
species are the fourth leading cause of nosocomial blood-

stream infections [2]. And although  C. albicans  remains 

the leading and the most widespread pathogenic yeast spe-

cies causing a variety of infections, the incidence rates of 

non- C .  albicans Candida  infections has increased in recent 

years, including those with intrinsic or acquired resistance 

to azole antifungals [1 – 3]. More recently, infections caused 

by less common yeast species such as  Pichia ,  Rhodotorula , 

 Trichosporon , and  Saccharomyces  spp. [4 – 8] and other 

rarely encountered species have been reported [1,9,10]. 

Rapid identifi cation of yeast isolates from clinical samples 

is particularly important to initiate appropriate therapy 

given their variable antifungal susceptibility profi les. How-

ever, this task is complicated by the increasing number of 

emerging pathogenic fungal species that are not included 

  Introduction 

 The incidence of fungal infections has dramatically 

increased in the past several decades. Invasive infections 

caused by yeasts have become a major cause of morbidity 

and mortality in immunodefi cient patients and those receiv-

ing immunosuppressive chemotherapy for cancer and 

organ transplantation [1,2]. In the United States,  Candida  
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in the repertoires of commercially available conventional 

identifi cation kits [11,12] and their identifi cation by con-

ventional methods may be diffi cult and sometimes incon-

clusive. Most often, the widely available methods in routine 

use in clinical laboratories are chromogenic agar media, 

immunological kits and biochemical or enzymatic tests, 

e.g., ID 32C strip or VITEK YST card (bioM é rieux) [13 –

 15]. Due to limited databases, misidentifi cations have been 

reported [10,16,17], thus necessitating more discrimina-

tory technologies. Species identifi cation is also important 

for understanding the epidemiology of fungal infections, 

including trends in species distribution and antifungal sus-

ceptibility patterns. Thus, the identifi cation, taxonomy and 

epidemiological analysis of fungal pathogens are increas-

ingly dependent on modern molecular techniques based on 

PCR amplifi cation of conserved regions of the genome and 

on sequencing the resulting PCR products [10,11,17 – 19]. 

These methods provide high sensitivity and specifi city, but 

their effi ciency is limited by the complexity of the culture 

and isolation procedures. Moreover, they are completely 

dependent on the known genetic sequences of the target 

microorganisms. Additionally, molecular biology tech-

niques require a high level of technical expertise, remain 

expensive, and are therefore not suitable for routine iden-

tifi cation. New approaches are required for the rapid anal-

ysis of microorganisms in clinical microbiology laboratories 

to initiate early and appropriate treatment to improve 

patient care. Among recently developed rapid techniques 

for identifi cation of microorganisms encountered in clini-

cal settings, the use of protein profi les obtained by MAL-

DI-TOF MS directly from growing fungal colonies has 

been successful. The method analyzes the profi les of mac-

romolecules that are obtained from whole microorganisms 

[20]. This new proteomic approach allows rapid and accu-

rate identifi cation of bacteria as well as fungi [12,20 – 27]. 

 Azole antifungals are often the preferred fi rst line agents 

for treatment of invasive fungal infections and have good 

but variable activity against  Candida  spp. [28,29]. They 

inhibit an enzyme required for the production of ergosterol, 

which is an essential component of the fungal cytoplasmic 

membrane [28 – 30]. Fluconazole has been widely used for 

the treatment of candidiasis as it is available in intravenous 

and oral formulations, and is inexpensive, but some species 

of  Candida  such as  C. krusei  and  C. glabrata  can exhibit 

resistance to fl uconazole [31 – 35]. 

 In this study, we fi rst demonstrated the suitability of 

MALDI-TOF MS for identifi cation of clinical fungal iso-

lates originating from Tunisian hospitals. Second, we 

determined azole susceptibility profi les of this collection 

to estimate the occurrence of resistance. Some isolates 

atypical for their susceptibility profi les were further evalu-

ated with different antifungal susceptibility methods and 

different antifungal agents.   

 Materials and methods  

 Organisms and growth conditions 

 In this study, a total of 423 yeast isolates were collected 

between September 2006 and July 2010 from three dif-

ferent hospitals in Tunisia (Hospital Habib Thameur, 

Hospital La Rabta (Tunis, the capital) and Hospital Ibn 

El Jazzar of Kairouan in central Tunisia). The yeasts were 

sequentially isolated from various clinical specimens of 

non-AIDS patients in hospitals and outpatient locations 

during the study period, including blood, other normally 

sterile body fl uids, oral cavity, gastrointestinal tract, 

respiratory tract, biomedical devices, skin, and soft tissue. 

The various specimens were obtained and processed by 

standard microbiological procedures by inoculating them 

onto Sabouraud dextrose agar supplemented with 

chloramphenicol and gentamicin and incubating at 35 ° C 

for 24 – 48 h. CHROMagar Candida plates (CHROMagar 

Candida, Paris, France) were employed for primary iden-

tifi cation of four  Candida  species using the following 

criteria;  C. albicans  and  C. dubliniensis     �    green colonies, 

 C. tropicalis     �    metallic blue colonies and  C. krusei     �    pink 

to light mauve colonies. To differentiate  C. dubliniensis  

from  C. albicans , we investigated the isolate ’ s ability to 

grow on YPDA (1% Bacto peptone [Difco Laboratories, 

Basel, Switzerland]), 0.5% yeast extract [Difco], 2% glu-

cose [Fluka, Buchs, Switzerland] and 2% agar [Difco]) at 

42 ° C.  Candida albicans  ATCC 90028,  C. dubliniensis  

CBS 7987,  C. tropicalis  ATCC 750, and  C. krusei  ATCC 

6258 were employed as controls and it should be noted 

that for some isolates, the ID 32C yeast identifi cation 

system (bioM é rieux, Marcy l ’ Etoile, France) was used 

and the results were interpreted according to manufac-

turer ’ s instructions.   

 Identifi cation by MALDI-TOF MS 

 Identifi cation of the yeast collection by MALDI-TOF MS 

was carried out using the Microfl ex LT (Bruker Daltonics 

GmbH, Leipzig, Germany) with FlexControl (version 3.0) 

software (Bruker Daltonics) as described previously [27]. 

Briefl y, 1.5  μ l of the protein extracts were placed on steel 

target plates and allowed to dry in air, after which, each 

sample was overlaid with 1.5  μ l of matrix solution (a 

saturated solution of  α -cyano-4-hydroxycinnamic acid: 

CHCA, in 50% acetonitrile and 2.5% trifl uoracetic acid; 

Bruker Daltonik) and again air dried at room temperature. 

For standardization purposes, positive controls were 

prepared from 11 reference isolates ( C. albicans  ATCC 

90028,  C. albicans  ATCC 24433,  C. dubliniensis  ATCC 

2118,  C. dubliniensis  ATCC 2119,  C. dubliniensis  CBS 

7987,  C. glabrata  ATCC 90030,  C. krusei  ATCC 6258, 

 C. parapsilosis  ATCC 22019,  C. parapsilosis  ATCC 90018, 
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 C. tropicalis  ATCC 750 and  Cryptococcus neoformans  

ATCC 90112) and included in the set of analysis. The data 

were processed by the associated software and the sample 

spectra were compared to reference spectra in the provided 

database for microorganism identifi cation. Each sample 

was tested in duplicate to ensure reproducibility of the 

spectra. A characterization score cut-off value was attrib-

uted to each sample and was interpreted as recommended 

by the manufacturer.   

 Molecular species identifi cation 

 DNA of yeast cells grown overnight at 30 ° C in YPD broth 

was isolated by mechanical breakage with glass beads as 

described previously [36]. Polymerase chain reaction 

(PCR) for ITS1 – 5.8S – ITS2 and D1/D2 domains of the 

large subunits (LSU) ribosomal RNA (28S rRNA) using 

fungal primers ITS1 (5 ′ -TCCGTAGGTGAACCTGCGG-3 ′ ) 
and 26S-1 (5 ′ -GGTGAGTTGTTACACACTCC-3 ′ ) [27]. 

PCR was carried out in a total reaction volume of 50  μ l 

consisting of 200  μ M concentrations of each dNTP, 250 

nM of each primer, 1.5 mM MgCl 2 , 2.6 U of Expand High 

Fidelity PCR System (Roche, Switzerland), and 1 – 5 ng of 

total genomic DNA, according to the following conditions; 

initial denaturation at 94 ° C for 5 min followed by 35 ther-

mal cycles of 94 ° C (denaturation), 54 ° C (annealing) for 60 

s and 72 ° C (extinction) for 4 min and a fi nal elongation at 

72 ° C for 10 min on a Primus-HT PCR Systems Dualblock 

thermocycler (MWG BioTech, Ebersberg, Germany). 

A negative control was introduced by replacing the tem-

plate DNA with sterile water in the PCR mixture. The puri-

fi ed PCR products were sequenced with primers listed in 

Table 1, using an ABI prism 3130 XL automated DNA 

sequencer (Perkin Elmer, Applied Biosystems, Foster City, 

CA, USA) with a BigDye Terminator cycle sequencing kit 

(version 1.1; Applied Biosystems). Final sequences were 

assembled and edited using the software package Sequencer 

3.0 (Gene Codes Corp., Ann Arbor, MI, USA). The 

sequences of the ITS1 – 5.8S – ITS2 region and D1/D2 

domain of the 28S rRNA were submitted to the NCBI Gen-

Bank database and the accession numbers are given in 

Table 2.   

   Table 1  Primers used for sequencing of (ITS1 – 5.8S – ITS2 – D1 – D2) 

regions of nuclear ribosomal DNA.  

Primers Sequence Reference

ITS3 5 ′ -GCATCGATGAAGAACGCAGC-3 ′ [66]

ITS4 5 ′ -TCCTCCGCTTATTGATATGC-3 ′ [66]

NL1 5 ′ -GCATATCAATAAGCGGAGGAAAAG-3 ′ [66]

NL4 5 ′ -GGTCCGTGTTTCAAGACGG-3 ′ [66]

26S-5 5 ′ -AGCAGAACTGGCGATGCG-3 ′ [27]

26S-F 5 ′ -GTACAGTGATGGAAAGATGA-3 ′ [27]

   Table 2  GenBank accession numbers of the sequences of ITS1 – 5.8S –

 ITS2 region and D1/D2 domain of LSU rRNA for clinical isolates not 

identifi ed by conventional methods.  

Accession 

numbers

Isolate 

references Species

JQ612155 a JEY63  Candida tunisiensis 
KC111442 JEY379  Candida palmioleophila 
KC111443 JEY380  Candida palmioleophila 
KC111444 JEY420  Debaryomyces hansenii 
KC111445 JEY258  Hanseniaspora opuntiae 
KC111446 JEY269  Hanseniaspora opuntiae 
KC111447 JEY270  Hanseniaspora opuntiae 
KC111448 JEY182  Kodamaea ohmeri 
KC111449 JEY234  Kodamaea ohmeri 
KC111450 JEY267  Pichia caribbica 

     a All rDNA includes SSU rDNA, ITS1 – 5.8S – ITS2 and LSU rDNA [27].   

 Susceptibility testing 

 Disk diffusion  in vitro  susceptibility tests to fl uconazole 

(FLC) and voriconazole (VRC) was performed as 

described by Hazen  et   al . [37] and in accordance with 

Clinical and Laboratory Standards Institute (CLSI) doc-

ument M44-A [38]. Mueller-Hinton agar supplemented 

with 2% of glucose and 0.5  μ g/ml of methylene blue 

was prepared in plates to a depth of 4.0 mm. Each isolate 

was cultured overnight at 35 ° C to ensure purity and 

viability. The inoculum was adjusted to the turbidity of 

a 0.5 McFarland standard (approximately 1 – 5    �    10 6  

CFU/ml) in sterile saline (0.85%) and streaked onto 

plates by using a cotton swab. FLC (25  μ g) and VRC (1 

 μ g) disks (Becton Dickinson, Sparks, MD, USA) were 

placed aseptically on the agar surface. After 24 h of 

incubation in air at 35 ° C, zone diameter endpoints were 

evaluated at 80% growth inhibition by the BIOMIC 

image analysis plate reader system (Giles Scientifi c, 

Santa Barbara, CA, USA) [37,39]. The interpretive cri-

teria for the FLC and VRC disk diffusion tests are 

described in Table 3 [40,41]. 

 Quality controls were performed with  C. albicans  ATCC 

90028,  C. albicans  ATCC 24433,  C. dubliniensis  CBS 

7987,  C. glabrata  ATCC 90030,  C. krusei  ATCC 6258,  C. 
parapsilosis  ATCC 22019,  C. parapsilosis  ATCC 90018 

and  C. tropicalis  ATCC 750. 

 The Etest (bioM é rieux) for FLC and VRC and Sensi-

titre YeastOne colorimetric (SYO) plates (TREK Diag-

nostic Systems, East Grinstead, UK) were used according 

to the manufacturer ’ s instructions. These two methods 

were only performed with isolates that were categorized 

as resistant by disk diffusion. The minimum inhibitory 

concentration (MIC) interpretive guidelines for  in vitro  

susceptibility testing for  Candida  species are mentioned 

in Table 3.    
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 Results  

 Conventional species identifi cation 

 Of the total of 423 yeast isolates investigated in this study, 

206 were identifi ed with CHROMagar Candida after 24 – 

48 h of incubation as  C. albicans  and/or  C. dubliniensis  

(48.7% of all isolates). The lack or highly restricted growth 

of  C. dubliniensis  in 42 ° C on YPD allowed us to differen-

tiation 4.96% of all isolates in this group. Forty-eight iso-

lates (11.34%) were identifi ed as  C. tropicalis , eight isolates 

as  C. krusei  (1.89%), while the rest of the collection (161 

isolates, 38.06%), was found to be atypical in terms of 

color formation and of morphologies.   

 MALDI-TOF MS identifi cation 

 In order to identify all isolates of our collection, we 

systematically screened them using the MALDI-TOF MS. 

Using a standard protein extraction protocol, correct spe-

cies level identifi cation according to the manufacturer ’ s 

criteria (cut-off score    �    2.00) was obtained for all reference 

strains ( C. albicans  ATCC 90028,  C. albicans  ATCC 

24433,  C. dubliniensis  ATCC 2118,  C. dubliniensis  ATCC 

2119,  C. dubliniensis  CBS 7987,  C. glabrata  ATCC 90030, 

 C. krusei  ATCC 6258,  C. parapsilosis  ATCC 22019,  

C. parapsilosis  ATCC 90018,  C. tropicalis  ATCC 750 and 

 Cryptococcus neoformans  ATCC 90112) [27]. Correct spe-

cies level identifi cations were obtained for 97.63% (413) of 

the clinical isolates (423; for more information about level 

scores see Eddouzi et  al . [27]). Among the identifi ed iso-

lates, 84.16% showed a cut-off score    �    2.3, while the rest 

had a cut-off score    �    2.299. MALDI-TOF MS distinguished 

between  C. parapsilosis ,  C. metapsilosis  and  C. orthopsi-
losis  with spectral scores between 2.176 and 2.4. The dis-

tribution of yeast species identifi ed by MALDI-TOF MS 

has been already reported by Eddouzi et  al . [27]. 

 MALDI-TOF failed to identify 10 isolates given their 

low spectral scores ( �    1.7) and neither could they be iden-

tifi ed by ID 32 gallery tests. Since appropriate reference 

   Table 3  Clinical breakpoints for fl uconazolel (FLC) and voriconazole (VRC) as recommended by Clinical and 

Laboratory Standards Institute (CLSI) [40,41].  

Zone diameter (mm) MIC ( μ g/ml)

S SDD R S SDD R

Species FLC VRC FLC VRC FLC VRC FLC VRC FLC VRC FLC VRC

 C. albicans  �    17  �    17 14 – 16 15 – 16  �    13  �    14  �    2  �    0.125 4 0.25 – 0.5  �    8  �    1
 C. parapsilosis  �    17  �    17 14 – 16 15 – 16  �    13  �    14  �    2  �    0.125 4 0.25 – 0.5  �    8  �    1
 C. tropicalis  �    17  �    17 14 – 16 15 – 16  �    13  �    14  �    2  �    0.125 4 0.25 – 0.5  �    8  �    1
 C. krusei  –  �    15  – 13 – 14  –  �    12  –  �    0.5  – 1  –  �    2
 C. glabrata  a  –  –  �    15  –  �    14  –  –  �    32  –  �    64  – 

    S,  s usceptible; SDD,  s usceptible dose-dependent; R, resistant;  a Breakpoint was not defi ned for voriconazole.   

strains were not included in the MALDI-TOF MS instru-

ment database, we concluded that these isolates were spe-

cies rarely encountered in clinical samples or were not yet 

described. However, the ribosomal DNA of these isolates 

could used to identify nine strains distributed in fi ve spe-

cies including  Hanseniaspora opuntiae  (three isolates), 

 Candida palmioleophila  (two isolates),  Kodamaea ohmeri  
(two isolates),  Debaryomyces hansenii  (anamorph form 

 C. famata , one isolate) and  Pichia caribbica  (anamorph 

form  C. fermentati , one isolate) (see Table 2) [27]. The 

remaining isolate was identifi ed as a newly described yeast 

species:  Candida tunisiensis  [27].   

 FLC and VRC susceptibilities of the yeast collection 

 The species distribution and  in vitro  susceptibilities to FLC 

and VRC determined by CLSI disk diffusion of 405  Can-
dida  isolates are summarized in Table 4. The results of  in 
vitro  susceptibility studies showed that FLC was most 

active against  C. albicans ,  C. parapsilosis sensu lato ,  

C. tropicalis ,  C. dubliniensis ,  C. lusitaniae ,  C. kefyr ,  C. 
guilliermondii ,  C. utilis  and  C. intermedia  in 99.07% of 

cases .  Decreased susceptibility to FLC was observed with 

 C. glabrata ,  C. krusei ,  C. palmioleophila  and  C. guillier-
mondii . Thus, despite the fact that overall 95.56% of clin-

ical  Candida  isolates were susceptible to FLC, these data 

demonstrate that the rare species ( C. palmioleophila ) 

exhibited decreased susceptibility in the range known for 

resistant species such as  C. krusei  and  C. glabrata . Only 

one  C. albicans  isolate (JEY355) was resistant to FLC. 

The zone of FLC growth inhibition was 13 mm and 32 mm 

for VRC. 

 VRC was considerably more active (98.51%) than FLC 

(95.56%) against all tested  Candida  species, although it 

was not particularly active against isolates of  C. glabrata  

and  C. tropicalis  that were already resistant to FLC. Only 

four isolates, including  C. glabrata  (JEY4, JEY16 and 

JEY314) and  C. tropicalis  (JEY162), exhibited cross-resis-

tance between FLC and VRC. JEY16 and JEY314 showed 
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   Table 4   Candida  species distribution and  in vitro  susceptibilities to fl uconazolel (FLC) and voriconazole (VRC) as determined by Clinical and 

Laboratory Standards Institute (CLSI) disk diffusion method.  

Susceptibility of isolates (%)

FLC VRC

Species

No. of isolates (%) 

tested

Range of 

inhibition zone 

diameters (mm) S SDD R

Range of 

inhibition zone 

diameters (mm) S SDD R

 Candida albicans 185 (45.67) 13 – 41 184 (99.46) 1 (0.54) 24 – 46 185 (100)
 C. glabrata 70 (17.28) NIZ – 32 64 (91.42) 3 (4.28) 3 (4.28) NIZ – 39 66 (94.28) 1 (1.44) 3 (4.28)
 C. parapsilosis 56 (13.82) 17 – 33 56 (100) 23 – 41 56 (100)
 C. tropicalis 48 (11.85) NIZ – 34 47 (97.92) 1 (2.08) NIZ – 35 47 (97.92) 1 (2.08)
 C. dubliniensis 21 (5.18) 27 – 44 21 (100) 31 – 48 21 (100)
 C. krusei 8 (1.97) 7 – 13 8 (100) 18 – 22 8 (100)
 C. metapsilosis 5 (1.23) 19 – 23 5 (100) 28 – 31 5 (100)
 C. lusitaniae 4 (1) 30 – 41 4 (100) 38 – 46 4 (100)
 C. kefyr 2 (0.5) 34 – 38 2 (100) 37 – 41 2 (100)
 C. palmioleophila 2 (0.5) 6 – 8 2 (100) 18 – 21 1 (50) 1 (50)
 C. orthopsilosis 1 (0.25) 21 1 (100) 27 1 (100)
 C. guilliermondii 1 (0.25) 17 1 (100) 23 1 (100)
 C. utilis 1 (0.25) 30 1 (100) 33 1 (100)
 C. intermedia 1 (0.25) 36 1 (100) 40 1 (100)
Total 405 (100)  – 387 (95.56) 3 (0.74) 15 (3.7)  – 399 (98.51) 2 (0.49) 4 (0.98)

    S,  s usceptible; SDD,  s usceptible dose dependent; R, resistant; NIZ, No inhibition zone.   

   Table 5  Minimum inhibitory concentrations (MICs) for yeast isolates determined by Etest and Sensititre 

YeastOne.  

Etest ( μ g/ml) Sensititre YeastOne ( μ g/ml)

Isolate FLC VRC FLC VRC PCZ ITR KCZ 5-FC AMB CAS

JEY355 a :    Candida albicans  8  b 0.032  16 4   �    8  16  8 0.5 1 0.03

ATCC 90028:    Candida albicans 0.25 0.012 - - - - - - - -
JEY4:    Candida glabrata   �    256 4  128 4   �    8   �    16 2 0.12 1 0.25

JEY16:    Candida glabrata   �    256   �    32   �    256  16   �    8   �    16  8 0.12 1 0.25

JEY314:    Candida glabrata   �    256   �    32   �    256  16   �    8   �    16  8 0.12 1 0.25

ATCC 90030:    Candida glabrata 14 0.15 - - - - - - - -
JEY162:    Candida tropicalis   �    256   �    32   �    256   �    16   �    8   �    16  16 0.12  8 0.25

ATCC 750    Candida tropicalis 0.75 0.064 - - - - - - - -
JEY182:    Kodamaea ohmeri  24 0.25  32 0.25 0.25 1 0.12 0.06 0.5   �    16 
JEY234:    Kodamaea ohmeri  24 0.25  16 0.06 0.12 0.25 0.06 0.12 0.5   �    16 
JEY379:    C. palmioleophila   �    256 1  128 1 0.5 1 4 0.5 0.5 0.25

JEY380:    Candida palmioleophila  256 0.75  128 0.5 0.5 1 4 0.5 0.5 0.12

    FLC, fl uconazole; VRC, voriconazole; PCZ, posaconazole; ITR, itraconazole; KCZ, ketoconazole; 5-FC, 

5-fl ucytosine; AMB, amphotericin B; CAS, caspofungin.  a For strain references see Eddouzi  et   al . [27].  b Values 

equal or above resistance breakpoints are indicated in bold letters.   

no growth inhibition zone for the two drugs and the same 

result was observed for the  C. tropicalis  isolate JEY162. 

The apparent intrinsic resistance of  C. krusei  to FLC was 

not observed for VRC. VRC was active against 73.33% of 

FLC-resistant  Candida  isolates.   

 Etest and Sensititre YeastOne colorimetric methods 

 The isolates that exhibited cross-resistance or susceptibil-

ity dose-dependent (SDD) profi les with FLC and VRC 

were verifi ed by two commercial methods including Etest 

and Sensititre YeastOne (SYO) plates. The MIC values for 

control and clinical strains are shown in Table 5. Etest 

showed that  C. albicans  isolate JEY355 was still suscep-

tible to FLC and VRC (MIC values of 8  μ g/ml and 0.032 

 μ g/ml, respectively). Using SYO plates, JEY355 was 

SDD to FLC and resistant to VRC (MIC values of 16 and 

4  μ g/ml, respectively). High MIC values for other azoles 

were observed for JEY355 (posaconazole:  �    8  μ g/ml; itra-

conazole: 16  μ g/ml and ketoconazole: 8  μ g/ml). Further 
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investigations revealed that these high MICs were due to 

overexpression of  MDR1  encoding for the major facilitator 

superfamily (MFS) membrane transporter as the result 

of a new gain-of-function mutation in the zinc cluster 

transcription factor Mrr1 (data not shown). 

 Three  C. glabrata  isolates (JEY16, JEY314 and JEY4) 

showed cross-resistance to FLC and VRC with high MIC 

values obtained by Etest ( �    256  μ g/ml). Among these 

strains, JEY16 and JEY314 exhibited high MIC values for 

VRC ( �    32  μ g/ml), while only 4  μ g/ml for JEY4. Both 

JEY16 and JEY314 appeared to be also more resistant to 

azole drugs as compared to JEY4 using the SYO plate 

(Table 5). 

 Among  C. tropicalis  isolates, only JEY162 showed 

cross-resistance between FLC and VRC by disk diffusion 

assays, which was confi rmed by Etest and SYO plates 

(Etest MICs    �    256  μ g/ml for FLC and    �    32  μ g/ml for 

VRC). Surprisingly, JEY162 was also resistant to ampho-

tericin B (SYO MIC: 8  μ g/ml). Using molecular analysis, 

we demonstrated that JEY162 displayed alterations in 

genes involved in ergosterol biosynthesis (data not shown). 

Two clinical isolates identifi ed by molecular methods as 

 C. palmioleophila  were resistant to FLC (Etest and SYO 

MICs: 256  μ g/ml and 128  μ g/ml, respectively). The disk 

diffusion test showed that two  K. ohmeri  isolates were 

resistant to FLC but SDD to FLC as determined by Etest and 

SYO, respectively. In this study, we observed that  K. ohmeri  
was resistant to caspofungin (SYO MIC    �    16  μ g/ml), which 

so far has not been reported. The two isolates were still 

susceptible to remaining agents.    

 Discussion 

 In this work, 423 yeasts isolated from different specimens 

of Tunisian hospital patients were characterized morpho-

logically and then identifi ed by MALDI-TOF MS which is 

recommended as a reference method for yeast identifi ca-

tion [27]. CHROMagar Candida is one of the most widely 

used media in the mycology laboratory that is advertised 

as able to identify  C. albicans ,  C. krusei , and  C. tropicalis . 

With the increasing incidence of human disease being pro-

duced by the less common  Candida  species, we were inter-

ested in testing the performance of this medium by 

identifying the distribution of this species in our collection. 

While MALDI-TOF MS could resolve up to 97% of the 

species in the investigated collection, this proportion was 

however only 65% for CHROMagar Candida [27], thus 

highlighting the power of MALDI-TOF MS. The results 

obtained by the chromogenic medium after 24 – 48 h of 

incubation showed correct identifi cations for  C. krusei  and 

 C. tropicalis  [42 – 44]. CHROMagar Candida was however 

unable to differentiate between the two related species 

 C. albicans  and  C. dubliniensis , as already mentioned by 

Sahand et  al . [44]. Our fi ndings are in accordance with 

previous reports that  C. dubliniensis  shows different green 

color tones that are diffi cult to differentiate from the green 

color produced by  C. albicans  [42,44,45]. Growth at 42 ° C 

shows that no or highly restricted growth of all  C. dublin-
iensis  isolates as compared to  C. albicans  [45]. Other stud-

ies also considered CHROMagar Candida as reliable for 

the presumptive identifi cation of  C.   glabrata  [43,46], 

although other researchers did not agree [42,47]. Purple, 

dark pink and violet colonies, could only be interpreted 

with precaution as presumptive  C. glabrata  isolates, since 

other yeasts also grow as purple, dark pink and violet 

colonies on CHROMagar Candida [42,47,48]. 

 All  C. krusei  (eight isolates, 1.9%) and  C. tropicalis  

(48 isolates, 11.34%) identifi ed by CHROMagar Candida 

were confi rmed by MALDI-TOF MS [27]. MALDI-TOF 

MS shows the ability to easily differentiate species that are 

morphologically and phylogenetically similar to each 

other. In this study, it was not diffi cult to distinguish 

between the species of  C. parapsilosis sensu lato . Among 

the  C. parapsilosis sensu lato  isolates, 56 (90.32%) were 

identifi ed as  C. parapsilosis sensu stricto , 5 (8.06%) as 

 C. metapsilosis  and 1 (1.61%) as  C. orthopsilosis  [27]. 

These data were in agreement with previously published 

reports [21,23,26]. The specifi city of MALDI-TOF MS for 

identifying unusual yeast isolates was over 99%. In most 

cases, organisms not identifi ed by MALDI-TOF MS were 

not included in the instrument database. Consequently, 

MALDI-TOF MS did not produce any misidentifi cations, 

providing that spectra for the appropriate reference strains 

were present in the database [21,22,49]. A novel fi nding 

was the ability of MALDI-TOF MS to identify  C. glabrata  

(69/70, 98.57%),  C. parapsilosis sensu lato  (57/62, 

91.93%),  C. krusei  (8/8, 100%) and  C. lusitaniae  (4/4, 

100%) with high spectral scores    �    2.3 [27]. Several studies 

have reported the effi ciency of MALDI-TOF MS for fast 

and accurate identifi cation of bacterial, yeast and mold spe-

cies [12,20 – 24,26,49]. From 10 isolates not identifi ed by 

MALDI-TOF MS, the sequencing of their ITS regions 

including 5.8S as well as D1/D2 domains of LSU rRNA 

allowed to resolve nine isolates to the species level (see 

Table 2). Only the isolate, JEY63, was identifi ed as novel 

species and was named  C. tunisiensis  [27]. 

 The results of the identifi cation of our collection showed 

that the species distribution of 406  Candida  isolates was 

in agreement with published studies [31,37,50]. The fi ve 

most common  Candida  species including  C. albicans  

(45.56%),  C. glabrata  (17.24%),  C. parapsilosis  (13.79%),  
C. tropicalis  (11.82%) and  C. dubliniensis  (5.17%), 

accounted for 93.59% of all isolates. For non- C.   albicans 
Candida  species, we observed that  C. parapsilosis  pre-

ceded  C. tropicalis . The same results were observed in 

North America in a study conducted between 2001 and 
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2007 and in an epidemiology study in China [50,52]. 

Recently, Diekema  et   al . [33] and Lockhart  et   al . [34] 

found the same epidemiology profi les for the four major 

 Candida  species in healthcare-associated bloodstream 

infections. 

 In this work, the  in vitro  susceptibility of  Candida  

species showed that the incidence of FLC resistance was 

higher than for VRC. Indeed, only one isolate of  C. albi-
cans  was resistant to FLC. This was due to a new gain-

of-function mutation in the zinc cluster transcription factor 

Mrr1 [53,54], which results in the overexpression of  MDR1 . 

In addition, the decreased susceptibility to FLC was most 

pronounced in  C. glabrata  and  C. krusei , which was con-

sistent with broad surveillance studies [31,33,34,37,50 – 52]. 

It is known that  C. glabrata  can develop azole resistance 

at a relatively high frequency [35]. Recent fi ndings suggest 

that gain-of-function mutations in the transcription factor 

CgPdr1 are involved in the constitutive high expression of 

ABC-transporter genes ( CgCDR1 ,  CgCDR2  and  CgSNQ2 ) 

[55]. Interestingly, the azole-resistant  C. glabrata  isolates 

of this study showed mitochondrial dysfunctions with the 

typical absence of growth on non-fermentable carbon 

sources such as glycerol (data not shown). Mitochondrial 

defi ciency is one of the mechanisms by which azole resis-

tance can occur in  C. glabrata  [35,55 – 58].  C. glabrata  

isolates with mitochondrial dysfunctions, even if they 

exhibit strong  in vitro  fi tness decrease [56], can still be 

obtained from clinical samples. Interestingly, such isolates 

may exhibit no decrease of  in vivo  fi tness as compared to 

wild type isolates as suggested by Ferrari  et   al . [58], which 

could explain why they can be still recovered from 

patients. 

 Despite the increase in frequency of fungal infections 

caused by the yeast  C. tropicalis , azole resistance has been 

insuffi ciently investigated. Furthermore,  C. tropicalis  

develops drug resistance in the presence of FLC more rap-

idly than other  Candida  species [59]. Our results in the 

present study showed that JEY162 was resistant to several 

azoles including FLC, VRC, posaconazole, itraconazole 

and ketoconazole. Interestingly, this isolate exhibited a 

decreased susceptibility to amphothericin B. Using a quan-

titative analysis of ergosterol, the main sterol component 

of cell membrane was typical for both a  Δ  5,6  desaturase and 

a lanosterol 14 α -demethylase defect. Using molecular 

analysis, we demonstrated that JEY162 displayed loss 

function mutations in genes encoding these enzymes  ERG3  

and  ERG11  (data not shown). 

 Resistance to FLC for uncommon  Candida  species 

was observed in this collection. The major species was  

C. palmioleophila , which was misidentifi ed by conven-

tional methods as  C. famata  or  C. guilliermondii  [60,61]. 

Recently, Jensen and Arendrup [60], showed that the sus-

ceptibility pattern for  C. palmioleophila  was unique with 

FLC MICs in a range of 8 to    �    16  μ g/ml.  Candida palmi-
oleophila  was ranked as susceptible or intermediate for 

itraconazole, posaconazole and VRC but was still suscep-

tible to echinocandins. In this study, the two FLC-resistant 

isolates were less susceptible to itraconazole (1  μ g/ml) and 

ketoconazole (4  μ g/ml) but still susceptible to caspofungin 

(0.12 – 0.25  μ g/ml). Many authors have found increasing 

numbers of uncommon  Candida  species resistant to azole 

drugs [31,50 – 52]. Thereby, it seems relevant to assess their 

susceptibility profi les to guide the clinician for therapeutic 

decisions. 

 Previous studies have reported that  K. ohmeri  was an 

emerging fungal pathogen in immunocompromised patients 

[62 – 65]. The antifungal susceptibility of the two isolates 

of this study (JEY182 and JEY234) showed SDD MICs for 

FLC but were resistant to caspofungin (MIC:  �    16  μ g/ml). 

In previous reports, decreased susceptibility to FLC had 

been reported together with low MICs to other echinocan-

dins (anidulafungin, micafungin and caspofungin) [62 – 65]. 

Our study is the fi rst to report caspofungin resistance in 

 K. ohmeri . Unfortunately, it cannot be determined from 

   Table 6  Correlation of susceptibility of yeast clinical isolates to azole drugs determined by three susceptibility 

methods.  

Zone diameter (mm) Etest SYO

Isolate FLC VRC

FLC 

( μ g/ml)

VRC 

( μ g/ml)

FLC 

( μ g/ml)

VRC 

( μ g/ml)

 Candida albicans  JEY355 13 32 8 0.032 16 4
 C. glabrata    JEY4 NIZ 12  �    256 4 128 4

 C. glabrata  JEY16 NIZ NIZ  �    256  �    32  �    256 16

 C. glabrata  JEY314 NIZ NIZ  �    256  �    32  �    256 16

 C. tropicalis  JEY162 NIZ NIZ  �    256  �    32  �    256 16

 Kodamaea ohmeri    JEY182 13 25 24 0.25 32 0.25
 K. ohmeri    JEY234 14 27 24 0.25 16 0.06
 C. palmioleophila    JEY379 6 15  �    256 1 128 1

 C. palmioleophila    JEY380 8 17 256 0.75 128 0.5

    SYO, Sensititre YeastOne; FLC, fl uconazole; VRC, voriconazole; NIZ, No inhibition zone.   
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patient records whether or not this resistance profi le was 

due to candin exposure in the patient. 

 In this work, three different methods were used to assess 

antifungal susceptibility on specifi c subset of isolates. 

Comparisons of MIC values for FLC and VRC obtained 

by Etest and SYO plate indicated a good correlation 

between obtained MICs (Table 6). One exception was for 

JEY355 which was ranked as VRC-susceptible by disk dif-

fusion and Etest methods however as VRC-resistant by 

SYO system. The results obtained for  C. glabrata  and  C. 
tropicalis  isolates were in agreement in all three tests. 

Some discrepancy was observed for  K. ohmeri  isolates, 

which were FLC-resistant by disk diffusion, while only 

SDD by Etest and SYO plate. 

 In conclusion, our study has provided clinically useful 

data of yeast infections in Tunisia. MALDI-TOF MS was 

used as a reference method to identify clinically yeast iso-

lates. It is an advanced technique with high potential in the 

identifi cation of uncommon yeasts and permitted identifi ca-

tion of a new yeast species. MALDI-TOF MS can also give 

a robust phylogenetic approach very similar to that deduced 

from molecular methods. Examination of susceptibility of 

clinical isolates to azoles by three methods showed good 

agreement to confi rm antifungal susceptibility profi les and 

a good practical approach to provide target drugs for ther-

apy. Even if low incidence of antifungal resistance was 

observed in this work, the constant susceptibility surveil-

lance of clinical isolates is useful since it does not only 

provide important data for therapeutic decisions, but also 

provides novel specimens for in-depth molecular studies.   
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