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C oordinating knowledge transfer within multi-plant manufacturing networks is a challenging task. Using a computa-
tional model, we examine when it is beneficial to create production knowledge within a central unit, the “lead factory,”

and transfer it to geographically dispersed plants. We demonstrate that the knowledge transfer generates a trade-off between
a positive cost-saving effect due to fewer adaptations in each plant, and a negative transfer cost effect due to the costly
knowledge transfer itself. The complexity of the production process moderates the performance implications of the knowl-
edge transfer because it determines the relative strength of these two effects. For production processes with low complexity,
knowledge transfer can engender superior network performance. Here, an optimal extent of knowledge transfer exists, and
thus, a complete knowledge transfer is not performance maximizing. For production processes with medium and high levels
of complexity, performance is reduced rather than enhanced through knowledge transfer so that it is optimal not to transfer
any knowledge from the lead factory to the plants. While we analyze knowledge transfer within a manufacturing network,
our results are transferable to other settings that consist of a knowledge sending and receiving unit.
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1. Introduction

Many companies organize their manufacturing activi-
ties as a distributed network of multiple production
plants. The coordination of such networks is a chal-
lenging task. A key management issue is the transfer
of production knowledge within such a network. Pro-
duction knowledge is a recipe for action and provides
guidance for how to produce a good (Ferdows 2006).
It can be built up within each plant or it can be trans-
ferred from a central unit: The so-called lead factory
(Ferdows 1997). The lead factory acts as an intermedi-
ary between R&D and the geographically dispersed
plants and translates R&D knowledge into produc-
tion knowledge (Simon et al. 2008).
Within manufacturing networks, there is a funda-

mental trade-off between transferring production
knowledge to the plants and letting the plants create
their own knowledge. In our study, we formally
explore this trade-off by analyzing the performance
implications of the knowledge transfer within a
multi-plant manufacturing network with a lead fac-
tory and geographically dispersed production plants.
Knowledge resides in members, tools, and tasks

(Argote and Ingram 2000). It can be explicit (as in pro-
duction manuals) or tacit (stored in the heads and
hands of the employees) (Teece 1977). Depending on
the type of knowledge, its transfer can be costly.
Explicit knowledge can be transferred with manuals

and through systems. However, a codified recipe can-
not capture all the subtle nuances of a process. It is
contingent on operating conditions and scale and
often tacit in nature (Hayes et al. 2005). Conveying
tacit production knowledge often requires moving of
people (Argote 1999). Considering the distributed net-
work of plants, moving experts to each plant can be
costly. However, not transferring the knowledge to
save the costs results in other costs because each plant
would have to create its own production knowledge.
The search for optimal process sequences, machine
adjustments, raw material usability, and other pro-
duction-related decisions is time consuming and
leads to adaptation costs (Lapr�e et al. 2000). Each glo-
bal plant manager therefore has to decide whether it
is more advantageous to create production knowl-
edge within a lead factory and to transfer it to the geo-
graphically dispersed plants or to let each plant create
its own production knowledge. However, as locally
acquired knowledge is difficult to disseminate (Lapr�e
et al. 2000), we need to understand which conditions
make knowledge transfer more or less beneficial.
Our study assesses the performance effects of

knowledge transfer within a multi-plant manufactur-
ing network and discusses the implications for net-
work configuration. In particular, we are interested in
how the complexity of the production process and the
heterogeneity among production plants moderate the
effect of knowledge transfer on performance. For our
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analysis, we construct an NK performance landscape
model and extend the standard formulation (e.g.,
Levinthal 1997, Rivkin 2001) by adding the following
features: (a) We assume that knowledge can be
transferred from a lead factory to the production
plants. Thus, the plants can benefit from the produc-
tion knowledge generated in a lead factory in the
sense that a subset of production decisions (extent of
knowledge transfer) matches the production setting
of the lead factory. A global plant manager can con-
trol the extent of knowledge transfer. (b) Knowledge
transfer is costly and results in one-time transfer costs
for each plant. (c) Each actual implementation (but
not evaluation) of a new production setting in a plant
is associated with adaptation costs.
Our simple model shows that the knowledge

transfer generates a trade-off between a positive
cost-saving effect due to fewer adaptations in each
plant, and a negative transfer cost effect due to the
costly knowledge transfer itself. The complexity of
the production process and the plant heterogeneity
have an impact on the relative strength of these two
effects, and thus, they determine how beneficial
knowledge transfer from the lead factory to the
plants is. For production processes with low com-
plexity, knowledge transfer can engender superior
network performance. Here, an optimal extent of
knowledge transfer exists, and thus, a complete
knowledge transfer is not performance maximizing.
For production processes with medium and high lev-
els of complexity, in contrast, performance is
reduced, rather than enhanced, through knowledge
transfer so that it is optimal not to transfer any
knowledge from the lead factory to the plants. As
the heterogeneity between the lead factory and the
plants increases, the positive effect of knowledge
transfer decreases. While the usefulness of the lead
factory’s production knowledge linearly decreases as
plant heterogeneity increases, it non-linearly
decreases as the complexity of the production pro-
cess increases. Our results not only provide implica-
tions for manufacturing network coordination, but
also may enhance our understanding of organiza-
tional learning and adaptation.
A number of studies analyze the processes through

which knowledge is transferred, and the factors
affecting this transfer (Bartlett and Ghoshal 1989, Fer-
dows 2006, Gupta and Govindarajan 2000, Szulanski
1996, Tsai 2001). For example, Zander and Kogut
(1995) and Szulanski (1996) analyze the properties of
knowledge and show that knowledge that is not well
understood or is high in causal ambiguity is harder to
transfer than less ambiguous knowledge. Williams
(2007) concludes that knowledge transfer is context
dependent and highlights the need for companies to
replicate and adapt knowledge. He argues that the

receiving unit in the knowledge transfer has to decide
how to allocate its effort: to be more like the sending
unit’s operations (replication) or changing its opera-
tions to integrate with local context (adaptation) (Wil-
liams 2007). His analysis is based on the assumption
of plant heterogeneity. However, it remains unclear
how different levels of plant heterogeneity influence
knowledge transfer within manufacturing networks.
Another issue raised by Williams (2007) is that pro-

duction processes are often complex and production
managers can find it difficult to understand the inter-
action between individual decisions or activities.
Knowledge transfer within such complex production
environments also seems to be increasingly difficult.
However, it remains to be shown through which
mechanisms complexity influences knowledge trans-
fer within manufacturing networks.
The remainder of this article is structured as fol-

lows. Section 2 reviews the related literature. Sec-
tion 3 introduces our computational model. In
Section 4, we analyze the impact of complexity
(Experiment 1) and plant heterogeneity (Experiment
2) on knowledge transfer. Finally, in Section 5 we con-
clude by discussing our results and implications.

2. Literature Review

From the late 1970s to the early 1990s, operations
management research moved from a single-plant per-
spective to a multi-plant focus and finally toward net-
works (Rudberg and Olhager 2003). While supply
chain management concentrates on the number of
organizations and the links between the organiza-
tions, manufacturing network theory focuses on the
number of plants within a single company and the
links between the plants (Rudberg and Olhager 2003).
The internationalization of manufacturing networks
makes the coordination of geographically dispersed
production plants an important objective of the global
plant manager. De Toni et al. (1992) highlight that the
coordination of decentralized units can be an impor-
tant source to achieve competitive advantages. In
particular, knowledge transfer is important because
companies not only have to invent or improve prod-
ucts within the R&D department but also must effi-
ciently communicate generated knowledge to the
production plants.
The plant that distributes knowledge throughout

the network is the lead factory (Ferdows 1989). The
lead factory focuses on exploring new knowledge as
it produces the prototype and develops the produc-
tion processes. Subsequently, this newly generated
knowledge is transferred to the geographically dis-
tributed production plants, which then focus on
exploitation as they adapt and improve the knowl-
edge about the production processes and start pro-
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ducing the serial product. Depending on the need for
capacity, there can be many knowledge receiving
plants (Rudberg and West 2008). Japanese automotive
manufacturers are prominent examples of firms that
successfully implemented such a network configura-
tion with a lead factory and multiple production
plants (e.g., Simon et al. 2008).
The relevant knowledge transferred between plants

can be described as production knowledge (Ferdows
2006), which is needed to translate R&D knowledge
into the final product (Cheng et al. 2008). Knowledge
transfer within internal manufacturing networks has
been analyzed from different perspectives. Tsai
(2001), for instance, shows that the position of a sub-
sidiary in the network is crucial for the amount of
knowledge that this subsidiary can absorb. Further-
more, knowledge is especially difficult to spread
across different subsidiaries if preexisting relation-
ships among subsidiaries are missing (Szulanski
1996). Vereecke et al. (2006) analyze types of subsidi-
aries in transnational networks according to the
knowledge exchange (inflow and outflow) between
the different sites. They conclude that the quality of
the relationship between two subsidiaries is a major
factor in the exchange of innovations, and an estab-
lished relationship usually works in both directions.
In a static analytical model that does not include com-
plexity or plant heterogeneity, Deflorin et al. (2012)
show which factors determine the performance of a
manufacturing network.
By taking into account the context dependency of

knowledge, plant heterogeneity is an important fac-
tor to consider (Williams 2007). Based on a case
study, Maritan and Brush (2003) conclude that differ-
ences in resource endowments may influence the
knowledge transfer outcome. In addition, several
studies support the notion that complexity raises
barriers to transferring knowledge (Rivkin 2000, Wil-
liams 2007).

3. Model

To examine the performance implications of knowl-
edge transfer in a multi-plant manufacturing net-
work, we implement a standard NK landscape
model. Stuart Kauffman and his colleagues initially
developed the model in the context of evolutionary
biology (Kauffman 1993, Kauffman and Levin 1987).
Since Levinthal (1997) applied this model to manage-
ment studies, research utilizing the NK framework
has been conducted on a broad range of topics such
as innovation (Almirall and Casadesus-Masanell
2010, Fleming and Sorenson 2001, Sommer and Loch
2004), new product development (Chao and Kavadias
2008), organizational design (Gavetti 2005, Rivkin and
Siggelkow 2003, Siggelkow and Levinthal 2003), and

strategy (Csaszar and Siggelkow 2012, Levinthal and
Posen 2007, Siggelkow and Rivkin 2005). McCarthy
(2003, 2004) and McCarthy and Tan (2000) show that
the NK landscape model also can be applied to opera-
tions management by regarding manufacturing firms
as complex adaptive systems. They were the first to
relate the fitness landscape theory to the process of
manufacturing strategy by developing a conceptual
model of manufacturing fitness. We take their work
as a starting point and extend it by explicitly model-
ing a multi-plant manufacturing network and analyz-
ing the performance implication of knowledge
transfer within such a network.

3.1. Complex Production Processes and Local
Search for Better Solutions
The starting point of our NK model is an N-dimen-
sional vector p = (p1, p2,.., pN) of binary production
decisions pi 2 {0,1} with i 2 {1,..,N}, yielding a total
of 2N possible combinations of decisions. In our
model, the vector p represents the production setting,
i.e., the set of all relevant decisions made within the
production process of a product. The relevant produc-
tion decisions cover three dimensions: (i) Decisions
about the product itself including technical character-
istics such as product specifications and use of raw
material. (ii) Decisions about the production process
including the use of manufacturing technology, pro-
cess time, and sequences. (iii) Decisions about the
management of different production steps, including
how to organize production systems, the cooperation
with other functions, and suppliers (Cheng et al.
2008).
We illustrate these production decisions with the

example of a European manufacturer that produces
a certain pipe system. The production decisions com-
prise, among others, the use of manufacturing tech-
nologies and tools. The production of pipe systems
requires cutting, bending, forming, welding, and
annealing technologies. Specifically, the manufac-
turer has to make the following decisions: automated
or non-automated welding (Decision 1); sleeve weld-
ing, welding by extrusion, or laser welding (Decision
2); automated or manual loading of the welding
installation (Decision 3); delivery of tools from sup-
plier A or B (Decision 4); and choice of machine
adjustments (Decision 5). While some production
decisions are independent, others are highly interde-
pendent. The machine adjustments, for example,
depend on the choice of supplier because tools from
different suppliers require slightly different machine
handlings. Analogously, the choice of welding tech-
nology (sleeve, extrusion, or laser) is interdependent
with the choice of tool suppliers because the effec-
tiveness of different tools depends on the applied
welding technology. The decision to load the
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welding installation manually or automatically is
independent of the other production decisions. Even
though some decisions (e.g., technology) are not bin-
ary choices, they can easily be replicated by a string
of binary decisions.
The interdependence between the production deci-

sions is characterized by the parameter K 2 {0,..,
N�1}, which describes the number of binary deci-
sions pj that (co-)determine the performance effect
of decision pi. This effect is characterized by the
contribution function ci = ci (pi, pi1, pi2,..,piK), where
i1,i2…,iK are K distinct decisions other than i. The
realizations of the contribution function are drawn
from a uniform distribution over the unit interval,
i.e., ci ~ U[0;1]. The lowest value, K = 0, implies that
the production decisions do not depend on each
other, and the highest value K = N�1 implies that
each production decision depends on all other deci-
sions. The performance of the production process for
a given production setting p is calculated as the
arithmetic mean of the N contributions ci according
to the performance function

pðpÞ ¼ 1

N

XN
i¼1

ciðpÞ:

To improve its performance, the firm engages in a
process of local search (Levinthal 1997). Following
standard procedure, local search involves randomly
changing a single production decision. If a new pro-
duction setting improves performance, it is adopted
and the search continues from this new setting in per-
iod t + 1 (adaptation). Otherwise, the next search step
starts from the unchanged setting defined in period t
(no adaptation). This process can be interpreted as a
search for better positions on a high-dimensional per-
formance landscape (“hill climbing”). A landscape
represents a mapping from all 2N possible outcomes
of the production setting onto performance values.
We normalize each landscape to the unit interval such
that the mean value of the normalized landscape
equals 0.5 and the global maximum equals 1.0 (Csas-
zar and Siggelkow 2012, Rivkin and Siggelkow 2003).
The “local peaks” (good solutions) on the perfor-
mance landscape represent production settings for
which a firm cannot improve its performance through
local search (Levinthal 1997). The “global peak” is the
highest of all local peaks in the landscape and repre-
sents the best solution.
The parameter K is commonly interpreted as a

measure for complexity (Rivkin and Siggelkow 2003,
Siggelkow and Rivkin 2005). It is well known that
the number of local peaks increases with complexity
K (Kauffman 1993): The lowest value K = 0 produces
a smooth performance landscape with a single local
peak equal to the global peak, whereas the highest
value K = N � 1 produces a rugged landscape with

multiple local peaks. When K increases, the perfor-
mance of the peaks decreases close to the average
performance in the landscape. Kauffman (1993)
refers to this phenomenon as the “complexity catas-
trophe.”

3.2. Multi-Plant Manufacturing Network and
Heterogeneous Performance Landscapes
We model a manufacturing network that is composed
of one lead factory L and E geographically separated
production plants e 2 {1,…,E}. The lead factory and
the plants operate in (potentially) different but corre-
lated environments. We conceptualize these heteroge-
neous plant environments through correlated
landscapes and measure the degree of heterogeneity
between the landscapes with the parameter h 2 [0,1],
where a larger value of h represents a higher hetero-
geneity between landscapes. If h = 1, then the land-
scapes are completely unrelated; h = 0 represents a
situation in which the landscapes are identical. We
generate the correlated landscapes in the spirit of Sig-
gelkow and Rivkin (2005) in that all the contribution
values of the landscape are affected by the transfor-
mation. However, we slightly modify their approach
to ensure that the distribution of the contribution val-
ues in the generated landscape remains uniformly
distributed, which is a central assumption of the NK
model.
Our procedure to generate correlated landscapes

consists of adding a certain amount of “noise” to all
possible outcomes 2K+1 of each contribution ci. We
denote by cij the j-th outcome of the i-th contribution,
with j 2 {1,…, 2K+1}. Starting from the initial con-
tribution value cij, we compute the correlated contri-
bution value �cij in two steps. First, we add a random
value v that is uniformly distributed in the interval
[�h;+h] to the initial contribution cij and obtain
c’ij = cij+v, where v = 2(u � 0.5)h ~ U[�h;+h] and
u ~ U[0;1]. Second, we confine c’ij to the unit interval
through a symmetrical transformation around the
closest boundary value (either 0 or 1) and obtain the
final correlated contribution value �cij with

�cij ¼
jc0ijj if c0ij\0

c0ij if 0� c0ij � 1

2� c0ij if c0ij [ 1

8<
:

This procedure of generating correlated landscapes
has the following properties: (i) the new contribution
value stays in the neighborhood of the initial contri-
bution value (“locality”), (ii) the new contribution
value is confined to the unit interval [0,1] (“confine-
ment”), and (iii) the uniform distribution in the unit
interval of all contribution values in the initial land-
scape is also preserved in the correlated landscape
(“preservation of distribution”).
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3.3. Knowledge Transfer, Adaptation Costs, and
Performance of Manufacturing Network
A standard assumption in NK models is that firms
initially possess no information about the shape of the
performance landscape. Consequently, firms start
their search process from a random position on the
landscape. In our model, we assume that the produc-
tion plants do not start from a random position
because they can benefit from production knowledge
that is generated in the lead factory. As mentioned
earlier, the lead factory acts as an intermediary
between R&D and the geographically dispersed
plants and translates R&D knowledge into produc-
tion knowledge (Simon et al. 2008). Thus, the geo-
graphically dispersed plants receive already tested
production knowledge from the lead factory.
We conceptualize the knowledge created in the lead

factory as follows. Starting from a random position,
the lead factory searches during T periods for
improvements in the production process and then
(partially) transfers its knowledge to each production
plant. This knowledge transfer is characterized
through the number of decisions S 2 {0,…,N} that
are transferred in t = 0 from the lead factory’s pro-
duction setting p*L = (p*L,1, p

*
L,2,.., p

*
L,N) after T peri-

ods of (local) search. We refer to S as the extent of the
knowledge transfer and assume that the knowledge
transfer results in one-time transfer costs for each
plant given by TC(S). In our main experiment, we
consider strictly convex transfer costs with TC’(S) > 0
and TC′′(S) > 0. Thus, the transfer costs increase with
an increasing rate in the number of decisions trans-
ferred from the lead factory to the other plants. We
assume that the global plant manager can control the
extent of knowledge transfer, i.e., s/he can decide
how many production decisions are transferred from
the lead factory to the plants. In addition, we assume
that the S production decisions transferred are ran-
domly drawn from the lead factory’s production
setting p*L.
As a result of the knowledge transfer in t = 0, the

initial position of production plant e in t = 1 is a vec-
tor (p*L,1,…, p*L,S, pe,S+1.., pe,N) that corresponds in S
decisions to the production setting of the lead factory.
Thus, S = N represents the situation of a complete
knowledge transfer where the lead factory transfers
all production decisions to the E plants. In this case,
each production plant starts its search process in t = 1
from the (final) production setting of the lead factory.
In contrast, S = 0 represents a situation in which no
knowledge is transferred from the lead factory to the
E plants such that each plant starts its search process
in t = 1 from a random position. The remaining N–S
production decisions that are not transferred are ran-
domly chosen in each plant. We assume that each

plant can change all N production decisions in the
subsequent local search process, i.e., we do not
assume that the plants have to stick to the production
setting (p*L,1, …, p*L,S) that was transferred from the
lead factory.
As mentioned in the introduction, machine adjust-

ments can lead to adaptation costs in the production
plants. We extend the standard NK model by inte-
grating such adaptation costs as follows: after the
knowledge transfer, we assume that each actual
implementation (but not the evaluation) of a new pro-
duction setting in the plants is associated with adap-
tation costs given by the cost parameter a > 0.
Accumulated adaptation costs until and including
period t amount to AC(t) = aΓe(t), where Γe(t) denotes
the number of total adaptations of the production set-
ting p in plant e. It should be noted that the adaptation
costs have no effect on the search process because
these costs incur only for the implementation, and not
the evaluation of a new production setting. We
assume that the evaluation of a new production set-
ting does not require making a significant change to
the current production setting, but can be realized in
a hands-on manner, e.g., based on simulations,
theoretical calculations, thought experiments, discus-
sions/meetings among employees and the manage-
ment. The costs that such “off-line” search (Winter
et al. 2007) generate are negligible compared with the
adaptation costs that incur for the actual implementa-
tion of a new production setting.
The total performance Π of the manufacturing net-

work in t 2 {1,…,P} is calculated as

Y
ðtÞ ¼

XE
e¼1

fpeðpeðtÞÞ � ACeðtÞ � TCðSÞg;

where pe is the performance of plant e, ACe(t) are
the accumulated adaptation costs of plant e, and
TC(S) represents the transfer costs for each plant.
Following the literature on NK models, we interpret
the performance of the manufacturing network as
financial performance (Levinthal 1997). The lead fac-
tory is not included in the performance calculation
because we assume that after the knowledge trans-
fer, the lead factory turns its attention to a new
product and generates production knowledge for
this product through a process of local search.
Similarly, we do not account for the lead factory’s
adaptation costs in the performance calculation.
However, the qualitative pattern of results would
not change if we included the lead factory in the
performance calculation. See the sensitivity analysis
in the online appendix for more detail.
Figure 1 provides a high-level overview of our

model.
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4. Analysis

In the following sections, all simulations have N = 15
and we base our results on the average performance
over 100,000 independent runs (i.e., landscapes) of the
simulation model to guarantee that the reported dif-
ferences are inherent to our model rather than the
results of a stochastic process. This procedure ensures
that the reported simulation results are statistically
significant at the 1% level. Unless mentioned other-
wise, we implement quadratic transfer costs TC(S) =
sS2 and fix the transfer cost and adaptation costs
parameters to intermediate values, i.e., s = 0.001 and
a = 0.03, respectively. We further set Τ = 200, i.e., the
lead factory searches during 200 periods for improve-
ments in the production process and (partly) transfers
its production knowledge in t = 0 to the plants. We
analyze a manufacturing network with E = 5 produc-
tion plants and set plant heterogeneity to h = 0.1. We
observe the network for P = 200 periods, which is suf-
ficient because more than 99% plants have then
reached steady state (local or global peak). Examining
steady-state performance is justified for products with
long product life cycles. In the online appendix, we
provide sensitivity analyses of our results to alterna-
tive model initializations and specifications.

4.1. Experiment 1: Performance Implications of
Knowledge Transfer and the Moderating Effect of
Complexity
In Experiment 1, we seek to understand the baseline
properties of the model. First, we examine how the
performance of the manufacturing network evolves
over time. Second, we analyze how the complexity of
the production process affects long-run performance.
Figure 2 displays the performance evolution of the

manufacturing network over time (from t = 1 until
t = 100) for a production process with very low

complexity (K = 2) and the above given model speci-
fications. Because beyond period t = 100, total perfor-
mance is almost flat, we focus on t 2 {1,…,100} in
Figure 2. The dashed line (solid line) reports the net-
work’s performance if the lead factory has transferred
S = 5 (S = 12) production decisions to the E produc-
tion plants in t = 0.
The figure shows that in t = 1 the manufacturing

network starts with a higher initial performance if, in
t = 0, the lead factory has transferred S = 12 instead
of S = 5 production decisions to the plants. After the
knowledge transfer from the lead factory, the perfor-
mance of the manufacturing network increases stea-
dily from period to period as the plants acquire
additional knowledge to improve their production
process, where the marginal performance improve-
ments gradually decrease from period to period. Even
though the manufacturing network has started with a
low initial performance in the case of a less-complete

Figure 1 Overview of Model
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knowledge transfer (S = 5), the network achieves
superior long-run performance compared with a
more-complete knowledge transfer (S = 12).
In general, the initial performance in t = 1 depends

on two opposing effects—a negative transfer cost
effect and a positive knowledge effect. Both effects
depend on the extent of knowledge transfer, repre-
sented by the number of decisions S that are trans-
ferred from the lead factory to the plants. A transfer
of more decisions results in higher transfer costs
(transfer cost effect), but also improves the initial per-
formance of the production plants (knowledge effect).
If only a small number of decisions are transferred
from the lead factory to the other plants, total transfer
costs will remain small. A small number of trans-
ferred decisions also mean that the other plants can
benefit from only a few of the production improve-
ments which have been realized in the lead factory,
and therefore, they have to start from a lower position
on their landscapes. As we will see below, starting
from a lower position on the landscape also implies
that a plant will have to incur higher accumulated
adaptation costs to improve its performance in the
remaining periods.
Next, we examine the interplay between the extent

of knowledge transfer and the complexity of the pro-
duction process. Figure 3 provides a systematic
analysis of the long-run performance implications (y-
axis) for the full range of S (x-axis), i.e., from no
knowledge transfer (S = 0) to complete knowledge
transfer (S = 15). The performance is normalized and
reflects the difference between total performance if
the lead factory transfers knowledge (S > 0) and the
benchmark performance without knowledge transfer
(S = 0) for different levels of complexity. The dashed
line represents the performance implications for pro-
duction processes with low complexity (K = 2); the

dotted and solid lines indicate the implications for
production processes with medium (K = 6) and high
(K = 12) complexity, respectively.
The figure shows that the level of complexity cru-

cially influences the performance implications of
knowledge transfer in a manufacturing network.
Interestingly, we observe an inverted U-shaped rela-
tionship between the extent of knowledge transfer
and long-run performance for production processes
with a low level of complexity (K = 2), an (almost)
linear relationship for production processes with
medium complexity (K = 6), and a U-shaped relation-
ship for production processes with high complexity
(K = 12). More specifically, for low levels of complex-
ity, the manufacturing network can benefit from the
knowledge transfer and the performance effect
reaches its maximum for a moderate extent of knowl-
edge transfer (S = 5). Negative effects of knowledge
transfer materialize only when knowledge transfer is
extensive (i.e., S > 10). For medium and high levels of
complexity, performance is reduced, rather than
enhanced, if the lead factory transfers knowledge to
the other plants, independent of the extent of knowl-
edge transfer.
In the remainder of this section, we seek to uncover

the mechanisms underlying the effect of knowledge
transfer on total performance.

4.1.1. Decomposing the Effect of Knowledge
Transfer on Performance. To uncover the mecha-
nisms, we decompose the performance implications
of knowledge transfer (in Figure 3) into two compo-
nents: (1) a cost-saving effect driven by a lower num-
ber of adaptations due to the knowledge transfer; and
(2) a transfer cost effect driven by the costly knowl-
edge transfer itself. Figure 4 displays the performance
implications of the two opposing effects (y-axis) as a
function of the extent of knowledge transfer (x-axis).
The dotted line reflects the performance implications
of the transfer cost effect, while the dashed line
reports the performance implications of the cost-sav-
ing effect. The net effect of these two components of
the knowledge transfer is plotted as the solid line,
fully reconstructing the main result in Figure 3. We
differentiate between production processes with low
complexity (K = 2) in Panel (a) and high complexity
(K = 12) in Panel (b).
The figure shows that the performance implications

of the cost-saving effect are always positive, while the
performance implications of the transfer cost effect
are unambiguously negative. For a production pro-
cess with low complexity (Panel a), the plants benefit
via the cost-saving effect (dashed line) from each
transferred decision. This is not the case for high com-
plexity (Panel b). Here, the transfer must be relatively
extensive before the plants can take advantage of the
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lead factory’s production knowledge: The dashed line
in Panel (b) is flat until S = 9. Nevertheless, each
transferred decision implies transfer costs that reduce
performance independent of complexity (dotted line).
Next, we seek to uncover the mechanisms underlying
the transfer cost and cost-saving effects.

4.1.2. The Transfer Cost Effect. The transfer cost
effect is straightforward because transfer costs are
simply a convex function of the number of trans-
ferred decisions (extent of knowledge) given by
TC(S) = sS2. Thus, [�TC(S)] is a decreasing function
in S, where s controls the curvature of this function.
The transfer cost effect is independent of the level of
complexity.
The transfer costs effect, and thus, the performance

implication of the knowledge transfer would change
if we considered a concave transfer cost function
TC(S) with TC′(S) > 0 and TC″(S) ≤ 0. In the case of
concave transfer costs, we find that it is either opti-
mal to transfer all production decisions from the lead
factory (for a sufficiently low s) or it is optimal not
to transfer production knowledge from the lead fac-
tory (for a sufficiently high s), but to build it up in
each plant. In contrast, for a convex cost function an
interior solution can exist (depending on the com-
plexity of the production process) so that it can be
optimal to transfer an intermediate level of knowl-
edge. A concave cost function characterizes a sce-
nario with high fixed costs (e.g., necessity to fly a
team across to the other plant), while a convex cost
function represents a scenario where the knowledge

transfer becomes increasingly costly the more details
one has to transfer.

4.1.3. The Cost-Saving Effect. To explain the
cost-saving effect, we first analyze how the extent of
knowledge transfer affects accumulated adaptation
costs. Figure 5 reports the total number of adapta-
tions per plant after 200 periods (y-axis) as a function
of the extent of knowledge transfer (x-axis) for low
complexity (K = 2, dashed line) and high complexity
(K = 12, solid line), respectively. To compute the
accumulated adaptation costs, one simply has to
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multiply the total number of adaptations with the
cost parameter a.
We find that the total number of adaptations per

plant decreases with higher complexity K for a given
extent of knowledge transfer. Increasing complexity
renders the landscape more rugged, and thus, the
firms get trapped easier at a local peak resulting in
fewer adaptations. The dashed line shows that for
production processes with low complexity (K = 2),
each plant changes on average approximately 7.1 pro-
duction decisions until t = 200 if no knowledge is
transferred from the lead factory. The number of
adaptations decreases to 3.1 for production processes
with high complexity (K = 12, solid line).
Moreover, the total number of adaptations per

plant decreases with a more extensive knowledge
transfer, independent of complexity: The higher the
number of decisions transferred from the lead factory
to the plants, the better the plant’s starting position on
the performance landscape in t = 1 (knowledge
effect), and the fewer adaptations are necessary in
each plant before it finds a good solution. As a conse-
quence, the corresponding adaptation costs decrease
and result in a positive cost-saving effect. However,
the knowledge effect diminishes over time because in
the long run, the plants end up (on average) at the
same production setting they would have found with-
out transferring knowledge. While the knowledge
effect has no direct impact on long-run performance,
it has an impact on the cost-saving effect because it
affects how plants adapt their production process.
While the total number of adaptations per plant

almost linearly decreases in the extent of knowledge
for a production process with low complexity (dashed
line), for high-complex production processes this
number remains flat (solid line) until the transfer is
relatively complete (S = 9) and then decreases with
an increasing rate. A more complex production pro-
cess means more decisions are interdependent and, as
a consequence, the plants benefit from the lead fac-
tory’s production knowledge only if the transfer is rel-
atively complete.
To fully reconstruct the cost-saving effect, we sub-

tract from the benchmark performance (no knowl-
edge transfer) the accumulated adaptation costs.
Because a more extensive knowledge transfer lowers
the accumulated adaptation costs, the resulting cost-
saving effect is positive and increases in the extent of
knowledge transfer.
In sum, this experiment shows that the performance

implications of knowledge transfer in manufacturing
networks is driven by two interacting mechanisms:
The positive cost-saving effect and the negative trans-
fer cost effect. The complexity of the production pro-
cess moderates the impact of the knowledge transfer
on the cost-saving effect in a non-linear fashion.

4.2. Experiment 2: The Moderating Effect of Plant
Heterogeneity
In Experiment 1, we analyze production plants that
operate on moderately heterogeneous landscapes
(h = 0.1) and find that the performance implications
of the knowledge transfer crucially depend on the
complexity of the production process. In Experiment
2, we explore how plant heterogeneity moderates the
performance implications of knowledge transfer. To
isolate the effect of plant heterogeneity on perfor-
mance, we rerun Experiment 1 and vary the level of
heterogeneity between the lead factory and the plants,
but we hold constant the complexity of the produc-
tion processes and consider only low complexity
(K = 2).
Figure 6(a) displays the long-run performance

implications (y-axis) for the full range of S (x-axis).
The performance is normalized and reflects the differ-
ence between total performance if the lead factory
transfers knowledge (S > 0) and the benchmark
performance without knowledge transfer (S = 0) for
different levels of plant heterogeneity. The solid line
represents the performance implications for homoge-
neous plants (h = 0); the dashed and dotted lines indi-
cate low (h = 0.3) and high (h = 0.6) levels of
heterogeneity, respectively.
The degree of heterogeneity between the lead fac-

tory and the plants has a strong impact on the per-
formance implications of knowledge transfer. Not
surprisingly, the positive effects of the knowledge
transfer decreases with plant heterogeneity. How-
ever, in contrast to complexity, plant heterogeneity
moderates the impact of knowledge transfer in a lin-
ear way. To examine the underlying mechanisms
regarding the interplay between the extent of
knowledge transfer and the number of adaptations
in the heterogeneous plants, we provide Figure 6(b),
which reports the total number of adaptations
(y-axis) after 200 periods for the full range of S (x-
axis) and different levels of plant heterogeneity. We
make the following observations. First, for a given
extent of knowledge transfer, the total number of
adaptations decreases as plant heterogeneity
decreases. Second, the total number of adaptations
decreases almost linearly with a more extensive
knowledge transfer.
We conclude that the complexity of the production

process and the degree of heterogeneity between the
plants qualitatively have a similar impact on the per-
formance implications of a knowledge transfer in
manufacturing networks. Both a lower production
complexity and lower plant heterogeneity tend to
increase the usefulness of the production knowledge
generated in the lead factory, and thus, the benefits of
a transfer by lowering the number of adaptations in
the plants. While complexity affects the number of
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adaptations subsequent to the knowledge transfer in
a non-linear way, plant heterogeneity does so in a lin-
ear way.

5. Conclusions and Future Research

This study formally examines the performance
implications of knowledge transfer in multi-plant
manufacturing networks with a lead factory. Using
an NK landscape model, we analyze under which
circumstances and to what extent it is beneficial to
create production knowledge within a lead factory
and transfer it to geographically dispersed plants.
We demonstrate that the knowledge transfer gener-
ates a trade-off between a positive cost-saving
effect due to fewer adaptations in each plant, and
a negative transfer cost effect due to the costly
knowledge transfer itself. The relative strength of
these two effects determines the performance
implications of the knowledge transfer. The com-
plexity of the production process and the heteroge-
neity among plants affects the usefulness of the
production knowledge generated in the lead fac-
tory, and thus, they determine the extent to which
the plants must adapt their production process
subsequent to the knowledge transfer. Both the
complexity and the heterogeneity therefore moder-
ate the impact of the cost-saving effect and deter-
mine whether the knowledge transfer from the
lead factory to the plants is beneficial. While com-
plexity moderates the performance implications of
knowledge transfer in a non-linear way, plant

heterogeneity does so in a linear way. Table 1
summarizes our main results.
Our research contributes to the existing literature in

several ways. Research on manufacturing network
configuration and coordination suggests that knowl-
edge transfer is important (Szulanski 1996, Tsai 2001,
Vereecke et al. 2006). We add to this literature because
we not only highlight the importance of knowledge
transfer, but we enhance the understanding of what
may constitute important moderators. While Vere-
ecke et al. (2006) emphasize the quality of the rela-
tionship between two subsidiaries as a major factor,
we argue that the complexity of the production pro-
cess crucially determines the performance implica-
tions of the knowledge transfer. Moreover, Meijboom
and Vos (1997) ask whether coordination problems
can alter the configuration in manufacturing net-
works. Our results confirm that coordination prob-
lems can indeed imply the necessity for changes in
the network configuration. If, for example, a manufac-
turing network achieves higher performance without
any knowledge transfer, the lead factory becomes
obsolete. We support the notion that configuration
and coordination of manufacturing networks should
be studied as interlinked instead of isolated dimen-
sions (Meijboom and Vos 1997, Porter 1986, Rudberg
and Olhager 2003).
While we analyze knowledge transfer within a

manufacturing network, our insights are transferable
to other settings that consist of a knowledge sending
and receiving unit. Our study may contribute to the
literature on knowledge management, which suggests
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that performance gains from knowledge transfer can
depreciate rapidly (Argote 1999, Darr et al. 1995, Wil-
liams 2007). We refine these findings by showing that
the knowledge effect indeed diminishes over time
and the extent of knowledge transfer has no direct
effect on long-run performance. However, the knowl-
edge effect has an impact on how plants adapt their
production process after the knowledge transfer.
Our study may also contribute to the literature on

absorptive capacity, which mainly focuses on alli-
ances and supply chains (see Volberda et al. 2010 for
a literature review), but less attention has been paid
to the role of manufacturing networks. To understand
the mechanisms and dynamics through which knowl-
edge transfer affects performance of manufacturing
networks, we decomposed the performance implica-
tions into the transfer cost effect and the cost-saving
effect. A high level of absorptive capacity in the
receiving unit may be associated with a particularly
pronounced cost-saving effect because the production
knowledge of the sending unit can be absorbed more
easily, reducing the number of adaptations in the
receiving unit. By assuming such a positive correla-
tion between the level of absorptive capacity and the
strength of the cost-saving effect, our study may help
to enhance the understanding of how absorptive
capacity affects knowledge transfer in multi-plant
manufacturing networks.
From a managerial perspective, our study provides

the following insights. Any measure that reduces
complexity supports the effectiveness of knowledge
transfers within a manufacturing network with a lead
factory and should be taken into account. However, if
the company faces complex production processes
whose complexity cannot be reduced, the company
should invest in methods that support a complete
knowledge transfer. For example, the assignment of
knowledge transfer experts who are responsible for
accompanying the knowledge transfer should be
taken into account. Moreover, the lower the interde-

pendencies between the production decisions, the
easier it is for plants to implement changes and to
build up the required capabilities to recognize and
implement the necessary adaptations. Our results
suggest that it is important to continuously develop
the capabilities of the receiving plants. Although the
capability base of the lead factory is on a higher level,
the need to adapt the transferred knowledge reveals
the importance of investing in the capabilities of the
receiving plants, particularly, their absorptive capac-
ity. Our results may provide insights about when
investment in absorptive capacity of the receiving
unit can be beneficial.
In sum, our results indicate that the knowledge

transfer in multi-plant manufacturing networks plays
a central role and has important implications for the
network configuration. Our model can be extended in
several directions. First, it would be interesting to fur-
ther enhance our understanding of how different
choices of network configuration (size of the plants
and size differences between the plants, location, and
scope) influence the knowledge transfer outcome.
Second, we encourage the integration of learning
curve effects into our model. Lapr�e and Wassenhove
(2001) argue that production units in a single firm do
not necessarily have identical learning rates. Trans-
lated to our model, this would mean that there is het-
erogeneity among production plants regarding their
capacity to absorb production knowledge from the
lead factory. Explicitly modeling different levels of
absorptive capacity in the plants could provide inter-
esting insights. Third, it may be fruitful to examine
the optimal timing of the knowledge transfer in more
detail. For example, Mihm et al. (2003) find that com-
munication of preliminary information between
employees can be beneficial in large and complex pro-
jects. Fourth, looking at the accumulated performance
over all periods rather than the steady-state perfor-
mance could provide new insights for the implica-
tions of knowledge transfer—especially for products

Table 1 Summary of Main Results

Condition Result Explanation

For production processes with
low complexity…

… knowledge transfer can enhance
performance.

Plants can always take advantage of production knowledge from lead factory
so that each transferred decision reduces adaptation costs. Thus, positive
cost-saving effect can compensate for negative transfer cost effect.… a complete knowledge transfer is

not optimal.
For production processes with
medium-to-high complexity…

… knowledge transfer reduces
performance.

Plants can only take advantage of production knowledge from lead factory if
knowledge transfer is extensive, otherwise transfer has no effect on
adaptation costs. Yet, in case of extensive knowledge transfer, resulting
transfer costs are high and outweigh benefits of cost-saving effect.

… it is optimal not to transfer any
knowledge from lead factory to
plants.

For a network with lower/
higher plant heterogeneity….

… knowledge transfer is more/less
beneficial.

Usefulness of production knowledge from lead factory linearly decreases with
plant heterogeneity. Thus, higher/lower plant heterogeneity weakens/
strengthens positive cost-saving effect, but has no effect on transfer cost
effect.
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with short life cycles. Fifth, it would be interesting to
examine a setting in which the global plant manager
can choose to transfer clustered production decisions
(based on the underlying interaction pattern). Finally,
a promising avenue for future research would be the
integration of evaluation costs into our model.
Depending on the industry sector, not only the adap-
tation but also the evaluation of a new production set-
ting may be costly.
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