Multiple origins of tetraploid taxa in the Eurasian Bufo viridis subgroup

Matthias Stöck¹, Claus Steinlein², Dunja K. Lamatsch^{3,4}, Manfred Schartl³ & Michael Schmid

¹Department of Integrative Biology, Museum of Vertebrate Zoology, University of California, 3101 Valley Life Sciences Building #3160, Berkeley, CA 94720-3160, USA (Phone: +1-510-6428911; Fax: +1-510-643-8238; E-mail: matthias@berkeley.edu); ²Institut für Humangenetik; ³Lehrstuhl für Physiologische Chemie I, Theodor-Boveri-Institut, Biozentrum Am Hubland, 97074, Würzburg, Germany; ⁴Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000, Brussels, Belgium

Received 3 November 2004 Accepted 23 February 2005

Key words: chromosome analysis, control region, cytogenetics, cytotaxonomy, diploid, hybridization, karyotypes, mitochondrial DNA, nucleolar organizing region (NOR), phylogeny, Q-banding, telomere, tetraploid

Abstract

We used Q-banding and analyzed nucleolar organizing regions (NORs) to study the cytogenetic evolution of tetraploids within the Palearctic *Bufo viridis* subgroup, the only known amphibian complex comprising di-, triand tetraploid bisexually reproducing taxa. We examined three diploid (2*n*) nominal taxa (*Bufo viridis viridis*, *B. v. turanensis*, *B. v. kermanensis*) from five Eurasian localities and six tetraploid (4*n*) nominal taxa (*B. oblongus*, *B. o. danatensis*, *B. pewzowi pewzowi*, *B. p. taxkorensis*, *B. p. unicolor*, *B. p. strauchi*) from eight Central Asian localities. Homeologous chromosomes of 2*n* and 4*n* toads exhibit a similar morphology. Silverstaining and *in situ* hybridization revealed terminal NORs in the long arms of chromosomes 6 in all 2*n* but in only two out of four chromosomes 6 in all 4*n* taxa. Q-banding and a rapidly evolving mitochondrial marker suggest at least two origination events for Asian 4*n* toads: "Western Central Asian tetraploids" (*B. oblongus* Nikolsky, 1896) exhibit distinct differences within some chromosome quartets, which are divisible into pairs of chromosomes and may be allopolyploid. In contrast, "Central Asian tetraploids" (*B. pewzowi* Bedriaga, 1898) showed homogenous Q-banding patterns within each quartet, suggesting autopolyploidy. In Northeastern Iran, we discovered a zone of either common ancestry or hybridization of 2*n* and Western Central Asian 4*n* toads. This raises intriguing questions about how diploid and tetraploid taxa may evolve by exchanging genetic material.

Abbreviations: 2n – diploid; 2ns – diploid; 3n – triploid; 4n – tetraploid; 4ns – tetraploids; CA-4ns – Central Asian tetraploids (= *Bufo pewzowi* and related taxa); DAPI – 4'-6-diamidino-2-phenylindole; MTD – Museum Tierkunde Dresden, Germany; MVZ – Museum of Vertebrate Zoology, University of California, Berkeley, USA; WCA-4n – Western Central Asian tetraploids (= *Bufo oblongus* and related taxa); ZSM – Zoologische Staatsammlung Münich, Germany.

Introduction

Currently, the *B. viridis* subgroup is the only known amphibian species complex that comprises diploid (2n), triploid (3n) and tetraploid (4n) bisexually reproducing taxa. However, neither

sufficient cytogenetic nor molecular data were available to investigate the evolution and phylogeny of the *B. viridis* subgroup or to address speciation within its different groups. Since Laurenti described *Bufo viridis* (1768), the morphological variability of green toads in their Palearctic range (Borkin, 1999) resulted in the description of numerous nominal taxa. In Asia, however, cryptic 2n, 4n (Mazik, Kadyrova & Tokotosunov, 1976) and even 3n bisexual taxa (Stöck et al., 1999, 2002) occur, and complicated mixed breeding systems (e.g., 2n/3n or 3n/4n etc.) may exist in northern Central Asia (e.g., Borkin et al., 2001b; Stöck, Günther & Böhme, 2001b; Cavallo et al., 2002). Several authors reviewed the taxonomy of B. viridis and related taxa (Eiselt & Schmidtler, 1973; Hemmer et al., 1978), and provided karyological (Roth, 1986; Borkin & Kuzmin, 1988; Borkin et al., 2001a) and/or chorological data (Borkin, 1999; Stöck et al., 2001a). Here, we use the nomenclature as revised for Asian green toads by Stöck et al. (2001b) who provided information on name-bearing types, type localities, nomenclatural and systematic histories, ploidy level, bioacoustics. distribution, proposed current taxonomic status, and a tentative identification key. Among 2n toads, they tentatively distinguished the taxa: (1) B. viridis with nominal subspecies B. v. kermanensis, B. v. shaartusiensis, B. v. turanensis and B. v. ssp. [formerly 'arabicus']), and (2) B. latastii latastii. They distinguished two 4n species: (I) B. oblongus (with B. o. oblongus and B. o. danatensis) provisionally called 'Western Central Asian tetraploids' (WCA-4n), and (II) B. pewzowi (with nominal subspecies B. p. pewzowi, B. p. unicolor, B. p. strauchi and B. p. taxkorensis) - termed 'Central Asian tetraploids' (CA-4n). Bisexual triploid taxa are apparently represented by *B. pseudoraddei pseudoraddei* and B. p. baturae. Because of contradictory data or unknown ploidy, the status of B. asiomontanus and B. zugmayeri remained unclear (for further details: Stöck et al., 2001b).

In this paper we show, using cytogenetic and molecular techniques on Eurasian 2n and 4n taxa, that Asian 4n green toads have evolved independently at least twice. We also report on the discovery of a zone of common ancestry or hybridization of 2n and 4n taxa of these toads.

Materials and methods

Animals

We sampled either topotypic individuals from various Asian type localities or from other Central

Asian regions. Because of logistical difficulties, only a limited number of specimens could be transported alive to the laboratory (Table 1; GenBank accession numbers and linked voucher information). If the taxonomic position appears not completely clarified (designated in Table 1 as: "?) taxa were grouped provisionally.

Chromosome preparation

Chromosomes were prepared from bone marrow, intestine and testes tissue as described by Schmid (1978). Giemsa and Silver (AgNO₃)-staining of nucleolar organizing regions (NORs) followed Schmid (1978, after Goodpasture & Bloom 1975). We also performed either distamycin A/mithramycin counterstaining or non-radioactive 18S + 28S rDNA in situ hybridization. The latter was applied to somatic and testicular chromosomes with the plasmid pXIr101, a derivative of pMB9 (4800 bp), into which one complete ribosomal RNA gene of Xenopus laevis was inserted (Morgan, Macgregor & Colman, 1980). Distamycin A/DAPI (4'-6-diamidino-2-phenylindole) staining, distamycin A/mithraycin counterstaining, Quinacrine mustard (Q)-banding, and centromere (C)-banding, followed Schmid et al. (1983). Fluorescence was selectively obtained by excitation with UV light in the 450-490 nm range (Schmid et al., 1993). In situ hybridization on telomeres (TTAGGG)_n followed Meyne, Ratliff and Moyzis (1989). We used a Zeiss Axiophot and a Zeiss III photomicroscope and Agfaortho 25 (15 DIN) film.

DNA amplification and sequencing

Genomic DNA was extracted from frozen or ethanol-preserved liver or blood of at least one of the karyotyped specimens from each locality using a phenol–chloroform extraction or the DNeasyTM tissue kit (Qiagen). A fragment of about 880 bp was amplified comprising nearly the entire mitochondrial control region (primers ControlB-H and CytbA-L; PCR: 96°C, 2 min, denaturation; 52°C, 45 s, annealing; 72°C, 2 min, extension; 38 cycles of [94°C, 30 s, denaturation, 52° C, 45 s annealing, 72°C, 1.5 min, extension]; 72°C, final extension, 5 min; Goebel, Donelly & Atz, 1999). Products were sequenced in both directions on an ABI 3730 sequencer.

Table 1. Localities of toads examined (see Figure 8)

Locality	Geographic data (+ number in Appendix and Figure 1 of Stöck et al., 2001a)	Ploidy	Nominal taxon	Voucher number (if available)	N (karyo- typed)	GenBank acc. no.
Halle	Germany, Saxony-Anhalt	2 <i>n</i>	<i>B. viridis viridis</i> Laurenti, 1768	MVZ 241555	1	AY830079
Kerman	Iran, Kerman Province, Kerman, 30°18′ N, 57°05′ E, 1860 m a.s.l. (13c)	2 <i>n</i>	Topotypes of <i>B. viridis</i> <i>kermanensis</i> , Eiselt & Schmidtler, 1971	MTD 40730, 40731	7	AY830082 AY830083
Baghestan	Iran, 10 km NE Baghestan, Khorasan, N of Kuh-e-Kalat, 34°09' N, 58°25' E, 1900 m a.s.l. (13)	4 <i>n</i>	<i>B. oblongus</i> <i>oblongus</i> Nikolsky, 1896 (Western Central Asian tetraploids)	-	1	_
Birjand	Iran, Khorasan, Birjand, 32°33' N, 59°10' N, about 1500 m a.s.l. (13a)	4 <i>n</i>	Topotypes of <i>B. oblongus</i> <i>oblongus</i> Nikolsky, 1896	MTD 41347	5	AY830080 AY830081
Bolshoi Balkhan	Turkmenistan, Nebit-Dagskii Rayon, N-slope of Bolshoi Balkhan, approx. 15 km S of Oglanly village, 39°43' N, 54°29' E, 500 m a.s.l. (4)	4 <i>n</i>	? (Western Central Asian tetraploids)	-	2	AY830075 AY830076
Gorgan	Iran, N-slope of Elburz mountains, valley 15 km S Gorgan, approx. 1100 m a.s.l. (2)	2 <i>n</i>	<i>B. viridis</i> cf. <i>viridis</i> Laurenti, 1768	-	2	AY830071
NE-Iran	Iran, NE, frontier zone near Turkmenistan, approx. 50 km NE Gonbad-e-Kavus, 37°38' N, 55°29' E, 250 m a.s.l. (3)	2 <i>n</i>	transition zone B. viridis viridis/ B. viridis turanensis	-	3	AY830073
Danata	Turkmenistan, Ashgabadskaya oblast, stream 2–4 km SE of Danata village and warm spring approx. 4 km SE of Danata, 39°06' N, 55°06' E, 200 m a.s.l. (5)	4 <i>n</i>	Topotypes of <i>B. oblongus</i> <i>danatensis</i> Pisanets, 1978 (Western Central Asian tetraploids)	MTD 39400	2	AY830072 AY830074
Ashgabad	Turkmenistan, Ashgabad (11)	2 <i>n</i>	<i>B. viridis turanensis</i> Hemmer et al., 1978	MTD 44397	1	AY830062
Issyk-Kul	Kyrgyzstan, Chu-valley, approx. 20 km W Rybache, near Kokmoynok, approx. 1600 m a.s.l., Kyrgyzstan, Issyk-Kul, S-bank near Tamga, 1670 m a.s.l. (53, 55)	4 <i>n</i>	Including topotypes of <i>B. pewzowi</i> <i>unicolor</i> Kashchenko, 1909 (Central Asian tetraploids)	MTD 40012	2	AY830067 AY830068

Table 1. (Continued)

Bishkek	Kyrgyzstan, Bishkek (39)	2 <i>n</i>	B. viridis cf. turanensis	_	1	AY830077
Nuratau	Uzbekistan, Dzhisakskaya	4 <i>n</i>	Bufo pewzowi ssp.	MTD 39406,	3	AY830065
	oblast, Rayon Farish,		(Central Asian	40010		AY830069
	Nuratau-Reserve,		tetraploids)			AY830070
	N-slope of Nuratau Range,					
	40°35' N, 66°30' E,					
	900-1600 m a.s.l. (17)					
Kashgar	China, Kashgar,	4 <i>n</i>	Bufo pewzowi	ZSM 107/1998,	2	AY830063
	39°29' N, 76°02' E,		pewzowi	108/1998		AY830064
	1350 m a.s.l. (43)		Bedriaga, 1898			
			(Central Asian			
			tetraploids)			
E-Tien Shan	China, E-Tian Shan	4 <i>n</i>	Bufo pewzowi	ZSM 109/1998	1	AY830078
	(E-Narat Shan),		strauchi Bedriaga,			
	Künas 43°14' N, 84°40' E,		1898 (Central			
	2145 m a.s.l. (63)		Asian tetraploids)			
Taxkurgan	China, E-Pamir, Taxkurgan,	4 <i>n</i>	Topotypes of Bufo	ZSM 110/1998	1	AY830066
	37°47′ N, 75°14′ E,		pewzowi taxkorensis			
	3350 m a.s.l. (44)		Fei et al. 1999 (Central			
			Asian tetraploids)			

Phylogenetic analysis

Sequences were aligned using Sequencher, vers. 4.1.2 (Gene Codes). We analyzed DNA comprising 815 characters of the mitochondrial control region of 21 karyo-typed specimens from the B. viridis subgroup. Bufo calamita from Spain (3.1 km S Benalup de Sidona, MVZ 186039, GenBank AY830061) was used as an outgroup. Phylogenetic analyses were carried out using parsimony, and likelihood methods as implemented in PAUP, vers. 4.0b10 (Swofford, 2002) and MrBayes (Huelsenbeck & Ronquist, 2001). We applied Modeltest 3.06 (Posada & Crandell, 1998) to infer the best fitting model of sequence evolution under the PAUP likelihood settings and MrModeltest (Nylander, 2004). Support was estimated by bootstrapping with 1000 pseudo-replicates; branches were collapsed if support was lower than 60%. Likelihood settings and the best-fit model of sequence evolution (HKY; Hasegawa, Kishino & Yano, 1985) incorporating a gamma shape distribution for variable sites (HKY + I + G) were selected by hLRT in Modeltest [nucleotide frequencies A = 0.3143, C = 0.0891, G = 0.1939, T = 0.4027, gamma = 0.3419]; and HKY + I + G in MrModeltest 2.0. [A = 0.3231, C = 0.0841, G = 0.1985, T = 0.3943, gamma = 0.4197] for MrBayes.

Results

Cytogenetic inference

Conventionally stained diploid and tetraploid karyotypes

To test for geographic variability in chromosome morphology and to compare with previously published data, we applied Giemsa staining. Diploid karvotypes (Figures 1-3, 5) consist of six pairs of larger metacentric to submetacentric chromosomes and five pairs of smaller metacentric to submetacentric chromosomes. This shows chromosome morphology to be conservative within the range of 2n green toads. The morphology in 4ns (Figures 1-3, 6 and 7) is similar to 2ns, that is, each chromosome pair of the 2n karyotype corresponds to a group of four chromosomes (= quartet) of the 4n. However, there are visible differences in the chromosome size and morphology within one quartet in some of the 4n taxa. The most obvious one is in quartet 6 (e.g., Figure 1c), in which two chromosomes are distinctly larger

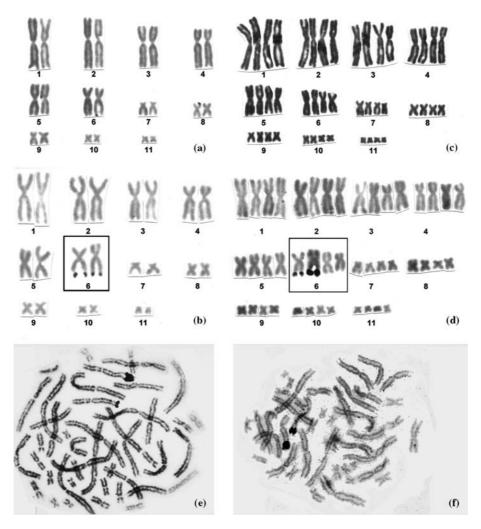
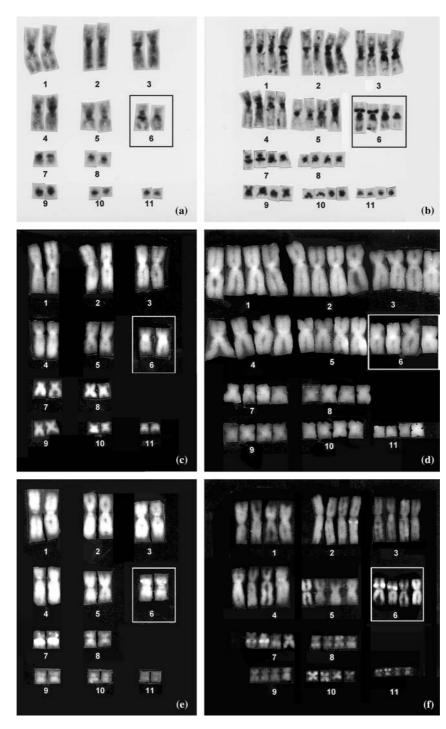
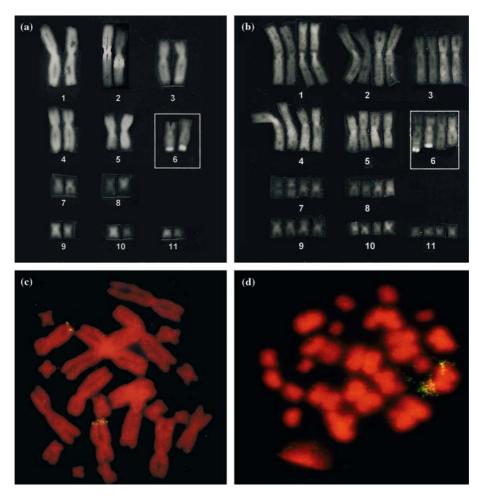


Figure 1. 2n and 4n karyotypes. (a, c): Giemsa staining, (b, d, e, f): silver staining. a: Bufo viridis kermanensis (Iran, Kerman), (b): B. viridis viridis/turanensis (Iran, near Gonbad-e-Kavus), (c, e): B. oblongus oblongus (Iran, Birjand), (d): B. oblongus danatensis (Turkmenistan, Danata), (f): B. pewzowi pewzowi (China, Kashgar).


than the others. This size difference seems mainly caused by the presence or absence of NORs (see below). Other quartets show minor size differences, which allow the division of a quartet in two chromosome pairs.

Variation of size and intensity of nucleolar organizing regions

All 2n karyotypes contained only one pair of active homologous NORs, situated terminally in the long arm of chromosomes 6 (Figures 1b, 3a–c and 5). We observed no geographic variation in position or size of the NORs among all 2n

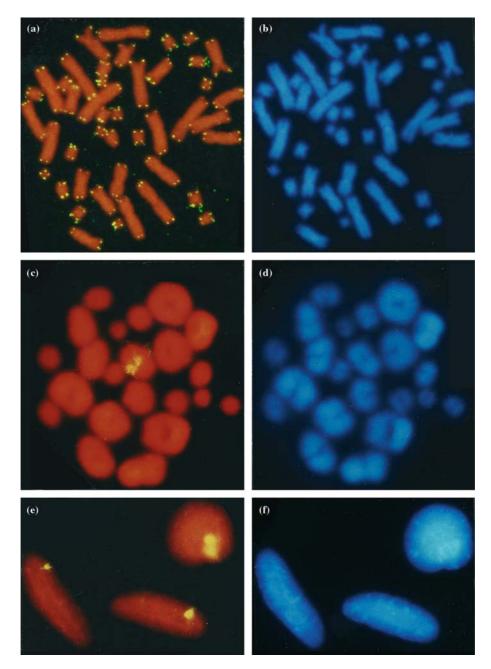

taxa we tested (*B. viridis viridis* (Germany), *B. v. turanensis* (NE-Iran, Ashkhabad, Bishkek), and *B. v. kermanensis* (Kerman)). All of the NOR-carrying copies of chromosome 6 in the 2n karyotypes showed Q-bands in their short arms (see below).

Interestingly, all 4n karyotypes contained only one pair of homologous NORs (Figures 1d–f, 3b, d, 4c and 6a, b). 18S + 28S rDNA *in situ* hybridization revealed that potentially duplicated rDNA genes in the 4n karyotypes are not only inactive but are indeed physically absent from the two other (homeologous) copies of chromosomes 6. Furthermore, NORs were only found on the long arms

Figure 2. 2n and 4n karyotypes. (a, b): C-banding, (c, d): Distamycin A/DAPI (4'-6-diamidino-2-phenylindole) staining; (e, f): Q-banding. (a, c): *Bufo viridis viridis/turanensis* (Iran, near Gonbad-e-Kavus); (b, f): *B. oblongus danatensis* (Turkmenistan, Danata); (e): *B. viridis kermanensis* (Iran, Kerman), (d): Central Asian tetraploid (Uzbekistan, Nuratau-Range).

of those 6th chromosomes that showed brightly fluorescing Q-bands in their short arms (see below). The intensity and/or length of the NOR structures was often found to differ within and between individuals of both 2n and 4n toads, even from the same locality (e.g., Figures 5b and 6a).

Figure 3. 2*n* and 4*n* karyotypes. (a): Distamycin A/mithramycin counterstaining (note slight manual correction in pair 2); (b): Distamycin A/mithramycin counterstaining (chromosomes 1 + 3 in quartets 1 + 3 were photographically duplicated since they showed substantial overlap), (c, d): 18 + 28 S rDNA *in situ* hybridization. (a): *Bufo viridis viridis/turanensis* (Iran, near Gonbad-e-Kavus); (b): *B. oblongus danatensis* (Turkmenistan, Danata); (c): *B. viridis viridis viridis* (Germany, Halle); (d): Central Asian tetraploid (Uzbekistan, Nuratau-Range).


C-bands

The comparison of 2n and 4n karyotypes (Figures 2a, b) revealed darkly stained regions of constitutive heterochromatin, which slightly varied in size, on both sides of the centromere in all chromosomes. However, within quartet 6 of 4ns, large, heavily labeled C-bands (Figure 2b) were observed in the short arms in only two out of four copies of chromosome 6 but never in those of the 2n toads. A similar situation was found in two chromosomes of quartet 7 in 4ns, having C-bands in their long arms, which were never observed in chromosomes of 2ns. In WCA-4n, similar to Q-bands (Figures 2f and 6b), the karyotype (Figure 2b) showed distinct differences between two

pairs of homeologous pairs in some quartets, especially 6, 7 and 10. Comparison between C- and Q-bands (see below) showed that brightly fluorescing heterochromatic regions are mostly C-band-positive. Therefore, we used the more contrasting Q-banding method for a more detailed karyological comparison of various taxa.

Q-bands

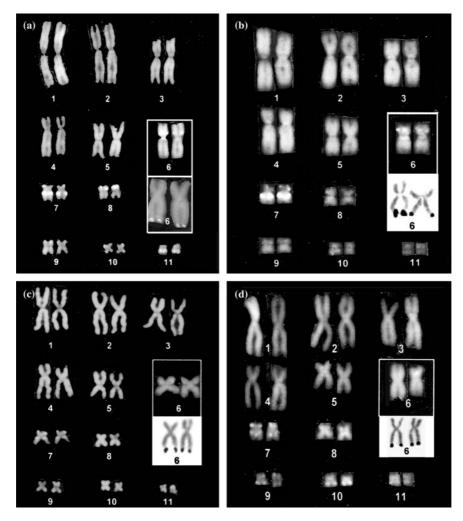

In 2n karyotypes, interstitial Q-bands occurred in chromosomes 6–11 (Figure 5), but distinct bright fluorescence was only found in short arms of chromosomes 6 and short and long arms of chromosomes 7. We observed some geographic

Figure 4. 4n chromosomes and nuclei. (a): *In situ* hybridization on telomeres $(TTAGGG)_n$, (b): DAPI-fluorescence of metaphase from (a, c): 18 + 28S rDNA *in situ* hybridization meiotic metaphase I, (d): DAPI-fluorescence of metaphase I shown in (c, e): 18 + 28S rDNA *in situ* hybridization of a spermatogonium second order with two NOR-signals (right above) and sperm nuclei (below) with one NOR-signal each; (f): DAPI-fluorescence of e. (a, b): Western Central Asian tetraploids (Turkmenistan, Bolshoi Balkhan); (c–f): Central Asian tetraploids (Uzbekistan, Nuratau-Range).

variation between different 2n taxa, with the intensity of Q-bands becoming weaker towards the East: The representative of *Bufo viridis viridis*

(Germany) showed the strongest fluorescence, Q-bands in *B. v. kermanensis* chromosomes (Central Iran) appeared not as bright, and *B. v. turanensis*

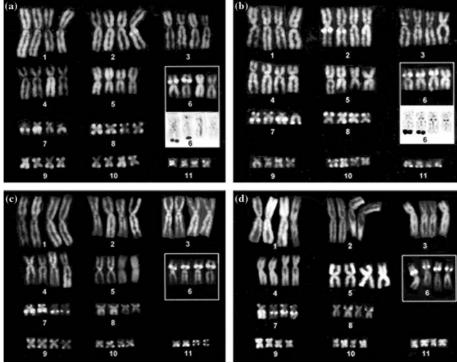


Figure 5. 2*n* karyotypes. (a): Q-banding, 18 + 28S rDNA *in situ* hybridization on NORs of chromosomes 6; (b, c, d): Q-banding, silver staining of NORs. (a): *Bufo viridis viridis*, (b): *B. viridis kermanensis* (Iran, Kerman), (c): *B. viridis viridis/turanensis* (Iran, near Gonbad-e-Kavus), (d): *B. viridis turanensis* (Kyrgyzstan, Bishkek).

(NE-Iran and Kyrgyzstan) exhibited the most inconspicuous Q-bands (Figure 5).

The Q-banding patterns of 4ns were consistent with those of homeologous chromosomes in 2ns. However, we also found brightly fluorescing bands in some chromosomes that did not show any brilliant bands in 2ns, for example, one chromosome of quartet 2 in tetraploids from Bolshoi Balkhan (Figure 6a). A single chromosome of quartet 1 in 4ns (*B. oblongus*) from Birjand (Figure 7a), and a pair of chromosomes of quartet 2 in tetraploids (*B. oblongus danatensis*) from Danata (Figure 6b) contained these unusual additional Q-bands. Most interestingly, we observed significant variation in the karyotypes of 4ns. In those from Bolshoi Balkhan (Figure 6a), Danata (*B. oblongus danatensis*, Figure 6b), and Birjand (*B. o. oblongus*, Figure 7a), all WCA-4n, distinct differences in Q-bands within some quartets occurred. This allowed us to divide them into two chromosomes pairs. In contrast, CA-4ns from Nuratau (Figure 6c), Issyk-Kul (*B. v. pewzowi unicolor*, Figure 6d), Kashgar (*B. pewzowi pewzowi*, Figure 7b) and Taxkurgan (*B. pewzowi taxkorensis*, Figure 7c) showed homogeneity of Q-bands within quartets. We found the most striking differences in quartet 6. In WCA-4n (B. Balkhan, Birjand), it consists of two

Figure 6. 4*n* karyotypes. (a–d): Q-banding, (a, b): silver staining of NORs of the same chromosomes 6 from Q-banded metaphases. (a): Western Central Asian tetraploids (Turkmenistan, Bolshoi Balkhan), (b): *Bufo oblongus danatensis* (Turkmenistan, Danata), (c): Central Asian tetraploids (Uzbekistan, Nuratau-Range), (d): *B. pewzowi unicolor* (Kyrgyzstan, Issyk-Kul).

chromosomes with Q-bands in their short arms, and two remaining chromosomes lacking bright fluorescence. While some of the tetraploids from Danata exhibited this pattern (Figure 2f), others had a third Q-positive chromosome 6 in this quartet (Figure 6b). At least one chromosome showed no Q-bands in all 4ns. Silver staining of originally Q-banded metaphases (Figures 6a, b) of WCA-4n revealed NORs to occur exclusively in O-positive chromosomes 6 while the reverse was not true since more than two NORs were never detected. Individual variation (long arms of only one or two chromosomes showed bright Q-bands) was observed in quartet 2 of WCA-4n as seen in specimens from Danata (B. oblongus danatensis, Figures 2f, 6b) and B. Balkhan (Figure 6a) and in quartet 1 as observed in a toad from Birjand (B. oblongus, Figure 7a). In contrast, karyotypes of the CA-4n from Nuratau (B. pewzowi ssp., Figure 6c), Issyk-Kul (B. pewzowi unicolor, Figure 6d), Kashgar (B. pewzowi pewzowi, Figure 7b) and Taxkurgan (B. pewzowi taxkoren*sis*, Figure 7c) showed exclusively Q-positive chromosomes 6, but only two out of four carried NORs.

Telomeres and meiosis in tetraploids

In the 4*n* mitotic metaphase, hybridization to the telomere motif $(TTAGGG)_n$ in all chromosomes was observed regardless of chromosome size (Figure 4a). Furthermore, we did not find any intrachromosomal sites of hybridization with the telomere sequence.

To check for multivalent formation or unusual (e.g. hybridogenetic) patterns of gametogenesis, we also examined male meiosis in both groups of tetraploids. Both, WCA-4*n* and CA-4*n* showed exclusively bivalents in male meiosis I (Figures 4c, d). This included the pairing of the two NOR-carrying chromosomes 6, their subsequent segregation into two different spermatids and, finally, in two different sperm nuclei. Therefore, the 2n sperm of the tetraploids (Stöck, 2001a, for DNA content – Figure 2 in Stöck et al., 2002) contained only one

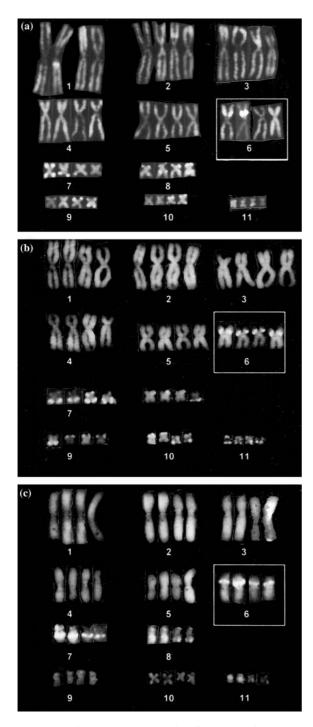


Figure 7. 4n karyotypes. (a–c): Q-banding. (a): Bufo oblongus oblongus (Iran, Birjand), (b): B. pewzowi pewzowi (China, Kashgar), (c): B. pewzowi taxkorensis (China, Taxkurgan).

NOR-signal (Figure 4e), whereas somatic nuclei and spermatogonia showed two NOR-signals after 18S + 28S rDNA *in situ* hybridization.

Phylogenetic inference

Of the 815 characters, 504 were invariant, 80 of the variable characters were parsimony-informative, and 231 uninformative. Because likelihood settings (as those in MrBayes) do not allow using gaps in the sequences as taxonomic characters and had to be treated as 'missing data', the maximum likelihood (ML) and Bayesian tree (MB; Figure 9) trees shows slightly less resolution than the MP tree. However, general topology of ML and MB trees are very similar to the MP tree. A heuristic search resulted in 5 most parsimonious trees of which we show the strict consensus tree (MP; Figure 9).

The CA-4n from Kashgar (B. pewzowi pewzowi) and Taxkurgan (B. p. taxkorensis) form a weakly supported clade. Specimens from Issyk Kul (B. p. unicolor), where 4ns occur exclusively (Borkin, 1989), form a well-supported clade. Tetraploids from Nuratau (B. pewzowi ssp.) show some variation and appear not very distinct from those from Kashgar and Taxkurgan, and the single sample from E-Tian Shan (B. pewzowi strauchi). The single 2n toad from Bishkek is geographically close to all these 4n-taxa; however, its mitochondrial genotype is slightly distinctive from them. The WCA-4ns cluster in three well supported subclades. Haplotypes of Bufo o. oblongus from Birjand, a region where 4ns may occur exclusively, are different from those of all remaining 4ns, including 4ns from Danata (B. o. danatensis). However, the two 4n individuals from the latter locality each exhibit a common haplotype with individuals from close (<300 km) populations of 2ns (Gorgan, Gonbad, Ashkhabad). Sequences of both 4n individuals from Bolshoi Balkhan are very distinctive. Haplotypes of 2ns (B. viridis kermanensis) in the West of the Central Iranian deserts are strongly differentiated from both 2n and the 4ns in Eastern Iran.

Discussion

Cytogenetic inference

Chromosome morphology

General chromosome morphology corresponds with results from 2n B. viridis reported earlier (Beccari, 1926; Stohler, 1927; Ullerich, 1966;

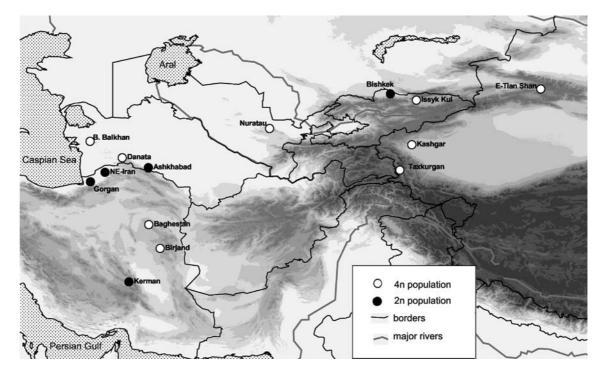
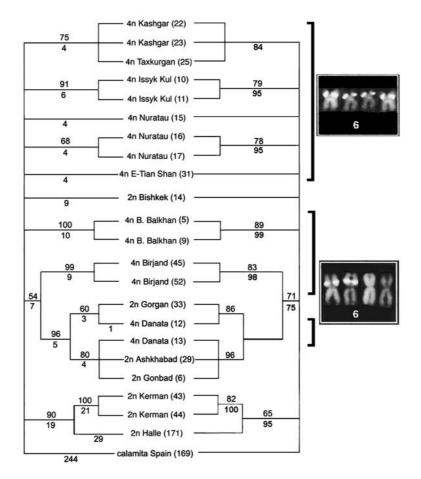


Figure 8. Map of Central Asia and parts of the Middle East with localities described in Table 1 and text.

Birstein, 1981; Bogart, 1972; Roth & Ráb, 1987; Schmid, 1978). The conventionally-stained 4*n* karyotypes reported by several authors (Mazik, Kadyrova & Tokotosunov, 1976; Pisanets, 1978; Borkin et al., 1986a, b; Toktosunov, 1984; Orlova & Uteshev, 1986; Roth & Ráb, 1986, 1987; Wu & Zhao, 1987; Borkin & Kuzmin, 1988; 1991; Stöck, 1998; 2001; Stöck et al., 2001a) show consistent size differences within quartets. However, these stains are not sensitive enough to reveal any taxonomic differences among them and do not allow further comparison with our data.

Nucleolar organizing regions


Since silver staining only marks NORs that were active in the preceding interphase, we also applied in situ hybridization (18S + 28S rDNA) and distamycin A/mithraycin, both sensitive to inactive NORs (e.g., Schmid & Guttenbach, 1988). Our findings were consistent across all three methods. NOR length polymorphism reflects intraspecific (and even individual) variation as frequently demonstrated in higher Urodela, Anura (ref. in Schmid, Vitelli & Bastoni, 1987) and 3*n Bufo pseudoraddei baturae* (Stöck, 2001; Stöck et al., 2002). In mammals, the relative amount of rDNA,

as revealed by in situ hybridization, determines its level of expression, as detected by silver staining, and also its probability of becoming active (Zurita et al., 1998, 1999); however, in green toads inactive NORs have never been found. While variation in position and numbers of NORs is known in 4n Hyla versicolor (Wiley et al., 1989, 2000), and among different 4n Neobatrachus (Mahoney & Robinson, 1980; Mahoney & Roberts, 1986), terminal NOR positioning on chromosome 6 appears constant in all three ploidy levels in the B. viridis subgroup. Also, in 2n Bufo latastii, the NOR-carrying chromosome 5 appears morphologically homologous to chromosome 6 in all other green toads (Stöck et al., 2001b). If this is true, no switch of the NOR to a different B. latastii chromosome would have happened, and NOR position may be invariable in the whole B. viridis subgroup.

Unusual additional Q-bands in single chromosomes of Western Central Asian tetraploids

Whether this observation (i) reflects an ancestral polymorphism or (ii) is evidence for genome evolution in progress, or (iii) may be a sign of hybridization as common mtDNA sequences of 2*n*s and 4*n*s suggest, remains to be examined (see below).

266

Figure 9. Phylogenetic trees, 815 characters of mtDNA control region, 21 2n and 4n toads of the Eurasian *Bufo viridis* subgroup (*B. calamita* = outgroup). Left: Consensus of the five MP trees with bootstrap values for 10,000 pseudoreplicates, above, and numbers of changes below branches; right: ML tree with bootstrap values for 100 pseudoreplicates above and posterior probabilities of Bayesian analysis; further right: Q-banded chromosome 6 of 4n karyotypes above *B. pewzowi* and related CA-4n, below *B. oblongus* and related WCA-4n. For locality names see Figure 8 and Table 1; after locality name (in parentheses) individual sample number.

Telomeres

The telomere sequence consists of repetitive $(TTAGGG)_n$ in all vertebrates (Meyne, Ratliff & Moyzis, 1989). Application of telomere probes to 4n toads suggests the absence of (i) chromosome fusion of ancestral species or (ii) amplification of retained stretches (latent telomeres) of the tandem $(TTAGGG)_n$ sequence originating from ancestral karyotypes. However, our fluorescence *in situ* hybridization (FISH) technique may not be sensitive to inserts shorter than 1 kb (Schmid et al., 2002). Interstitial telomeric sequences were described, for example, in the 4n Hyla versicolor (Meyne et al., 1990; Wiley et al., 2000). In amphibians, telomeric DNA fragments may vary in size between tissues

and individuals as reported in *Xenopus* (Bassham, Beam & Shampay, 1998), but in green toads we only examined preparations from single bone marrow cells.

Indications for diploidization in tetraploids and comparisons with other polyploid anurans

The presence of only two NORs in all 4n toads demonstrates loss of rRNA genes (= of rDNA) as a sign of diploidization, regardless of their allo- or autopolyploid origin (see below). (Re-)Diploidization has been considered important for stabilizing new gene loci created by duplication events (Ohno, 1970; Schmid, Haaf & Schempp, 1985). Polyploidy may make possible 'myriads of genetic interactions' as Wendel (2000) recently reviewed for plants and Mable (2004) and Gregory and Mable (2005) showed for animals.

In anurans, diploidization has various consequences and evolutionary stages. While haemoglobin and RNA content, as well as lactate dehydrogenase activity showed equal levels in 2nand 4n Odontophrynus (Becak & Pueyo, 1970; Becak & Goissis, 1971), 4n nuclei exhibited four active NORs, which were not (yet) reduced as they would be after complete diploidization (Schmidtke, Becak & Engel, 1976). Although nuclei of 4n Hyla versicolor have twice as much DNA as 2n H. chrysoscelis, Bachmann and Bogart (1975) found that 4n cells contained less than twice the amount of RNA, histones, and proteins found in the 2ns, and NOR number in 4n nuclei varies from three to four (Cash & Bogart, 1978) or one to four (Wiley et al., 1989). Mahony and Robinson (1980) observed a similar reduction of NORs in the 4n Neobatrachus kunapalari (Mahony & Roberts, 1986). Schmid, Haaf, and Schempp (1985) showed diploidization by loss of up to four NORs per octet in 8n Ceratophrys ornata. The presence of only two NORs was interpreted as an indication of strong diploidization in ancient 4nXenopus laevis (Schmid & Steinlein, 1991).

Allopolyploidy or autopolyploidy of the tetraploid karyotypes

Our data on WCA-4n suggest allopolyploidy, and possibly autoploidy in CA-4n. However, this is no final solution for the auto-/allopolyploid controversy. While Mezhzherin and Pisanets (1990, 1995a, b) argued for a allopolyploidy of 4n green toads using allozymes, conventional karyology (Roth, 1986; Roth & Ráb, 1986), isozymes (Borkin et al., 1986a; Lattes A., 1997, Abstr. 3rd World Congr. Herpetol., Prague: p. 123) and cytometry (Kudryavcev et al., 1988) suggested autoploidy of certain 4ns. Some supporters of autotetraploidy exclusively examined toads from the range of CA-4n (uniform Q-bands): Borkin et al. (1986a) studied toads from Mongolia, Lattes (1997) from Kyrgyzstan, and Kudryavcev et al. (1988) from Tashkent (Uzbekistan). The latter found protein and RNA content per cells in 4ns is twice that of 2ns, and concluded auto- rather than alloploidy. However, Mezhzherin and Pisanets (1990, 1995a, b), who studied allozymes presumably in WCA-4n and CA-4n toads only detected alloploids. Theory predicts (e.g., Roth & Ráb, 1986) that autotetraploids relative to allotetraploids, experience stronger selective pressure leading to fast diploidization, including a molecularly divergent development of similar or identical chromosomes. Bivalents then may quickly replace initial tetravalents during meiosis I to prevent deleterious effects in segregation. In fact, only bivalents and one pair of homologous NORs were observed in both groups of 4n toads, so neither allo- nor autoploidy is clearly supportable.

Evolutionary and taxonomic implications

The Q-banding differences showed the evolutionarily and taxonomically most meaningful finding: two groups of 4ns, each with fundamental karyological characters: (i) CA-4n taxa including toads from Nuratau (B. pewzowi ssp.), Issyk-Kul (B. pewzowi unicolor), Kashgar (B. pewzowi pewzowi) and Taxkurgan (B. pewzowi taxkorensis) have uniformly Q-banded quartets, and (ii) WCA-4n, including 4ns from Birjand (B.o. oblongus), Danata (B. oblongus danatensis), and the unnamed form from Bolshoi Balkhan show Q-banded karyotypes easily divisible into chromosome pairs. Evidence from flow cytometry (Borkin et al., 1986b, 2001a), isozymes (Mezhzherin & Pisanets, 1995a, b) and morphology (Stöck, 1997, some present karyotypes stem from these toads) also suggested the occurrence of at least two groups of 4n toads in Central Asia (details: Stöck et al., 2001b: 269). Since cytogenetic techniques are only 'appropriate under limited circumstances' (Hillis, Mable & Moritz, 1996) to resolve intraspecific geographic variation, differences indicate interspecific differentiation or at least reproductive isolation (e.g. in allopatry). Consequently, Q-banding differences and aforementioned data may reflect more than intraspecific variation but species-level distinctiveness between WCA-4n [Bufo oblongus Nikolsky, 1896 (Nikolsky, 1896, 1897)] and CA-4n (Bufo pewzowi Bedriaga, 1898), each probably showing further divergence according to our mtDNA data.

Phylogenetic inference

Common mtDNA haplotypes in diploids and tetraploids in Turkmenistan and Iran

The pattern of common mtDNA haplotypes in 2ns and 4ns may be explained by either (i) a close common maternal ancestor of 2ns and 4ns in NE-Iran and Western Turkmenistan or (ii) by

introgression of mtDNA between the gene pools of 2ns and 4ns. Under scenario (i), both the mitochondrial haplotype and the Q-banding positive karyotype of the 2ns would represent the maternal ancestor of WCA-4n. These are considered allopolyploids which received their second, O-banding negative, genome from an unknown paternal ancestor. In the case of (ii), hybridization between 2n and 4n toads leading to fertile offspring is required. Triploids are reported from one of our localities (Danata; Pisanets, 1978). Stöck et al. (2002) found other fertile triploids in the B. viridis subgroup. In addition, unreduced gametes in 2n toads may sometimes occur (e.g. Bogart, 1972), fusion of these 2n gametes with 2n gametes of 4ns (Stöck et al., 2002) may sometimes lead to 4n offspring. Scenario (ii) is also more likely, because 4ns from Danata only have a different mtDNA haplotype but share the karyotype characteristics and morphology with 4ns from Birjand. However, more samples must be examined before we can definitively distinguish between these scenarios.

Multiple origins of tetraploid green toads

Our phylogenetic trees are an initial hypothesis. Inferring phylogeny from mtDNA, which is not always exclusively maternally inherited and may include ancient lineage sorting (see the recent review by Ballard & Whitlock, 2004), is especially problematic in allopolyploid taxa, because several evolutionary scenarios (hybridization events) can result in the same tree (e.g. Kobel et al., 1998; Evans et al., 2004; cf. Alves, Coelho & Collares-Pereira, 2001). However, the mitochondrial information combined with the karyotype data supports the hypothesis that at least two tetraploidization events may have taken place with further differentiation caused by geographic isolation.

At least two origins of 4ns were also inferred in *Hyla versicolor* (Ptacek, Gerhardt & Sage, 1994) and in *Neobatrachus* (Mable & Roberts, 1997) and more complicated evolutionary scenarios with multiple origins followed by further differentiation appear possible in green toads. This is especially apparent in light of the current knowledge about genome evolution in polyploid plants (e.g. Soltis & Soltis, 1999; Wendel, 2000; Mable, 2003). For a comprehensive understanding of the evolution of the *B. viridis* subgroup, molecular data from the entire Palearctic range appear crucial and such a study is in preparation.

Acknowledgements

We thank Gitta Hesse, Würzburg, for photographic assistance; special thanks to Ute Hornung, Brigitta Wilde, and Wolfgang Feichtinger, Würzburg, for help in the laboratory, Vance T. Vredenburg and Natalia Belfiore, Berkeley, and two anonymous reviewers for helpful comments on the manuscript, and Robert Hijmans, Berkeley, for cartographic support. Responsible authorities in China, Iran, Kyrgyzstan, Turkmenistan, and Uzbekistan, kindly provided permissions for collection of green toads. This work was supported by a research fellowship (Sto 493/1) from the Deutsche Forschungsgemeinschaft (DFG) to M.St.

References

- Alves, J.M., M.M. Coelho & M.J. Collares-Pereira, 2001. Evolution in action through hybridization in an Iberian freshwater fish: a genetic review. Genetica 111: 375–385.
- Bachmann, K. & J.P. Bogart, 1975. Comparative cytochemical measurements in the diploid–tetraploid species pair of hylid frogs *Hyla chrysoscelis* and *H. versicolor*. Cytogen. Cell Gen. 15: 186–194.
- Ballard, J.W.O. & M.C. Whittlock, 2004. The incomplete natural history of the mitochondria. Mol. Ecol. 13: 729–744.
- Bassham, S., A. Beam & J. Shampay, 1998. Telomere variation in *Xenopus laevis*. Mol. Cell. Biol. 18(1): 269–275.
- Becak, W. & G. Goissis, 1971. DNA and RNA content in diploid and tetraploid amphibians. Experientia 27: 345–346.
- Becak, W. & M.T. Pueyo, 1970. Gene regulation in the polyploid amphibian *Odontophrynus americanus*. Exp. Cell. Res. 63: 448–451.
- Beccari, N.,1926. Le nombre des chromosomes dans les cellules genitales de *Bufo viridis*. CR Assoc. Anat. 21 (Liege 29–31. III.).
- Birstein, V.Ya., 1981. Osobennosti differencialnikh okrasok khromosom Anura na primere khromosom nekototrikh vidov *Rana* i *Bufo*. Zool. Zhurn. 60(2): 246–256 (in Russian).
- Bogart, J.P., 1972. Karyotypes, pp. 171–232 edited by W.F. Blair. Univ. Texas Press, Austin, TX.
- Borkin, L.Ya., 1989. Über den Fund einer albinotischen Kaulquappe der tetraploiden Krötenart Bufo danatensis Pisanetz, 1978 aus dem Issyk-Kul'-See, Kirgisien. Salamandra 25: 122–124.
- Borkin, L.Ya., 1999. Distribution of amphibians in North Africa, Europe, and the former Soviet Union, pp. 329–420 W.E. Duellman. J. Hopkins University Press, Baltimore, MD.
- Borkin, L.Ya., Ch. Terbish & I.A. Caune, 1986a. Tetraploidnaya i diploidnye populyacii zhab gruppy *Bufo viridis* iz Mongolii. Doklady Akademii Nauk SSSR 287: 760–764 (in Russian).
- Borkin, L.Ya., I.A. Caune, E.M. Pisanets & Y.M. Rozhanov, 1986b. Karyotype and genome size in the *Bufo*

viridis-group, pp. 137–141 in Studies in Herpetology, edited by Z. Rocek. Proceed., 6th Ord. Gen. Meet. Soc. Eur. Herp., Prague.

- Borkin, L.Ya. & S.L. Kuzmin, 1988. [Amphibians of Mongolia, species account] pp. 30–197 in Amphibians and Reptiles of Mongolian Peoples Republic, General problems, edited by E.I. Vorob'eva & I.S. Darevski. Moskva, Nauka (in Russian).
- Borkin L.Ya., J.M. Rozanov & S.N Litvinchuk ('2000') 2001a. Nuclear DNA content in some green toads (*Bufo viridis* complex) of Turkey and Iran. Russ. J. Herp. 7(3): 171–180.
- Borkin, L.Ya., V.K. Eremchenko, N. Helfenberger, A.M. Panfilov & J.M Rozanov, 2001b. On the distribution of diploid, triploid and tetraploid green toads in south-eastern Kazakhstan. Russ. J. Herpetol. 8(1): 45–53 [see also Erratum in vol. 8(3): 246].
- Cash, M.N. & J.P. Bogart, 1978. Cytological differentiation of the diploid–tetraploid species pair of North American treefrogs (Amphibia, Anura, Hylidae). J. Herpetol. 12(4): 555–558.
- Cavallo, D., R. de Vita, P. Eleuteri, L. Borkin, V. Eremchenko, G. Odierna & E. Balletto, 2002. Karyological and flow cytometric evidence of triploid specimens in *Bufo viridis* (Amphibia, Anura). Eur. J Histochem. 46: 159–164.
- Eiselt, J. & J.F. Schmidtler, 1973. Froschlurche aus dem Iran unter Berücksichtigung ausseriranischer Populationsgruppen. Ann. Naturhist. Mus. Wien. 77: 181–243.
- Evans, B.J., D.B. Kelley, R.C. Tinsley, D.J. Melnick & D.C. Cannatella, 2004. A mitochondrial DNA phylogeny of African clawed frogs: phylogeography and implications for polyploid evolution. Mol. Phylogen. Evol. 33: 197–213.
- Fei, Liang, Ye Chang Yuan, Huang Yong Zhao & Chen Xiao Nuan, 1999. Taxonomic studies on *Bufo viridis* from west China (Amphibia: Anura). Zool. Res. 20(4): 294–300.
- Goebel, A.M., J.M. Donelly & M.E. Atz, 1999. PCR-primers and amplification methods for 12S ribosomal DNA, the control region, cytochrome oxidase I, and cytochrome b in bufonids and other frogs, and an overview of PCR primers which have amplified DNA in amphibians successfully. Mol. Phylogen. Evol. 11(1): 163–199.
- Goodpasture, C. & S.E. Bloom, 1975. Visualization of nuleolar organizer regions in mammalian chromosomes using silver staining. Chromosoma (Berl.) 53: 37–50.
- Gregory, T.R. & B.K. Mable, 2005. Polyploidy in animals, pp. 428–501 edited by T.R. Gregory. Elsevier, Amsterdam.
- Hasegawa, M., H. Kishino & T.A. Yano, 1985. Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22: 160–174.
- Hemmer, H., J.F. Schmidtler & W. Böhme, 1978. Zur Systematik zentralasiatischer Grünkröten (*Bufo viridis –* Komplex) (Amphibia, Salientia. Bufonidae). Abh. Mus. Tierkd. Dresden 34: 349–384.
- Hillis, D.M., B.K. Mable & C. Moritz, 1996. Applications of molecular systematics: the state of the field and a look to the future, pp. 515–54 in Molecular Systematics, edited by D.M. Hillis C. Moritz & B.K. Mable, 2 edition. Sinauer, Sunderland.
- Huelsenbeck, J.P. & F. Ronquist, 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8): 754– 755.

- Kobel, H.R., B. Barandun & C.H. Thiebaud, 1998. Mitochondrial rDNA phylogeny in *Xenopus*. Herp. J. 8: 13–17.
- Kudryavcev, B.N., V.V. Ni., L.Ya. Borkin & L.V. Solov'eva, 1988. Soderzhanie RNK i belka v kletkakh diploidnych i tetraploidnykh zhab gruppy *Bufo viridis*. Citologia 11: 1324–1331 (in Russian).
- Laurenti, J.N., 1768. Specimen medicum, exhibens synopsin *Reptilium emendatum* cum experimentis circa venena et antidota *Reptilium austriacorum*. Joan. Thom. Nob. de Trattern, Viennae, 215 pp.
- Mable, B.K., 2003. Breaking down taxonomic barriers in polyploidy research. Trends Plant Sci. 8(12): 582–590.
- Mable, B.K., 2004. 'Why polyploidy is rarer in animals than in plants': myths and mechanisms. Biol. J. Linn. Soc. 82: 453–466.
- Mable, B.K. & J.D. Roberts, 1997. Mitochondrial DNA evolution in the genus *Neobatrachus* (Anura: Myobatrachidae). Copeia 1997(4): 680–689.
- Mahony, M.J. & J.D. Roberts, 1986. Two new species of desert burrowing frogs of the genus *Neobatrachus* (Anura: Myobatrachidae) from Western Australia. Rec. West. Austral. Mus. 13(1): 155–170.
- Mahony, M.J. & E.S. Robinson, 1980. Polyploidy in the Australian leptodactylid frog genus *Neobatrachus*. Chromosoma (Berl.) 81(2): 199–212.
- Mazik, E.Yu., B.K. Kadyrova & A.T. Tokotosunov, 1976. Osobennosti kariotipa zelenoi zhaby (*Bufo viridis*) v Kirgizii. Zool Zhurn 55: 1740–1742 (in Russian).
- Mezhzherin, S.V. & E.M. Pisanets, 1990. Geneticheskaya struktura i proischozhdenie aziatskikh poliploidnikh zhab *Bufo danatensis* Pisanets 1978. Doklady Akad. Nauk Ukrainskoi SSR, Ser. B, Geol., khim i biolog. nauki 8: 71–73 (in Russian).
- Mezhzherin, S.V. & E.M. Pisanets, 1995a. Genetic structure and origin of the tetraploid toad *Bufo danatensis* Pisanets, 1978 (Amphibia, Bufonidae) from Central Asia: description of biochemical polymorphism and comparision of heterozygosity levels in diploid and tetraploid species. Genetika 31: 43–53 (in Russian).
- Mezhzherin, S.V. & E.M. Pisanets, 1995b. Genetic structure and origin of the tetraploid toad *Bufo danatensis* Pisanets, 1978 (Amphibia, Bufonidae) from Central Asia: differentiation of geographic forms and genetic relationship between diploid and tetraploid species. Genetika 31: 342–352 (in Russian).
- Meyne, J., R.L. Ratliff & R.K. Moyzis, 1989. Conservation of the human telomere sequence (TTAGGG)_n among vertebrates. Proc. Natl. Acad Sci. USA 86: 7049–7053.
- Meyne, J., R.J. Baker, H.H. Hobbart, T.C. Hsu, O.A. Ryder, O.G. Ward, J.E. Wiley, D.H. Wurster-Hill, T.L. Yates & R.K. Moyzis, 1990. Distribution of non-telomeric sites of the (TTAGGG)_n telomeric sequence in vertebrate chromosomes. Chromosoma (Berl.) 99: 3–10.
- Morgan, G.T., H.C. Macgregor & A. Colman, 1980. Multiple ribosomal gene sites revealed by it *in situ* hybridization of *Xenopus* rDNA to *Triturus* lampbrush chromosomes. Chromosoma (Berl.) 80: 309–330.
- Nikolsky, A.M., 1896. Diagnoses reptilium et amphibiorum in Persia orientali a N. Zarudny collectorum. Ann. Mus. Zool. Acad. Imp. Sci. St Petersburg 1: 369–372.

- Nikolsky, A.M., 1897. Presmykajushchiyasya, amfibii i ryby, sobrannyya N. Zarudnym 'v' vostochnoi Persii. Ann. Mus. Zool. Acad. Imp. Sci. St Petersburg 2: 306–361 (in Russian).
- Nylander, J.A.A., 2004. MrModeltest 2.0. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
- Ohno, S., 1970. Evolution by Gene Duplication. Springer, Berlin.
- Otto, F.J., 1994. High resolution analysis of nuclear DNA employing the fluorochrome DAPI, pp. 211–217 in Methods in Cell Biology, edited by Z. Darzynkiewicz, J.P. Robinson & H.A. Crissman. Academic Press, San Diego.
- Orlova, V.F. & V.K. Uteshev, 1986. The tetraploid toad of the Bufo viridis group from Dzungarian Gobi, Mongolia, pp. 143–146 Z. Rocek. Proceed. 6th Ord. Gen. Meet. Soc. Europ. Herp., Prague.
- Pisanets, E.M., 1978. O novom poliploidnom vide zhab *Bufo* danatensis Pisanets. sp. n. iz. Turkmenii. Doklady Akad. Nauk Ukrainskoi SSR, Ser. B, geol., chim. i biolog. nauki 3: 280–284 (in Russian).
- Pisanets, E.M., 1991. Novye dannye po kariologii *Bufo viridis* complex (Amphibia, Bufonidae) i voprocy proischozhdeniya aziatskikh tetraploidnykh zhab. Herp. Res. 1: 41–50 (in Russian).
- Posada, D. & K.A. Crandall, 1998. Modeltest: testing the model of nucleotide substitution. Bioinformatics 14: 817–818.
- Ptacek, M.B., H.C. Gerhardt & R.D. Sage, 1994. Speciation by polyploidy in treefrogs: multiple origins of the tetraploid, *Hyla versicolor*. Evolution 48(3): 898–908.
- Roth, P., 1986. An overview of the systematics of the *Bufo* viridis group in Middle and Central Asia, pp. 127–130 in Studies in Herpetology edited by Z. Rocek. Proceed. 6th Ord. Gen. Meet. Soc. Europ. Herp., Prague.
- Roth, P. & P. Ráb, 1986. Karyotype analysis of the *Bufo viridis*group: systematic implications, pp. 131–136 in Studies in Herpetology edited by Z. Rocek. Proceed. 6th Ord. Gen. Meet. Soc. Europ. Herp., Prague.
- Roth, P. & P. Ráb, 1987. Sequential chromosome banding studies in the natterjack toad, *Bufo calamita*, pp. 335–338 in Proceed. 4th Ord. Gen. Meeting Soc. Europ. Herpetol., edited by J.J van Gelder, H. Strijbosch & P.J.M. Bergers. Nijmegen, The Netherlands.
- Schmid, M., 1978. Chromosome banding in Amphibia. I. Constitutive heterochromatin and nucleolus organizer regions in *Bufo* and *Hyla*. Chromosoma (Berl.) 66: 361–388.
- Schmid, M., 1980. Chromosome evolution in amphibia. pp. 4–27 in Cytogenetics of Vertebrates edited by H. Müller. Birkhäuser. Basel.
- Schmid, M. & M. Guttenbach, 1988. Evolutionary diversity of reverse (R) fluorescent chromosome bands in vertebrates. Chromosoma (Berl.) 97: 101–114.
- Schmid, M. & C. Steinlein, 1991. Chromosome banding in Amphibia XVI High-resolution replication banding patterns in *Xenopus laevis*. Chromosoma (Berl.) 101: 123–132.
- Schmid, M., T. Haaf, B. Geile & S. Sims, 1983. Chromosome banding in Amphibia VIII. An unusual XY/XX-sex chromosome system in *Gastrotheca riobambae* (Anura, Hylidae). Chromosoma (Berl.) 88: 69–82.
- Schmid, M., T. Haaf & W. Schempp, 1985. Chromosome banding in Amphibia IX. The polyploid karyotypes of

Odontophrynus americanus and Ceratophrys ornata (Anura, Leptodactylidae). Chromosoma (Berl.) 91: 172–184.

- Schmid, M., L. Vitelli & R. Bastoni, 1987. Chromosome banding in Amphibia XI. Constitutive heterochromatin, nucleolus organizers, 18S+28S and 5S ribosomal RNA genes in Ascaphidae, Pipidae, Discoglossidae, and Pelobatidae. Chromosoma (Berl.) 95: 271–284.
- Schmid, M., C. Steinlein, W. Feichtinger & M. Poot, 1993. Chromosome banding in Amphibia XVIII. Karyotype evolution and genome size variation in *Pleuroderma* (Anura, Leptodactylidae). Cytogen. Cell. Genet. 62: 42–48.
- Schmid, M., C.G. Ziegler, C. Steinlein, I. Nanda & T. Haaf, 2002. Chromosome banding in Amphibia XXIV. The B chromosomes of *Gastrotheca espeletia* (Anura, Hylidae). Cytogen. Genome Res. 97: 205–218.
- Schmidtke, J.W., W. Becak & W. Engel, 1976. The reduction of genic activity in the tetraploid amphibian *Odontophrynus americanus* is not due to loss of ribosomal RNA. Experientia 32: 27–28.
- Soltis, D.E. & P.S. Soltis, 1999. Polyploidy: origins of species and genome evolution. Trends Ecol. Evol. 9: 348–352.
- Stöck, M., 1997. Untersuchungen zur Morphologie und Morphometrie di- und tetraploider Grünkröten (*Bufo viridis*– Komplex) in Mittelasien (Amphibia: Anura: Bufonidae). Zool. Abh. Staatl. Mus. Tierkd. Dresden 49: 193–222.
- Stöck, M., 1998. Tetraploid toads (*Bufo viridis* complex) from north-western China and preliminary taxonomic conclusions for *Bufo nouettei* Mocquard, 1910. Z. Feldherp. (Bochum) 5: 139–166.
- Stöck, M. 2001 Polyploidy and speciation in the Asian Bufo viridis complex. Thesis, Martin-Luther-Univ. Halle-Wittenberg, Dept. Biology [Microedition (in English): Polyploidie und Artbildung im asiatischen Bufo viridis – Komplex. Haensel-Hohenhausen AG, Frankfurt/M., New York, ISBN 3-8267-2763-0].
- Stöck, M., M. Schmid, C. Steinlein & W.-R. Grosse, 1999. Mosaicism in somatic triploid specimens of the *Bufo viridis* complex in the Karakoram with examination of calls, morphology and taxonomic conclusions. Ital. J. Zool. (Modena) 66(3): 215–232.
- Stöck, M., D. Frynta, W.-R. Grosse, C. Steinlein & M. Schmid, 2001a. A review of the distribution of diploid, triploid and tetraploid green toads (*Bufo viridis* complex) in Asia including new data from Iran and Pakistan. Asiatic Herpetol. Res. (Berkeley) 9: 77–100.
- Stöck, M., R. Günther & W. Böhme, 2001b. Progress towards a taxonomic revision of the Asian *Bufo viridis* group: Current status of nominal taxa and unsolved problems (Amphibia: Anura: Bufonidae). Zool. Abh. Staatl. Mus. Tierkunde Dresden 51: 253–319.
- Stöck, M., D.K. Lamatsch, C. Steinlein, J.T. Epplen, W.-R. Grosse, R. Hock, T. Klapperstück, K.P. Lampert, U. Scheer, M. Schmid & M. Schartl, 2002. A bisexually reproducing all-triploid vertebrate. Nature Gen. 30(3): 325–328.
- Stohler, R., 1927. Die Chromosomen der mitteleuropäischen Kröten (*Bufo viridis* Laur., *B. calamita* Laur. und *B. vulgaris* Laur.). Biol. Zentralbl. 47(1): 695–702.
- Toktosunov, A.T., 1984. Ecological basis of altitude adaptation of the vertebrates of Tian-Shan. Nauka, Leningrad (in Russian).

- Swofford, D.L., 2002. PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, MA.
- Ullerich, F.H., 1966. Karyotyp und DNS-Gehalt von Bufo bufo, B. viridis, B. bufo × B. viridis und B. calamita (Amphibia, Anura). Chromosoma 18: 316–342.
- Wendel, J.F., 2000. Genome evolution in polyploids. Plant. Mol. Biol. 42: 225–249.
- Wiley, J.E., M.L. Little, M.A. Romano, D.A. Blount & G.R. Cline, 1989. Polymorphism of the 18S and 28S rRNA genes on the chromosomes of the diploid–tetraploid treefrogs *Hyla chrysoscelis* and *H. versicolor*. Chromosoma (Berl.) 97: 481–487.
- Wiley, J.E. & M.L. Little, 2000. Replication banding patterns of the diploid-tetraploid treefrog *Hyla chrysoscelis* and *H. versicolor*. Cytogen. Cell Gen. 88(1–2): 11–14.

- Wu Min & Zhao Yajiang, 1987. A preliminary study of the karyotype of *Bufo viridis* Laurenti in Xinjiang. Zool. Res. (Kunming) 8(4): 339–342 (in Chinese with English summary).
- Zurita, F., R. Jimenez, M. Burgos & R. Diaz de la Guardia, 1998. Sequential silver staining and *in situ* hybridization reveal – a direct association between rDNA levels and the expression of homologous nucleolar organizing regions: a hypothesis for NOR structure and function. J. Cell Sci. 111: 1433–1439.
- Zurita, F., R. Jimenez, R. Diaz de la Guardia & M. Burgos, 1999. The relative rDNA content of a NOR determines its level of expression and its probability of becoming active. A sequential silver staining and *in-situ* hybridization study. Chromosome Res. 7(7): 563–570.