r(t, s)|

2(1 + |r(t, s)|)

)
≤ exp

(
−u2 4γ

4

)
= exp(−γu2).

With similar arguments as for Aτ and the above fact, we get

Acτ ≤ C6Muu
k−3u−2

∑
|t−s|∈Ku,1,|t−s|>τ,w∈Sk−1∩Rb

exp

(
− u2

1 + |r(t, s)|

)

≤ C7Muu
k−3u−2

∑
|t−s|∈Ku,1,w∈Sk−1∩Rb

exp

(
−u

2

2

)
exp

(
−γu2

)
≤ C7Muu

2/α+k−3u−2
∑

z∈Ku,1,w∈Sk−1∩Rb

exp

(
−u

2

2

)
exp

(
−γu2

)
≤ C8Muu

4/α+2k−2u−2 exp

(
−u2(γ +

1

2
)

)
= o(1), u→∞.

Next, we estimate the parts of the sum (22) where t ∈ Ki, s ∈ Kj , i 6= j. From (A3) it follows that there exists

η2 ∈ (0, 1), such that r(t, s) < 1 − η2, where |t − s| > δ. Consider t ∈ Ki, s ∈ Kj such that sup{|t − s| : t ∈

Ki, s ∈ Kj} ≤ Lη1u , where η1 ∈ (0, η2
2−η2 ). It follows that as u→∞

ALη1u = O

( ∑
(t,v),(s,w)∈[K∗u×Sk−1]∩Rb,

(t,v)6=(s,w),|t−s|≤Lη1u

exp

(
− u2

2− η2

))

= O
(
Muu

2/α+k−1Lη1u u
2/α+k−1e−

u2

2−η2

)
= o(1).

Let $(t, s) = max{r(t, s), r∗(t, s)} and ϑ(t) = supt<kq−lq≤T {$(kq − lq)}, where q = bu−2/α. Using further (18)

we get

Ac
L
η1
u
≤

∑
(t,v),(s,w)∈[K∗u×Sk−1]∩Rb,

(t,v)6=(s,w),|t−s|>Lη1u

|r(t, s)− r∗(t, s)| exp

(
− u2

1 +$(t, s)

)

9



≤ C9Muu
k−1uk−1

∑
t,s∈[K∗u∩Rb],|t−s|>L

η1
u

|r(t, s)− r/ lnLu| exp

(
− u2

1 +$(t, s)

)

≤ C10Muu
2k−2

∑
L
η1
u <|kq−lq|<Lu

|r(kq, lq)− r/ lnLu| exp

(
− u2

1 +$(kq, lq)

)
.

Moreover, by the assumption (A3), we have ϑ(t) ln t ≤ C11 for all sufficiently large t. Thus, $(kq, lq) ≤ ϑ(Lη1u ) ≤

C11/ lnLη1u for |kq − lq| > Lη1u . The following inequality holds∑
L
η1
u <|kq−lq|<Lu

|r(kq, lq)− r/ lnLu| exp

(
− u2

1 + |$(kq, lq)|

)

≤
(

Lu
q lnLu

exp

(
− u2

1 + ϑ(Lη1u )

))q lnLu
Lu

∑
L
η1
u <|kq−lq|<Lu,

|r(kq, lq)− r/ lnLu|

 . (24)

From (A3) we deduce that supt>k |r(t)| ln k ≤ δk + r, k ≥ k0, δk > 0 and δk = o(1) as k → ∞, and thus

supt>s |r(t)| ln s is bounded. Hence there exists C12 such that ϑ(Lη1u ) < C12/ lnLu and

Muu
2/α+2k−2 Lu

q lnLu
exp

(
− u2

1 + ϑ(Lη1u )

)
= O

(
exp

(
u2 − u2

1 + C13/u2

))
is bounded. Considering the second term on the right hand side of (24), if (A3) holds, we have

q lnLu
u2/αLu

∑
L
η1
u <|kq−lq|<Lu

∣∣∣∣r(kq, lq)− r

ln(|kq − lq|)

∣∣∣∣ ≤ Lu − Lη1u
η1Lu

max
L
η1
u <kq<Lu

|r(kq) ln(kq)− r| = o(1) (25)

as u→∞ and by an estimate as in the proof of Lemma 6.4.1 of Leadbetter et al. (1983)

q lnLu
u2/αLu

∑
L
η1
u <|kq−lq|<Lu

∣∣∣∣ r

ln(|kq − lq|)
− r

lnLu

∣∣∣∣ =
q lnLu
Lu

∑
L
η1
u <kq<Lu

∣∣∣∣ r

ln(kq)
− r

lnLu

∣∣∣∣ = o(1), u→∞.(26)

Since the first term on the right-hand side of (24) is bounded, we conclude from (25) and (26) that the left-hand

side of (24) convergence to zero, and hence the proof is established. �

The following result plays a crucial role in the proof of Theorem 2.1; set below

m(u) := µ−1k (u).

Lemma 4.4. Let {X(t), t ≥ 0} be a standard stationary Gaussian process with correlation r(t), and define χk

as in (5). If r(t) satisfies both (A1) and (A3), then for any 0 < θ1 < θ2 <∞

lim
u→∞

sup
x∈[θ1,θ2]

∣∣∣∣P{ sup
s∈[0,xm(u)]

χk(s) ≤ u
}
− E

{
exp(−xe−r+

√
2rχk(1))

}∣∣∣∣ = 0.

Proof. By the definition of the field Y0(t,v) with L = x we obtain

P
{

max
(t,v)∈(K∗u×Sk−1)∩Rb

Y0(t,v) ≤ u
}

=
1

(2π)n/2

∫
z∈Rk

e−
||z||2

2 P
{

max
(t,v)∈(K∗u×Sk−1)∩Rb

Y0(t,v) ≤ u|Z1 = z1, · · · , Zk = zk

}
dz1 · · · dzk

=
1

(2π)n/2

∫
z∈Rk

e−
||z||2

2 P
{

max
(t,v)∈[(0,1)×Sk−1]

Y (t,v) ≤
u−

√
%(Lu)||z||√

1− %(Lu)

}Mu

dz1 · · · dzk, (27)
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where

Mu =

[
Lu

1 + δ

]
=

[
xµ−1k (u)

1 + δ

]
.

Since as u→∞

uz :=
u− ρ1/2(Lu)||z||
(1− %(Lu))1/2

= u+
−
√

2r||z||+ r

u
+ o(

1

u
),

then we have

Muµk(uz) = −xe−r+
√
2r||z||(1 + o(1)), u→∞.

Utilising thus (6) we may further write

P
{

max
(t,v)∈(0,1)×Sk−1

Y (t,v) ≤ uz
}Mu

=

(
1− P

{
max
t∈(0,1)

χk(t) > uz

})Mu

= exp

(
Mu ln

(
1− P

{
max
t∈(0,1)

χk(t) > uz

}))
= exp (−Muµk (uz) (1 + o(1)))

→ exp
(
−xe−r+

√
2r||z||

)
, u→∞. (28)

Consequently, as u→∞

lim
u→∞

P
{

max
(t,v)∈K∗u×Sk−1

Y0(t,v) > u
}

=
1

(2π)n/2

∫
z∈Rk

e−
||z||2

2 exp
(
−xe−r+

√
2r||z||

)
dz1 · · · dzk,

hence the proof follows by Lemma 4.1, 4.2 and 4.3 and dominated convergence theorem. �

Lemma 4.5. Let {M(t), t ≥ 0} be non-negative random variables such that for constants at > 0, bt, t ≥ 0 we

have the convergence in distribution

at(M(t)− bt)
d→M, t→∞,

with M some non-degenerate random variable. If limt→∞ atbt =∞, then for any p > 0 we have

E{[M(t)]p} ≥ bpt (1 + o(1)), t→∞

and if further for some positive constants α,C, λ, τ

λbτt = ln t+ o(1) and P {M(t) > y} ≤ Ctyα exp(−λyτ ) (29)

hold for any t large and all y large enough, uniformly in t, then

E{[M(t)]p} = bpt (1 + o(1)), t→∞. (30)

Proof. Borrowing the idea of the proof of Theorem 1 in Seleznjev (2006) the first claim follows by applying

Chebyshev’s inequality, using additionally the assumptions limt→∞ atbt = ∞ and M has a non-degenerate

distribution function. Proceeding as in the proof of the aforementioned theorem define for some z > 0

ct = ut + zu
1−τ/p
t lnut, ut = bpt .

11



By assumption (29) we have limt→∞ bt =∞, hence

E{[M(t)]p} ≤ ut

(
1 + z

lnut
bτt

)
+

∫ ∞
ct

P
{
M(t) > y1/p

}
dy

≤ bpt

(
1 + zp

ln bt
bτt

)
+ (1 + o(1))C∗tcκt exp(−λcτ/pt )

for some positive constants κ and C∗. Since

c
τ/p
t = bτt + τz ln bt + o(1), ln ct = p ln bt − zp

ln bt
bτt

, t→∞,

then by (29) as t→∞

ln(C∗tcκt exp(−λcτ/pt )) = O(1)− (lτz − κp) ln bt,

hence choosing z large enough we obtain

E{[M(t)]p} ≤ bpt

(
1 + zp

ln bt
bτt

)
+ o
( 1

bt

)
= bpt (1 + o(1)), t→∞

and thus the claim follows. �

Proof of Theorem 2.1. The proof of the first assertion is the same as that of Theorem 3.1 of Arendarczyk and

Dȩbicki (2012). Next we prove the second assertion; we define

Υr,k(x) := E
{

exp
(
−xe−r+

√
2rχk(1)

)}
, Υr,k(x) := 1−Υr,k(x), x ∈ R.

Case λ > 0: Following Arendarczyk and Dȩbicki (2012) we make the following decomposition with F the distri-

bution function of T :

P {Mk(T ) > u} =

∫ θ1m(u)

0

P

{
sup
s∈[0,t]

χk(s) > u

}
dF (t) +

∫ θ2m(u)

θ1m(u)

P

{
sup
s∈[0,t]

χk(s) > u

}
dF (t)

+

∫ ∞
θ2m(u)

P

{
sup
s∈[0,t]

χk(s) > u

}
dF (t) =: I1 + I2 + I3.

From the proof of Theorem 3.2 of Arendarczyk and Dȩbicki (2012) as u→∞ we have

I1 ≤
λ

1− λ
θ1−λ1 P {T > m(u)} (1 + o(1))

and

I3 ≤ P {T > θ2m(u)} = θ−λ2 P {T > m(u)} (1 + o(1)).

Applying Lemma 4.4, for ε > 0 and sufficiently large u we obtain the following upper bound

I2
1 + ε

=
1

1 + ε

∫ θ2

θ1

P

{
sup

s∈[0,tm(u)]

χk(s) > u

}
dF (xm(u)) ≤

∫ θ2

θ1

Υr,k(x)dF (xm(u))

=

∫ θ2

θ1

Υr,k(x)P {T > xm(u)} dx−Υr,k(θ2)P {T > θ2m(u)}+ Υr,k(θ1)P {T > θ1m(u)} .

Similarly, for ε ∈ (0, 1) and sufficiently large u

I2
1− ε

≥
∫ θ2

θ1

Υr,k(x)P {T > xm(u)} dx−Υr,k(θ2)P {T > θ2m(u)}+ Υr,k(θ1)P {T > θ1m(u)} .

12



The regularly varying tail of T combined with Theorem 1.5.2 in Bingham et al. (1987) imply∫ θ2

θ1

Υr,k(x)P {T > xm(u)} dx = P {T > m(u)}
∫ θ2

θ1

Υr,k(x)x−λdx(1 + o(1))

as u→∞. Thus for each ε ∈ (0, 1), and θ2 > θ1 > 0

1

1 + ε
lim sup
u→∞

I2
P {T > m(u)}

≤
∫ θ2

θ1

Υr,k(x)x−λdx−Υr,k(θ2)θ−λ2 + Υr,k(θ1)θ−λ1

and

1

1− ε
lim inf
u→∞

I2
P {T > m(u)}

≥
∫ θ2

θ1

Υr,k(x)x−λdx−Υr,k(θ2)θ−λ2 + Υr,k(θ1)θ−λ1 .

Hence, letting θ1 → 0, θ2 →∞ and ε→ 0, we conclude that I1 and I3 are negligible (u→∞) compared with I2,

and moreover

I2 =

∫ ∞
0

Υr,k(x)x−λdxP {T > m(u)} (1 + o(1)), u→∞.

Case λ = 0. The proof is similar to that of Theorem 3.3 of Arendarczyk and Dȩbicki (2012). For given θ2 > 0

Lemma 4.4 implies

P {Mk(T ) > u} ≥ P

{
sup

s∈[0,θ2m(u)]

X1(s) > u

}
P {T > θ2m(u)} (1 + o(1))

= Υr,k(θ2)P {T > m(u)} (1 + o(1)), u→∞.

Thus, letting θ2 →∞ we have

P {Mk(T ) > u} ≥ P {T > m(u)} (1 + o(1)), u→∞.

By Karamata’s theorem (see e.g., Resnick (1987)) and (5) we obtain further

P {Mk(T ) > u} ≤
∫ θ1m(u)

0

P

{
sup
s∈[0,t]

χk(s) > u

}
dF (t) + P {T > m(u)}

≤ P

{
sup
s∈[0,1]

χk(s) > u

}[∫ θ1m(u)

0

P {T > t} dt+ 1

]
+ P {T > m(u)}

= (1 + θ1)P {T > m(u)} (1 + o(1)), u→∞,

which together with the fact that θ1 can be arbitrary small establishes the proof. �

Proof of Theorem 3.1. For uT (x) = a−1T x+ bT we obtain

Tµk(uT (x)) = e−x(1 + o(1)), T →∞.

Hence, if we replace Lu by T and u by uT (x), then by checking the proofs of Lemmas 4.1-4.3 it follows that they

hold uniformly for x ∈ R. Thus, repeating the steps of the proof of Lemma 4.4 we obtain

lim
T→∞

sup
x∈R

∣∣∣∣P {aT (Mk(T )− bT ) ≤ x} − Λr,k(x)

∣∣∣∣ = 0, (31)

where Λr,k is defined in (11). Since further the following convergence

aT
aTT
→ 1, aT (bTT − bT )→ ln T , T →∞

13



holds in probability, then in view of the transfer theorem of Gnedenko and Fahim (1969) it follows that

P {aT (Mk(TT )− bT ) ≤ x} = P
{
aT
aTT

aTT (Mk(TT )− bTT ) + aT (bTT − bT ) ≤ x
}

→ P {Wr,k + ln T ≤ x} , T →∞, (32)

where Wr,k is a random variable with distribution function Λr,k being further independent of T , and thus the

proof is complete. �

Proof of Proposition 3.2. As in (14) For any closed subset E of [0, T ]n we have

max
t∈E

χk(t) = max
(t,v)∈E×Sk−1

Y (t,v),

where the random field Y (t,v) is defined as in (17). Consequently, since for any u > 0

P
{

max
t∈E

χk(t) > u
}

= P
{

max
(t,v)∈E×Sk−1

Y (t,v) > u
}
≤ P

{
max

(t,v)∈E×Sk−1

|Y (t,v)| > u
}

and further Y (t,v) satisfies the global Hölder condition the proof follows by Piterbarg inequality shown in

Theorem 8.1 of Piterbarg (1996). �

Proof of Theorem 3.3. It follows easily that {X(t), t ≥ 0} satisfies the global Hölder condition with γ equal to

α, hence by Proposition 3.2 Piterbarg inequality (14) holds for Mk(T ). Consequently, in view of (12) the proof

follows applying Lemma 4.5 with bt =
√

2 ln t and l = 1/2, τ = 2. �
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[10] Dȩbicki, K., Zwart, A.P. and Borst, S.C., 2004. The supremum of a Gaussian process over a random interval.

Stat. Probab. Lett., 68, 221-234.
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