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SUMMARY

Concentration gradients regulatemany cell biological
and developmental processes. In rod-shaped fission
yeast cells,polar corticalgradientsof theDYRK family
kinase Pom1 couple cell length with mitotic commit-
ment by inhibiting amitotic inducerpositionedatmid-
cell. However, howPom1 gradients are established is
unknown. Here, we show that Tea4, which is normally
deposited at cell tips by microtubules, is both neces-
sary and, upon ectopic cortical localization, sufficient
to recruit Pom1 to the cell cortex. Pom1 then moves
laterally at the plasma membrane, which it binds
through a basic region exhibiting direct lipid interac-
tion. Pom1 autophosphorylates in this region to lower
lipid affinity and promote membrane release. Tea4
triggers Pom1 plasma membrane association by
promoting its dephosphorylation through the protein
phosphatase 1 Dis2. We propose that local dephos-
phorylation induces Pom1 membrane association
and nucleates a gradient shaped by the opposing
actions of lateral diffusion and autophosphorylation-
dependent membrane detachment.

INTRODUCTION

Concentration gradients regulate various cell biological and

developmental processes, ranging from mitotic spindle organi-

zation to body patterning. Biological gradients are best under-

stood during development, whenmorphogen gradients translate

cell position into distinct cell fate, depending on local morphogen

concentration. Gradients also occur at much smaller scales

within cells, where they impart spatial cellular order. For

instance, gradients of Ran-GTP and phospho-stathmin regulate

mitotic spindle formation around chromatin, Aurora B gradients

control cytokinesis, and gradients of MinD, MipZ, and Pom1

provide spatial control on cell division in various prokaryotes

and eukaryotes (Fuller, 2010; Lutkenhaus, 2007). A defining

feature of gradients is their potential to communicate information
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over long distances, for which gradient shape should be carefully

monitored. Thus, understanding the molecular mechanisms

underlying gradient formation is crucial. Here, we have dissected

the mechanisms of gradient formation of the DYRK family kinase

Pom1 in fission yeast.

Schizosaccharomyces pombe cells are rod-shaped, grow by

cell tip extension, and divide by medial fission. Spatial order is

conferred by a system of antiparallel microtubules aligned along

the length of the cell and nucleated from nuclear-associated

organizing centers. Microtubules serve to position the nucleus

to the geometric middle of the cell and transport a pair of land-

mark proteins, Tea1 and Tea4, to cell ends (Chang and Martin,

2009; Martin et al., 2005; Mata and Nurse, 1997; Tatebe et al.,

2005). In turn, these landmarks recruit Pom1 to cell ends, from

where this protein forms concentration gradients (Bähler and

Pringle, 1998; Padte et al., 2006; Tatebe et al., 2005). These three

proteins regulate cell morphology and bipolar growth, in part by

allowing Cdc42 activation and recruiting actin nucleation factors

to cell tips (Martin et al., 2005; Tatebe et al., 2008). Tea4 also

directly associates with and recruits the protein phosphatase 1

(PP1) Dis2 to cell tips (Alvarez-Tabarés et al., 2007). Dis2 is

one of only two PP1 catalytic subunits in S. pombe and is

recruited to many cellular locations by specific regulatory

factors. Tea1, Tea4, and Pom1 also impart negative signal to

prevent cell division at cell tips (Almonacid et al., 2009; Celton-

Morizur et al., 2006; Huang et al., 2007; Padte et al., 2006).

Together with positive signals conferred by the nucleus through

the protein Mid1 (Almonacid et al., 2009), negative signals from

cell tips define the position of cell division at midcell.

In addition to Pom1’s roles in bipolar growth, cell morphogen-

esis, and septum positioning, we and others recently discovered

that this kinase functions as a dose-dependent inhibitor of entry

into mitosis (Martin and Berthelot-Grosjean, 2009; Moseley

et al., 2009). Pom1 negatively regulates an activator of mitotic

entry, the protein kinase Cdr2. While Pom1 forms polar gradients,

Cdr2 localizes to a cortical band placed at the cell equator (Morrell

et al., 2004). Theobservation thatPom1concentration atmidcell is

higher in short than long cells suggested a model where Pom1

inhibits Cdr2 until the cell has reached a sufficient length. Accord-

ingly, experiments in which Pom1 was ectopically localized at the

cell equator led toadelayofmitosis and the formationofelongated
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cells. Thus, Pom1 gradients form a cell length-monitoring system

for coordinating mitotic commitment with cell growth.

Pom1 is part of the DYRK (dual-specificity tyrosine-regulated

kinase) family of kinases conserved in eukaryotes. These kinases

self-catalyze the phosphorylation of tyrosines in their activation

loop in an autophosphorylation reaction that occurs on a DYRK

translational intermediate (Lochhead et al., 2005).Mature DYRKs

do not phosphorylate tyrosines but can phosphorylate sub-

strates on serines and threonines. In vitro work on mammalian

DYRK1a, DYRK2, and DYRK3 has shown that phosphorylation

occurs preferentially within the consensus RX(1–3)[ST][PVL]

(Campbell and Proud, 2002; Himpel et al., 2000), although

several DYRK substrates show considerable variation relative

to this consensus (Aranda et al., 2011). Although the specific

substrates of each DYRK diverge widely and are still poorly

defined, a common function of this family may be coordination

of cell cycle, cell growth, and differentiation (Aranda et al., 2011).

To understand how the Pom1 length-sensing device works for

cell size homeostasis, we asked how Pom1 gradients are estab-

lished. Our experiments were guided by two previously known

pieces of information: first, Tea1 and Tea4 are essential for the

localization of Pom1 to cell tips (Bähler and Pringle, 1998;

Celton-Morizur et al., 2006; Padte et al., 2006; Tatebe et al.,

2005); and second, Pom1 distribution depends on its activity

because a kinase-dead version of Pom1 localizes indiscrimin-

ately around the entire cell periphery (Bähler and Nurse, 2001).

We demonstrate a simple mechanism underlying the formation

of cortical concentration gradients of Pom1, which are nucleated

by local Tea4-mediated dephosphorylation and shaped by

lateral movement and autocatalytic activity.

RESULTS

Tea4 Is Necessary and Sufficient to Nucleate Pom1
Gradients at the Cell Cortex
Pom1-GFP gradients have previously been measured in projec-

tions of the entire cell volume including both cytoplasmic and

cortical compartments onto a single line. Confocal sectioning

suggests that these gradients are primarily cortical (Figure 1A

and Figure S1A available online). This can be illustrated by

measuring the fluorescence along lines drawn at the cell cortex

or across the length of the cell. Whereas the latter shows

a uniform low concentration of Pom1 in the cytoplasm, the fluo-

rescence profile along the cell cortex reveals gradients of Pom1

with highest concentration at cell tips. We note that these gradi-

ents are not completely smooth but that clusters of higher inten-

sity are visible at the cortex.

We envisaged a simple model where Pom1 concentration

gradients are established by protein transport/trapping and

lateral movement. The microtubule-associated polarity land-

marks Tea1 and Tea4 are required for Pom1 localization (Bähler

and Pringle, 1998; Celton-Morizur et al., 2006; Padte et al., 2006;

Tatebe et al., 2005). In a limited screen through polarity mutants,

we found that tea1D and tea4Dwere the only mutants to robustly

affect Pom1-GFP localization (Figures S1B and S1C). Pom1

failed to localize to the cell cortex in tea4D cells, except for

weak residual localization at the division site, and instead

appeared cytoplasmic. In tea1D cells in contrast, in which
Tea4 fails to localize to cell ends (Martin et al., 2005; Tatebe

et al., 2005), weak cortical localization of Pom1 was observed

(Padte et al., 2006) (Figure S1B). Thus, we focused our attention

on Tea4. Measurement of Tea4-GFP and Pom1-GFP distribu-

tions at cell tips showed that these are distinct: Pom1 exhibits

a wider cortical localization than Tea4 (Figure 1B, far right). Simi-

larly, Tea4-GFP and Pom1-tdTomato imaged in double-tagged

strains do not precisely overlap: whereas Tea4 is restricted to

the tips of the cells, Pom1 spreads further along cell sides (Fig-

ure 1B). Importantly, Pom1-tdTomato exhibits the same localiza-

tion pattern as Pom1-GFP (Figure 1B, far right panel), indicating

that different fluorophores do not influence the observed

patterns of Pom1 localization. This differential distribution

suggests that Tea4 may recruit Pom1 to cell tips from where

Pom1 moves in the plane of the membrane.

To visualize Pom1 lateral movement, we photobleached

Pom1-GFP at half-cell tips (Figure 1C). Recovery of signal

occurred faster at the edges of the bleached region, indicating

movement from the adjacent fluorescent half. Fluorescence

recovery after photobleaching (FRAP) experiments on inactive

Pom1KD-GFP, which localizes around the entire cell cortex

(Bähler andNurse, 2001), confirmed this behavior. Here, we pho-

tobleached the entire midsection of the cell (Figure 1D). Again,

we detected nonuniform recovery of fluorescence suggestive

of movement from the adjacent nonbleached zone. Thus,

Pom1 moves laterally at the plasma membrane.

These results suggest that recruitment of Pom1 by Tea4 at cell

tips and lateral movement are key elements for the formation of

Pom1 gradients. To test whether these are sufficient to generate

Pom1 gradients, we ectopically localized Tea4 by generating

a fusion between the spindle pole body (SPB) component

Ppc89, GFP, and Tea4 and expressing it in tea4D pom1-

tdTomato cells. Ppc89-GFP-Tea4 mimicked the localization

patterns of both Ppc89 and Tea4 to the SPB and cell ends,

respectively. This fusion also unexpectedly formed ectopic foci

along cell sides. Pom1-tdTomato was recruited to cell ends

and to these ectopic lateral foci, but not to the SPB (Figure 1E).

Measurement of the distribution of these proteins suggested

that, whereas the Ppc89-GFP-Tea4 fusion formed tight dots,

Pom1-tdTomato spread further along the plane of themembrane

(Figure 1F, a), indicating the formation of local cortical Pom1

gradient. In contrast, control measurements perpendicular to

the plane of the membrane showed nearly identical distribution

of Tea4 and Pom1 along this axis (Figure 1F, b). Thus, Tea4 is

not only necessary but also sufficient to nucleate the formation

of a Pom1 gradient anywhere along the cell cortex.

Below, we dissect three key elements in the formation of Pom1

gradients: how Pom1 associates with the cell cortex; how this

association is modulated by kinase activity; and finally, how

Tea4 mediates Pom1 recruitment to cell tips.

Pom1 Binds Lipids
To map the region of Pom1 required for cortex localization, we

generated a series of GFP-tagged truncations of Pom1 on plas-

mids and observed their localization in pom1D cells (Figures

2A–2C). Truncation of the first 305 amino acids had no apparent

effect on Pom1 localization. Pom1 lacking the first 419 residues

still localized to the cortex, albeit less efficiently. In contrast,
Cell 145, 1116–1128, June 24, 2011 ª2011 Elsevier Inc. 1117



Figure 1. Tea4 Is Sufficient to Nucleate a Cortical Pom1 Gradient

(A) Sum projection (left) and single medial confocal section (right) of Pom1-GFP. The purple line represents the total cellular measure of Pom1-GFP fluorescence

intensity projected onto a single line. Green, red, and blue lines represent measures on the medial confocal section, as shown. The yellow arrowhead labels

a Pom1-GFP cluster at the cell cortex.

(B) Localization of Tea4-GFP and Pom1-tdTomato in the same cell. The profile of fluorescence intensity along the periphery of both cell ends is shown on the right.

The far-right graph shows an average over 16 suchmeasurements, as well asmeasurements of Pom1-GFP distribution as shown in (A). To compare fluorescence

distribution, the integrated fluorescence intensity for each curve was normalized to one, and percentage of this total is shown on the graphs.

(C and D) Kymographs of FRAP at the lateral cortex of Pom1-GFP and Pom1KD-GFP expressed from plasmids. The cells on the left show the prebleach and

bleach time points. Boxes represent the regions used in the kymographs and the bleach zone, respectively. Graphs show the fluorescence profile along lines

drawn on the kymographs at the levels of the colored arrows. Note that recovery occurs preferentially from the edges of the bleached region.

(E) Ppc89-GFP-Tea4 recruits Pom1-tdTomato to the lateral cortex, but not the nuclear membrane. Yellow arrowheads denote lateral localization of Ppc89-GFP-

Tea4 and Pom1-tdTomato. Blue arrowhead shows SPB localization of Ppc89-GFP-Tea4 and absence of Pom1-tdTomato. Scale bars, 5 mm.

(F) Distribution of Ppc89-GFP-Tea4 and Pom1-tdTomato along (a) and perpendicular to (b) the lateral plasmamembrane. Average of 30measurements is shown.

Curves were normalized as in (B).

See also Figure S1.
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Figure 2. A Positively Charged Region of Pom1 Mediates Lipid Binding

(A) Schematic representation of Pom1 and truncation fragments. These were taggedwith GFP, expressed from plasmids in pom1D cells and imaged. Description

of their localization is detailed on the right.

(B) Alignment of the region necessary for cortical binding between Pom1 orthologs in four Schizosaccharomyces species: S.p., pombe; S.o., octosporus; S.c.,

cryophobus; and S.j., japonicus. Conserved basic residues are highlighted in red and by plus (+) signs. Black squares box serine/threonine residues mutated to

alanine in the Pom16A allele. The red square boxes proline residues mutated to alanine in the Pom15PxxP* allele.

(C) Localization of selected constructs as described in (A). Scale bar, 5 mm.

(D) Protein-lipid overlay assay with MBP and MBP-Pom11–699. Loading control is shown as anti-MBP western blot on the left. Full-length MBP-Pom11–699
fragment is labeled by red arrowhead. Lower bands likely represent breakdown products. Lipids spotted on each side of bothmembranes are indicated on the left

and right, respectively. Lipids to which MBP-Pom11–699 shows significant association are shown in red. Both blots were treated in parallel using identical

conditions throughout.

See also Figure S2.
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Figure 3. Autophosphorylation of Pom1 Restricts

Its Cortical Localization to Cell Tips

(A) Localization of Pom1-GFP and inactive Pom1KD-GFP

expressed from plasmids in wild-type and pom1D strains.

(B) Localization of nonphosphorylatable Pom16A-GFP

expressed from plasmids in wild-type and pom1D strains.

(C) Localization of Pom1-GFP, Pom1KD-GFP, and

Pom16A-GFP integrated as sole copy at the endogenous

pom1 locus. Arrowheads label a few Pom16A-GFP clus-

ters at the cell cortex. Scale bars, 5 mm.

(D) In vitro kinase assay on recombinant GST-Pom1, GST-

Pom1KD, and GST-Pom16A. Top panel shows phosphor-

imager detection of 32P incorporation; bottom panel

shows Coomassie-stained gel.

(E) Side-by-side comparison of the migration patterns of

GST-Pom1, GST-Pom16A, and GST-Pom1KD.

(F) Migration pattern of recombinant GST-Pom1, GST-

Pom1KD, and GST-Pom16A with or without PP1 treatment.

Silver-stained gel is shown.

(G) In vitro kinase assay of recombinant GST-Pom1, GST-

Pom1KD, and GST-Pom16A with 6His-Cdr2423–532 as

substrate. Top panel shows phosphorimager detection of
32P incorporation; bottom panels show silver-stained gels.

See also Figure S3.
deleting the first 499 residues prevented cortex localization,

defining amino acids 419–499 as essential for cortical localiza-

tion. Pom1 fragments containing this region but lacking the

kinase domain (i.e., Pom11–699 and Pom1305–510) localized effi-

ciently to the cell cortex but were not restricted to cell ends (see

below). However, we note that the fragment 419–499 was not

sufficient for cortical localization. Sequence alignment showed

that this regionwaswell conserved betweenPom1and orthologs

in otherSchizosaccharomyces species (FigureS2andFigure 2B).

This region is rich in arginine and lysine residues (19 out of 81

residues) and, thus, highly positively charged, suggesting that it

may bind negatively charged lipids directly through electrostatic

interactions. Indeed, recombinant Pom1 N-terminus (MBP-

Pom11–699) was able to bind directly to several, but not all, nega-

tively charged lipids, namely phosphatidylserine, phosphatidyli-

nositol phosphates, andcardiolipin inaprotein-lipidoverlay assay
1120 Cell 145, 1116–1128, June 24, 2011 ª2011 Elsevier Inc.
(Figure 2D). Phosphatidylserine and phosphati-

dylinositol phosphates are components of the

plasma membrane. Cardiolipin is mostly found

in the inner mitochondrial membrane, and so it

is unclear whether this interaction exists in vivo.

We also note that, probably due to its high global

positive charge (+15.5 for MBP-Pom11–699, +25

for Pom11–699 at pH 7), MBP-Pom11–699 bound

the nitrocellulose membrane, resulting in signifi-

cant background. Together, these experiments

suggest that Pom1directly associateswith lipids

at the plasma membrane through its basic

region.

Pom1 Autophosphorylates to Restrict Its
Localization to Cell Tips
Investigation of a kinase-dead allele of pom1

(pom1-2; here labeled pom1KD) has previously
shown that Pom1 kinase activity modulates its localization: in

contrast to Pom1-GFP localization to cell tips, Pom1KD-GFP

expressed as sole copy from the endogenous promoter localizes

indiscriminately around the entire cell cortex (Bähler and Nurse,

2001) (see also Figure 3C). We confirmed this observation by

expressing Pom1KD-GFP from plasmids in pom1D cells. Impor-

tantly, when expressed in wild-type cells, Pom1KD-GFPwas also

mislocalized around the entire cortex, indicating that the endog-

enous wild-type Pom1 activity, though competent for regulating

cell morphogenesis and size, was not able to restore correct

localization to the inactive kinase (Figure 3A). Similarly, expres-

sion of wild-type untagged Pom1 from plasmids in pom1KD-

GFP cells was unable to restore the localization of endogenous

Pom1KD-GFP to cell tips (data not shown). These data suggest

that Pom1 autophosphorylates to restrict its localization to

cell tips.



Work onmammalian DYRKs has defined a loose phosphoryla-

tion consensus site RX(1–3)[ST][PVL] (Campbell and Proud, 2002;

Himpel et al., 2000).We hypothesized that Pom1 phosphorylates

similar sites and looked for conserved candidate autophos-

phorylation sites in the Pom1 sequence using the degenerate

simplified [RK]X(1–3)[ST] motif. This identified 15 candidate sites.

We focused on those located outside the kinase domain and in

well-conserved regions of the proteins and mutated up to six

to alanine to generate Pom11A–Pom16A. (Note that one site can

include one to three serines or threonines that wemutated simul-

taneously.) Five of these sites were in the region mediating lipid

binding defined above (Figure S2 and Figure 2B). Expression of

Pom11A-GFP to Pom16A-GFP on plasmids in pom1D cells

showed a progressive spreading of the kinase along the cortex

of the cells (Figure S3). Pom16A-GFP recapitulated the largely

homogeneous cortical localization observed for Pom1KD-GFP

in either wild-type or pom1D cells (Figure 3B). We note that

strong overexpression of Pom16A-GFP produces morphological

abnormalities, a phenotype also observed upon overexpression

of wild-type but not the kinase-dead allele (Bähler and Nurse,

2001) (Figure S3). This suggests that Pom16A is an active kinase.

We tested more stringently the localization of the pom16A

allele by integrating it at the endogenous locus as sole copy

of pom1. Pom16A-GFP expressed under endogenous promoter

also localized around the entire cortex, displaying numerous

clusters of Pom1 scattered around the cell periphery, similar

to inactive Pom1KD (Figure 3C). This localization is consistent

with the idea that these six sites represent targets of

autophosphorylation.

To confirm biochemically that Pom1 autophosphorylates, we

purified recombinant full-length Pom1 and Pom1KD and per-

formed in vitro kinase assays (Figure 3D). A significant amount

of 32P was incorporated by wild-type, but not kinase-dead

Pom1. We also noticed that Pom1 migrated more slowly than

Pom1KD on SDS-PAGE (Figure 3E). Treatment of Pom1 with

commercial PP1 abolished this slow migration but did not

change the Pom1KD migration pattern, indicating that recombi-

nant Pom1 is autophosphorylated in the bacterial cell (Figure 3F).

Similar assays with Pom16A showed an intermediate behavior,

where Pom16A incorporated less 32P andmigrated at levels inter-

mediate between wild-type and kinase-dead Pom1 (Figures

3D–3F). This shows that Pom16A is active and that the mutated

sites likely represent some but not all autophosphorylation sites.

Pom16A was also active in kinase assays with Cdr2 fragment as

substrate, indicating that it remains competent in phosphory-

lating a known exogenous substrate (Figure 3G) (Martin and

Berthelot-Grosjean, 2009). We subsequently identified all auto-

phosphorylation sites on recombinant wild-type Pom1 by mass

spectrometry. This analysis identified a total of 41 autophos-

phorylation sites and confirmed that 2 of the 6 mutated sites

were indeed autophosphorylated (Figure S2). This analysis

unfortunately did not inform about the phosphorylation status

of the four other sites, which were not covered by any peptide

identified by mass spectrometry, despite extensive effort and

sequence coverage of over 95% (see Extended Experimental

Procedures and Figure S2). In summary, Pom1 is heavily auto-

phosphorylated, and partly unphosphorylated Pom16A is not

restricted to the cell tip cortex and disrupts Pom1 gradients.
Pom1 Autophosphorylation Weakens Membrane
Binding
To explore the dynamics of Pom1 autophosphorylation, we

made use of the pom1-as1 allele, which encodes an ATP

analog-sensitive Pom1 form that can be inhibited by addition

of the chemical inhibitor 1NM-PP1 (Padte et al., 2006). Under

normal growth conditions, Pom1-as1-tdTomato localizes cor-

rectly to the cell tip cortex. However, within 1–2 min of 1NM-

PP1 addition, Pom1-as1-tdTomato was delocalized around the

entire cell periphery (Figure 4A). This fast delocalization suggests

that inactivated Pom1-as1 is rapidly dephosphorylated. An alter-

native possibility is that phospho-Pom1 may be rapidly

degraded and resynthesized. However, we found that inhibition

of protein translation with cycloheximide or disruption of protein

degradation in proteasome mutants did not significantly affect

the levels and distribution of Pom1 even after several hours (Fig-

ure S4), suggesting that Pom1 protein is stable over a signifi-

cantly longer time. Thus, kinase activity is continuously required

to antagonize dephosphorylation and prevent Pom1 localization

along the lateral cortex.

Using FRAPexperiments, wedetermined the turnover of Pom1

at the cell cortex (Figures 4B and 4C). We photobleached one

entire cell tip to measure the exchange between cortical and

cytoplasmic Pom1-GFP. Wild-type Pom1-GFP recovered with

an estimated half-time of about 60 s. Inactive Pom1KD-GFP

and nonphosphorylatable Pom16A-GFP also recovered but with

significantly slower half-time of over 120 s. Reduced exchange

of these alleles suggest that unphosphorylated Pom1 alleles

aremore stable at themembrane andmay also reflect their lower

abundance in the cytoplasm. In agreement with these results,

recombinant full-length Pom1, which autophosphorylates in

bacteria, bound phospholipids in vitro with significantly higher

affinity after dephosphorylation (Figure 4D). Dephosphorylated

Pom1 also bound the nitrocellulose membrane, resulting in

high background signal, similar toMBP-Pom11–699 tested above.

Again, thismay be due to the high global positive charge of Pom1

(+22.5 forMBP-Pom1, +32 for Pom1at pH7), which is likely abol-

ished upon autophosphorylation at over 40 potential sites. We

also note a slight change in the lipid specificity of Pom1: auto-

phosphorylated Pom1 bound phosphatidic acid, a rare phos-

pholipid in S. pombe (Koukou et al., 1990), whereas this phos-

pholipid was not bound by the dephosphorylated form of

Pom1. In summary our results suggest that Pom1 binds the

plasma membrane directly when nonphosphorylated and that

autophosphorylation weakens this interaction.

Pom1 Binds Tea4
We showed above that Tea4 is both necessary and sufficient to

nucleate Pom1 gradient formation. Tea4 is an SH3 domain-

containing protein. Direct interactions have been described

with Tea1, the formin For3, the PP1 Dis2, and the MAPKKK

Win1, none of which involves the SH3 domain (Alvarez-Tabarés

et al., 2007; Martin et al., 2005; Tatebe et al., 2005). In two-hybrid

assays we found that Tea4 binds Pom1 through its SH3 domain

because complete deletion or point mutation in the ligand-

binding interface of the SH3 domain abolished this interaction

(Figure 5A). This interaction occurs in vivo, as Tea4-HA was

coimmunoprecipitated with Pom1-GFP (Figure 5B). Again, point
Cell 145, 1116–1128, June 24, 2011 ª2011 Elsevier Inc. 1121



Figure 4. Pom1 Activity Modulates Membrane Attachment

(A) Localization of Pom1-as1-tdTomato before and after 1–2 min treatment with 20 mM 1NM-PP1 or DMSO. Scale bar, 5 mm. Arrows indicate cells for which the

profile of fluorescence intensity along the periphery of both cell sides at 0 and 2 min is shown on the right.

(B) FRAP of Pom1-GFP, Pom1KD-GFP, and Pom16A-GFP. The bleached region at cell tips is boxed.

(C) Quantification of FRAP experiments as shown in (B). Each curve represents an average of five experiments.

(D) Protein-lipid overlay assay withMBP-Pom1, with or without PP1 treatment. Loading control is shown as anti-MBPwestern blot on the left. Full-length proteins

are labeled with red arrowheads. Lower bands likely correspond to breakdown products. Note the faster migration of most fragments in the PP1-treated sample.

Lipids to which dephosphorylated MBP-Pom1 shows significant association are shown in red. Both blots were treated in parallel using identical conditions

throughout.

See also Figure S4.
mutations in the Tea4 SH3 domain (Tea4SH3*) abolished this

interaction. In contrast, point mutations in the motif shown to

mediate binding to Dis2 (Tea4RVxF*) did not block Tea4-Pom1

interaction (Alvarez-Tabarés et al., 2007). The Tea4-Pom1 inter-

action was also not dependent on Pom1 activity or phosphoryla-

tion status, as Tea4 was coimmunoprecipitated with Pom1KD.

SH3 domains often bind polyproline motifs. Sequence alignment

revealed five such conserved motifs in Pom1 (Figure S2). We
1122 Cell 145, 1116–1128, June 24, 2011 ª2011 Elsevier Inc.
sequentially mutated two prolines to alanines in each of these

to create a Pom15PxxP* mutant. These mutations also impaired

Tea4 binding in coimmunoprecipitation experiments (Figure 5B).

We conclude that Tea4 and Pom1 bind to each other through

SH3-PxxP interactions.

Pom1-GFP localization was dramatically affected by disrup-

tion of its interaction with Tea4. In tea4SH3* cells, Pom1-GFP

was cytoplasmic, like in tea4D cells (Figure 5C). Mutation of



Figure 5. Tea4 Binds Pom1 and Is Required for the Localization of

Wild-Type, but Not Dephosphorylated, Pom1

(A) Two-hybrid interaction between indicated constructs of Tea4 and Pom1.

Growth on SD medium lacking histidine is shown.

(B) Coimmunoprecipitation of Tea4-HA with Pom1-GFP. Tea4 and Pom1

alleles are indicated at the top. The bottom lane shows Tea4-HA input. The first

five and the last two lanes were obtained in distinct experiments. The last two

were on the same gel, but not side by side. Note that the patterns of Pom1

breakdown products are similar in strains of distinct genotypes.

(C) Localization of Pom1-GFP, Pom1KD-GFP, and Pom16A-GFP in wild-type,

tea4D, and tea4SH3* cells, as indicated. Scale bar, 5 mm.

See also Figure S5.
the Pom1 PxxP motifs also increased cytoplasmic Pom1 and

reduced Pom1 localization to the cell cortex but did not

completely abolish it (Figure S5). Even when Pom15PxxP*-GFP

was expressed at the endogenous genomic locus, residual

cortical localization at cell tips was observed, suggesting that

the tea4SH3* and pom15PxxP* mutations are not equivalent (see

Figure 6F and below).

Tea4 Plays a Regulatory, Nonstoichiometric Role
in Pom1 Localization
We investigated the localization of inactive Pom1KD and unphos-

phorylatable Pom16A in tea4 mutant cells. Unexpectedly, both

alleles localized efficiently to the cell periphery in tea4D and

tea4SH3* mutant cells (Figure 5C). In fact, even mutation of one

or only a few autophosphorylation sites was sufficient to restore

somecortical localization toPom1 in tea4Dcells (FigureS6). Simi-

larly, inactivating Pom15PxxP* by constructing a Pom1KD-5PxxP*

allele restored efficient cortical localization to this allele (Fig-

ure 6A). This indicates that Tea4 binding is not required to localize

inactive, unphosphorylatedPom1 to the cell cortex. These results

strongly suggest that Tea4 does not act as a physical anchor at

the cortex but fulfills a regulatory function.

In agreement with this hypothesis, we observed that amounts

of Tea4 below detection levels were sufficient to ensure proper

localization of Pom1 (Figure 6B). Here, Tea4-GFPwas expressed

under repressible promoter in tea4D pom1-tdTomato cells.

Promoter repression reduced Tea4 levels below detection but

still allowed correct Pom1 localization. Thus, Tea4 is unlikely to

act as a stoichiometric anchor for Pom1 at the cortex.

Tea4 Promotes Pom1 Dephosphorylation at Cell Tips
Tea4 acts as a PP1 regulatory subunit by recruiting the phospha-

tase Dis2 to cell tips (Alvarez-Tabarés et al., 2007). We tested the

hypothesis that Tea4mediates the PP1-dependent dephosphor-

ylation of Pom1 at cell tips. In agreement with this idea, we have

shown above that recombinant, autophosphorylated Pom1 is

dephosphorylated by PP1 (Figure 3F). We first verified the inter-

action of Tea4 with Dis2. Tea4-HA was readily coimmunopreci-

pitated with GFP-Dis2 in wild-type cells (Figure 6C). As previ-

ously described, this interaction was dependent on the Tea4

RVxF motif (Alvarez-Tabarés et al., 2007). We also found that

the integrity of the Tea4 SH3 domain was essential for this inter-

action. Indeed, both Tea4RVxF* and Tea4SH3* failed to coimmuno-

precipitate with GFP-Dis2 (Figure 6C). We note that the RVxF*

mutation may not block Dis2 binding completely, as minor

amounts of Tea4RVxF* could be detected in the Dis2 immunopre-

cipitate upon long exposure (data not shown). Accordingly, GFP-

Dis2 was delocalized from cell tips (but not from other locations)

in tea4D, tea4RVxF*, and tea4SH3* mutants, but not in pom1D

backgrounds (Figure 6D).

By using the bimolecular fluorescence complementation

(BiFC) technique, where two halves of YFP fused to distinct

proteins reform an intact fluorescent complex upon interaction

(Kerppola, 2006), we determined that Pom1, Tea4, and Dis2

were in close proximity in vivo (Figure 6E). BiFC signal was

observed in pairs between Dis2, Pom1, and Pom1KD with wild-

type Tea4, but not Tea4SH3*. However, Tea4SH3* was able to

form BiFC signals with Tea3, a cell end marker that associates
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Figure 6. Tea4 and Dis2 Mediate Pom1 Dephosphorylation

(A) Localization of Pom15PxxP*-GFP and Pom1KD-5PxxP*-GFP expressed from plasmids in pom1D cells.

(B) Repression of nmt81-tea4-GFP by addition of thiamine (T) leads to undetectable Tea4-GFP levels, yet correct Pom1-tdTomato localization. nmt81-GFP was

expressed as control. GFP, Pom1-tdTomato and merge channels are shown.

(C) Coimmunoprecipitation of Tea4-HA with GFP-Dis2. Tea4 alleles are indicated at the top.

(D) Maximal projection of GFP-Dis2 localization in wild-type, tea4D, tea4SH3*, tea4RVxF*, and pom1D cells. Yellow arrowheads indicate cell tip localization. Note

that other localizations to endocytic vesicles or the nucleus are not affected by tea4 mutations (Alvarez-Tabares et al., 2007).

(E) BiFC experiment indicating proximity of Tea4, Dis2, and Pom1 in vivo. Top panels show reconstituted fluorescence between indicated full-length proteins

expressed under endogenous promoter and tagged with either the N-terminal half (N), or the C-terminal half (C) of YFP. Bottom panel shows quantification of the

percentage of cells with cortical signal (n > 100 for each sample).

(F) Localization of Pom1-GFP and Pom15PxxP*-GFP expressed under endogenous promoter in wild-type and tea4RVxF* cells.

(G) Average length and standard deviation of calcofluor-stained septated cells of pom1-GFP, pom1KD-GFP, and pom16A-GFP strains. Scale bars, 5 mm.

See also Figure S6.
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Figure 7. Model for the Formation of Cortical Pom1 Gradients

(A) Local dephosphorylation of Pom1, mediated by the Tea4-Dis2 PP1 pair, which is localized to cell tips through microtubule transport, permits association of

Pom1 with the plasma membrane at cell tips. Pom1 then diffuses in the plane of the membrane. Autophosphorylation leads to Pom1 detachment from the

membrane.

(B) Multiple autophosphorylation events may serve as a timer for shaping Pom1 gradients. After dephosphorylation and plasma membrane association, multiple

rounds of autophosphorylation gradually increase the probability of Pom1 detaching from the membrane. Pom1 is shown in various shades of red indicating

various degrees of autophosphorylation, from dephosphorylated (yellow) to fully phosphorylated (red).
with Tea1 and Tea4 (Snaith et al., 2005; data not shown). We also

detected a BiFC signal between Dis2 and Pom1, which was

dependent on tea4. These observations are consistent with the

idea that Pom1, Tea4, and Dis2 interact at cell tips in vivo.

We investigated the effect of blocking the Tea4-Dis2 interac-

tion on the localization of Pom1-GFP (Figure 6F): in tea4RVxF*

mutant cells, in which Dis2 but not Pom1 fails to bind mutant

Tea4, Pom1-GFP was largely diffuse but retained some cell tip

localization. In contrast, Pom15PxxP*-GFP failed to localize to

the cell cortex in this background. This combination specifically

blocks both the Tea4-Dis2 and Tea4-Pom1 interactions and

mimics the tea4SH3* mutant situation. Thus, efficient localization

of Pom1 to the cell tip cortex requires both binding to Tea4 and

interaction between Tea4 and the phosphatase Dis2, indicating

that Tea4 bridges Pom1 with Dis2 to promote the dephosphory-

lation of Pom1 at cell tips.

Disruption of Pom1 Gradients Delays the Cell Cycle
Weand others previously proposed that Pom1 gradients serve to

couple cell length with mitotic entry (Martin and Berthelot-Gros-

jean, 2009; Moseley et al., 2009). We tested the effect of disturb-

ing Pom1 gradients on cell length by investigating the phenotype

of the pom16A mutant, which encodes an active kinase that

spreads along the lateral cortex (see Figure 3). pom16A cells

were highly elongated (Figure 6G) but did not show significant

morphological defects. This contrasts with the pom1KD cells,

which are short, misshapen, and divide off center. Thus,

pom16A appears to be a gain-of-function allele and displays

a phenotype consistent with previously published data that

ectopic localization of active Pom1 to the cell middle inhibits

Cdr2 and delays mitotic commitment (Martin and Berthelot-

Grosjean, 2009; Moseley et al., 2009). In conclusion, spreading

of active Pom1 along the lateral cortex leads to cell cycle delay.

DISCUSSION

Concentration gradients pattern cells and organisms. Here, we

have dissectedwithmolecular details themechanism of gradient

formation of the DYRK family kinase Pom1. Pom1 gradient initi-
ation relies on the local dephosphorylation of Pom1 at cell tips.

This reaction is mediated by microtubule-deposited Tea4, which

acts as a PP1 regulatory subunit, bridging the phosphatase Dis2

with its substrate Pom1. Dephosphorylation of Pom1 exposes

a positively charged basic region that mediates plasma mem-

brane association. At the membrane, Pom1 moves away from

its site of association and autophosphorylates at multiple sites,

in particular within its basic region. This autophosphorylation

lowers its affinity to the membrane and promotes its detach-

ment, limiting the lateral spreading of Pom1 along the

membrane. In the cytoplasm, fast diffusion of Pom1 permits its

encounter with Tea4 to initiate a new cycle of membrane associ-

ation (Figure 7A). In summary we propose that a cycle of local

dephosphorylation, lateral movement at the plasma membrane

and autophosphorylation shapes Pom1 cortical gradients.

Our data clearly establish Tea4 as a bona fide PP1 regulatory

subunit, as it binds both the phosphatase Dis2 and its substrate

Pom1 and promotes Pom1 dephosphorylation. This function is

likely shared with its homolog in S. cerevisiae, Bud14p, which

serves as targeting subunit for the PP1 Glc7p (Knaus et al.,

2005). However, exactly how a ternary complex forms between

Tea4, Dis2, and Pom1 is unclear because both Pom1 and Dis2

require an intact SH3 ligand-binding interface for binding Tea4

and localizing to cell tips. Our data indicate that Tea4 binds

Dis2 independently of Pom1 because Pom1 is not required for

the localization of Dis2 to cell tips. This interaction requires

both the RVxF motif and a nonclassical SH3 interaction (Dis2

does not contain PxxP repeats). Tea4 also binds Pom1 indepen-

dently of Dis2, as Tea4RVxF* still associates with Pom1, but not

Dis2. This interaction occurs through classical SH3-PxxP

contact. We suggest that the functional phosphatase unit is the

Tea4-Dis2 dimer. In the absence of substrate, interaction through

the RVxF site may be stabilized through a labile Dis2-Tea4 SH3

contact. However, upon Pom1 encounter this contact may be

lost and Pom1 docked, transiently stabilizing the trimeric

complex. Alternatively, Tea4 may dimerize, thus providing two

independent SH3 domains for binding Pom1 and Dis2.

In vivo, Tea4 associates with Tea1, which is transported by

microtubules and forms a subcortical network at cell tips (Bicho
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et al., 2010; Martin et al., 2005; Tatebe et al., 2005). This may

provide a microenvironment favorable to Pom1 dephosphoryla-

tion by enhancing the local concentration of Tea4, Pom1, and

Dis2. Indeed, in tea1D cells, in which Tea4 fails to localize to cell

tips, Pom1 localizes, albeit poorly, to the cell cortex (Celton-

Morizur et al., 2006; Padte et al., 2006), indicating that the Tea4-

Dis2 pair also promotes dephosphorylation of Pom1 in these

conditions, though inefficiently. Thus, microtubules indirectly

define the sites of Pom1 dephosphorylation.

Shaping the Pom1 Gradients
We and others previously proposed that the gradients of Pom1

serve to measure cell length by inhibiting the medial mitotic

inducer Cdr2 (Martin and Berthelot-Grosjean, 2009; Moseley

et al., 2009). Consistent with this model, disruption of Pom1

gradients using a nonphosphorylatable but active Pom1 allele

(Pom16A) delays cell cycle progression, similar to cdr2D. One

postulate of this model is that the shape of Pom1 gradients

should be independent of cell length itself. Our data suggest

that, upon plasma membrane association, gradient shape is

controlled by two competing activities: lateral movement at the

membrane will enhance Pom1 dispersal and promote the forma-

tion of a shallow gradient. The lateral movement we show is

consistent with diffusion. In contrast, autophosphorylation will

favor Pom1 detachment from the membrane and, thus, the

formation of a steep gradient. The multiplicity of autophosphor-

ylation sites within the basic region, which likely require sequen-

tial autophosphorylation events, may provide a ‘‘timer’’ function

affording time for diffusion within the membrane before detach-

ment (Figure 7B). The rate of movement of Pom1 at the plasma

membrane appears sufficiently slow to allow the Pom1 concen-

tration gradients to be maintained. Slow lateral mobility of both

lipids and proteins has also been observed in the plasma

membrane of the budding yeast (Greenberg and Axelrod,

1993; Valdez-Taubas and Pelham, 2003). Thus, the precise

shape of the gradients will be defined by the rate of Pom1 lateral

movement at the membrane and the time required for

autophosphorylation.

Pom1 activity levels may provide a potential regulatory switch

for modulating gradient shapes. Interestingly, Bähler and Nurse

(2001) described that Pom1 kinase activity is not constant

through the cell cycle but appears to increase through G2. This

finding is somewhat contradictory with the model that local

medial Pom1 activity levels are at their lowest at that time. Our

findings can reconcile these two findings: the global increase

in Pom1 activity may promote faster detachment of Pom1 from

the membrane and formation of steeper gradients in late G2

cells. Thus, paradoxically, higher global Pom1 activity may

contribute to reducing its activity at the cell middle by lowering

its medial concentration.

If gradient shape is indeedmodulated by Pom1 global activity,

it will be important to define what controls this variation in

activity. Does Pom1 activity increase in response to cell cycle

progression itself? If so it may point toward a feedback system,

where Pom1 does not provide an absolute measure of cell length

but measures this length in a subjective cell cycle context-

dependent manner. Quantitative modeling of Pom1 gradients

will be necessary to define whether and how variation in Pom1
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activity contributes to shaping them. Our molecular dissection

of Pom1 gradients now provides the framework for this quantita-

tive analysis.

Mechanics and Function of Autophosphorylation
Our data show that wild-type Pom1 cannot rescue the localiza-

tion of inactive Pom1. The simplest interpretation of these results

is that Pom1 undergoes intramolecular autophosphorylation

events. An alternative possibility is that autophosphorylation

events occur in trans between distinct Pom1 molecules but

that wild-type and inactive Pom1 are blind to each other.

Although, to our knowledge, no data exist to distinguish between

these two possibilities, evidence suggests that Pom1 associates

in large complexes. First, Pom1 forms high molecular weight

complexes in biochemical fractionation (Bähler and Nurse,

2001). Second, clusters of Pom1 are detected at the membrane

(see Figure 1A). Finally, in backgrounds where Pom1 associates

weakly with the plasmamembrane, such as the Pom11A-Pom13A

alleles, Pom1 forms defined domains of membrane association

(Figure S6), suggesting a certain amount of cooperativity

between distinct Pom1molecules to associate at themembrane.

Besides the autophosphorylation sites in the basic region,

mass spectrometry identified 39 other sites spread mostly in

the noncatalytic regions of Pom1, of which all or only a subset

may be phosphorylated on each Pom1 molecule. We note that

most of these sites are significantly different from the DYRK

consensus previously defined. What is the role of these addi-

tional sites? First, autophosphorylation at these sites may further

help detach Pom1 from themembrane, similar to the six we char-

acterized. Alternatively, autophosphorylation at these sites may

underlie a second function, e.g., modulating Pom1 activity.

Current evidence suggests that Pom1 is active at the cell cortex

where Cdr2 localizes. Indeed, membrane-associated Pom16A

strongly delays mitotic entry. In contrast, cytoplasmic Pom1 in

tea4D cells only causes a modest delay (unpublished data).

Although substrate localization and accessibility may underlie

this difference, it is also possible that Pom1 is less active in its

fully autophosphorylated cytoplasmic state than its membrane-

associated state. Finally, these autophosphorylation sites may

also influence other Pom1 functions in cell morphogenesis or

septum positioning.

Additional Spatial Cues for Pom1 Localization
The data and model presented above propose that Tea4 is the

spatial cue for the formation of membrane-associated Pom1

gradients. (However, we note that Pom1 can localize to the

septum independently of Tea4.) Indeed, we show that mislocali-

zation of Tea4 is sufficient to initiate the formation of an ectopic

Pom1 gradient. However, it is clear that other factors contribute

to Pom1 localization. Although ectopic Tea4 was able to recruit

Pom1 to the plasma membrane, it was unable to recruit it to

internal membranes: the Ppc89-Tea4 fusion was also localized

to theSPB, butPom1wasnot recruited to the nuclearmembrane.

Similar experiments conducted with a SPB component Sad1-

Tea4 fusion confirmed this result (data not shown). Thus, the

plasma membrane may be the only permissive membrane for

Pom1 binding. In addition we noted that dephosphorylated

Pom1 alleles and in particular partly dephosphorylated alleles



(such as Pom11A-Pom13A) show a preferential cortical localiza-

tion to cell tips even in tea4D cells. Similarly, Pom1 shows prefer-

ential tip cortex localization in tea1D cells in which Tea4 is homo-

geneously distributed (Celton-Morizur et al., 2006; Padte et al.,

2006). This preference may be conferred by membrane curva-

ture, specific lipid composition of the plasma membrane at cell

ends, or as yet uncharacterized membrane proteins.

Dynamic Maintenance of Cortical Gradients
Intracellular gradients are important for cell patterning. Yet, the

mechanisms for gradient formation are generally not well

described. Although large-scale gradients that pattern organ-

isms during development, such as the Bicoid or Decapentaple-

gic gradients, reaching across hundreds of microns, rely on local

translation and degradation (Wartlick et al., 2009), these second-

order reactions are too slow for the formation of small-scale

intracellular gradients. In contrast, intracellular gradients, such

as the Ran-GTP gradient around chromatin or the bacterial polar

MinCD gradient, are proposed to self-organize through autore-

gulatory feedbacks (Fuller, 2010; Lutkenhaus, 2007). One

general feature is that these gradients are not static systems

but are dynamically maintained by a constant flow of proteins

cycling through distinct stages of membrane/organelle associa-

tion and protein modification. Conceptually similar flow models

serve for the kinetic polarization of membranes through endo-

cytic recycling in migrating cells or budding yeast (Bretscher,

1996; Valdez-Taubas and Pelham, 2003). Our work now defines

a detailed molecular mechanism for one such flow model.

Parallels with the MinCD gradient, where the MinD ATPase

forms gradients from the ends of bacterial cells recruiting the

division inhibitor MinC (Lutkenhaus, 2007), are particularly

intriguing: both MinCD and Pom1 form cortical gradients and

function in sensing cell length and regulating cell division. More-

over, these gradients are shaped by first-order reactions through

endogenous enzymatic activity, where this activity promotes

detachment from the membrane. The strategic similarities

used by these unrelated proteins in distinct phyla suggest that

the mechanisms we have defined may represent a general blue-

print for building gradients along intracellular structures.

EXPERIMENTAL PROCEDURES

Detailed methods, including strain list (Table S1), are described in the

Supplemental Information.

Mutants and Construct Information

The mutations introduced in the tea4SH3* and tea4RVxF* alleles are W155A-

W156A and V223A-F225A, respectively. All mutations introduced in pom1

are indicated in Figure S2 and Figure S5, except for pom1KD, which is

K728R (Bähler and Nurse, 2001). The Ppc89-GFP-Tea4 fusion was obtained

by fusing in this order and in frame the three ORFs without stop codons in

a pRIP81 plasmid. This fusion contains a small AGAGAG linker between

GFP and Tea4. After linearization, this plasmid was then integrated at the

ura4 locus. Thus, this construct is present as sole copy in the cell under control

of the weak nmt promoter.

Microscopy and Quantification

Unless stated otherwise, all images are two-dimensional maximum intensity

projections of the three medial sections of spinning-disk confocal images,

except the BiFC experiments, which are maximum intensity projections of
the entire cell volume of laser-scanning confocal images. Except where stated,

all images are of GFP-tagged gene products integrated as sole copy at the

endogenous locus and expressed under endogenous promoter. All measure-

ments were performed in ImageJ on images taken in identical conditions. We

note that our measurements of fluorescence distribution were only corrected

for background values and, thus, serve primarily as illustration of the images

shown.

Protein-Lipid Binding Assays

Protein-lipid overlay assays were performed using lipid strips purchased from

Echelon Inc., essentially according tomanufacturer’s protocol. We usedMBP-

Pom1 rather than GST-Pom1 because we found that GST alone bound some

lipids with significant affinity. Recombinant Pom1 fragments bearing a func-

tional kinase domain were found to be autophosphorylated in the bacterial

cell. For all experiments we used 0.5 mg/ml of recombinant protein and per-

formed control binding reactions in identical conditions in parallel. We repro-

ducibly found that dephosphorylated Pom1 or the Pom11–699 fragment bound

both lipids and membrane with higher affinity than autophosphorylated forms

or MBP alone. The scans of the lipid strips shown have not been modified in

any way.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, six

figures, and one table and can be found with this article online at doi:10.

1016/j.cell.2011.05.014.
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Supplemental Information

EXTENDED EXPERIMENTAL PROCEDURES

Yeast Strains, Media, and Genetic Methods
Standard methods for S. pombe media and genetic manipulations were used throughout. Generally, for imaging, length measure-

ments and biochemistry experiments, cells were grown in synthetic Edinburgh minimal medium (EMM) with appropriate supple-

ments. For induction of pom1-GFP expression under nmt promoter in the pREP41 plasmid, cells were grown for 21-23h at 25�C
in EMM medium lacking thiamine, except for strong overexpression where cells were grown for 24h at 30�C. GFP, tea4-GFP and

ppc89-GFP-tea4 under the weak nmt promoter integrated at the ura4 locus were induced to steady-state levels for over 24h at

30�C in EMM medium lacking thiamine. Repression of tea4-GFP under the weak nmt promoter was done by growing cells in pres-

ence of 15mM thiamine for > 24h at 30�C.
All strains used in this study are listed in Table S1. Tagged and deletion strains were constructed by using a PCR-based approach

(Bähler et al., 1998) and confirmed by PCR. Template for tdTomato and BiFC tagging were used as published (Akman and MacNeill,

2009; Snaith et al., 2005). Integration of mutant alleles at the endogenous genomic locus was performed through a two-step proce-

dure: the wild-type copy was first replaced by a ura4+ cassette amplified by PCR with 100-mer oligos containing homology to the

flanking regions of the fragment to be deleted. This cassette was then further replaced by a mutant gene fragment and selected

on 5-FOA medium.

Molecular Biology and Yeast Two-Hybrid Analysis
All plasmids were constructed using standard molecular biology techniques. In general, genes or gene fragments were cloned after

PCR from genomic DNA with primers containing 50 extensions with specific restriction sites. Details of the primers and restriction

sites used are available upon request. All Pom1 expression plasmids were generated in the pREP41-GFP backbone (Craven

et al., 1998). PCR-based site-directed mutagenesis was performed essentially as described. All plasmids were fully sequenced.

Two-hybrid assays were performed by co-transformation of appropriate pGAD and pGBD plasmids in AH109 host strain (Clon-

tech). Interaction was assessed by growth on SD medium lacking histidine. All pGAD-tea4 constructs used interacted with

pGBD-tea1 and pGBD-for3 used as positive controls (Martin et al., 2005).

Microscopy
Imaging was performed at room temperature on live cells, except where specified, on a PerkinElmer spinning disk microscope, as

previously described (Martin and Berthelot-Grosjean, 2009), except for the BiFC experiments. Stacks of z-series confocal sections

were acquired at 0.3 mm intervals with the Volocity software and images were rendered by two-dimensional maximum intensity of the

3 medial sections, unless stated otherwise. Figures were prepared with Adobe Photoshop CS5 and Adobe Illustrator CS5. FRAP

experiments were performed on the same setup using the PerkinElmer photokinesis module. ROI were bleached with 12 repetitive

scans. For Figure 4, post-bleach images were acquired at 5 s intervals for the first 60 s followed by 10 s intervals for the next 140 s and

finally 30 s intervals for the last 600 s tominimize bleaching during image acquisition. For Figure 1, post-bleach images were acquired

at regular intervals. The BiFC images were acquired on a Zeiss laser-scanning LSM 510 Meta confocal microscope. Except where

stated all images are of GFP-tagged gene products integrated as sole copy at the endogenous locus and expressed under endog-

enous promoter. For imaging Pom1-GFP in orbmutants (Figure S1), 5ml exponential cultures were centrifuged at 3000 rpm for 2min,

resuspended in �20�C methanol and fixed for 10min at �20�C; cells were then washed 3 times in PBS. Cell length measurements

were performed on calcofluor (Sigma)-stained septated cells.

Inhibition of Pom1-as1was donewith 1NM-PP1 (Calbiochem) used at a final concentration of 20 mM from a 10mM stock solution in

DMSO and added in YE medium. To follow the same cells before and after inhibitor addition, these experiments were performed in

homemade PDMF channels mounted on coverslips. Cycloheximide (Sigma) was used at 0.1mg/ml final concentration.

Fluorescence Quantification
All measurements and calculations were performed in ImageJ and MS_Excel, respectively. FRAP quantification was performed as

previously described (Martin and Chang, 2006). Time constants were estimated by the intersection of the curve with a line at half-

maximal recovery. For whole-cell quantification of the distribution of Pom1-GFP in Figure 1, a sum projection of spinning disk

confocal z-stacks of an individual cell was boxed and the ImageJ (10.2) ‘‘plot profile’’ tool was used to compress the fluorescence

intensity into a one-dimensional line along the long axis of the cell, as described (Martin and Berthelot-Grosjean, 2009). For measure-

ment of fluorescence intensity along the cell cortex or through the cell middle, a 5 pixel-wide line was drawn by hand at the periphery

or along the long axis of the cell in a medial confocal section and fluorescence intensity obtained using the plot profile tool of ImageJ.

Background correction was performed by subtracting the background fluorescence intensity measured just outside the cell exam-

ined. In Figure 1, data corresponding to 9 mmof the cell perimeter centered around the tip of the cell and 3 mm of the cell perimeter or

1.5 mm perpendicular to the cell periphery centered around Ppc89-GFP-Tea4 was acquired. For each channel, in order to compare

fluorescence distribution and not absolute fluorescence levels, the integrated fluorescence intensity over the measured line was

normalized to a value of one. We note that our measurements of fluorescence distribution were only corrected for background values

and thus serve primarily as illustration of the images shown.
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Coimmunoprecipitations and Electrophoresis
Extracts from yeast grown in EMM medium were prepared in CXS buffer (50 mM HEPES, pH 7.0, 20mM KCl, 1mM MgCl2, 2mM

EDTA, pH 7.5. and protease inhibitor cocktail) by grinding in liquid nitrogen with a mortar and pestle. After thawing, NaCl and Triton

X-100 were added to final concentrations of 150mM and 0.1% respectively. For immunoprecipitations, 150 ml soluble extract was

added to 20 ml sheep anti-mouse magnetic Dynabead slurry (Dynal) pre-bound to 2 mg monoclonal anti-GFP antibodies (Roche),

and incubated for 2h at 4�C. Magnetic Dynabeads were then washed twice with CXS 150mM NaCl 0.1% Triton X-100 then twice

with CXS 75mM NaCl 0.1% Triton X-100 and finally twice with CXS 75mM NaCl. Immunoprecipitated material was then recovered

by boiling Dynabeads in 30 ml SDS sample buffer for 5 min at 95�C.
Standard protocols were used for SDS-PAGE and Western blot analysis. Antibodies used on Western blots were: mouse mono-

clonal anti-HA (HA.11; Covance), anti-GFP (Roche), anti-MBP (Cell Signaling) and anti-GST (Sigma). Silver staining was done using

the SilverSNAP Stain Kit II (Pierce).

Recombinant Protein Expression and In Vitro Assays
MBP-Pom1 and GST-Pom1 fusion proteins were expressed in BL21 cells and purified with amylose resin (NEB) or glutathione se-

pharose 4B (GE Healthcare) columns according to manufacturers’ protocols. 6His-Cdr2423-532 was expressed and purified as

described (Martin and Berthelot-Grosjean, 2009).

Kinase assays, were performed in 30mM Tris, 100mM NaCl, 10mMMgCl2, 1mM EGTA, 10% glycerol, 20 mM ATP and 2 mCi [32P]

ATP (PerkinElmer #BLU502A250UC) with equivalent amounts of GST-Pom1, GST-Pom1KD and GST-pom16A in a 15 ml final volume

reaction. After a 30 min incubation at 30�C, the reaction was stopped by boiling in sample buffer and analyzed by SDS–PAGE.
32P-incorporation was detected in a phosphorimager.

For phosphatase assays, equivalent amounts of GST-Pom1, GST-Pom1KD and GST-pom16A were treated with 3,75U of PP1 (NEB

#P0754S) in 1X PMP Buffer (NEB) supplemented with 1mM MnCl2 and incubated at 30�C for 1h.

Phosphorylation Analysis of Pom1 by LC-MS/MS
Bands corresponding to phosphorylated recombinant GST-Pom1 were excised from SDS-PAGE gel and digested, as described

(Shevchenko et al., 1996; Wilm et al., 1996), with sequencing-grade trypsin (Promega), chymotrypsin (Roche), Lys-C (Roche) or

Glu-C (Sigma-Aldrich). Extracted peptides were analyzed on a hybrid LTQ Orbitrap Velos mass spectrometer (Thermo Fisher Scien-

tific, Bremen, Germany) interfaced to an Ultimate 3000 RSLC nano HPLC system (Dionex, Olten, Switzerland). In data-dependent

acquisition controlled by Xcalibur 2.1 software (Thermo Fisher Scientific), the 15 most intense precursor ions detected in the full

MS survey performed in the Orbitrap (range 300-1700m/z, resolution 300000 at m/z 400) were selected and fragmented. Only precur-

sors with a charge higher than one were selected for HCD fragmentation and fragment ions were analyzed in the Orbitrap at a reso-

lution of 70500. From raw files, MS/MS spectra were de-isotoped, deconvoluted and exported as mgf files (Mascot Generic File, text

format) using MascotDistiller 2.3.2 (Matrix Science, London, UK). In a parallel experiment, phosphopeptides of Pom1 were enriched

on a TiO2 column (Larsen et al., 2005) after Lys-C digestion and analyzed by LC-MS/MS, in order to clarify some ambiguous phos-

phosite localization.

MS/MS spectra were analyzed using Mascot 2.2 (Matrix Science, London, UK). Mascot was set up to search the UNIPROT data-

base (SWISSPROT + TrEMBL, www.expasy.org) restricted to Schizosaccharomyces pombe taxonomy (database release used was

15.12 of December, 15th 2009, 50159 sequences after taxonomy filter). Trypsin (semi-specific cleavage at K,R, not before P), chymo-

trypsin (semi-specific cleavage at F,L;W,Y, not before P), Lys-C (semi-specific cleavage at K, not before P) or Glu-C (semi-specific

cleavage at D,E, not before P), was used as the enzyme definition. Mascot was searched with a fragment ion mass tolerance of 0.02

Da, a parent ion tolerance of 10 ppm, allowing four missed cleavages. Iodoacetamide derivative of cysteine was specified in Mascot

as a fixed modification. Deamidation of asparagine and glutamine, oxidation of methionine, and phosphorylation of serine, threonine

and tyrosine were specified as variable modifications.

Combined analysis of trypsin, chymotrypsin, Lys-C and Glu-C datasets allowed the characterization of 41 phosphosites with

95.9% coverage of Pom1 sequence, using a Mascot ion score threshold of 14. Phosphorylation sites with ambiguous localization

were noted as potential, when the difference between the top two Mascot ion scores of two alternative phosphorylation sites in

the same peptide sequence was below 5. No peptide covering amino-acids 405 to 429, 436 to 445 and 482 to 487 could be observed

in any of the four protease datasets. As these regions are rich in hydrophilic residues (S, T, K, R), the corresponding peptides were

probably not retained on the C18 chromatographic column.
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Figure S1. Pom1 Localization in Wild-Type Cells and in Polarity Mutants, Related to Figure 1

(A) Localization of Pom1-GFP and GFP, as well as background fluorescence intensity of unlabelled cells. Cells were imaged in identical conditions and a single

medial confocal section is shown. The fluorescence intensity was measured along the periphery of each cell half (graph on the left) and across the cell length

(middle graph), as in Figure 1A. The sum fluorescence intensity of the entire cell volume along the length of the cell is shown on the graph on the right.While neither

GFP nor background signal are distributed in a graded pattern, Pom1-GFP forms cortical concentration gradients.

(B) Localization of Pom1-GFP in indicated genotypes in live cells grown at 30�C.
(C) Localization of Pom1-GFP in cells of indicated genotypes grown at the restrictive temperature of 36�C for 2h30 and fixed. Scale bars are 5mm.
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Figure S2. Alignment of Pom1 with Orthologs from Other Schizosaccharomyces Species, Related to Figure 2
Alignment of Pom1 orthologs in 4 Schizosaccharomyces species (S.p.: pombe, S.o.: octosporus, S.c.: cryophobus, S.j.: japonicus). The kinase domain is

underlined. Serine/threonine residues mutated to alanine in the Pom16A allele are boxed in black. Proline residues mutated to alanine in the Pom15PxxP* allele are

boxed in red. All phosphorylated residues identified by mass-spectrometry are in bold and highlighted by a purple asterisk. Purple boxes around some of these

indicate that only one of the two or more boxed residues are phosphorylated, but that the exact phosphorylated residue could not be precisely resolved. Regions

for which no peptides were recovered in the mass-spectrometry are underlined with a dashed line.
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Figure S3. Mutation of Pom1 Autophosphorylation Sites Causes Progressive Cortical Spreading of Active Pom1, Related to Figure 3

(A) Localization of indicated Pom1-GFP alleles expressed from plasmids in pom1D cells. The corresponding mutations are indicated at the bottom. Note that all

mutations were introduced in the N-terminal truncated Pom1D305 allele, which lacks the first 305 amino acids not essential for localization. Scale bar is 5mm.

(B) Strong overexpression of wild-type or Pom16A-GFP, but not Pom1KD-GFP leads to morphological defects. The constructs were expressed on plasmid under

nmt41 promoter and induced for 24h at 30�C. The cells were fixed in 70% EtOH.

S6 Cell 145, 1116–1128, June 24, 2011 ª2011 Elsevier Inc.



0’ 15’ 30’ 60’ 120’
A

cy
cl

oh
ex

im
id

e

B

25ºC 36ºC

m
t
s
3
-
1

Figure S4. Pom1 Localization Is Not Controlled by Translation and Degradation, Related to Figure 4

(A) Localization of Pom1-GFP after indicated time in cycloheximide.

(B) Localization of Pom1-GFP in the thermosensitive mts3-1 proteasome mutants grown at 25�C or 36�C for 2h30. Scale bars are 5mm.
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Pom1-GFP Pom11PxxP*-GFP

PTIP272-275ATIA PTIP272-275ATIA
PDVP457-460ADVA

PTIP272-275ATIA
PDVP457-460ADVA
PSVP538-541ASVA

PTIP272-275ATIA
PDVP457-460ADVA

PPP514-516AAA
PSVP538-541ASVA

PTIP272-275ATIA
PDVP457-460ADVA

PPP514-516AAA
PSVP538-541ASVA
PLP1029-1031ALA

Pom12PxxP*-GFP Pom13PxxP*-GFP Pom14PxxP*-GFP Pom15PxxP*-GFP

Figure S5. Mutation of PxxP Motifs Reduces Pom1 Localization to Cell Tips, Related to Figure 5

Localization of indicated Pom1-GFP alleles expressed from plasmids in pom1D cells. The correspondingmutations are indicated at the bottom. Scale bar is 5mm.

S8 Cell 145, 1116–1128, June 24, 2011 ª2011 Elsevier Inc.



Figure S6. Mutation of Autophosphorylation Sites Bypasses the Need for Tea4 for Pom1 Localization to the Cell Periphery, Related to

Figure 6

Localization of indicated Pom1-GFP alleles expressed from plasmids in tea4D cells. The corresponding mutations are indicated at the bottom. As in Figure S3, all

mutations were introduced in the N-terminal truncated Pom1D305 allele, which lacks the first 305 amino acids not essential for localization. Note that even

mutation of few autophosphorylation sites is sufficient to restore partial localization of Pom1 to the cell periphery in tea4D cells. While these Pom1 alleles can

localize anywhere around the periphery of the cell (red arrowheads), there appears to be a preference for cell tips (yellow arrowheads). Note that Pom1 does not

appear to localize uniformly at the cortex, but forms domains of higher intensity. Scale bar is 5mm.
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Table S1. S. pombe Strains Used in This Study, Related to Extended 
Experimental Procedures 
 

Number Genotype Source 

Figure 1 

YSM119 h-  pom1-GFP-kanMX  (Bähler and Pringle, 
1998) 

YSM1276 h+  pom1-tomato-natMX  tea4-GFP-kanMX  ade6-M216  leu1-32  ura4-D18 This study 

YSM1345 h+  pom1∆::kanMK  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1-GFP] This study 

YSM1833 h+  pom1∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1
KD

-GFP] This study 

YSM1672 tea4∆::kanMX ura4-294::nmt81:ppc89-GFP-tea4-ura4+ pom1-tdTomato-natMX 
leu1-32 

This study 

Figure 2 

YSM1345 h+  pom1∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1-GFP] This study 

YSM1348 h+  pom1∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1∆168-GFP] This study 

YSM1350 h+  pom1∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1∆238-GFP] This study 

YSM1352 h+  pom1∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1∆305-GFP] This study 

YSM1832 h+  pom1∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1∆419-GFP] This study 

YSM1831 h+  pom1∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1∆499-GFP] This study 

YSM1852 h+  pom1∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1(305-510)-GFP] This study 

YSM1866 h+  pom1∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1(419-499)-GFP] This study 

Figure 3 

YSM1344 h+  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1-GFP] This study 

YSM1345 h+  pom1∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1-GFP] This study 

YSM1834 h+  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1
KD

-GFP] This study 

YSM1833 h+  pom1∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1
KD

-GFP] This study 

YSM1844 h+  pom1∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1
6A

-GFP] This study 

YSM1846 h+  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1
6A

-GFP] This study 



 

 

YSM119 h-  pom1-GFP-kanMX  (Bähler and Pringle, 
1998) 

YSM1511 pom1
KD

-GFP-kanMX This study 

YSM1849 pom1
6A

-GFP-kanMX  This study 

Figure 4 

YSM799 h+  pom1-as1-tomato-natMX  ade6-M216  leu1-32  ura4-D18 This study 

YSM119 h-  pom1-GFP-kanMX  (Bähler and Pringle, 
1998) 

YSM1511 pom1
KD

-GFP-kanMX This study 

YSM1849 pom1
6A

-GFP-kanMX This study 

Figure 5 

YSM119 h-  pom1-GFP-kanMX  (Bähler and Pringle, 
1998) 

YSM1511 pom1
KD

-GFP-kanMX This study 

YSM1849 pom1
6A

-GFP-kanMX This study 

YSM165 h-  tea4∆::kanMX pom1-GFP-kanMX  ura4- (Padte et al., 2006) 

YSM1855 tea4∆::kanMX pom1
KD

-GFP-kanMX ade6-M210  leu1-32  ura4-D18 This study 

YSM1851 tea4∆::kanMX pom1
6A

-GFP-kanMX ade6-M216  leu1-32  ura4-D18 This study 

YSM1859 tea4
SH3*

 pom1-GFP-kanMX ade6-M210  leu1-32  ura4-D18 This study 

YSM1808 tea4
SH3*

-HA-kanMX pom1
KD

-GFP-kanMX ade6-  leu1-  ura4- This study 

YSM1856 h+ tea4
SH3*

 pom1
6A

-GFP-kanMX ade6-M216  leu1-32  ura4-D18 This study 

Figure 6 

YSM1845 h+  pom1∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1
5PxxP

*-GFP] This study 

YSM1847 h+  pom1∆::kanMx  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1
KD-5PxxP*

-GFP] This study 

YSM1794 tea4∆::kanMX ura4-294::nmt81:GFP-ura4+ pom1-tdTomato-natMX leu1-32 This study 

YSM1694 tea4∆::kanMX ura4-294::nmt81:GFP-tea4-ura4+ pom1-tdTomato-natMX leu1-32 This study 

YSM1184 h-  dis2-NEGFP-ura4+  leu1-32  ura4-D18 (Alvarez-Tabares et 
al., 2007) 



 

YSM1827 dis2-NEGFP-ura4+ tea4∆ ade6-M216  leu1-32  ura4-D18 This study 

YSM1828 dis2-NEGFP-ura4+ tea4
SH3*

 ade6-M216  leu1-32  ura4-D18 This study 

YSM1829 dis2-NEGFP-ura4+ tea4
RVxF*

 ade6-M216  leu1-32  ura4-D18 This study 

YSM1711 dis2-NEGFP-ura4+ pom1∆::kanMX leu1-32  ura4-D18 This study 

YSM1771 tea4-YFPVenusN173-natMX  dis2-YFPVenusC155-kanMX  This study 

YSM1779 tea4-YFPVenusN173-natMX pom1-YFP(Venus)C155-kanMX This study 

YSM1812 tea4-YFPVenusN173-natMX pom1
KD

-YFPVenusC155-kanMX   This study 

YSM1804 tea4
SH3*

-YFPVenusN173-natMX  dis2-YFPVenusC155-kanMX This study 

YSM1805 tea4
SH3*

-YFPVenusN173-natMX  pom1-YFPVenusC155-kanMX This study 

YSM1810 tea4
SH3*

-YFPVenusN173-natMX  pom1
KD

-YFPVenusC155-kanMX  This study 

YSM1803 tea4
SH3*

-YFPVenusN173-natMX  tea3-YFPVenusC155-kanMX This study 

YSM1774 dis2-YFPVenusN173-natMX pom1-YFPVenusC155-kanMX This study 

YSM1791 dis2-YFPVenusN173-natMX pom1-YFPVenusC155-kanMX tea4∆::kanMX This study 

YSM119 h-  pom1-GFP-kanMX  (Bähler and Pringle, 
1998) 

YSM1848 h-  pom1
5PxxP

*-GFP- kanMX ade6-M216  leu1-32  ura4-D18 This study 

YSM1830 pom1-GFP-kanMX tea4
RVxF*

 ade6-M216  leu1-32  ura4-D18 This study 

YSM1850 pom1
5PxxP*

-GFP-kanMX tea4
RVxF*

 ade6-M216  leu1-32  ura4-D18 This study 

YSM1511 pom1
KD

-GFP-kanMX This study 

YSM1849 pom1
6A

-GFP-kanMX This study 

Figure S1 

YSM119 h-  pom1-GFP-kanMX  (Bähler and Pringle, 
1998) 

YSM1793 h+  ura4-294::nmt81:GFP-ura4+ leu1-32 This study 

YSM1180 h-  ade6-M210  leu1-32  ura4-D18 Lab stock 

YSM813 h+  pom1-GFP-kanMX tea1∆::ura4+  ade6-  leu1-  ura4- (Padte et al., 2006) 

YSM1857 h- pom1-GFP-kanMX tea2∆::his3+ This study 



 

YSM811 pom1-GFP-kanMX tea3∆::kanMX This study 

YSM165 h- pom1-GFP-kanMX tea4∆::kanMX ura4- (Padte et al., 2006) 

YSM1853 h+ pom1-GFP mod5∆ leu1-32   This study 

YSM521 pom1-GFP-kanMX for3∆::kanMX  leu1-   This study 

YSM1303 pom1-GFP-kanMX orb2-34   This study 

YSM1304 pom1-GFP-KanMX orb5-19   This study 

Figure S3 

YSM1352 h+  pom1∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1∆305-GFP] This study 

YSM1451 h+  pom1∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1∆305
1A

-GFP] This study 

YSM1602 h+  pom1∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1∆305
2A

-GFP] This study 

YSM1614 h+  pom1∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1∆305
3A

-GFP] This study 

YSM1835 h+  pom1∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1∆305
5A

-GFP] This study 

YSM1837 h+  pom1∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1∆305
6A

-GFP] This study 

YSM1344 h+  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1-GFP] This study 

YSM1834 h+  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1
KD

-GFP] This study 

YSM1846 h+  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1
6A

-GFP] This study 

Figure S4 

YSM119 h-  pom1-GFP-kanMX  (Bähler and Pringle, 
1998) 

YSM1854 h+ pom1-GFP mts3-1 leu1-32 This study 

Figure S5 

YSM1345 h+  pom1∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1-GFP] This study 

YSM1638 h+  pom1∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1
1PxxP*

-GFP] This study 

YSM1639 h+  pom1∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1
2PxxP*

-GFP] This study 

YSM1842 h+  pom1∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1
3PxxP*

-GFP] This study 

YSM1843 h+  pom1∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1
4PxxP*

-GFP] This study 

YSM1845 h+  pom1∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1
5PxxP*

-GFP] This study 



 

Figure S6 

YSM1836 h+  tea4∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1∆305N-GFP] This study 

YSM1838 h+  tea4∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1∆305
1A

-GFP] This study 

YSM1839 h+  tea4∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1∆305
2A

-GFP] This study 

YSM1840 h+  tea4∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1∆305
3A

-GFP] This study 

YSM1841 h+  tea4∆::kanMX  ade6-M216  leu1-32  ura4-D18  [pREP41-pom1∆305
6A

-GFP] This study 
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