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Abstract

Oscillatory fluid movements in heterogeneous porous rocks induced by

seismic waves cause dissipation of wave field energy. The resulting seis-

mic signature depends not only on the rock compressibility distribution,

but also on a statistically averaged permeability. This so-called equiv-

alent seismic permeability does, however, not coincide with the respec-

tive equivalent flow permeability. While this issue has been analyzed

for 1D media, the corresponding 2D and 3D cases remain unexplored.

In this work, this topic is analyzed for 2D random medium realizations

having strong permeability fluctuations. With this objective, oscilla-

tory compressibility simulations based on the quasi-static poroelasticity

equations are performed. Numerical analysis shows that strong perme-

ability fluctuations diminish the magnitude of attenuation and velocity

dispersion due to fluid flow, while the frequency range where these ef-

fects are significant gets broader. By comparing the acoustic responses

obtained using different permeability averages, it is also shown that at

very low frequencies the equivalent seismic permeability is similar to

the equivalent flow permeability, while for very high frequencies this

parameter approaches the arithmetic average of the permeability field.

These seemingly generic findings have potentially important implica-

tions with regard to the estimation of equivalent flow permeability from

seismic data.

PACS numbers: 43.20.Jr, 43.40.Ph
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I. INTRODUCTION

Seismic waves propagating in fluid-saturated porous rocks with heterogeneity in the

mesoscopic scale range, that is, heterogeneities larger than the pore size but smaller than

the prevailing wavelengths, can be significantly attenuated (e.g., Pride et al., 2004; Müller

et al., 2010). This is because seismic waves induce a local, oscillatory fluid flow between

mesoscale heterogeneities with differing elastic compliances. This so-called wave-induced

fluid flow (WIFF) loss mechanism depends on the rock properties as well as on the pore

fluid composition. Specifically, WIFF depends on the hydraulic transport capability of the

rock, that is, the flow permeability. This dependence can be readily understood as WIFF

implies fluid pressure diffusion between different mesoscale heterogeneities of the probed

rock volume. The fluid pressure diffusivity, in turn, is directly proportional to the flow

permeability. Therefore, the WIFF mechanism provides a link between flow permeability

and seismic attributes. Implications of this link have been exemplified in some contexts (e.g.,

Rubino et al., 2012). Flow permeability estimates extracted from seismic signals would have

enormous value for underground reservoir characterization, with potential applications in

hydrocarbon exploration, hydrology and geotechnical engineering (e.g., van Dalen et al.,

2010).

Flow permeability is arguably one of the most variable parameters in geological forma-

tions, including sedimentary basins and aquifers. Even in seemingly homogeneous formations

it may range over several orders of magnitude (e.g., Sanchez-Vila et al., 2006). Thus, from

a seismic point of view it seems expedient to search for an equivalent seismic permeability.

This permeability is defined such that it results in the same amount of attenuation and

phase velocity dispersion due to WIFF when the actual heterogeneous permeability field is

upscaled and replaced by a constant value. In this context, it is, however, important to note

that the equivalent seismic permeability is different from the dynamic permeability used

to model the transition from the viscosity- to the inertia-dominated flow regime in Biot’s

a)Electronic address: German.Rubino@unil.ch
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(1956a; 1956b) theory (e.g., Johnson et al., 1987; Müller and Sahay, 2011).

Shapiro and Müller (1999) showed that in randomly layered poroelastic media there is a

discrepancy between the equivalent seismic permeability and the equivalent flow permeability,

that is, the permeability obtained by upscaling the flow equations. More recently, Müller

et al. (2007) showed that in weakly heterogeneous random poroelastic media the equiva-

lent seismic permeability is frequency-dependent. Only in the low-frequency limit does the

equivalent seismic permeability coincide with the flow permeability. This means that the

equivalent seismic permeability should actually be a dynamic-equivalent permeability.

In order to understand the role of permeability fluctuations for the WIFF loss mechanism

the following analytical recipe has been developed. Based on the method of statistical

smoothing applied to Biot’s (1956a) equations, Müller et al. (2007) derived a dispersion

equation for the slow compressional wave in the presence of permeability fluctuations. From

this dispersion equation an equivalent seismic permeability can be identified that shows

dynamic behavior in the seismic frequency band. This dynamic-equivalent permeability

model can then be incorporated into the expression for the dynamic-equivalent wave number

for the fast compressional wave also obtained by the method of statistical smoothing. This

wavenumber entails attenuation and velocity dispersion due to WIFF taking into account

random permeability fluctuations. It has been inferred that permeability fluctuations cause

WIFF to be observable in a broader frequency range and that the peak attenuation shifts

along the frequency axis depending on the strength of the permeability fluctuations. Müller

et al. (2007) extended this analysis to strong permeability fluctuations in randomly layered

media and observed good agreement with the attenuation and velocity dispersion obtained

from numerical simulations.

The above recipe does, however, have several limitations, mainly associated with the dif-

ficulty of treating strong fluctuations by means of perturbation theory methods. Therefore,

it is not known how strong permeability fluctuations affect seismic signatures due to WIFF.

This problem is not only of obvious interest in the context of flow permeability extraction

from seismic signatures, but also presents a challenge from a theoretical point of view. For
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1D random media the exact low and high-frequency limits of the equivalent seismic per-

meability are known and application of the strong-contrast perturbation theory reveals the

frequency-dependence of this dynamic-equivalent permeability (Caspari et al., 2012). How-

ever, the corresponding results for 2D or 3D random media have not been obtained, which is

also due to the fact that there are no analytical solutions for the effective flow permeability

(e.g., Sanchez-Vila et al., 2006).

The aim of this work is to quantify the impact of strong permeability fluctuations on

the WIFF mechanism. This is done through numerical simulations in 2D realizations of

random fields including strong permeability fluctuations. The random medium parameters

are chosen such that they mimic typical porous rocks. To determine seismic attenuation

and velocity dispersion due to WIFF, we use a numerical oscillatory compressibility test

based on the quasi-static poroelasticity equations, similar to that proposed by Rubino et al.

(2009). We compare the simulated attenuation and velocity dispersion characteristics with

those obtained by replacing the fluctuating permeability field by its respective arithmetic

and harmonic average, as well as by the true equivalent flow permeability. The latter is

numerically inferred from a separate upscaling procedure based on the steady-state flow

equations. These broadband simulations provide further insight into the role of the equiva-

lent seismic permeability for attenuation and velocity dispersion. Similar questions to those

addressed here at the mesoscopic scale have previously been analyzed in the framework of

the Biot’s (1956a; 1956b) intrinsic attenuation mechanism. In this sense, Berryman (1986,

1988) determined the correct permeability average in the context of this attenuation mech-

anism, while Yamamoto and Turgut (1988) analyzed the effects of the pore size distribution

on the frequency dependence of this energy loss mechanism.

This paper is organized as follows. First, we introduce the numerical methodologies

of the quasi-static oscillatory compressibility and steady-state flow tests. While the former

test allows us to infer compressional wave attenuation and velocity as functions of frequency,

the latter test yields the true equivalent flow permeability. This is followed by a series of

numerical simulations involving 2D binary random medium realizations. Changes in the
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attenuation and dispersion behaviors caused by the associated permeability fluctuations are

analyzed and discussed.

II. METHODOLOGICAL BACKGROUND

A. Spatial and temporal scales of WIFF

WIFF constitutes an important attenuation mechanism in porous rocks, which is oper-

ative in the presence of heterogeneities in the mesoscopic scale range. This means that the

characteristic length scale of the heterogeneities ameso satisfies the relation

apore ≪ ameso ≪ λ, (1)

where apore represents a typical pore or grain size and λ is the predominant seismic wave-

length. The propagation of seismic waves through a medium containing mesoscopic hetero-

geneities produces local pore pressure gradients and fluid flow. The associated fluid pressure

relaxation is therefore governed by fluid pressure diffusion with a characteristic transition

frequency ωc. This characteristic frequency depends on the size of the mesoscopic hetero-

geneities and the scales at which fluid flow occurs, that is, the corresponding diffusion lengths

involved in the process. At this characteristic frequency, the diffusion length Ld is of similar

size as the heterogeneities, so that

Ld ≡
√

D/ωc ≃ ameso, (2)

or equivalently,

ωc ≃ D/a2meso, (3)

where D is the pressure diffusivity. This parameter can be expressed in terms of the poroe-

lastic properties of the fluid-saturated porous rock (e.g., Rubino et al., 2012)

D =
κ

η

(

LM − α2M2

L

)

, (4)
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where κ and η denote the permeability of the rock and the fluid shear viscosity, respectively.

In addition, the parameters α, M , and L are given by (e.g., Rubino et al., 2012)

α = 1−
Km

Ks
, (5)

M =

(

α− φ

Ks

+
φ

Kf

)

−1

, (6)

L = λu + 2µ. (7)

In these expressions, Ks, Km and Kf are the bulk moduli of the solid grains, the dry matrix

and the fluid phase, respectively, while µ is the shear modulus of the bulk material, which is

equal to that of the dry frame, and φ is the porosity of the rock. In addition, the saturated

Lame parameter λu is given by

λu = Ksat −
2

3
µ, (8)

where Ksat is the undrained bulk modulus of the saturated material, which can be computed

as (e.g., Rubino et al., 2012)

Ksat = Km + α2M. (9)

For frequencies ω ≪ ωc, the diffusion lengths are much larger than the typical size of

the heterogeneities. Correspondingly, there will be enough time during each oscillatory half-

cycle for the pore fluid pressure to equilibrate at a common value. Thus, this low-frequency

regime represents a relaxed state. On the other hand, for frequencies ω ≫ ωc the diffusion

lengths are very small compared to the size of the heterogeneities. There is no time for

communication between the pore fluid of the different parts of the rock. In this case, the

pore pressure is approximately constant within each heterogeneity and, consequently, this

high-frequency regime is associated with an unrelaxed state. For intermediate frequencies,

as characterized by diffusion lengths that are of similar size as the heterogeneities, that

is, frequencies ω close to ωc, significant fluid flow can be induced by the seismic wave,

which in turn can generate significant attenuation and velocity dispersion effects. Thus, the

characteristic frequency ωc defined by Eq. (3), is also associated with maximum attenuation

due to WIFF. From Eqs. (3) and (4), we notice that the frequency range where attenuation
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due to WIFF operates shifts towards lower frequencies for decreasing permeability, and

increasing fluid viscosity or size of the mesoscopic heterogeneities.

The propagation of seismic waves in porous elastic solids saturated by compressible vis-

cous fluids can be modeled using the theory of poroelasticity developed by Biot (1956a,b).

Biot considered a porous isotropic medium saturated with a single-phase, compressible vis-

cous fluid. He further assumed that anelastic effects arise from relative motions between

the fluid and the solid frame. One of the most important consequences of Biot’s work is

the prediction of a slow compressional wave, in addition to the classical compressional (P )

and shear (S) waves known in classical elastodynamics. This additional wave, commonly

referred to as P2 or slow Biot wave, is characterized by a phase velocity lower than that of

the P wave and is associated with an out-of-phase motion of the solid and fluid phases. An

important parameter in this theory is the critical Biot frequency ωBiot (Biot, 1956a,b). This

critical frequency separates the viscosity-dominated regime (ω ≪ ωBiot) from the regime

dominated by the inertial forces (ω ≫ ωBiot). In the viscosity-dominated or low frequency

range, the P2 wave is strongly attenuated and, actually, is not a propagating mode but a

fluid pressure diffusion process (Dutta and Odé, 1979; Chandler and Johnson, 1981). In the

high frequency range, the P2 mode is a propagating wave. In the framework of the Biot

(1956a) theory, seismic attenuation due to WIFF can be seen as energy conversion from the

classical wave propagating through the heterogeneous domain into P2-wave energy at the

discontinuities of the rock (Gurevich and Lopatnikov, 1995; Müller and Gurevich, 2005a,b).

Because of their diffusive nature, these P2 waves cannot directly be observed in the low-

frequency range. However, we can infer their existence as they may be responsible for the

observed attenuation levels of the propagating waves modes due to WIFF effects.

B. Quasi-static poroelasticity and the oscillatory compressibility test

Studying seismic attenuation and velocity dispersion due to WIFF at mesoscopic scales

is a difficult task. This is mainly due to the fact that, in the low-frequency range, the
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diffusion process associated with the fluid pressure equilibration is a critical issue because

the corresponding diffusion lengths, which characterize the spatial scales at which the fluid

pressure equilibration or fluid flow occurs, are very small as compared with the seismic

wavelengths (e.g., Rubino et al., 2007). This in addition to the necessity to consider small

enough grid spacing to properly represent the mesoscopic heterogeneities, which is an issue

both in the low- and high-frequency ranges.

Rubino et al. (2009) proposed an upscaling procedure based on a numerical oscilla-

tory compressibility test for representative rock samples having an isotropic distribution of

mesoscopic heterogeneities. This methodology permits to obtain the equivalent complex

undrained plane wave moduli, which contain the information on attenuation and veloc-

ity dispersion due to WIFF. We use this methodology to solve Biot’s (1941) consolidation

equations rather than Biot’s (1956a) equations of motion, as it has also been suggested by

Wenzlau et al. (2010) and Quintal et al. (2011). That is, since WIFF is controlled by fluid

pressure diffusion, we can neglect the inertial forces, which in turn provides us a more effi-

cient procedure to estimate WIFF effects. To this end, we solve the equations of quasi-static

poroelasticity in the space-frequency domain (Biot, 1941)

∇ · σ = 0, (10)

iω
η

κ
w = −∇pf , (11)

where σ ≡ (σij) is the stress tensor, w the relative fluid-solid displacement, and pf the

fluid pressure. Please note that Eq. 10 represents the stress equilibrium within the sample,

whereas the expression 11 is the Darcy’s law. These two equations are coupled trough the

stress-strain relations

σij = 2µǫij(u
s) + δij (λu∇ · us − αMζ) , (12)

pf = −αM∇ · us +Mζ, (13)

where u
s denotes the average displacement vector of the solid phase, ǫij(u

s) =

1
2

(

∂us
i/∂xj + ∂us

j/∂xi

)

is the strain tensor of the solid phase and ζ = −∇·w represents the

change in fluid content.

10



To compute WIFF effects, we consider representative rock samples in form of rectangular

random medium realizations containing mesoscopic-scale heterogeneities. These media are

subjected to a time-harmonic compression with constant amplitude of the form ∆Peiωt on its

upper boundary and no tangential forces act on the boundaries. The solid phase is neither

allowed to move on the lower boundary nor have horizontal displacements on the lateral

boundaries. Further, the fluid is not allowed to flow into or out of the numerical domain.

Denoting by V the original volume of the sample, its complex oscillatory volume change

∆V (ω) allows us to define the equivalent undrained complex plane-wave modulus L(ω) by

using the relation

∆V (ω)

V
= −

∆P

L(ω)
, (14)

which is valid for a viscoelastic homogeneous solid in the quasistatic case. In order to

estimate this volume change, Eqs. (10) to (13) are solved under proper boundary conditions.

Let Ω = (0, Lx)× (0, Ly) be a domain in the (x, y)-plane representing the rock sample to be

compressed in the test. Set Γ the boundary of Ω, given by Γ = ΓL ∪ ΓB ∪ ΓR ∪ ΓT , where

ΓL = {(x, y) ∈ Γ : x = 0}, (15)

ΓR = {(x, y) ∈ Γ : x = Lx}, (16)

ΓB = {(x, y) ∈ Γ : y = 0}, (17)

ΓT = {(x, y) ∈ Γ : y = Ly}. (18)

Also, denote by ν the unit outer normal on Γ and let χ be a unit tangent so that {ν,χ}

is an orthonormal system on Γ. Then, to estimate the volume change ∆V (ω), we consider

the solution of Eqs. (10) to (13) under the following boundary conditions

σν = (0,−∆P ), (x, y) ∈ ΓT , (19)

σν ·χ = 0, (x, y) ∈ ΓL ∪ ΓR, (20)

u
s · ν = 0, (x, y) ∈ ΓL ∪ ΓR, (21)

u
s = 0, (x, y) ∈ ΓB, (22)

w · ν = 0, (x, y) ∈ Γ. (23)

11



The vertical displacements us
2(x, Ly, ω) on ΓT allow us to obtain an average vertical

displacement us,T
2 (ω) experienced by the boundary ΓT . Then, for each frequency ω, the

volume change produced by the compressibility test can be approximated by ∆V (ω) ≈

Lxu
s,T
2 (ω), which enables us to compute the equivalent complex plane-wave modulus L(ω)

through Eq. (14). The corresponding complex compressional velocity is given by

Vpc(ω) =

√

L(ω)

ρb
, (24)

where ρb is the average bulk density of the numerical rock sample, that is,

ρb =
1

V

∫

Ω

(φρf + (1− φ)ρs) dV, (25)

with ρs and ρf being the density of solid grains and pore fluid, respectively.

Finally, the equivalent compressional phase velocity Vp(ω) and inverse quality factor

Q−1
p (ω) are then given as (Rubino et al., 2009)

Vp(ω) =

[

Re

(

1

Vpc(ω)

)]

−1

, (26)

1

Qp(ω)
=

Im(Vpc(ω)
2)

Re(Vpc(ω)2)
. (27)

To estimate the equivalent complex moduli, we employ a finite element procedure to

approximate the solution of Eqs. (10) to (13) under the corresponding boundary conditions

(Eqs. (19) to (23)). We use bilinear functions to approximate the solid displacement vector

and a closed subspace of the vector part of the Raviart-Thomas-Nedelec space of zero order

for the fluid displacement.

It is important to mention that we have performed a 1D convergence analysis to ensure

that, given the wide frequency ranges considered in the numerical examples, the employed

grid spacing is small enough to properly represent the prevailing fluid pressure diffusion

processes.

C. Equivalent flow permeability

In order to infer the discrepancies between the equivalent seismic and flow permeabili-

ties, an additional upscaling procedure to determine the latter is needed. In this sense, the
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equivalent flow permeability can be obtained using a numerical procedure similar to labo-

ratory tests employed to determine flow permeabilities (Guarracino and Monachesi, 2010).

The flow permeability κ is defined by the classical Darcy’s law through a linear relation

between flow velocity ẇ and the gradient of fluid pressure pf . Then, the usual procedure to

estimate κ experimentally is to prescribe a constant fluid pressure gradient and to measure

the fluid discharge through the rock sample.

Fluid flow in saturated porous media is described by the following general equation

(Wang, 2000)

∂ζ

∂t
= −∇ · ẇ. (28)

An equivalent value of flow permeability can therefore be obtained by solving Eq. (28) for

the steady state case with boundary conditions that mimic laboratory experiments. Fol-

lowing Desbarats (1992), a predefined fluid pressure difference between the top and bottom

boundaries is therefore imposed and no-flow conditions are applied on the lateral boundaries.

Then, the corresponding boundary value problem can be expressed as

∇ ·

(

κ

η
∇pf

)

= 0, (x, y) ∈ Ω, (29)

pf = p1, (x, y) ∈ ΓB, (30)

pf = p2, (x, y) ∈ ΓT , (31)

ẇ · ν = 0, (x, y) ∈ ΓL ∪ ΓR, (32)

where Eq. (29) is obtained by using Darcy’s law (11) in the time domain in Eq. (28) and

imposing steady-state conditions.

The numerical solution of the differential problem described by Eqs. (29) to (32) allows

us to compute the averaged fluid velocity in the vertical direction, ẇy, induced by the

externally imposed pressure gradient ∆p/Ly = (p2 − p1)/Ly,

ẇy =
1

Lx

∫

ΓB

ẇ · νdx. (33)

Then, according to Darcy’s law, the equivalent permeability κeq at the scale of the considered
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rock sample is given by

κeq =
ηẇyLy

∆p
. (34)

The differential problem defined by Eqs. (29) to (32) is solved using a mixed finite

element method employing the lowest-order Raviart-Thomas-Nedelec space, which gives a

simultaneous approximation to fluid pressure and flow. This method is especially suitable

for this study because it conserves locally the fluid mass and can handle large discontinuities

in the permeability field (Guarracino and Monachesi, 2010).

III. NUMERICAL ANALYSIS

A. Poroelastic random medium models of heterogeneous porous rocks

In this section we explore the effects of strong permeability fluctuations associated with

spatial porosity variations on the equivalent seismic permeability and its seismic signature.

We model a porous rock that is fully saturated with water and whose frame is composed of

quartz grains with the poroelastic properties given in Table I. We use the Kozeny-Carman

equation to relate porosity φ of the numerical rock sample to the permeability κ (e.g., Mavko

et al., 2009)

κ = B
φ3

(1− φ)2
d2, (35)

where B is a geometrical factor that depends on the tortuosity of the sample. In this work,

we take B = 0.003 and use d = 8× 10−3 cm for the mean grain diameter.

In addition to permeability fluctuations, a spatially variable porosity also implies fluc-

tuations in other poroelastic parameters, such as the dry frame moduli and bulk density.

In fact, considering fluctuations in the elastic properties of the dry frame is essential, as

poroelastic compressibility contrasts are needed to produce WIFF (e.g., Müller and Gure-

vich, 2005b). To link the porosity φ and the solid grain properties with the elastic moduli
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FIG. 1. Heterogeneous binary porosity field considered to analyze the discrepancies between

the equivalent seismic permeability and the flow permeability. Black and white regions

correspond to porosities of φ = 0.05 and φ = 0.4, respectively.

of the dry frame we use the model of Krief et al. (1990)

Km = Ks(1− φ)4/(1−φ), (36)

µ = Kmµs/Ks, (37)

where µs is the shear modulus of the solid grains.

We study the behavior of the equivalent seismic permeability in the case of strong

permeability fluctuations produced by a heterogeneous binary porosity field. We generate

this field using stochastic fractal fields based on a von-Karman-type spectral density function,

which is frequently used in the statistical characterization of heterogeneities for different

applications (e.g., Tronicke and Holliger, 2005),

Sd(kx, ky) = S0

(

1 + k2
xa

2
x + k2

ya
2
y

)

−(H+E/2)
, (38)

where kx and ky are the horizontal and vertical wavenumbers, ax and ay are the horizontal

and vertical correlation lengths, S0 is a normalization constant and E is the Euclidean

dimension. This expression corresponds to a band-limited scale-invariant stochastic process

with a Hausdorff fractal dimension DH = E + 1−H , with 0 ≤ H ≤ 1.

To generate heterogeneous porosity fields with corresponding characteristics, we first

partition the computational domain into a finite number of grid cells Ωj and assign to

each of these cells a pseudo-random number drawn from a uniform distribution. Then,

15



we Fourier transform this field to the spatial wavenumber domain and filter its amplitude

spectrum using the Eq. (38), with ax = ay = 1 cm and H = 1. Next, we transform back

the result to the spatial domain to obtain an heterogeneous field. Finally, the binary field is

obtained through thresholding and appropriate rescaling. Please note that this binarization

of the original continuous stochastic field results in a halving of the original H-value, that

is, Hbinary = H/2 = 0.5 and DH = E + 1 −Hbinary = 2.5 (Holliger et al., 1993; Goff et al.,

1994). The second-order statistics of the considered binary field are thus governed by an

exponential autocorrelation function.

Fig. 1 shows the binary porosity distribution employed in the numerical analysis. Black

regions (material 1) have a porosity φ = 0.05 and a permeability κ = 2.69 × 10−3 D, while

the white ones (material 2) have a porosity φ = 0.4 and permeability κ = 3.458 D. The

elastic properties of the dry frame obtained by the Eqs. (36) and (37) are shown in Table I.

B. Generic effects of permeability fluctuations

In order to obtain the equivalent flow permeability, we solve the corresponding differen-

tial problem (Eqs. (29) to (32)) assuming an externally imposed pressure difference ∆p =

100 Pa. Fig. 2 shows the fluid pressure and the normalized modulus of the fluid velocity

field for the random medium realization shown in Fig. 1. Note that the fluid pressure field

is relatively smooth and is mainly governed by the pressure gradient between the upper and

lower boundaries. Conversely, the fluid velocity field is highly heterogeneous and exhibits

fluctuations of three orders-of-magnitude over short distances. It is also interesting to notice

that the fluid velocity field is strongly correlated with the pattern shown in Fig. 1. The

equivalent flow permeability value given by Eq. (34) turned out to be 7.648×10−3 D, which

lies between the harmonic (3.903×10−3 D) and the arithmetic (1.0738 D) averages.

Fig. 3 shows the inverse quality factor and phase velocity curves obtained using the

oscillatory compressibility test (solid lines). In order to study the behavior of the seismic

permeability, we also include the seismic responses obtained when replacing the heteroge-
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FIG. 2. (Color online) Fluid pressure field (top panel) and normalized modulus of the fluid

velocity field (bottom panel) for the numerical rock sample shown in Fig. 1.

neous permeability field by a homogeneous field having a permeability value given by the

arithmetic average (dotted lines), the harmonic average (dot-dashed lines), and the estimated

equivalent flow permeability (dashed lines). Note that while in these cases we consider a

homogeneous permeability field, we retain the original heterogeneities associated with the

other poroelastic properties, that is, porosity, bulk density, and elastic moduli of the dry

frame. We observe that in the presence of permeability fluctuations the attenuation levels

are less significant and the attenuation peak gets broader. This is in agreement with the

results of Müller et al. (2007). In this context, it is interesting and important to note that

the same behaviour was observed by Yamamoto and Turgut (1988) for classical P -wave

attenuation in presence of log-normal pore size distributions. It should, however, also be

noted that the effects studied by Yamamoto and Turgut (1988) are produced by pore-scale

heterogeneities, while those analyzed in this work arise due to the presence of mesoscale
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FIG. 3. (Color online) Inverse quality factor (top panel) and phase velocity (bottom panel)

as functions of frequency for the binary porosity distribution shown in Fig. 1. The different

curves correspond to different permeability fields.

heterogeneities.

We also observe in Fig. 3 that for frequencies below ∼ 1 Hz in the case of the inverse

quality factor and below ∼ 10 Hz in the case of phase velocity, there is a very good agree-

ment between the responses obtained for the heterogeneous permeability field (solid lines)

and those corresponding to a constant permeability value given by the equivalent flow per-

meability (dashed lines). This, in turn, indicates that for very low frequencies the equivalent
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seismic permeability is similar to the equivalent flow permeability. This result is expected,

since, as explained by Müller et al. (2007), at low frequencies the diffusion length is larger

than the typical size of the heterogeneities and, hence, WIFF takes place at spatial scales

involving several heterogeneities. Conversely, for very high frequencies the diffusion length

is much smaller than the typical heterogeneity size and WIFF takes place at spatial scales

much smaller than the prevailing heterogeneities. This implies that the local permeability

value is sampled which, on average, should yield a seismic permeability close to the arith-

metic average. In fact, we observe in Fig. 3 that there is good agreement between the

seismic attenuation and phase velocity curves for the heterogeneous permeability field (solid

lines) and those corresponding to the arithmetic average of the permeability field (dotted

lines), especially for frequencies above ∼ 107 Hz in the case of the inverse quality factor and

for frequencies above ∼ 106 Hz in the case of phase velocity. With regard to the harmonic

average permeability, we observe that the attenuation curve is similar to that corresponding

to the equivalent flow permeability, although it is shifted towards lower frequencies. For

this reason, the harmonic average permeability cannot reproduce the attenuation behavior

of the heterogeneous permeability case.

It is interesting to observe that there are three clear attenuation peaks for the hetero-

geneous permeability field (Fig. 3). Conversely, the averaged permeability fields show two

peaks, one of which is very prominent and associated with very high levels of attenuation,

while the second one is less visible and related to lower levels of attenuation. In the case

of the effective flow permeability, for example, the main attenuation peak is located at a

frequency of 63 Hz, while the less prominent one occurs at 3.1 Hz. For this particular aver-

aged permeability, these two attenuation peaks occur at the same frequencies as two of the

peaks for the heterogeneous permeability case. In addition, the third attenuation peak for

the heterogeneous permeability field is located at approximately the same frequency as the

main peak for the arithmetic average permeability. As illustrated by Eq. (2), the occurrence

of an attenuation peak due to the presence of mesoscopic heterogeneities manifests the coin-

cidence between the diffusion length and the characteristic size of the heterogeneities (e.g.,
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FIG. 4. “Uncorrelated” permeability field used to study the corresponding effects on the

attenuation behavior related to the heterogeneous sample shown in Fig. 1. Black and white

regions correspond to permeabilities of κ = 2.69× 10−3 D and κ = 3.458 D, respectively.

Gurevich and Lopatnikov, 1995; Müller and Gurevich, 2005a). The fact that the averaged

permeability fields exhibit two attenuation peaks, thus points to the existence of two char-

acteristic length scales. However, in the presence of mesoscopic permeability fluctuations

WIFF attenuation is sensitive to the entire permeability range covered by the equivalent

seismic permeability. This creates additional possibilities to satisfy Eq. (2), which in turn

results in additional attenuation peaks.

The velocity dispersion and attenuation characteristics presented in Fig. 3 are based on

a single realization from the corresponding stochastic ensemble. However, we note that in

the given context it is possible to obtain meaningful results even from a single realization of

the random medium. The reason for this is that WIFF is a local phenomenon occurring in

the vicinity of the heterogeneities. The numerical upscaling procedure then averages these

local WIFF contributions over the entire sample. So, to some extent, the ensemble averag-

ing process is replaced by the spatial averaging in a single realization. This self-averaging

requires that the sample size is large enough so that this single realization is representative

of the corresponding stochastic ensemble. The smoothness of the attenuation and velocity

dispersion behaviors in Fig. 3 as well as the existence of characteristic frequencies clearly

indicate that the sample size is indeed large enough to represent features of the underlying

stochastic ensemble.
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C. Effects of correlation between permeability field and elastic properties

distributions

While it is reasonable to assume that there exists some correlation between the petro-

physical material properties, this correlation is unlikely to be as strong as we implicitly

assumed in the previous models. Notably, the correlation between the permeability and the

porosity is often found to be rather weak (e.g., Dafflon et al., 2010). To explore the potential

implications of such a lack of correlation, we repeat the simulation but considering a differ-

ent permeability distribution (Fig. 4). That is, we use the permeability field shown in Fig.

4, while keeping the original distributions of all other poroelastic properties, as depicted in

Fig. 1.

Fig. 5 shows the corresponding inverse quality factor and phase velocity as functions of

frequency for the equivalent flow permeability (dashed lines), the arithmetic average of the

permeability distribution (dotted lines) as well as for the actual heterogeneous permeability

field (solid lines). We observe similar results as those shown in the previous simulation.

That is, in the presence of strong permeability fluctuations the attenuation levels are less

significant and the attenuation peak gets broader. In addition, for very low frequencies the

equivalent seismic permeability is similar to the equivalent flow permeability, while for very

high frequencies the seismic permeability approaches the arithmetic average value of the

sample. These results suggest that our conclusions can indeed be generalized to the case of

permeability fields which are uncorrelated with distributions of the porosity and the elastic

properties.

D. Effects related to the strength of permeability fluctuations

To analyze the role of the strength of the permeability fluctuations for the equivalent

seismic permeability and the corresponding seismic signature, we repeat the first simulation

with a reduced permeability contrast. This means that for regions having low porosity

(black) permeability is κ = 2.69 × 10−2 D, that is, 10 times the value used in the original
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FIG. 5. (Color online) Inverse quality factor (top panel) and phase velocity (bottom panel)

as functions of frequency for the binary porosity distribution shown in Fig. 1 and the

uncorrelated permeability field shown in Fig. 4. The different curves correspond to different

permeability fields.

simulation. The high porosity regions (white) correspond to κ = 0.3458 D, that is, one tenth

of the previous value.

Fig. 6 shows the inverse quality factor and phase velocity for the heterogeneous perme-

ability field (solid lines) as well as for the arithmetic average of the permeability distribution

(dotted lines) and the computed equivalent flow permeability (dashed lines). We observe
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that for very low frequencies the equivalent seismic permeability seems to be similar to the

equivalent flow permeability, while for very high frequencies it approaches the arithmetic

average permeability. Comparing Figs. 3 and 6, we also see that the maximum attenua-

tion is lower for stronger permeability fluctuations. However, the frequency range where

attenuation is significant tends to be broader in the strong permeability fluctuations case.

Correspondingly, we also observe that significant velocity dispersion effects take place within

a broader frequency range for stronger permeability fluctuations.

IV. CONCLUSIONS

We have explored the effects of strong permeability fluctuations on the P-wave atten-

uation and velocity dispersion of heterogeneous porous rocks. To this end, we numerically

determined compressional wave attenuation and velocity dispersion due to WIFF in 2D

random poroelastic medium realizations with realistic spatial fluctuations of the poroelas-

tic properties, including strong permeability contrasts. Particular attention was given to

the role of the equivalent seismic permeability that reproduces the acoustic response of the

original heterogeneous porous medium if the permeability field is replaced by an upscaled,

constant permeability. In order to infer the behaviour of the equivalent seismic permeabil-

ity, we compared the acoustic responses of heterogeneous porous media with those obtained

by replacing the heterogeneous permeability fields by constant values, including the corre-

sponding arithmetic and harmonic averages, as well as the equivalent flow permeability. The

latter was obtained by numerically solving the steady-state flow equation for the same 2D

random medium realizations. The numerical examples shown in this work can be regarded

as representative for the considered stochastic models and, hence, allow for the following

conclusions:

1. Strong permeability fluctuations, characterized by ratios on the order of 103 between

the maximum and minimum values, diminish the magnitude of WIFF attenuation

compared to poroelastic media with constant permeability but otherwise heteroge-
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FIG. 6. (Color online) Inverse quality factor (top panel) and phase velocity (bottom panel)

as functions of frequency for the binary porosity distribution shown in Fig. 1, considering

κ = 2.69× 10−2 D for the black regions and κ = 0.3458 D for the white ones. The different

curves correspond to different permeability fields.

neous parameters. These lower levels of attenuation are accompanied with a broaden-

ing of the attenuation peak as well as a broadened velocity dispersion behavior. These

effects are more significant as the strength of the permeability fluctuations increases.

This also means that the observability of attenuation and dispersion within a certain

frequency band is controlled by permeability fluctuations.
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2. At very low frequencies (ω ≪ ωc) the equivalent seismic permeability is similar to

the equivalent flow permeability. At very high frequencies (ω ≫ ωc) the equivalent

seismic permeability approaches the arithmetic average of the permeability field. This

also confirms that the equivalent seismic permeability is frequency-dependent and

hence warrants the concept of dynamic-equivalent permeability in poroelastic media

with mesoscale heterogeneities.

3. The results described under points 1 and 2 above, also hold true for random perme-

ability fields which are not correlated with the spatial fluctuations of the porosity and

the associated poroelastic material properties.

Our findings have implications concerning the possibility of estimating the equivalent

flow permeability of geological formations using seismic waves. Seismic signatures are con-

trolled by an equivalent seismic permeability, which can be very different from the equivalent

flow permeability. This difference is controlled by the strength of the mesoscopic permeabil-

ity fluctuations. Given that in many geological formations the permeability fluctuations are

strong, often exhibiting orders-of-magnitude between the minimum and maximum values, it

is important to understand the scaling relation between these two equivalent permeabilities.

This study shed some light onto the controlling factors for the equivalent seismic permeabil-

ity. Future work will focus on the scaling relation to enable predictions of the equivalent

flow permeability from seismic signatures.
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TABLE I. Material properties for the models considered in this study.

Material 1 Material 2

Grain bulk modulus Ks [GPa] 37 37

Grain shear modulus µs [GPa] 44 44

Grain density ρs [g/cm
3] 2.65 2.65

Porosity φ 0.05 0.4

Dry rock bulk modulus Km [GPa] 30 1.25

Dry rock shear modulus µ [GPa] 35 1.5

Permeability κ [D] 0.00269 3.458

Water density ρf [g/cm3] 1.04

Water bulk modulus Kf [GPa] 2.25

Water viscosity η [Pa·s] 0.003
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