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Neighborhood Prior Model for Multiple Atlas
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Abstract—In medical imaging, merging automated segmen-
tations obtained from multiple atlases has become a standard
practice for improving the accuracy. In this letter, we propose
two new fusion methods: “Global Weighted Shape-Based Aver-
aging” (GWSBA) and “Local Weighted Shape-Based Averaging”
(LWSBA). These methods extend the well known Shape-Based
Averaging (SBA) by additionally incorporating the similarity in-
formation between the reference (i.e., atlas) images and the target
image to be segmented. We also propose a new spatially-varying
similarity-weighted neighborhood prior model, and an edge-pre-
serving smoothness term that can be used with many of the existing
fusion methods. We first present our new Markov Random Field
(MREF) based fusion framework that models the above mentioned
information. The proposed methods are evaluated in the context of
segmentation of lymph nodes in the head and neck 3D CT images,
and they resulted in more accurate segmentations compared to
the existing SBA.

Index Terms—Atlas-based segmentation, label fusion, medical
imaging, MRF, SBA.

I. INTRODUCTION

N recent years, fusion methods that merge segmentations

obtained from multiple atlases (i.e., reference images) have
gained significant attention in medical imaging [1], [2]. Multi
atlas methods are found to provide more accurate and robust
results than single atlas based methods. The widely used fu-
sion methods include majority voting (MV) [2], global weighted
voting (GWYV) [2], [3], local weighted voting (LWV) [2]-[4],
STAPLE [5], and Shape Based Averaging (SBA) [1].
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MYV assigns for each pixel, a label that maximum number of
atlases agree on. GWYV, unlike MV, assigns a weight to the de-
cision of each atlas while counting its vote; the weight for each
atlas is determined globally, based on its similarity to the target
image. LWV is similar to GWV except that, not a single global
weight is assigned to the entire atlas; rather, for each pixel, an
individual weight is assigned based on the local similarity to the
corresponding pixel in the image to be segmented. Hence, GWV
and LWV can be seen as the natural extensions to MV. One
of the main problems with the aforementioned voting-based
methods is that, although the segmentations obtained from each
individual atlas are contiguous, the merged segmentations are
often fragmented, containing unwanted holes and islands [6].

SBA, when compared to voting-based methods, looks at the
fusion problem from a different perspective. It first computes
in all the transformed atlases, how “deep” (inside), or how “far-
away” (outside) a given pixel is from the contours of each label;
this is tracked using “Signed Euclidean Distance” (SED); it then
selects for each pixel a label that has the least resultant SED at
that pixel when summed up over all atlases. Please refer to [1]
for a pictorial illustration of this idea. SBA generally provides
more contiguous segmentations than the voting-based methods
[17; this is because, unlike voting-based methods, SBA is based
on the distances from each pixel to the contours of each label,
and thus, it implicitly includes the neighborhood information of
pixels.

Notice the parallels between the developments that took place
in voting-based fusion methods (i.e., starting from MV, to GW'V,
and to LWV) versus SBA: SBA has limitations similar to MV
in the sense that, both methods do not benefit from the infor-
mation regarding how similar the atlas and the target image are;
however, unlike GWV and LWV, no such extensions to SBA
are proposed in the literature for incorporating the similarity
information.

Finally, we notice that, from the transformed atlases, we can
actually extract some prior knowledge about the neighborhood
labels at each pixel, and for each possible label pair; however,
none of the above methods use this additional information. The
methods proposed in this letter are based on all the above men-
tioned observations.

The rest of the letter is organized as follows. In the next sec-
tion, we present the general MRF-based framework for label
fusion and the reformulation of SBA. Section III presents two
new fusion methods and a new neighborhood-prior model. In
Section IV, an evaluation of the methods in the context of lymph
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nodes segmentation is presented. Finally, conclusions are pre-
sented in Section V.

II. SHAPE-BASED AVERAGING (SBA)

In this section, we first present our MRF-based framework
for performing label fusion, and then reformulate the existing
SBA method for adapting it to the current context.

A. MRF-Based Fusion Framework

Let V' be the number of voxels in an image. Let Y}, denote the
label assigned to the pth voxel in the output image. Let Y be the
set containing labels assigned to each voxel in the output image,
ie,Y = {Y1, - Yy }. We will be formulating atlas fusion as
an energy minimization problem of the form:

Y* =arg H%/ill {Edata(y) + )\Esmooth(Y) +ﬁEneighbor (Y)} 5

ey
where the first term is a data term (unary term), and it should
be defined in such a way that it reaches to a minimum value
when the chosen fusion criteria has been met; the second term
is a smoothness term (pairwise term) that performs edge-pre-
serving smoothing of labels; the third term is a prior-informa-
tion term (pairwise term) that incorporates neighborhood priors
for each possible label combination. A and J are weighting pa-
rameters for the smoothness term and neighborhood prior term
respectively.

We now briefly describe how we solve the above optimiza-
tion problem. Each voxel in the target image is represented by
a vertex in a graph. Each possible label is represented by an ad-
ditional node, and these are typically called “terminals.” Each
of these terminals are connected to all vertices, and weights of
those edges are equal to the resulting data cost for that voxel
when it is assigned the label represented by that terminal. The
edges that connect a vertex to its neighboring vertices are called
“n-links,” and the weights of these n-links represent the costs
coming from the corresponding pairwise terms. With such con-
struction, the original problem is transformed into computing
a “minimum cost cut” on the graph. Methods like graph cuts
can be used for this purpose, provided that all the weights are
nonnegative.

Note that although energy formulations similar to the above
one were used previously [7] in performing segmentations using
individual atlases, it is for the first time such MRF-based en-
ergy minimization formulation is used for merging segmenta-
tions obtained from multiple atlases. The main contributions of
this letter are however modeling of the neighborhood prior term,
and introducing weighted measures for SBA.

In [6], we have shown how MV, GWV and LWV can be refor-
mulated to fit into the data term of the above formulation. Since
the original formulation of SBA [1] can result in negative values
as well, it cannot be directly used in the above framework. In
order to deal with this problem, we have proposed in [8] an ap-
proach based on shifting and thresholding the signed distance
values. However, such approach is not very elegant since it re-
quires additionally, careful selection of the threshold value, and
it is also not an exact equivalent to the original SBA formulation.
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We now present a new logistic function-based approach that re-
sults in not only an exact equivalent to original SBA formula-
tion, but also transforms the distances to nonnegative values.

B. Reformulation of SBA

Let N be the number of atlases. Let X7 represent the jth
input labeled image. Let uf)(l) represent the SED at pth voxel,
in X7, for label /. In the original formulation of SBA [1], for
each voxel p, it assigns independently, that label which results
in the minimum value of the following summation.

N
1 i
Y, = arg min Z; uz (1) 2)

N <4

J

As mentioned earlier, 71,-17; can take any real value, and hence,

Y, can be negative; the goal here is to map Y}, to nonnega-

tive values. Our following approach is primarily inspired by the

work of [9] where they use Logarithm Odds maps, in a different

context, for shape representation. The standard logistic function
P(.) that maps a variable Y, € Rto t, € (0, 1) is given by:

P(Y,) !

1 + exp(=Y,) @)

Notice that the above logistic function maps negative values
to the range (0, 0.5), zero to 0.5, and positive values to (0.5,
1). Hence, we propose to apply the above mentioned logistic
transformation to Y}, in order to fit the existing SBA method into
the data term of our MRF-based framework, and this results in
the following data term:

N

> up(l)

i=1

1 —
Edata(Y) = N Z P (4)
p=1

III. NEwW FUSION METHODS

This section presents the main contributions of this letter. We
first present two new fusion methods, and then present a new
neighborhood prior model that we propose to use along with
these methods.

A. Global Weighted Shape-Based Averaging (GWSBA)

As mentioned in Section I, SBA, similar to MV, does not
take into account any similarity information of the atlases to
the target image. Our goal here is, similar to GWYV, to scale
the contributions coming from various atlases in accordance to
their global similarity to the target image. This results in the
following data term:

(6))

where 47 is the normalized global weight assigned to the jth
atlas.

B. Local Weighted Shape-Based Averaging (LWSBA)

Notice that GWSBA assigns a single global weight for each
atlas as a measure of the similarity. However, although two im-
ages may differ significantly in some particular regions, it is
possible that they may be very similar in some other regions,
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and LWSBA is indeed based on this observation. Instead of as-
signing a single similarity measure for the entire image (like
in GWSBA), LWSBA computes similarity measure locally for
each voxel, within a specified neighborhood. So, except in the
computation of weight, LWSBA is similar to GWSBA, and thus,
the resulting data term of LWSBA is as follows:

NZP Zw SN

p=1

Edata

where u?f7 is the normalized local weight assigned to the jth
atlas, at the pth voxel.

We have noticed that in a very recent work [10], a geodesic
extension of SBA is proposed in the context of DTI tractography
that includes a similarity measure into SBA. However, the goals
and formulations of their work are different from our current
work. In addition, [10] does not incorporate any neighborhood
prior model that we are now going to present.

C. New Neighborhood Prior Model ( Epeighbor)

Let X, be the set of all voxels in the predefined neighborhood
of the pth voxel. Let |X,, | represent the cardinality of ¥,,. Let &(.)
is the standard Kronecker delta function. Let X g represent the
label assigned to the pth voxel in the th transformed atlas. The
neighborhood prior information that we propose in this letter is
as follows:

ZZ

p=1yEN,

Eneighbor pa q. va )/q), (7)

Ipl

where ((.) is a function that models neighborhood priors; if the
label Y}, never occurs at the pth voxel in any of the IV atlases,
then we set ¢ to oo; when it occurs at least once, then we define
¢ as follows:

To get an intuitive understanding of this formulation, notice that,
if we ignore the similarity weights (i.e., u“);;) for a moment, the
summation in the denominator of the above equation computes
the number of times the label Y, occurred at the pth voxel,
among all the IV atlases; in the same way, the summation in
the numerator computes the number of times Y, occurred at X
when Y, occurred at X 7 wJ is introduced to 51mp1y scale the
contrlbutlons coming from 1nd1V1dua1 atlases based on their re-
spective local similarities to the target image. Further, notice
that the value of the ratio of the summations in the above equa-
tion is always in the range [0, 1], and it’s value is maximum
when the output label pair (Y}, ¥, ) to be assigned coincides with
the label pair that occurred the most among the atlases, at (p, ¢)
voxels; hence, this ratio is subtracted from 1 in order to trans-
form it into an equivalent minimization problem.
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Finally, the standard edge-preserving Potts model is used as
the smoothness term since it preserves strong edges while pe-
nalizing for discontiguous label distributions; it is given by:

Esmooth

Vv
ZZ}% (1-8%.%). O

IV. RESULTS

The evaluations are performed in the context of segmentation
of lymph nodes in the 3D Head and Neck (H&N) CT images. 4
important lymph nodes are considered for automated segmenta-
tion: (i) [TA-Left, (i) IIA-Right, (iii) [IB-Left and (iv) IIB-Right.
The current database contains 13 images and among them, 8
images are considered for evaluating the fusion methods. The
atlases for each target image to be segmented are chosen using
the standard leave-one-out strategy, and thus, there are 12 at-
lases for each target image. The manual delineations of lymph
nodes done by an expert oncologist are considered as the ground
truth segmentations. Regarding the registration, all the 12 at-
lases are registered to each patient to be segmented. The reg-
istration procedure and the corresponding parameter values are
same as those used in [11].

While presenting the results, the methods that additionally
use the smoothness terms are denoted with a prime (’), and the
methods that use both the smoothness and the neighborhood
prior term are denoted with a double prime (7).

When using both the smoothness and the neighborhood prior
terms, we set the weighting parameters such that the smooth-
ness term has 40% of the relative weight given to the neighbor-
hood prior term (i.e., A = 0.4(3); A value for the voting-based
methods and the SBA-based methods is set to 0.5 and 3.0 re-
spectively. Note that the data term is a function of number of
votes for the voting-based methods, whereas it is a function of
distances for the SBA-based methods; hence, these two classes
of methods could require different scalings. All the above men-
tioned values are chosen empirically, based on visual inspec-
tions of the results for one of the images, and are not optimized
further. Finally, in order to get some understanding of how sen-
sitive are the results to the weighting parameters, we also present
results for an extreme case, where, only the pairwise terms (i.e.,
Ercighbor and Eqpootn) are used without any data term.

Fig. 1 shows, in one of the axial slices, the ground truth seg-
mentations and the results obtained from the SBA-based fu-
sion methods, both with and without the pairwise terms. The
quantitative evaluations are performed over the entire dataset,
using “Dice Similarity Metric” (DSM) and sensitivity; DSM
is a commonly used metric [11] that measures the percentage
of overlap between the ground truth and the automated seg-
mentations; sensitivity is a measure of under-segmentation that
computes the “true positive fraction” value. Fig. 2 presents box
plots of average DSM values for the results obtained from the
voting-based methods, SBA-based methods, and when using the
pairwise terms alone. Finally, Table I presents mean and stan-
dard deviations of average DSM and sensitivity.

It can be noted from the above results that the proposed
GWSBA and LWSBA methods have resulted in more accurate
segmentations than the existing SBA. For the SBA-based
methods, the inclusion of pairwise prior terms has significantly
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Ground Truth SBA SBA”

GWSBA

GWSBA” LWSBA LWSBA”

Fig. 1. H&N lymph nodes segmentations obtained from the SBA-based fusion methods in one of the axial slices.

DSM: Average

DSM [%]

Fig. 2. Box plots of average dice similarity metric computed across all four
lymph nodes.

TABLE 1
MEAN AND STANDARD DEVIATIONS OF AVERAGE DSM AND SENSITIVITY
VALUES ACROSS ALL FOUR LYMPH NODES

| || DSM | Sensitivity |
MV 60.5 +9 557 £ 13
MV’ 62.6 £ 8 61.0 + 12
Mv” 63.3 + 10 | 56.6 + 14
GWV 62.7 + 8 63.7 £ 11
GWV/ 64.0 £ 7 65.5 + 11
GWV/! 649 + 8 583 £ 11
LWV 66.6 = 6 65.7 + 10
LwV/ 679 £ 6 67.1 £ 10
LWV’ 642 +£9 573 £ 13
SBA 53.7 &£ 11 | 46.1 £ 13
SBA’ 453 £ 12 | 340 £ 13
SBA 62.8 £ 10 | 55.1 £ 13
GWSBA 582 +9 53.0 £ 11
GWSBA’ 524 £ 10 | 422 £ 11
GWSBA"' 63.1 =10 | 557 £ 13
LWSBA 60.7 £ 9 542 + 12
LWSBA'’ 542 + 10 | 435+ 13
LWSBA" 63.0 £ 10 | 555 £ 13
Ereighbor a0 Bomootn || 633 £ 10 | 559 £ 13

improved the results when compared to their counterparts that
do not use such prior information. Another interesting obser-
vation from these results is that, while there is a significant
difference among SBA, GWSBA and LWSBA in terms of
segmentation accuracy, all these methods resulted in similar
accuracy with the inclusion of neighborhood priors.

Among all the fusion methods, LWV’ provided the best seg-
mentation results. While the neighborhood prior term is found
to be useful for the SBA-based methods, it is not always the case
for the voting-based methods. Finally, notice that even when the
pairwise prior terms alone are used without any data term, the re-
sults are surprisingly good, and are not too far from the best seg-
mentation results obtained from LW V', It also means that when
fusion methods that include similarity information are used, the
exact weight to be given to the neighborhood prior term is not
very critical in obtaining good segmentation results. We further
evaluated the statistical significance of the above mentioned im-

provements using Wilcoxon signed-rank tests. It is found (at
0.05 significance level) that the improvements in DSM from
SBA to SBA”, from GWSBA to GWSBA”, from LWSBA to
LWSBA”, from SBA to GWSBA, and from SBA to LWSBA
are all statistically significant.

V. CONCLUSIONS

In this letter, we have presented two new label fusion methods
that extend the existing shape-based averaging (SBA) by addi-
tionally including the similarity information between the atlas
and the target images. The proposed methods have significantly
improved the accuracy when compared to the original SBA
method. We have also proposed an MRF-based neighborhood
prior model. The neighborhood prior model is found to be quite
useful for the SBA-based methods, and the difference among
these methods have become insignificant with the inclusion of
this term.
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