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The implementation of adequate quality assessment (QA) and quality control

(QC) protocols within the magnetic resonance imaging (MRI) research

workflow is resource- and time-consuming and even more so is their

execution. As a result, QA/QC practices highly vary across laboratories

and “MRI schools”, ranging from highly specialized knowledge spots to

environments where QA/QC is considered overly onerous and costly despite

evidence showing that below-standard data increase the false positive

and false negative rates of the final results. Here, we demonstrate a

protocol based on the visual assessment of images one-by-one with reports

generated by MRIQC and fMRIPrep, for the QC of data in functional (blood-

oxygen dependent-level; BOLD) MRI analyses. We particularize the proposed,

open-ended scope of application to whole-brain voxel-wise analyses of BOLD

to correspondingly enumerate and define the exclusion criteria applied at the

QC checkpoints. We apply our protocol on a composite dataset (n = 181

subjects) drawn from open fMRI studies, resulting in the exclusion of 97% of

the data (176 subjects). This high exclusion rate was expected because subjects

were selected to showcase artifacts. We describe the artifacts and defects

more commonly found in the dataset that justified exclusion. We moreover

release all the materials we generated in this assessment and document all the

QC decisions with the expectation of contributing to the standardization of

these procedures and engaging in the discussion of QA/QC by the community.

KEYWORDS

quality control, quality assessment, fMRI, MRIQC, fMRIPrep, exclusion criteria,

neuroimaging

1. Introduction

Quality assessment (QA) and quality control (QC) of magnetic resonance imaging

(MRI), implemented at several stages of the processing and analysis workflow, are

critical for the reliability of the results. QA focuses on ensuring the research workflow

produces data of “sufficient quality” (e.g., identifying a structured artifact caused by

an environmental condition that can be actioned upon so that it doesn’t replicate

prospectively in future acquisitions). On the other hand, QC excludes poor-quality

data from a dataset so that they do not continue through the research workflow and

potentially bias results. Indeed, below-standard MRI data increase the false positive
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and false negative rates in the final analyses (Power et al., 2012;

Alexander-Bloch et al., 2016; Ducharme et al., 2016; Zalesky

et al., 2016). For example, Power et al. (2012) showed that

unaccounted-for head motion in functional MRI (fMRI) data

introduces systematic but spurious spatial correlations that are

wrongly interpreted as functional brain connectivity.

Despite efforts toward automation, the implementation

of QA/QC checkpoints remains unstandardized and typically

involves the screening of the images one by one. Therefore,

QA/QC is time-consuming and frequently seen as overly

onerous to the development of projects. In the absence

of a consensus on systematic approaches to QA/QC and

corresponding data curation protocols, laboratories currently

rely on their internal know-how. Such knowledge is generally

acquired through individual researchers (here, referred to as

“raters”) repeatedly screening data. Thus, the knowledge is

usually contingent on the context of the studies for which they

are acquired and local practices rather than some principled

definition of quality criteria that generalize across applications.

This leads to a wide variety of QA/QC procedures and protocols

across institutions, which add to the inherently large intra-

and inter-rater variabilities given a specific QA/QC approach.

Therefore, appropriate protocols and tools are required to

make QA/QC more consistent across institutions and improve

intra- and inter-rater reliability. Substantial work has been

proposed to provide efficient interfaces such as MRIQC

(Esteban et al., 2017), MindControl (Keshavan et al., 2018) or

Swipes4Science (Keshavan et al., 2019). Large consortia have

also made remarkable investments in this important task and

have developed QA/QC protocols, e.g., the Human Connectome

Project (Marcus et al., 2013) or the INDI initiative (QAP;

Shehzad et al., 2015). One related but conceptually innovative

approach was proposed for the QC of the MRI data of

the UK Biobank (Alfaro-Almagro et al., 2018), where quality

was defined in a more utilitarian manner as the success of

downstream processing. With the rise of large-scale datasets

such as the UK Biobank, manually checking the data becomes

infeasible. Alfaro-Almagro et al. (2018) described an automated

QC approach wherein raw data were screened for having the

wrong dimensions, corrupted, missing, or otherwise unusable,

and excluded from further preprocessing (first checkpoint). The

second checkpoint was applying a supervised learning classifier

to the T1-weighted (T1w) images. Although image exclusions

often occurred in response to qualitative issues on images (e.g.,

visual identification of artifacts), some images were discarded

without straightforward mapping to quality issues, and the

classifier was only trained to identify problems in T1w images,

so it could not be applied to BOLD data or other modalities.

Many researchers have similarly attempted automation, either

by relying on no-reference (as no ground truth is available)

image quality metrics (IQMs) to train a machine learning model

(Mortamet et al., 2009; Shehzad et al., 2015; Esteban et al., 2017)

or by training deep models on 3D images directly (Garcia et al.,

2022). However, predicting the quality of images acquired at a

new site yet unseen by the model remains a challenging problem

(Esteban et al., 2017, 2018). Another challenge to developing

deep models is the need for large datasets with usable and

reliable QA/QC annotations for training. Moreover, the QA/QC

annotations must be acquired across sites and rated by many

individuals to ensure generalizability (Keshavan et al., 2019).

Here, we demonstrate a protocol for the QC of task-

based and resting-state fMRI studies. This contribution is part

of the research topic “Demonstrating Quality Control (QC)

Procedures in fMRI.” The participants of the research topic were

given a composite dataset with anatomical and functional data

selected from published studies to demonstrate QC protocols

in practice. We describe how the overall application scope

(that is, the intended use of the data) determines how QC

is carried out and define the exclusion criteria for anatomical

(T1-weighted; T1w) and functional (blood-oxygen dependent-

level; BOLD) images at two QC checkpoints accordingly.

We first performed QC of the unprocessed data using the

MRIQC visual reports (Esteban et al., 2017). Second, for

the data that surpassed this first checkpoint, we assessed the

results of minimal preprocessing using the fMRIPrep visual

reports (Esteban et al., 2019). Thus, reaching a consensus on

the definition of QA/QC evaluation criteria and establishing

standard protocols to ascertain such criteria are the keystone

toward more objective QA/QC in fMRI research.

2. Methods

2.1. Data

We used the data collection preselected by the research topic

organizers to showcase examples of each exclusion criterion.

The dataset gathers resting-state and task fMRI data from

several open, public repositories (Biswal et al., 2010; Di Martino

et al., 2014; Markiewicz et al., 2021). Therefore, the dataset is

eminently multi-site and highly diverse in acquisition devices,

parameters, and relevant settings. The selection criteria of

datasets and subjects were not disclosed to the research topic

participants. The dataset is split into two cohorts: subjects with

resting-state scans and subjects with task scans. Every subject

has one T1w image and one or two BOLD fMRI scans. Data

were released following the Brain Imaging Data Structure (BIDS;

Gorgolewski et al., 2016).

2.2. Scope of application

Considering the dataset’s characteristics, we narrowed the

planned analysis’s scope to “whole-brain, voxel-wise analyses

of spatially standardized task and resting-state BOLD fMRI.”

Note that by “whole-brain”, we mean cortex and subcortical

structures but not cerebellum because we expected those

regions to fall outside of the field of view in a number

of the BOLD datasets. For the implementation of such an
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application, we propose our fMRI protocol (Esteban et al.,

2020), which uses fMRIPrep to prepare the data for analysis.

fMRIPrep was executed with default settings (for the exact

description of the preprocessing see Supplementary material,

section 4). Therefore, data are spatially standardized into the

MNI152NLin2009cAsym space (Fonov et al., 2009) accessed

with TemplateFlow (Ciric et al., 2022). The protocol involves an

initial QC checkpoint implemented with MRIQC and a second

QC checkpoint on the outputs of fMRIPrep.

2.3. QC protocol

2.3.1. Standard operating procedures (SOPs)

To formalize the scope and the QA/QC criteria and

protocols, we proposed our MRIQC-SOPs template (https://

github.com/nipreps/mriqc-sops) as a scaffold to create custom

standard operating procedures (SOPs) documents tailored to

the specific project and maintained under version control.

We demonstrated MRIQC-SOPs to create the corresponding

documentation of this study. These SOPs contain the lists

presented in Tables 1–3 and the QC criteria details laid

out in Section 2.4 in a format adapted to the SOPs. The

SOPs documents can be visualized at http://www.axonlab.org/

frontiers-qc-sops/ and can be accessed as stated in the Data and

Software availability statement.

2.3.2. Image processing

Image processing was carried out according to our protocol

(Esteban et al., 2020). First, we ran MRIQC with a Docker

container of its latest version 22.0.1 (Listing 1 shows an example

script). This version performs head motion estimation with

AFNI (version 22.0.17; Cox, 1996), followed by brain extraction

with SynthStrip (Hoopes et al., 2022) and several image

registration tasks with ANTs (version 2.3.3.dev168-g29bdf;

Avants et al., 2008). Since data were already BIDS compliant, no

formatting or adaptation actions were required before running

MRIQC. MRIQC generated one visual report per T1w image

and BOLD scan, which author CP evaluated as part of the

QC protocol described below. The panels presented in the

visual report are specific to the modality, meaning that different

visualizations are presented for an anatomical scan compared

to a functional scan. Once all the visual reports had been

evaluated as indicated below (Assessment of the unprocessed

data), we executed fMRIPrep only on those subjects for which

the T1w and at least one BOLD scan had passed the initial QC

checkpoint. As for MRIQC, fMRIPrep could be directly run

on the BIDS inputs using the corresponding Docker container

at version 22.0.0 (see Supplementary material, section 4). As a

result, fMRIPrep yielded preprocessed data and one individual

QA/QC report per subject. Based on these individual reports,

we established our second QC checkpoint, which was executed

by author CP. The scripts we ran to execute MRIQC on the task

fMRI data and fMRIPrep on the preprocessed data can be found

in the Supplementary material, section 3.

2.3.3. Assessment of the unprocessed data

Visualization of reports was performed on a 27” monitor.

The reports corresponding to each BOLD scan were assessed

first, following the reports’ ordering of visualizations. Once

the full report had been visualized, CP would return to

specific sections of the report when a second assessment was

necessary. Finally, author CP reported her QC assessment on

a spreadsheet table (included in the Supplementary material),

indicating which criteria led to exclusion. The exclusion criteria

are described in detail in Section 2.4. A similar protocol was then

applied for screening all reports corresponding to T1w images.

2.3.4. Assessment of the minimally
preprocessed data

Visualization of reports was performed on a 27” monitor.

The reports corresponding to subjects that passed the previous

checkpoint were screened one by one by CP. Author CP

manually noted down the corresponding assessments on a

spreadsheet table (included in the Supplementary material).

2.4. Assessment of quality aspects and
exclusion criteria

Our exclusion criteria are all based on the visual inspection

of the individual MRIQC and fMRIPrep reports, so they are all

qualitative. Exclusion criteria are defined in reference to specific

artifacts and qualitative aspects of BOLD and T1w images.

Furthermore, we did not differentiate criteria for task and

resting-state scans because our defined scope was not specific

enough (e.g., lacking in objectives to determine whether some

regions are of particular interest), except for the hyperintensity

of single slices criterion. Each criterion is labeled for further

reference in the document, the rater’s notes, and the SOPs

documents. Table 1 exhaustively lists the exclusion criteria based

on the MRIQC visual report of BOLD data, Table 2 lists the

criteria used to flag T1w data based on the MRIQC visual

report, and Table 3 lists the exclusion criteria based on fMRIPrep

visual reports. These tables are also cross-referenced with each

criterion’s label.

2.4.1. Exclusion criteria for unprocessed BOLD
data assessed with MRIQC visual reports

2.4.1.1. Artifactual structures in the background

(Criterion A)

Because no BOLD signal originates from the air surrounding

the head, the background should not contain visible structures.

However, signals sourcing from the object of interest can spill
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Listing 1

Execution of MRIQC with a Docker container. MRIQC follows the standards laid out by BIDS-Apps (Gorgolewski et al., 2017). As such, the

command line using containers is composed of a preamble configuring Docker, the name of the specific Docker image (nipreps/mriqc:22.0.1),

and finally, MRIQC’s arguments. Because SynthStrip is a deep-learning-based approach, the brain masking step requires at least 8GB of memory

(specified by the—memory flag).

Table 1 Resting-state and task fMRI exclusion criteria based on the

MRIQC visual report.

QC of unprocessed fMRI

data based on MRIQC

visual report

A) Artifactual structures in the background

B) Susceptibility distortion artifacts

BA) Signal drop-out

BB) Brain distortions

C) Aliasing ghosts

D) Wrap-around that overlaps with the brain

E) Structured crown region in the carpet plot

EA) due to motion peaks

EB) due to periodic motion

EC) due to coil failure

ED) drift of unknown source

F) Artifacts detected with independent

components analysis

G) Hyperintensity of single slices

H) Vertical strikes in the sagittal

plane of the standard

deviation map

I) Data formatting issues

The order of the criteria is arbitrary.

into the background through several imaging processes, e.g.,

aliasing ghosts, spillover originating from moving and blinking

eyes, or bulkheadmotion. Structures in the background aremost

clearly noticeable in MRIQC’s “background noise panel” view,

but they are frequently detectable in the standard deviation map

Table 2 T1w flagging criteria based on the MRIQC visual report.

QC of unprocessed T1w data based

on the MRIQC visual report

J) Artifactual structures in

the background

K) Susceptibility distortion artifacts

KA) Signal drop-out

KB) Brain distortions

L) Aliasing ghost

M) Wrap-around that overlaps with

the brain

N) Data formatting issues

O) Motion-related and Gibbs ringing

P) Extreme intensity non-uniformity

Q) Eye spillover

The order of the criteria is arbitrary.

view. Structure in the background is not a problem in itself as

it is situated outside of the brain; the issue is that the latter

artifact is likely overflowing on the brain, thus compromising

brain signal. The aliasing ghost is a particular case of spurious

structures in the background, discussed in further detail in

criterion C below. We classified under exclusion criteria A all

other structures that did not correspond to an aliasing artifact.

Supplementary Figure 1 shows several illustrative examples.

2.4.1.2. Susceptibility distortion artifacts (B)

Susceptibility distortions are caused by B0 field non-

uniformity (Hutton et al., 2002). Indeed, inserting an object in

the scanner bore perturbs the nominal B0 field, which should

be constant all across the FoV. Specifically, tissue boundaries
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Table 3 Resting-state and task exclusion criteria based on the

fMRIPrep visual report.

QC of preprocessed data

based on fMRIPrep

visual report

R) Failure in normalization to

MNI space

S) Inaccurate brain mask

T) Residual susceptibility distortion

U) Error in brain tissue segmentation

of T1w images

V) Surface reconstruction problem

W) Co-registration problem

X) Regions identified for the extraction

of nuisance regressors potentially

cover neural signal sources

The order of the criteria is arbitrary.

produce steps of deviation from the nominal B0 field, which

are larger where the air is close to tissues. Because of these

deviations, the signal is recorded at locations slightly displaced

from the sampling grid along the phase encoding axis leading

to susceptibility distortions (Esteban et al., 2021). Susceptibility

distortions manifest in two different ways on the BOLD average

panel of the MRIQC visual report (Supplementary Figure 2):

as signal drop-out, that is, a region where the signal vanishes

(criterion BA), or as brain distortions (criterion BB). Signal

drop-outs often appear close to brain-air interfaces, as explained

below; these include ventromedial prefrontal cortex, the anterior

part of the prefrontal cortex, and the region next to the ear

cavities. Susceptibility distortion artifacts can be corrected by the

susceptibility distortion correction implemented in fMRIPrep,

provided that a field map associated with the BOLD image has

been acquired and is correctly referenced in the dataset. This

means that the presence of susceptibility distortions does not

necessarily constitute an exclusion criterion. However, given the

application scope of this paper, since no field maps were shared

with the dataset and because we did not identify regions of

little interest where these artifacts may be less detrimental, any

signal drop-out observed resulted in the exclusion of the scan.

In practice, legacy datasets without field maps can still be usable

if researchers take adequate mitigation approaches (which also

require rigorous QA/QC).

2.4.1.3. Aliasing ghosts (C)

A ghost is a type of structured noise that appears as shifted

and faintly repeated versions of the main object, usually in the

phase encoding direction. They occur for several reasons, such as

signal instability between pulse cycle repetitions or the particular

strategy of echo-planar imaging to record the k-space during

acquisition. Ghosts are often exacerbated by within-volume

head motion. Sometimes they can be spotted in the BOLD

average view of the MRIQC visual report, but they are more

apparent in the background noise visualization.We excluded the

scans for which ghosts were approximately the same intensity

as the brain’s interior in the background noise visualization.

Supplementary Figure 3 compares an aliasing artifact that led to

exclusion and one that did not.

2.4.1.4. Wrap-around (D)

Wrap-around occurs whenever the object’s dimensions

exceed the defined field-of-view (FOV). It is visible as a piece

of the head (most often the skull, in this dataset) being folded

over on the opposite extreme of the image. We excluded subjects

based on the observation of a wrap-around only if the folded

region contained or overlapped the cortex. In the MRIQC visual

report, the wrap-around can be spotted on the BOLD average,

standard deviationmap, and the background noise visualization.

However, we found that the background noise visualization

is the clearest to assess whether the folded region overlaps

the brain (Supplementary Figure 4). Note that increasing the

screen’s brightness helps when looking for both aliasing ghosts

andwrap-around overlapping the brain, as low brightnessmakes

the artifacts harder to see.

2.4.1.5. Assessment of time series with the carpet

plot (E)

The carpet plot is a tool to visualize changes in voxel

intensity throughout an fMRI scan. It works by plotting

voxel time series in close spatial proximity so that the eye

notes temporal coincidence (Power, 2017). Both MRIQC and

fMRIPrep generate carpet plots segmented in relevant regions.

One particular innovation of these carpet plots is that they

contain a “crown” area corresponding to voxels located on a

closed band around the brain’s outer edge. As those voxels

are outside the brain, we do not expect any signal there,

meaning that if some signal is observed, we can interpret it

as artifactual. Therefore, a strongly structured crown region in

the carpet plot is a sign that artifacts are compromising the

fMRI scan (Provins et al., 2022a). For example, motion peaks

are generally paired with prolonged dark deflections derived

from spin-history effects (criterion EA). Periodic modulations

on the carpet plot indicate regular, slow motion, e.g., caused by

respiration, which may also compromise the signal of interest

(criterion EB). Furthermore, coil failures may be identifiable as

a sudden change in overall signal intensity on the carpet plot

and generally sustained through the end of the scan (criterion

EC). In addition, sorting the rows (i.e., the time series) of

each segment of the carpet plot such that voxels with similar

BOLD dynamics appear close to one another reveals non-

global structure in the signal, which is obscured when voxels

are ordered randomly (Aquino et al., 2020). Thus, strongly

polarized structures in the carpet plot suggest artifact influence

(criterion ED). Supplementary Figure 5 illustrates the four types

of carpet plot patterns. Finding temporal patterns similar in

gray matter areas and simultaneously in regions of no interest

(for instance, cerebrospinal fluid or the crown) indicates the

presence of artifacts, typically derived from head motion. If the

planned analysis specifies noise regression techniques based on

information from these regions of no interest [which is standard

and recommended (Ciric et al., 2017)], the risk of removing

signals with neural origins is high, and affected scans should

be excluded.
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2.4.1.6. Artifacts detected with independent

components analysis (F)

MRIQCwas run with the --ica argument, which generates an

independent component decomposition using FSL MELODIC

(version 5.0.11; Beckmann and Smith, 2004). Such techniques

have been thoroughly described elsewhere (Griffanti et al., 2017).

Components are easily screened with the specific visualization

“ICA components” in the corresponding BOLD report, and each

component is mapped on a glass brain with an indication of

their frequency spectrum and their corresponding weight over

time. One recurring artifactual family of components emerges

when motion interacts with interleaved acquisition giving rise

to the so-called spin-history effects. The spin-history effects

appear as parallel stripes covering the whole brain in one

direction (see Supplementary Figure 6). They are a consequence

of the repetition time not being much larger than the T1

relaxation time in typical fMRI designs. This implies that

the spins will not completely relax when the next acquisition

starts.1 In addition, specific movements (e.g., rotation around

one imaging axis, such as nodding) will exacerbate spin-

history effects as slices will cut through the brain at different

locations between consecutive BOLD time points. These two

considerations combined mean that motion will produce spins

with different excitation histories, and thus, the signal intensity

will differ. Components showcasing parallel stripes concurring

with slices in extreme poles of the brain or even across the whole

brain are likely to capture these effects.

2.4.1.7. Hyperintensity of single slices (G)

Above the carpet plot, MRIQC and fMRIPrep represent

several time series to support the interpretation of the carpet. In

particular, the slice-wise z-standardized signal average is useful

for detecting sudden “spikes” in the average intensity of single

slices of BOLD scans. When paired with the motion traces,

it is possible to determine whether these spikes are caused by

motion or by possible problems with the scanner (e.g., white-

pixel noise). Spikes caused by motion typically affect several or

all slices, while spikes caused by white-pixel noise affect only one

slice and are generally more acute (see Supplementary Figure 7).

White-pixel noise is generally caused by some small pieces

of metal in the scan room or a loose screw on the scanner

that accumulates energy and then discharges randomly. This

creates broad-band RF noise at some point during the signal

read-out, leading to one spot in the k-space with abnormally

high intensity. In the image domain, it manifests as an abrupt

signal intensity change in one slice at one time point. The

problem is particularly acute for EPI scans because of all the

gradient blipping during the read-out. For resting-state data,

we discarded BOLD scans containing these spikes regardless

of their physical origin (motion vs. white-pixel noise) because

correlation analyses are likely biased by such peaks. Conversely,

1 https://imaging.mrc-cbu.cam.ac.uk/imaging/CommonArtefacts

task data analyses are typically more robust to this particular

artifact. Therefore the presence of only one or more relatively

small spikes led to the scan being flagged for careful inspection

after the preprocessing.

2.4.1.8. Vertical strikes in the sagittal plane of the

standard deviation map (H)

The sagittal view of the standard deviation map might show

vertical strike patterns that extend hyperintensities through the

whole sagittal plane (see Supplementary Figure 8). We excluded

all images showcasing these patterns. Although we did not

find an explanation of the mechanism behind this artifact,

email conversations dating from 2017 seemed to point at an

interaction between physiology and environmental issues in the

scanning room that may affect the receiver coils.

2.4.1.9. Data formatting issues (G)

As part of the NIfTI format (Cox et al., 2004), the file header

contains metadata storing several relevant parameters, of which

the orientation information is critical for the interpretability

of the data. The orientation parameters indicate how the data

matrix is stored on disk and enable visualizing rows and

slices at the correct locations (Glen et al., 2020). However,

mistakes may occur while recording information at the scanner,

converting DICOM to NIFTI format, or during a subsequent

processing step. Such mistakes result in the brain image not

being correctly visualized and preprocessed, with axes either

being flipped (e.g., the anterior part of the brain is labeled as

posterior) or switched (e.g., axial slices are interpreted as coronal

ones). These issues may render the dataset unusable, e.g., if the

orientation information describing whether the data array has

been recorded from left to right or right to left is lost. Examples

are shown in Supplementary Figure 9.

2.4.2. Criteria for flagging unprocessed T1w
data based on the MRIQC visual report

Given our planned analysis, the T1w image will be

used solely to guide the spatial alignment to the standard

MNI152NLin2009cAsym template. In addition, surface

reconstructions from the T1w image will guide the co-

registration of structural and functional (BOLD) images in

fMRIPrep. Since the latter preprocessing steps are relatively

robust to structural images with mild artifacts, we did not

impose exclusion criteria on the unprocessed T1w images.

However, we annotated subjects with visible artifacts in the T1w

images to ensure rigorous scrutinizing of spatial normalization

and surface reconstruction outputs from fMRIPrep (if both

modalities passed the first QC checkpoint with MRIQC). The

explanation and the description of the criteria J to N are the

same as their counterpart in Section 2.4.1 and are illustrated in

Supplementary Figure 10.
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2.4.2.1. Motion-related and Gibbs ringing (O)

Large head motion during the acquisition of T1w images

often expresses itself with the appearance of concentric ripples

throughout the scan (see Supplementary Figure 10E). In the

most subtle cases, motion-related ripples look similar to the

fine lines generated by Gibbs ringing. The latter emerges

as a consequence of the truncation of the Fourier series

approximation and appears as multiple fine lines immediately

adjacent and parallel to high-contrast interfaces. While Gibbs

ringing is limited to the adjacency of sharp steps in intensity

at tissue interfaces, the ripples caused by motion generally span

the whole brain and are primarily visible in the sagittal view of

MRIQC’s mosaic views.

2.4.2.2. Intensity non-uniformity (P)

Intensity non-uniformity is characterized by a smooth

variation (low spatial frequency) of intensity throughout the

brain caused by the stronger signal sensed in the proximity

of coils. It is noticeable on the zoomed-in view on the T1w

image (see Supplementary Figure 10F). Furthermore, intensity

non-uniformity can be a problem for automated processing

methods that assume a type of tissue [e.g., white matter (WM)]

is represented by voxels of similar intensities across the whole

brain. An extreme intensity non-uniformity can also be a sign of

coil failure.

2.4.2.3. Eye spillover (Q)

Eye movements may trigger the signal leakage from the

eyes through the imaging axis with the lowest bandwidth (i.e.,

acquired faster), potentially overlapping signal from brain tissue.

On data preserving facial features, the streak of noise is visible in

the background at the levels of the eyes. However, because all the

data in this study are openly shared after defacing (for privacy

protection reasons), the signal around the face has been zeroed,

leading to this leakage not being visible (Provins et al., 2022b). A

strong signal leakage can, however, be noticeable on the zoomed-

in view of the T1w image (see Supplementary Figure 10G for an

example of the latter case).

2.4.3. Exclusion criteria of pre-processed data
based on fMRIPrep visual report

2.4.3.1. Failure in normalization to MNI space (R)

Because the conclusions of the hypothetical analysis

are based on data normalized to a standard template, the

normalizationmust be successful. The fMRIPrep report contains

a widget to assess the quality of the normalization to MNI

space. The widget flickers between the MNI template and the

individual’s T1w image normalized to that template. To verify

successful normalization, we assessed the correct alignment of

the following structures (in order of importance): (1) ventricles,

(2) subcortical regions, (3) corpus callosum, (4) cerebellum,

and (5) cortical gray matter (GM). A misalignment of the

ventricles, the subcortical regions, or the corpus callosum

led to immediate exclusion. However, we were more lenient

with the misalignment of cortical GM because volumetric

(image) registration may not resolve substantial inter-individual

differences (e.g., a sulcus missing in an individual’s brain but

typically present in the population of the template). Any extreme

stretching or distortion of the T1w image also indicates a

failed normalization.

2.4.3.2. Inaccurate brain mask (S)

The brain mask computed from the T1w image is shown

in the “brain mask and brain tissue segmentation of the

T1w” panel under the anatomical section of the fMRIPrep

visual report. The latter should closely follow the contour

of the brain. An inaccurate brain mask presents “bumps”

surrounding high-intensity areas of signal outside of the cortex

(e.g., a mask including patches of the skull) and/or holes

surrounding signal drop-out regions. Having an accurate brain

mask makes the downstream preprocessing of an fMRI scan

faster (excluding voxels of non-interest) and more accurate

(less bias from voxels of non-interest). Consequently, it is

important to discard subjects for which the brain mask is not

well defined. Note that the brain mask plotted in the “brain mask

and (anatomical/temporal) CompCor ROIs” panel under the

functional section is not identical to the brain mask mentioned

in this paragraph, as it is computed from the BOLD image.

This mask must not leave out any brain area. Therefore, an

exclusion criterion can be established when the mask intersects

brain-originating signals.

2.4.3.3. Residual susceptibility distortion (T)

For cases that were not excluded following criterion B,

susceptibility distortions were evaluated with the fMRIPrep

report after preprocessing. Any observation of susceptibility

distortion artifacts led to the exclusion of the scan (see

Supplementary Figure 11).

2.4.3.4. Error in brain tissue segmentation of T1w

images (U)

The panel “brain mask and brain tissue segmentation

of the T1w” under the anatomical section of the fMRIPrep

report shows contours delineating brain tissue segmentations

overlaid on the T1w image. To confirm the good quality

of the segmentation, we first verified that the pink contour

accurately outlined the ventricles, whereas the blue contour

followed the boundary between GM and WM. The first

exclusion criterion was thus the inclusion of tissues other than

the tissue of interest in the contour delineations. T1w scans

showcasing a low signal-to-noise ratio because of thermal noise

will present scattered misclassified voxels within piecewise-

smooth regions (generally more identifiable in the WM and

inside the ventricles). These scans were excluded except for

images where these voxels are only present at subcortical

structures (e.g., thalamus) or nearby tissue boundaries. In the
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latter case, the misclassification results from partial volume

effects (i.e., indeed, such voxels contain varying fractions of

two or more tissues). Supplementary Figure 12 illustrates the

difference between individual dots caused by noise vs. partial

volume effects.

2.4.3.5. Surface reconstruction problem (V)

The WM surface (blue outline) and the pial surface (red

outline) reconstructed with FreeSurfer [version 7.0.1, Fischl,

2012] are overlaid on the participant’s T1w image, in the panel

dedicated to surface reconstruction visualization under the

anatomical section of the fMRIPrep report. Since the cerebellum

and the brainstem are excluded from the surface reconstruction,

the outlines will not include these areas. QC assessment of

FreeSurfer outcomes is comprehensively covered elsewhere (e.g.,

White et al., 2018; Klapwijk et al., 2019), and fMRI studies

using vertex-wise (surface) analyses should rigorously assess

these surfaces. In this protocol, we only excluded data when

the reconstructed surfaces were extremely inaccurate, which

typically only happens in the presence of artifacts easily captured

previously by MRIQC (Section 2.4.2).

2.4.3.6. Co-registration problem (W)

The fMRIPrep report contains a widget to assess the

accuracy of the alignment of BOLD runs into the individual’s

anatomical reference (co-registration). The widget flickers

between the reference T1w image and the BOLD average

co-registered onto it. Extracted brain surfaces’ contours are

represented as further anatomical cues. Here, we checked

the alignment of image intensity edges and the anatomical

landmarks (e.g., the ventricles and the corpus callosum) between

the BOLD and the T1w images.

2.4.3.7. Regions identified for the extraction of

nuisance regressors potentially cover neural signal

sources (X)

fMRIPrep calculates CompCor (Behzadi et al., 2007)

nuisance regression time series to remove physiological and

head motion artifacts from BOLD scans. Two families of

CompCor methodologies are provided within the outputs:

temporal CompCor (tCompCor) uses voxels presenting

the highest temporal variability, and anatomical CompCor

(aCompCor) extracts signal from regions of no interest (e.g.,

a conservative mask including core areas of the ventricles and

the WM). fMRIPrep provides a panel to assess the adequacy

of these regions from which CompCor will extract regressors

(“brain mask and anatomical/temporal CompCor ROIs”). In

addition to the masks corresponding to CompCor, the “crown”

mask can also be assessed in this visualization. If the study plan

prescribes using CompCor or brain-edge regressors, it is critical

to exclude BOLD runs where any of these masks substantially

overlap regions of interest.

3. Results

Following our predefined exclusion criteria, we excluded

all the BOLD scans at the first QC checkpoint, except 4/151

for the resting-state subset and 1/30 for the task subset (97%

of the subjects were excluded). The high exclusion rate was

expected as this dataset had been preselected to contain data

expressing a wide range of artifacts. In a standard dataset,

the exclusion rate usually lays between 10 and 25% (Esteban

et al., 2017). By far, the most common reason for exclusion

was the presence of susceptibility distortion (exclusion criterion

B). Other commonly found artifacts that met the exclusion

criteria included aliasing ghost (C), problematic wrap-around

(D), and structured carpet plots (E). The number of times each

criterion has been cited as a reason for exclusion is reported

in Supplementary Table 1. Moreover, 58/181 T1w images were

flagged for thorough scrutinization of the normalization and the

surface reconstruction outputs of fMRIPrep. One T1w image

was exceptionally excluded based on the MRIQC visual report

because of extreme motion-related ringing. An overview of

how often a scan was flagged based on which criterion can be

found in Supplementary Table 2. Out of the five subjects that

passed the first QC checkpoint, two were excluded based on

the inspection of the fMRIPrep visual reports for the presence

of previously undetected signal drop-out. Some of our criteria

did not result in the exclusion of data in this dataset: spin-

history effects, failed normalization, problematic brain masks of

either T1w or BOLD images, surface reconstruction problem,

and failed co-registration.

3.1. QC of MRI data substantially relies on
the background

The visual assessment of the “background noise” section

of MRIQC reports helps unveil several artifactual structures

suggesting further issues within the regions of interest (see

Figure 1A). Aliasing ghosts that manifest as faint and shifted

copies of the brain visible in the background are a particular type

of structure in the background (see Figure 1B). Secondly, the

background enclosed by the crown region plays an important

role in detecting structure in the carpet plot. The influence of

motion outbursts can be seen as prolonged dark deflections (see

Figure 1C). Conversely, the presence of periodic modulation of

the intensity can be attributed to periodic motion related to

respiration (see Figure 1D). Thirdly, following the assumption

that the slice-wise noise average on the background should

be smooth, peaks in the single slices indicate some issue at

the acquisition (i.e., white-pixel noise illustrated in Figure 1E).

Overall, in adult MRI, no BOLD signal originates from the

background, meaning that structures visible in the background
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FIGURE 1

QA/QC of MRI data relies substantially on the background. Several exclusion criteria listed in Tables 1, 2 are based on the background. (A) Heavy

structure in the background constitutes an exclusion criterion as the artifact likely extends inside the brain thus compromising signals of interest.

(B) Aliasing ghosts appear as a faint and shifted copy of the brain in the background. (C, D) Since the crown comprises voxels outside the brain,

the structure in the crown region of the carpet plot springs from artifacts. For example, two types of motion-related patterns can be

distinguished. (C) Prolonged dark deflections are often caused by motion outbursts, visible as peaks in the framewise displacement (FD) trace.

(D) Periodic fluctuations of intensity throughout the carpet plot can be attributed to periodic motion due to respiration. (E) The presence of

sudden intensity change in a single slice can be attributed to white-pixel noise and constitutes an exclusion criterion.

come from artifacts. This consideration renders the background

a convenient resource to assess MRI scans.

3.2. Setting QC checkpoints at several
steps of the preprocessing is important

In this protocol, we illustrate how we set up two QC

checkpoints: one for unprocessed data using MRIQC visual

report and one for minimally preprocessed data using fMRIPrep

visual report. Only the data that survived the first QC checkpoint

with MRIQC were run through fMRIPrep, illustrating how QC

must drop data that meet exclusion criteria. The checkpoint

leveraging fMRIPrep’s visual report is important not only to

capture problems in the processing of the data (e.g., failure in

co-registration) but it also offers another opportunity to look at

the data from different perspectives. To illustrate this point, we

simulated a scenario where exclusion criteria were intendedly

misapplied in the QC checkpoint based on MRIQC for one

subject (sub-408), and as a result the dataset was inappropriately

run through fMRIPrep. Figure 2A presents the tCompCor

mask obtained for this subject, which suggests the presence

of an artifact by its shape and its large overlap with the region

of interest. These considerations justified the exclusion of the

subject. Note furthermore that we did not detect that specific

artifact in the MRIQC visual report (even after specifically

looking out for it), illustrating the value of looking at the data

using many different visualizations. Besides, viewing many slices

cutting in several planes helps to not overlook exclusion criteria

as illustrated in Figures 2B, C. Indeed, a signal drop-out that

appeared very clearly on a specific sagittal slice (see Figure 2B)

was more subtle to detect on axial slices (see Figure 2C). This
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FIGURE 2

Setting QA/QC checkpoints at several steps of the preprocessing is important. Overlooking exclusion criteria while inspecting the visual reports

can happen. Thus, having several QA/QC checkpoints set up along the preprocessing pipeline is valuable to catch those missed substandard

scans. (A) In this particular case, the shape of the tCompCor mask looks suspiciously induced by an artifact, which led us to exclude this subject

from further analysis. (B) This sagittal slice of the BOLD average presented in the fMRIPrep visual report clearly shows susceptibility distortion on

the superior frontal cortex. This specific slice however did not appear in the MRIQC visual report. (C) The signal drop-out was furthermore more

subtle on the axial slices, leading to an overlook of this artifact on the QA/QC checkpoint of unprocessed data.

specific sagittal BOLD average slice was displayed in the panel

“Alignment of functional and anatomical MRI data (surface

driven)” of the functional part of the fMRIPrep report, a

panel for which the original purpose is to assess the quality

of co-registration and not to visualize BOLD average. This

reinforces again the importance of viewing the data from

different perspectives.

3.3. Exclusion criteria depend on the
particularities of the project

How QA/QC is performed must be defined in close relation

to the scope, goals, and approach of the project at hand. The

first consideration is the types of data available. For example,

the absence of field maps in the dataset led us to exclude

a substantial portion of subjects that presented susceptibility

distortion artifacts (see Figure 3A). Susceptibility distortion

artifacts not only appeared as signal drop-outs or brain

distortions, but they also interacted with head motion creating

ripples that blurred the structure and destroyed contrast (see

Supplementary Figure 2E). If field maps had been acquired and

shared with the dataset, such artifacts could have been corrected

by the susceptibility distortion correction run by fMRIPrep. This

means that distortion present in the preprocessed data would

grant exclusion at the corresponding checkpoint, but distortion

present in the unprocessed data should not be considered an

exclusion criterion. This example also highlights the importance

of defining the exclusion criteria according to the placement

of the QA/QC checkpoint within the research workflow. A

further consideration is that the research question informs the

regions where quality is most important. In the hypothetical

scenario that a study investigates functional activity in the

motor cortex, a wrap-around that affects the prefrontal cortex

(see Figure 3B) would unlikely bias analyses limited to the

region of interest. As such, it would not be considered an

exclusion criterion in a study about the motor cortex. On the

contrary, it would be very problematic for a study focusing

on, e.g., decision-making. Finally, the planned analysis also

determines the implementation of QA/QC protocols. In this

paper, we did not exclude T1w images presentingmotion-related

ringing (see Figure 3C) because the application was scoped as

a functional, voxel-wise analysis. If, instead, we would have set

the application’s scope as a vertex-wise (surface) analysis, then

ringing on the T1w image would have granted exclusion, as the

reconstructed brain surfaces from T1w images presenting the

artifact would have been unreliable.

4. Discussion

We presented a QC protocol implemented on top of our

previous fMRI analysis protocol (Esteban et al., 2020). We
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FIGURE 3

The exclusion criteria depend on the particularities of the project. (A) fMRIPrep can correct for susceptibility distortions when field maps are

available. In this project, we however consider susceptibility distortion artifacts as exclusion criteria because no field maps were shared with the

dataset. (B) A wrap-around overlapping the prefrontal cortex would not necessarily yield scan exclusion if the research question would focus on

e.g., motor cortex. Our application scope has been defined as voxel-wise whole-brain fMRI analysis, thus this wrap-around is problematic. (C)

Motion-related ringing on the T1w image does not constitute an exclusion criterion in our protocol, because the T1w is used solely for guiding

the normalization and the co-registration. However, if the application scope would use surface-based analysis, this ringing would distort surface

reconstruction.

further restricted the scope of the planned analyses within

standard whole-brain, voxel-wise models for both task and

resting-state fMRI. Under such delineation of the application,

we proposed two QC checkpoints: first, on the unprocessed

data with MRIQC, and second, on the minimally preprocessed

data with fMRIPrep. To fully reflect best practices, we only

preprocessed the data corresponding to subjects for which

the T1w image and at least one BOLD run had passed the

first QC checkpoint. In this report, we also described the

exclusion criteria that we believe would match the planned

application and clearly remark that it is critical that researchers

define these exclusion criteria in the most comprehensive way

before the data are acquired (or accessed, in case of reusing

existing data).

Here, we also restricted our protocol to describe QC

decisions (i.e., excluding sub-standard data that risk biasing

the final results). We did not describe relevant QA aspects

and actions that can be triggered by QC outcomes because

all data in the study were reused. Indeed, the outputs of QC

should be leveraged to prevent quality issues from propagating

through prospective acquisition. One example of how QA is

limited in studies reusing data is the availability of field maps

to correct susceptibility-derived distortions in BOLD images.

Indeed, when field maps are available, fMRIPrep will run

susceptibility distortion correction by default. However, no

field maps were available in the dataset. Although we could

have used fMRIPrep’s “field map-less” approach to address

susceptibility distortions, we decided such a decision would

complicate the QC protocol description with an experimental,

non-standard feature of fMRIPrep. A second QA aspect

derived from the example dataset is the choice of the

phase encoding direction. The phase encoding direction is

generally the most limited in terms of bandwidth, and as

a result, most artifacts propagate along that direction. For

example, in the case of eye spillover, eye movements are

likely to produce artifacts, thus selecting the phase encoding

to occur along the anterior-to-posterior direction over left-

to-right will produce a larger overlap of artifacts with the

brain. In practice, if a particular task involves eye motion

(e.g., blinking, saccade), the left–right direction could be the

better choice if no other consideration conflicts regarding

phase encoding.

One often overseen aspect of QA/QC protocols is

establishing strategies to account for raters’ reliability. Indeed,
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intra-rater variability and drifts are strongly driven by the

protocol implementation settings (e.g., changing the size of

the screen or other screen technical capabilities), training,

and attrition. Raters’ training is particularly relevant, and it

originates systematic differences in how QA/QC criteria are

applied over the time span of the project. Therefore, it is

critical to use mitigation strategies like randomly selecting a

few earlier reports for re-evaluation or annotating subjects

one is uncertain about and returning to it later in the QC

process. Similarly, the implementation of QA/QC protocols

must also plan for multiple raters and anticipate a plan to

counter inter-rater variabilities and drifts idiosyncratic to

each of them (e.g., defining a training program with specific

examples, inter-rater “calibration”, etc.). Learned insights can

be transferred in several ways: 1. from other subjects that

expressed the artifact more clearly, 2. from examining the

report of another modality of the same subject, 3. from a

more senior rater, or 4. from visual inspection of other tools’

output. For example, if the brain is not perfectly aligned with

the imaging axes, the space between the cerebellum and the

temporal lobe at the basal part of the brain appears bigger

on one side of the other on axial slices. Inexperienced raters

may interpret that some artifact occurred, although, in fact,

the image is just visualized with some obliquity with respect

to the sagittal plane. This misinterpretation would be more

likely for BOLD images, as this might look like a single-sided

signal drop-out.

A fundamental aspect of a robust QC protocol we have

showcased is its funneling design. At every QC checkpoint, we

must pre-establish some exclusion criteria that will result in

dropping sub-standard data. For datasets limited in sample size,

excluding data may reduce the power of the study below the

planned estimation. More generally, even when the analysis plan

anticipated some data replacement measures for data dropped

at the earlier QC checkpoints, excluding data increases the

costs of the study (in terms of scan time, subject time, etc.).

In this case, real-time QA/QC (that is, during the acquisition

or immediately after) is a promising strategy to minimize

data exclusion and replacement costs (Heunis et al., 2020).

Therefore, establishing these criteria will present the researcher

with the challenge of striking an appropriate balance between

being excessively stringent (and therefore, discarding too many

images) and too lenient to the point that results are not reliable.

For this reason, it is important to establish QC criteria from

the perspective of all the QC checkpoints in the pipeline and

to ensure the best trade-off. When developing this manuscript,

we understood that setting the scope to “whole-brain voxel-

wise” analyses would allow more flexible QC criteria for the T1w

images at the MRIQC step and only mark borderline images

for a more rigorous screening after the second QC checkpoint.

Conversely, we also discovered some artifacts in the fMRIPrep

visual report that could have been spotted in the MRIQC visual

report of the same participant. Going back to the MRIQC

visual report, we could understand why this detail escaped us

at the first iteration and learn from our mistake. Therefore,

layering QC checkpoints is critical to ensure the robustness of

the whole protocol.

4.1. Limitations and deviations from our
standard QC protocols

Several limitations stem from the specifics of the dataset

used in this study. First, we could not take advantage of the

MRIQC group report, in which the IQMs extracted from all

images in a dataset are presented in scatter plots, because this

dataset was composed frommultiple sources, which makes these

reports hard to interpret without “harmonizing” the IQMs. On

a single-site dataset, we would use the MRIQC group report to

spot outliers in the IQMs distributions and double-check their

corresponding visual reports for exclusion criteria. Second, we

used the same exclusion criteria for the resting-state and task

fMRI data, with the exception of criterion G (hyperintensity of

single slices). In this particular case, we excluded resting-state

runs showcasing G because this artifact will likely introduce

correlations in the data that will potentially be interpreted as

functional connections in such analyses. Conversely, models

typically applied for analyzing task paradigms are generallymore

resilient to biases introduced by these hyperintensities. Third,

the quality of the T1w images may have been overestimated

because the data are defaced. As we explored in a recent

pilot study (Provins et al., 2022b) defacing, though necessary

to protect participants’ privacy when sharing data publicly,

likely biases manual QA/QC of anatomical images. One of our

conclusions was that defaced images were perceived as having a

better quality overall. Fourth, as a result of the QC data funnel

mentioned above, the number of subjects for which we assessed

the visual reports of fMRIPrep was severely limited to only the

five out of 181 that passed the first QC checkpoint with MRIQC.

The number of subjects successfully passing the first checkpoint

would have been much higher if available field maps had been

available within each subject’s data, considering that criterion

B (susceptibility distortions) was by large the top one criterion

that granted exclusion of images. Lastly, the scope of the study

was limited to describing the protocols and communicating

our assessments. Although it would have been of interest to

evaluate inter-rater and intra-rater variabilities, the settings were

not adequate to address such questions. Indeed, with such a

high (and expected) exclusion rate, in addition to the task of

identifying as many subpar images as possible, both sources

of variability in quality annotations will be certainly minimal.

We explored such variabilities in Provins et al. (2022b) and we

are currently extending the study with the pre-registration of a

larger scale analysis (Provins et al., 2022c).
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5. Conclusion

Establishing appropriate QC protocols adds to the list of

practices conducive toward reliable neuroimaging workflows.

Moreover, standardizing these protocols is critical to minimize

intra-, and inter-rater, as well as intra- and inter-laboratories

variabilities, thereby achieving consensus regarding QA/QC

across researchers and opening ways to consistently train

machine agents to automate the process. Therefore, the research

topic in which this work is framed is a timely initiative

pursuing such goals. We demonstrated the implementation of

a QC protocol in a standard functional MRI analysis workflow

at two checkpoints: (i) assessing the unprocessed data (with

MRIQC) and (ii) assessing minimally preprocessed data (with

fMRIPrep). We expect this thorough description of the QC

protocol and associated data exclusion criteria built upon this

research topic’s initiative to promote best practices in QA/QC

and help researchers implement their protocols for functional

MRI more effectively.
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