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Since the initial description of astrocytes by neuroanatomists of the nineteenth century, a
critical metabolic role for these cells has been suggested in the central nervous system.
Nonetheless, it took several technological and conceptual advances over many years before
we could start to understand how they fulfill such a role. One of the important and
early recognized metabolic function of astrocytes concerns the reuptake and recycling
of the neurotransmitter glutamate. But the description of this initial property will be
followed by several others including an implication in the supply of energetic substrates
to neurons. Indeed, despite the fact that like most eukaryotic non-proliferative cells,
astrocytes rely on oxidative metabolism for energy production, they exhibit a prominent
aerobic glycolysis capacity. Moreover, this unusual metabolic feature was found to be
modulated by glutamatergic activity constituting the initial step of the neurometabolic
coupling mechanism. Several approaches, including biochemical measurements in cultured
cells, genetic screening, dynamic cell imaging, nuclear magnetic resonance spectroscopy
and mathematical modeling, have provided further insights into the intrinsic characteristics
giving rise to these key features of astrocytes. This review will provide an account of the
different results obtained over several decades that contributed to unravel the complex
metabolic nature of astrocytes that make this cell type unique.
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As often in physiology, the role(s) of specific cell types is(are) sug-
gested initially by their morphology, localization and interactions
with other elements in the tissue where they are found. This was
made possible by the development of microscopy and various his-
tological techniques. Astrocytes are no exception and it is quite
instructive to recollect the historical descriptions (by those who
made them) that led to the hypothesis of an important metabolic
role of astrocytes in the central nervous system. For a more exten-
sive historical perspective about the emergence of the concept of
Neuroglia, the reader is referred to Somjen (1988) or Kettenmann
and Verkhratsky (2008).

A STAR IS BORN
The first description of a distinct tissue from neurons was
attributed to the german anatomist Rudolf Virchow as he named
it “nervenkitt” or “neuroglia” (Virchow, 1856) to reflect the sug-
gested function of scaffold material. But the identification of
glial cells as a distinct cell population will be made possible by
the development of specific histological stainings such as the sil-
ver impregnation method by Golgi (1873). Taking advantage of
it, Andriezen (1893a) will distinguish in fact two populations
of glial cells that will become known as the protoplasmic and
fibrous astrocytes. But the term astrocytes will be coined by von
Lenhossek (1893) based on their starlike morphology. Interest-
ingly, Held (1904) proposed that neuroglia rather constitute a
syncytium (instead of separate cells), a notion that will be revived
later with the discovery of gap junctions between them and will
turn out to be important for their metabolic role (Giaume et al.,
2010).

Golgi (1886) also made two other important observations.
First, he described that each neuroglial cell is in direct contact
with a blood vessel through one fine process. With the advent
of immunocytochemistry as well as fluorescence and electronic
microscopy, not only the confirmation of the presence of astro-
cytic end-feet on blood vessels was made, but also it was realized
that the surface of all capillaries is covered at 99% with these glial
elements (Kacem et al., 1998). Moreover, because neuroglial cells
are characterized by many fine, dendrite-like, processes and no
axons, in contrast to neurons, and that dendrites were assumed to
fulfill a nutritive function, by analogy Golgi (1886) hypothesized
that neuroglial cells would be dedicated to this role. In accor-
dance with the views of Golgi (1886); Andriezen (1893b) formally
proposed that neuroglia (yet not identified as astrocytes) would
assume a nutritive function, allowing the transfer of metabolites
from the circulation to neurons. He wrote: “The development of
a felted sheath of neuroglia fibers in the ground-substance immedi-
ately surrounding the blood vessels of the Brain seems therefore . . . to
allow the free passage of lymph and metabolic products which enter
into the fluid and general metabolism of the nerve cells.” Lugaro
(1907) added another aspect by suggesting that neuroglial cells
play an essential role in the homeostasis of extracellular milieu,
by degrading or taking up substances released by nerve cells for
their communication, ensuring a buffer role. Despite these early
insights based on histological observations, the metabolic roles of
astrocytes were quite controversial at the time and some important
scientific figures, like Ramon y Cajal, preferred to consider them
rather as sole electrical insulator for nerve cells. More progress
on the putative metabolic roles of astrocytes will need to wait for
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the development of a new field of investigation associated with
biochemistry and its methodologies: neurochemistry.

THE CHEMICAL FACTORY
One major obstacle to determine the functions of astrocytes was
the difficulty to study them independently of other cell types
within the nervous tissue. In contrast to neurons that are excitable
and exhibit complex electrophysiological responses that can be
studied individually with fine electrodes in situ, astrocytes have
more limited electrophysiological features. Astrocytes appeared
more interesting from a metabolic point of view but to probe their
metabolic characteristics was requiring a distinct approach to be
able to study them in isolation. An elegant methodological solu-
tion will be proposed by the Swedish scientist Hyden et al. (2000).
In the late 1950s, he was able to acutely isolate from the vestibu-
lar nucleus of adult animals both neurons and glial cells using
thin wires under a stereomicroscope (Hyden, 1959). Using this
approach, he was able to determine the metabolic characteristics
of each cell type before and after stimulation, using enzymatic
measurements. He observed that stimulation led to enhancement
of glycolytic capacity in glial cells, and of oxidative capacity in
neurons (Hamberger and Hyden, 1963). Based on these results,
he postulated the existence of a metabolic cooperation between
neurons and glial cells, although the precise nature of the inter-
actions would remain unknown for almost three decades. Indeed,
Tsacopoulos et al. (1988) will take advantage of the well-structured
organization of the honeybee drone retina to unravel the metabolic
role of glial cells. In this preparation, photoreceptor cells are sur-
rounded by a necklace-like set of glial cells easily distinguishable
by light microscopy (Tsacopoulos et al., 1988). Using 2-deoxy-
D-[5,6-3H]glucose (an unmetabolizable analog of glucose) and
autoradiography, he could show that all this radioactive tracer was
trapped within glial cells (Tsacopoulos et al., 1988). He went on
to show that glial cells, that only exhibit glycolytic metabolism,
transfer alanine to photoreceptor cells that depend entirely on
oxidation of this substrate as source of energy (Tsacopoulos et al.,
1994). These data clearly provided the proof of principle that glial
cells in general, but eventually astrocytes, do fulfill a metabolic role
toward neurons.

With the advent of primary cultures of various brain cell types,
it became possible to further explore their individual metabolic
properties, including those of astrocytes (McCarthy and de Vel-
lis, 1980). Thus, it was possible to show that astrocytes exhibit a
high glycolytic rate with an important production of lactate, as
compared to neurons (Walz and Mukerji, 1988). Moreover, they
were shown to contain significant levels of glycogen (in contrast
to neurons) and this energy reserve could be mobilized by various
neuroactive signals including noradrenaline, vasoactive intestinal
peptide, adenosine or elevated potassium levels (Magistretti et al.,
1981; Sorg and Magistretti, 1991; Hof et al., 1988). Interestingly,
the consequence of glycogenolysis in astrocytes was neither an oxi-
dation of the mobilized glycosyl residues nor their release in the
extracellular medium. Rather, it was observed that lactate was the
end product of glycogenolysis in astrocytes and it was exported
outside the cell (Dringen and Hamprecht, 1993; Magistretti et al.,
1993). Thus, such a compartmentalization of glycogen, the main
energy reserve in the brain, in astrocytes together with the strong

production of lactate upon glycogenolysis suggested that these
cells may play an important role as energy substrate suppliers
for neurons, the main energy consumers of the central nervous
system.

Apart from energy supply, astrocytes were also shown to
play other important metabolic roles. One of them is glutamate
recycling. Indeed, as glutamate is the major excitatory neurotrans-
mitter in the central nervous system, its extracellular concentration
needs to be tightly controlled. This is done through a very efficient
reuptake system located in astrocytes. High-affinity, sodium-
dependent glutamate transporters known as GLT-1 and GLAST
were shown to be expressed by astrocytes (Danbolt, 2001). More-
over, the enzyme glutamine synthetase that allows the conversion
of glutamate to glutamine was found to be exclusively present in
astrocytes (Martinez-Hernandez et al., 1977). Glutamine is then
released by astrocytes via a particular aminoacid transporter sys-
tem, the system N transport (SN1) to be taken up in neurons
by a different transport system (system A) before being con-
verted back to glutamate by the enzyme glutaminase (Bröer and
Brookes, 2001). It was determined that the great majority (∼80%)
of glutamate taken up by astrocytes is converted to glutamine
(McKenna et al., 1996). The rest however is oxidized very effi-
ciently and the proportion of oxidized glutamate increases with
its concentration. In order to compensate for this cataplerotic
use of glutamate, an anaplerotic pathway must exist to replen-
ish the glutamate pool. Astrocytes are able to synthesize glutamate
(and glutamine) from glucose via the TCA cycle and aspartate
aminotransferase (Pardo et al., 2011). This capacity to maintain
glutamate levels for neurotransmission through both the recycling
and synthesis of glutamine has been known as the glutamate-
glutamine cycle and astrocytes are key elements to support this
important neurochemical function.

GENETIC AND BIOCHEMICAL PROFILING – ESTABLISHING A
METABOLIC IDENTITY
It became quite evident that astrocytes appear to be very versatile
cells in terms of metabolism. Although they have an important
oxidative metabolism especially toward glutamate as described
above, they also exhibit a clear aerobic glycolysis capacity. In order
to further understand which characteristics are responsible for
giving rise to these metabolic responses, both transcriptomic and
biochemical investigations have provided some exquisite infor-
mations about how astrocytes can combine what appears to be a
Pasteur effect with a Warburg effect. Indeed, raising oxygen lev-
els promote oxidative metabolism in astrocytes at the expense of
anaerobic glycolysis and lactate production (Pasteur effect). But
even in presence of supraphysiological levels of oxygen (e.g., 21%
O2 in culture conditions), aerobic glycolysis with lactate produc-
tion was shown to take place in astrocytes (Warburg effect), which
can be further enhanced under certain circumstances (e.g., glu-
tamate exposure). The capacity to exhibit both processes may
depend on the expression of particular subsets of proteins that
need to be specifically identified.

The possibility to explore the level of expression of thousands
of genes at once in a selected population of cells using microarrays
technology has been applied to acutely isolated, adult astrocytes,
thus bypassing the caveats of primary astrocytes in cultures that
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are essentially obtained from newborn preparations. These stud-
ies revealed several interesting points. First of all, they showed
that astrocytes express high levels of mitochondrial tricarboxylic
acid cycle enzymes, thus confirming the high oxidative capac-
ity of these cells (Lovatt et al., 2007; Cahoy et al., 2008). But at
the same time, they showed that astrocytes also strongly express
enzymes involved in glycolysis and glycogen metabolism. At the
biochemical level, several observations were made that refined the
transcriptomic findings. In contrast to neurons, astrocytes main-
tain high levels of the PFKFB3 protein, a key regulator of glycolysis
(Herrero-Mendez et al., 2009). Moreover, the activity of pyruvate
dehydrogenase, the key enzyme for the entry into the TCA cycle,
is maintained low in astrocytes through its high level of phospho-
rylation (Itoh et al., 2003; Halim et al., 2010). Finally, it was shown
that an important component of the malate-aspartate shuttle in
mitochondria, the aspartate glutamate complex Aralar, exhibits a
very low expression in astrocytes compared to neurons (Ramos
et al., 2003), contributing to a low level of malate-aspartate shut-
tle activity (Berkich et al., 2007). As a consequence, in order to
maintain their high glycolytic rate, astrocytes will prominently
convert pyruvate into lactate, thus regenerating the NAD cofactor.
Thus, it appears that most of the glucose utilized by astrocytes will
not be oxidized within the astrocyte to produce energy. Rather,
glucose- or glycogen-derived pyruvate will be converted to lac-
tate and exported, as a consequence of the aforementioned state
of key biochemical steps that favor such a metabolic fate. This is
further supported by the selective expression of the lactate dehy-
drogenase B isoform (Bittar et al., 1996; Laughton et al., 2007;
O’Brien et al., 2007) and the monocarboxylate transporter MCT4
(Bergersen et al., 2002; Pellerin et al., 2005) by astrocytes which
concur with the high glycolytic rate and lactate production capac-
ity of these cells. Although the kinetic characteristics per se of these
isoforms DO NOT determine metabolite flux direction, their pres-
ence is nevertheless indicative of a prevalent metabolic profile, as
their properties would be better exploited within such a specific
metabolic environment.

ATTRACTIVE ASTROCYTES – PROBING THE METABOLIC
NATURE OF ASTROCYTES WITH MAGNETS
A large part of evidence that astrocytes do fulfill a metabolic role
towards neurons was achieved by nuclear magnetic resonance
(NMR) spectroscopy. 13C-NMR spectroscopy in particular is a
unique tool to study the metabolism of glucose and metabolic
interactions between neurons and astrocytes in the brain. How-
ever, sensitivity of the carbon-13 nucleus is low. To overcome
these disadvantages, 99%-13C enriched substrates, such as [1-
13C]glucose or [2-13C]acetate for example, are used. Added to
the cell culture medium, or intravenously injected, this magnetic
active isotope will permit analyzing cellular metabolism over time
using 13C-NMR spectroscopy. Indeed, all 13C -labeled metabolites
derived from the 13C-labeled precursor will be detected on a sin-
gle 13C-NMR spectrum; each carbon will respectively give a signal
(peak) at a different place on the NMR scale depending on their
position within every metabolite. (Figure 1A).

Moreover, it is also possible to detect on the same spectrum if
one carbon 13 is linked to an unlabeled carbon 12 or to another
carbon 13. In this latter case, homonuclear spin coupling patterns

will appear (Figure 1B). For example, a 13C with one 13C neighbor
will lead to a doublet (instead of a singlet if linked to a carbon
12); with two 13C neighbors, the peak will become a triplet and
so on, the rule being n+1 peaks where n equals the number of
13C neighbors. 13C-NMR spectroscopy is therefore a powerful
technique which can be applied in vitro, ex vivo and in vivo to
follow up labeled carbons in metabolites and examine their fate
through different metabolic pathways.

IN VITRO STUDIES
As indicated in the first part of this review, astrocytes exhibit a
clear aerobic glycolysis. NMR spectroscopy is particularly suitable
to estimate the rate of glycolysis in astrocytes, by measuring the
rate of lactate formation. 1H-NMR spectroscopy allows detecting
on the same spectrum, the 13C-labeled lactate synthetized from
glycolysis of the administered 13C-labeled glucose, and also, the
unlabeled lactate coming from unlabeled precursors. Indeed, as
shown in Figure 2, on carbon 3 of the unlabeled lactate, the pro-
tons of the methyl group will give a doublet at 1.32 ppm, rising
from their homonuclear coupling (1H/1H) with the neighbor 1H
linked to carbon 2 (Figure 2, in red). On the other hand, the [3-
13C] lactate will lead to two doublets, at 1.21 and 1.43 ppm due
to the heteronuclear coupling (1H/13C, different coupling value
J = 128 Hz).

The first experiments using NMR spectroscopy on brain
cell cultures were conducted in vitro in the early 90’s. The
metabolism of [1-13C]glucose by astrocytes, neurons and mixed
astroglial/neuronal cultures derived from the striatum of fetal rats
was studied by Leo et al. (1993). Interestingly, they found that
neuronal cultures consumed glucose much slower than the astro-
cytic or the mixed cultures. In the study of Martin et al. (1993)
they investigated the metabolism of [1-13C]glucose in rat cere-
bellum astrocytes and granule neurons. Results showed that the
13C-specific enrichment of lactate C3 (% of 13C incorporated into
the carbon position 3 of lactate from the precursor [1-13C]glucose
enriched at 99%) was higher in astrocytes compared to neurons,
demonstrating that astrocytes were more glycolytic than neurons.
Moreover, although acetylCoA C2 and lactate C3 had very sim-
ilar enrichments in granule cells, acetylCoA C2 enrichment in
astrocytes was 60% lower than that of lactate C3. These data indi-
cate that the labeling at the pyruvate node was mainly directed
toward the TCA cycle in neurons, which was not the case for astro-
cytes. This glycolytic feature of astrocytes was also demonstrated
on mouse primary cultures (Sonnewald et al., 1993). When astro-
cytes were incubated with [1-13C]glucose, lactate C3 was found
to be enriched at 30%. Since the maximum theoretical labeling
value is 50% (as one [1-13C]glucose molecule gives rise to two
pyruvate, and thus to two lactate molecules, one labeled and one
unlabeled), we can calculate that 60% of glucose was converted
into lactate. Based on the rates of glucose consumption and lac-
tate production, this percentage was found even higher in another
study (ranging between 67 and 84%), also performed on primary
cultures of mouse astrocytes (Teixeira et al., 2008). A more recent
study, combining NMR and metabolic flux analysis, confirmed
that astrocytes showed a high glycolytic flux, converting most of
the glucose to lactate (Amaral et al., 2011). This particular astro-
cytic metabolic characteristic was also observed even if a high
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FIGURE 1 | (A) Typical 13C-NMR spectrum of rat brain perchloric extract, after
perfusion with [1-13C]glucose. (1) Glucose C1α, (2) glucose C1β, 3: glucose
C2, C3, C4, C5 and C6, 4: Glu C2, 5:Gln C2, 6: Asp C2, 7: Asp C3, 8: GABA

C2, 9: Glu C4, 10: Gln C4, 11: Glu C3, 12: Gln C3, 13: lactate C3 and 14: Ala
C3. (B) 13C-13C coupling figures allow to distinguish between different
isotopomers (example on glutamate C3).

FIGURE 2 |Typical high resolution at the magic angle spinning

(HRMAS) 1H-NMR spectrum of rat brain biopsy after [3-13C]lactate

perfusion. Protons of the methyl group of lactate are detected (black
arrows), centered at 1.32 ppm. The doublet is coming from the homonuclear

spin coupling (JH−H = 7 Hz, red arrows). When a 13C is located on lactate
carbon 3, then a doublet of doublet is appearing (13C satellites of H3
lactate), due to the heteronuclear spin coupling (JH−C = 128 Hz, horizontal
blue arrows).
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concentration of lactate was present (Alves et al., 1995). In this lat-
ter study, astrocytes were incubated in a medium containing 6 mM
of [1-13C]glucose and 10 mM of lactate. After 6 h, [3-13C]lactate
was detected in the medium and its specific enrichment was 6.5%.
Combining this value with the total amount of lactate present at
t = 6 h (162 mmol/mg prot) and the rate of glucose consumption
(136 mmol/mg prot in 6h), we can estimate that 10.5 mmol/mg
prot of [3-13C]lactate were produced in 6h and that around 15%
(10.5 × 2/136) of glucose was converted into lactate and exported
out of the cell. This experiment reinforces the glycolytic nature of
astrocytes even if high concentrations of lactate are present in the
medium.

Beside [1-13C]glucose, other 13C-labeled substrates were
tested. The fate of [3-13C]alanine was followed and compared
between primary cultures of astrocytes, neurons and co-cultures
(Zwingmann et al., 2000). In astrocytes, 90% of the [3-13C]alanine
was converted into [3-13C]lactate, whereas only a 12.5%-
conversion was measured in neurons. The increased glycolytic
activity in astrocytes induced by the uptake of alanine was sug-
gested to contribute to the synthesis of releasable lactate. This
alanine-lactate shuttle might constitute a way to transfer nitro-
gen from neuron to astrocytes (Zwingmann et al., 2001; Bak et al.,
2005), which may promote, in return, the glutamate-glutamine
cycle between these two cell types.

The fate and metabolism of 13C-labeled lactate was also
explored. Primary cultures of mouse cortical astrocytes were incu-
bated during 4 h in a medium without glucose and containing
1 mM [U-13C3]lactate (Waagepetersen et al., 1998a). The incor-
poration of 13C into glutamate was only 50% of the corresponding
one observed in cultured neocortical neurons cultured under
the same conditions (Waagepetersen et al., 1998b). In parallel
to the high glycolytic activity and lactate production in astro-
cytes, this result suggests that lactate is predominantly employed
as an oxidative substrate in neurons. From these two studies,
we can also compare the 13C-NMR spectra of neurons incu-
bated with either 1 mM [U-13C3]lactate (Waagepetersen et al.,
1998b) or 1 mM [U-13C6]glucose (Waagepetersen et al., 1998a);
we can clearly observe that more carbon-13 was incorporated
into glutamate in the lactate-labeled condition. To determine
which is the preferential neuronal substrate, a competition
between glucose and lactate was performed (Bouzier-Sore et al.,
2003). Both substrates were added to the culture medium, but
alternatively labeled ([1-13C]glucose + lactate or glucose + [3-
13C]lactate). When glucose and lactate concentrations were equal
(5.5 mM), results clearly indicated that neurons in the pres-
ence of both substrates preferentially use lactate as their main
oxidative substrate. The same result was found under physiolog-
ical concentrations of glucose and lactate (1.1 mM; Bouzier-Sore
et al., 2006). Using a mathematical model, the relative contri-
bution of exogenous glucose and lactate to neuronal oxidative
metabolism was measured to be 25% for glucose and 75% for
lactate.

Metabolism on brain slices can also be explored by NMR
spectroscopy (Badar-Goffer et al., 1992). Guinea-pig cerebral-
cortical slices were incubated with either [1-13C]glucose or
[2-13C]acetate, a more specific glial substrate (Waniewski and
Martin, 1998), under resting or depolarization conditions. When

[1-13C]glucose was the labeled substrate, an intense and much
higher lactate resonance was observed on the 13C-NMR spectrum
during activation compared to resting conditions. Lactate C3 spe-
cific enrichment was 45% (close to the theoretical 50% value).
Moreover, under depolarization, it was evidenced that glucose
metabolism in glia was selectively stimulated: a significant increase
in 13C-incorporation was occurring into metabolites of the glial
pool.

Altogether, these in vitro results obtained on separate astrocytic
and neuronal cultures support the idea that astrocytes exhibit a
clear aerobic glycolysis and produce lactate. It can then be used as
a supplementary fuel by neurons since lactate appears to be a more
efficient oxidative substrate for them compared to astrocytes.

EX VIVO AND IN VIVO STUDIES
Glial-neuronal metabolic interactions can be studied using 13C-
labeled substrates and high resolution or in vivo 13C-NMR
techniques. Compared to in vitro studies, ex vivo or in vivo exper-
iments are more complicated to interpret since all metabolites
from the different cell types are present on the same spectrum.
However, it is possible to distinguish astrocytic from neuronal
metabolism since a metabolic and enzymatic compartmentaliza-
tion exists between neurons and astrocytes. Indeed, the existence
of two distinct cerebral pools of glutamate was first determined;
a small one (around 10%) attributed to the astrocyte compart-
ment and a large neuronal one (Berl et al., 1962; Van den Berg
et al., 1969). Thereafter, it was shown that glutamine synthetase
and glutaminase were exclusively glial (Martinez-Hernandez et al.,
1977) and mainly neuronal (Patel et al.,1982), respectively. The key
outcome of this enzymatic compartmentalization is the glutamate-
glutamine cycle between neurons and astrocytes. Moreover, since
glutamate is in rapid equilibrium with the TCA cycle intermedi-
ate α-ketoglutarate, the neuronal TCA cycle flux can be estimated
from the kinetics of 13C enrichment of total cerebral glutamate
(Fitzpatrick et al., 1990; Mason et al., 1992, 1995; Sibson et al.,
1998, 2001). Since glutamine synthetase is exclusively located
in astrocytes, glutamine will reflect the astrocytic compartment.
Moreover, pyruvate carboxylase (PC) was found to be also only
in astrocytes (Yu et al., 1983; Shank et al., 1985). The presence of
this enzyme will lead to a different fate of the 13C compared to
neurons and to a higher incorporation of the 13C into the car-
bon position 2 compared to carbon position 3 in glutamine. Such
imbalance cannot be evidenced for glutamate, which reflects the
neuronal compartment, where PC activity is not present. Astro-
cytic metabolism can also be distinguished from the neuronal one
using 13C-labeled acetate since this substrate is only transported
to glial cells (Waniewski and Martin, 1998). This substrate enters
the TCA cycle directly at the citrate level, bypassing thus the PC
and PDH steps. Using all these tools, neuronal and astrocytic
TCA cycle rates can be estimated either from rat brain extracts
(Kunnecke et al., 1993; Preece and Cerdan, 1996) or directly in vivo
after infusion of 13C-labeled substrates (Mason et al., 1992, 1995;
Sibson et al., 1997; Shen et al., 1999; Lebon et al., 2002). Glial TCA
cycle rate was found to be 0.4 and 0.14 mmol/min/g, in rat brain
extracts and human brain, respectively, whereas neuronal TCA
cycle rate was 1 mmol/min/g in rat brain extracts and ranging from
0.6 to 1.6 mmol/min/g in in vivo experiments. This demonstrated
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a higher neuronal oxidative metabolism, compared to glia’s one
(Rodrigues et al., 2012).

The exclusive presence of the PC enzyme in astrocytes was used
to analyze the fate of [3-13C]lactate in rat brain extracts (Bouzier
et al., 2000; Hassel and Brathe, 2000) and in vivo in humans
(Boumezbeur et al., 2010). When rats received an intravenous
infusion of [3-13C]lactate, the analysis of the 13C-NMR spec-
trum of the brain extracts indicated that no imbalance between
glutamine carbon 2 and carbon 3 could be evidenced. Such data
indicate that there was no entry of 13C into the astrocytic TCA cycle
via the PC pathway, and therefore that [3-13C]lactate was metab-
olized in a PC-deprived compartment, i.e., neurons. This lactate
consumption has also been confirmed to be more neuronal spe-
cific in vivo in humans (Boumezbeur et al., 2010). Interestingly,
a correlation was found between the use of endogenously syn-
thetized lactate and level of activity (Serres et al., 2004). Finally,
it was recently shown that during rat brain activation (whisker
stimulation) there was an average 2.4-fold increase in lactate con-
tent in the activated area. Furthermore, this increase was arising
from newly synthetized lactate during brain activation from blood
13C-labeled glucose (Sampol et al., 2013).

SEEING IS BELIEVING – THE CONTRIBUTION OF
FLUORESCENCE IMAGING
Despite the power of NMR to obtain metabolic information, this
technique is unable to give an answer at the cellular level. The need
to visualize metabolic responses from individual cells especially
in situ became essential. Different optical approaches have been
exploited to attain this goal. Another advantage of optical meth-
ods is that they allow the characterization of fast metabolic events,
which can be applied on preparations with mixed populations of
cells. This could be particularly important since the metabolic
maturation of astrocytes might depend on signals from other cell
types (Brix et al., 2012). A first method is based on the intrinsic
fluorescence produced by the metabolic co-factor NADH. Major
changes in intracellular NADH fluorescence have been attributed
to alterations in mitochondrial activity (Mayevsky and Rogatsky,
2007). However, a cytosolic NADH fluorescence signal can be
evidenced in astrocytes and associated with an enhancement of
glycolysis (Kasischke et al., 2004; Requardt et al., 2010). These
characteristics will be exploited in combination with two-photon
microscopy to study the metabolic responses of brain cells and
specifically in astrocytes upon stimulation both ex vivo (in slices)
and in vivo.

It was demonstrated in hippocampal brain slices that electrical
stimulation produced a biphasic signal of intrinsic NADH fluo-
rescence (Kasischke et al., 2004; Brennan et al., 2006). An early
dip in NADH fluorescence was observed followed by a delayed
increase of the signal. The early decrease in NADH signal was asso-
ciated with enhanced oxidative metabolism in neurons (Kasischke
et al., 2004; Brennan et al., 2006), most likely due to enhanced lac-
tate utilization (Galeffi et al., 2007). Although the enhancement in
NADH signal subsequently taking place could be largely due also to
oxidative metabolism in neurons (Brennan et al., 2006), a delayed
increase of the fluorescence signal originating from the cytosol of
astrocytes also occurred in parallel (Kasischke et al., 2004). Such a
response in astrocytes seems to be caused by an enhancement of

glycolysis in these cells, as revealed both in cultured astrocytes and
in cortical brain slices stimulated with dopamine (Requardt et al.,
2010). A stunning confirmation of this sequence of events was
provided in vivo in the cerebellum using flavoprotein autofluores-
cence imaging (Reinert et al., 2011). The first part of the response
observed, called the on-beam light phase, could be attributed
essentially to activation of oxidative metabolism in neurons. Of
note, lactate oxidation in neurons seems to participate to the on-
beam light phase signal. The second part identified as the on-beam
dark phase appears to be dependent, at least in part, on activa-
tion of glutamate transporters in glia and could be caused by the
reduction of flavoproteins via an increase in glycolysis, although
the origin of the dark phase signal cannot be attributed specifically
either to glia or neurons. It was also suggested (but not demon-
strated) that elevated extracellular potassium could be another
factor contributing to the on-beam dark phase via its stimulation
of glial glycolysis.

An important question to be addressed was the degree of glu-
cose utilization by both neurons and astrocytes. Indeed, based
on the estimated energy expenditures of each cell type, it is pre-
dicted that the majority (>70%) of glucose consumption should
occur in neurons while the remaining (<30%) should take place in
glial cells, assuming that glucose is entirely oxidized (Attwell and
Laughlin, 2001; Pellerin and Magistretti, 2003). Two approaches
have been developed in order to evaluate glucose uptake and uti-
lization by each cell type. First of all, FRET nanosensors can be used
to measure the intracellular concentration of glucose and estimate
glycolytic rates in specific cells, including astrocytes and neurons
(Bittner et al., 2010). The use of fluorescent glucose analogs such
as 2- and 6-NBDG can also be used to evaluate the relative glucose
uptake and utilization by neurons vs. glia. Thus, it was shown first
in cerebellar slices that most glucose uptake and utilization takes
place in Bergmann glia and not in Purkinje neurons (Barros et al.,
2009). More recently, a follow-up study was performed in both
cerebellar and hippocampal slices in which glucose transport and
metabolism was found to be faster in Bergmann glia and astrocytes
than in neurons (Jakoby et al., 2013). The results led to the con-
clusion that preferential glucose transport and metabolism takes
place in glia. Interestingly, it was demonstrated that 6-NBDG, the
glucose analog used to estimate glucose transport, largely under-
estimates glucose transport in astrocytes compared to neurons.
Thus, it is clear that the rate of glucose transport and utilization
is largely superior in astrocytes vs. neurons. Such a conclusion
has important consequences. As stated above, if glucose is the sole
energy substrate used by brain cells, it is expected that glucose
transport and utilization should be proportional to the cell energy
needs. Clearly, this is not the case. The most likely explanation to
resolve this paradox is to admit that astrocytes convert a substan-
tial amount of the glucose they use into lactate. Then, the lactate
released by astrocytes can be used by neurons as an additional
oxidative substrate to satisfy their large energy needs (Pellerin and
Magistretti, 2003).

Data above provided indications about the glycolytic capacity
of astrocytes in vitro and ex vivo (in slices) under resting con-
dition. It was necessary to obtain further insight in vivo under
both resting and activated conditions. Two-photon microscopy
imaging was performed over the rat somatosensory cortex upon
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infusion of 6-NBDG (Chuquet et al., 2010). At rest, the amount
of 6-NBDG accumulating in astrocytes and neurons was equiva-
lent. But based on the higher affinity of 6-NBDG for the glucose
transporter expressed by neurons (GLUT3) compared to the one
found on astrocytes (GLUT1), it seems that already at rest, the
largest proportion of glucose is taken up by astrocytes. Upon
whisker stimulation, most of the increased 6-NBDG accumu-
lation took place in astrocytes. These results provide a strong
evidence that astrocytes are the major site of glucose uptake and
utilization in the brain. They also respond to neuronal activation
by enhancing their glucose uptake and utilization. The mecha-
nisms explaining such a specific metabolic response of astrocytes
have been clarified over the years by the use of cell culture
preparations.

First of all, using isotopic methods, glutamate had been clearly
shown to cause an enhancement of glucose utilization in cul-
tured astrocytes by a mechanism involving its uptake and an
activation of the Na+/K+ ATPase (Pellerin and Magistretti, 1994;
Takahashi et al., 1995). Such an effect of glutamate on astro-
cytes was confirmed in vivo (Voutsinos-Porche et al., 2003). In
contrast, potassium was found to have either a small (Brookes
and Yarowsky, 1985) or no effect (Takahashi et al., 1995) on
glucose utilization in cultured astrocytes. With the advent of
optical methods allowing measurements with high temporal res-
olution, a better characterization of the role of each substance
could be performed. Indeed, taking advantage of a FRET glu-
cose nanosensor, the group of Felipe Barros was able to show
that while potassium caused a rapid but transient enhancement
in the glycolytic rate (explaining why it was overlooked in iso-
topic studies), glutamate had a delayed but long-lasting effect
(Bittner et al., 2011). Moreover, using the same approach, the same
group was able to demonstrate that the glycolytic action of potas-
sium in astrocytes requires the implication of the Na+/HCO−

3
cotransporter NBCe1, while the Na+/K+ ATPase only plays a
permissive role in this case (Ruminot et al., 2011). Interestingly,
while they could also observe using the fluorescent glucose analogs
2- and 6-NBDG the enhancing effect of glutamate on glucose
transport in cultured astrocytes (Loaiza et al., 2003), they found
just the opposite in cultured neurons (Porras et al., 2004). These
data are consistent with the concept that while neuronal activ-
ity triggers an enhancement of glucose uptake and glycolysis
in astrocytes, it rather prevents glucose utilization in neurons
under physiological conditions. As mentioned earlier, in con-
trast to astrocytes, neurons normally expressed low levels of
the key regulator of glycolysis PFKFB3 (Herrero-Mendez et al.,
2009). It is only under excitotoxic conditions leading to over-
stimulation of NMDA receptors that neuronal glycolysis can be
activated (Rodriguez-Rodriguez et al., 2012, 2013) and neuronal
glucose utilization be increased (Bak et al.; 2009), but this condi-
tion leads to neuronal cell death (Rodriguez-Rodriguez et al., 2012,
2013).

Most results converge toward the idea that astrocytes are the
main brain cell type not only consuming glucose but also exhibit-
ing glycolytic responses upon neuronal activation. In contrast,
neurons appear to be highly oxidative cells that would prefer to
oxidize lactate rather than produce it from glucose. A key question
that arises is what are the key metabolic features that determine

the apparently different (but complementary) metabolic pheno-
types of astrocytes and neurons. Possible hints are emerging from
modeling studies.

CALCULATE ME AN ASTROCYTE – MATHEMATICAL
MODELING
Different modeling efforts have attempted to capture the role that
astrocytes might play as suppliers of energy substrates for neu-
rons along with their other metabolic functions. A first approach
was proposed by developing a model of compartmentalized brain
energy metabolism whereby astrocytes and neurons have been
dissociated and assumed to exhibit slightly different metabolic
features, based on the experimental data available (Aubert and
Costalat, 2005). In such case, it was found that despite assump-
tions highly unfavorable to a popular concept of energy substrate
supply between brain cells known as ANLS (for astrocyte-neuron
lactate shuttle; see Pellerin and Magistretti, 2012), neuronal acti-
vation led to a robust lactate flux from astrocytes to neurons that
can be either continuous or phasic, depending of the degree of
neuron vs. astrocyte activation. This model was pushed one step
further to address the question of brain lactate kinetics. Taking
this time into account the distribution and kinetics of monocar-
boxylate transporters involved in lactate transport as well as the
variations in extracellular lactate levels, it could be concluded that
neurons represent the most likely compartment where lactate is
consumed while astrocytes would be a plausible source (Aubert
et al., 2005). Such a cellular compartmentalization of brain energy
metabolism was supported by another modeling approach based
rather on brain glucose and oxygen utilization (Jolivet et al., 2009).
The authors concluded that glycolysis must take place in large
part in astrocytes (while oxidative metabolism would predominate
in neurons) and that glucose-derived metabolites must be trans-
ferred from glial cells to neurons. Independently, other authors
have shown with their modeling approach that lactate shuttling
from astrocytes to neurons could be advantageous for neurons,
both under normoxia and hypoxia, further extending the valid-
ity of the concept to pathological situations (Genc et al., 2011).
They also emphasized the fact that astrocytes and neurons might
switch between a more classical, glucose alone-based mode of
metabolism to a metabolic interaction mode, depending of the
situation.

However, another contrasting view has been proposed follow-
ing a different series of modeling analyses. It has been argued,
based on a distinct set of data, that there is probably very little
shuttling of lactate from astrocytes to neurons (DiNuzzo et al.,
2010a). If anything, it was even proposed that it is rather the neu-
rons that export lactate while astrocytes would oxidize it (Mangia
et al., 2009). Similarly, it was proposed that glycogenolysis, a pro-
cess known to occur only in astrocytes, would serve the purpose of
funneling glucose to neurons instead of shuttling lactate to them
(DiNuzzo et al., 2010b), in sharp contrast to the well established
data showing that lactate rather than glucose is released by astro-
cytes following glycogenolysis as indicated above (Dringen and
Hamprecht, 1993; Magistretti et al., 1993). This controversy gave
rise to a heated debate, each side providing arguments to dismiss
the conclusions of the other (Jolivet et al., 2010; Mangia et al., 2011;
Pellerin and Magistretti, 2012). Some authors have attempted to
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reconcile the two points of view by applying a more probabilis-
tic approach of modeling (Somersalo et al., 2012). After a rigorous
and thorough analysis of each model, their conclusion is that there
is such variability in the system that each one might capture only
one part of the reality, advocating for stochastic models rather
than deterministic ones.

Nevertheless, there are still some interesting points that have
been highlighted, confirming for example experimental data.
Thus, it was confirmed that astrocytes have a TCA cycle rate sev-
eral orders of magnitude lower than neurons (Occhipinti et al.,
2007), as was determined previously both in vitro (Bouzier-Sore
et al., 2006) and in vivo (Tyson et al., 2003). This is not to say
that they are devoid of oxidative activity as it was previously
demonstrated (Wyss et al., 2009) but at least it does not compare
to the degree observed in neurons. Moreover, a recent modeling
study has tackled the critical question of which biochemical steps
determine whether a cell is rather oxidative (thus oxidizing both
glucose and lactate) or exhibit some glycolytic features (by export-
ing rather than consuming lactate; Neves et al., 2012). This work
has revealed that the flux through the pyruvate dehydrogenase-
catalyzed reaction as well as the mitochondrial NADH shuttling
rate are essential in determining the preference for oxidation rather
than for export of lactate (Figure 3). Varying the importance of
these two reactions by a modest value allowed to observe a switch
in metabolic phenotype. Interestingly, it was observed that astro-
cytes in general exhibit characteristics for these two steps (i.e.,

low pyruvate dehydrogenase and mitochondrial NADH shuttling
activities; see above Itoh et al., 2003; Ramos et al., 2003; Halim
et al., 2010) that are consistent with the prominence of aerobic
glycolysis in this cell type, in contrast to neurons that are in
most cases essentially oxidative in nature. In addition to these fea-
tures that determine the overall metabolic profile in resting state,
there is also other mechanisms that come into play in a transient
manner during activated states and further reinforce these char-
acteristics. This is the case in astrocytes for which it was shown
that in parallel with glutamate uptake that follows glutamater-
gic activity, an intracellular acidification takes place that spreads
over mitochondria (Azarias et al., 2011). As a consequence, the
cytosol-to-mitochondrial matrix pH gradient is abrogated, reduc-
ing oxidative metabolism in this cell type. Such a mechanism
would favor glycolysis in astrocytes and spare oxygen for its use by
neuronal oxidative metabolism. Modeling of these metabolic tran-
sients might provide us with further insights about the dynamic
aspect of these adaptive metabolic characteristics of astrocytes.

THE INDISPENSABLE ASTROCYTE – IMPLICATIONS IN
VARIOUS BRAIN FUNCTIONS
The putative roles related to the metabolic characteristics of astro-
cytes are just beginning to be explored but there is already a
number of conditions for which their importance as started to
be highlighted. Apart from the well-characterized role as lactate
supplier for active neurons (Pellerin and Magistretti, 2012), the

FIGURE 3 | Main metabolic pathways implicated in energy production

in astrocytes with a prominent role for glycolysis. In order to
regenerate cytosolic NAD+ levels and maintain glycolytic rate, astrocytes
have two options: transfer cytosolic NADH in mitochondria through
specific mitochondrial NADH shuttles or convert pyruvate into lactate in

the cytosol. AcCoA, acetylCoenzyme A; HK, hexokinase; LDH, lactate
dehydrogenase; PDH, pyruvate dehydrogenase; PFK1, phosphofructokinase
1; PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; PPP,
pentose phosphate pathway; RC, respiratory chain; TCA, tricarboxylic acid
cycle.
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possibility that lactate produced by astrocytes could be a coupling
factor to link neuronal activity to increased blood flow has been
revealed (Gordon et al., 2008). Thus, it appears that astrocytes,
through their metabolic response, represent key elements in both
the neurovascular and the neurometabolic coupling, two mech-
anisms at the basis of functional brain imaging (Bonvento et al.,
2002).

It was previously suggested that enhanced glycolysis and
glycogenolysis in astrocytes were essential for the formation
of memory in neonate chicks (O’Dowd et al., 1994a,b). More
recently, it was shown that lactate, produced by astrocytes by
those two metabolic pathways and transferred to neurons via
monocarboxylate transporters, is essential for memory forma-
tion in rodents (Newman et al., 2011; Suzuki et al., 2011). Other
central functions have also been shown to be dependent on
proper astrocyte-neuron metabolic interactions. Thus, it was
shown that orexin neurons, that play a key role in arousal,
are sensitive to astrocyte-derived lactate and modify their fir-
ing activity (Parsons and Hirasawa, 2010). Sleep is another
centrally controlled condition that might be regulated by the ener-
getic responses of astrocytes (Scharf et al., 2008). Indeed, the
metabolism of glycogen, which is essentially present in astro-
cytes, has long been associated with sleep/wake cycle regulation
(Benington and Heller, 1995).

Different peripheral functions controlled by the central ner-
vous system seem also to be regulated via metabolic responses of
astrocytes. This is the case of glucose sensing that is regulated at
the level of the hypothalamus. It was shown that regulation of
blood glucose depends on the conversion of glucose into lactate,
presumably in astrocytes, and lactate metabolism in neurons (Lam
et al., 2005). Similarly, respiration control was shown to depend
on proper metabolic interactions between astrocytes and neurons
(Erlichman et al., 2008). Thus, it was demonstrated that in the
retrotrapezoid nucleus, astrocytes participate to the medullary

central chemosensory stimulus by providing lactate to neurons.
Sodium homeostasis is another essential function for the organ-
ism and it is regulated centrally at the level of the subfornical
organ. It was shown that elevation of sodium level in body fluids
is detected by astrocytes and ependymal cells in the subfornical
organ and transmitted to neurons via a lactate signal, allowing to
regulate their activity, and set in motion the appropriate adaptative
responses (Shimizu et al., 2007).

It is likely that if so many important brain functions depend on
appropriate astrocyte-neuron metabolic interactions, some patho-
logical situations might be caused by a dysfunction or failure in this
process at one level or another. It could be the case for Alzheimer’s
disease as it was recently demonstrated (Allaman et al., 2010).
Indeed, it was found that β-amyloid aggregates alter the metabolic
phenotype of astrocytes and in return, affect neuronal viability.
As this case illustrates, astrocytes and their metabolic properties
might represent an interesting therapeutic target in various neu-
rological diseases. Some studies have already shown the putative
neuroprotective impact of modifying the intrinsic metabolic char-
acteristics of astrocytes, either by exposing them to specific trophic
factors (Escartin et al., 2007) or by overexpression of intrinsic
metabolic components (Bliss et al., 2004).

Based on what we have seen so far about their metabolic capac-
ities, it is clear that astrocytes have not finished to surprise and
fascinate us. And this is precisely what we expect from the stars of
the brain.
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