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Abstract

Motivation: Bayesian inference is widely used nowadays and relies largely on Markov chain Monte

Carlo (MCMC) methods. Evolutionary biology has greatly benefited from the developments of

MCMC methods, but the design of more complex and realistic models and the ever growing avail-

ability of novel data is pushing the limits of the current use of these methods.

Results: We present a parallel Metropolis-Hastings (M-H) framework built with a novel combination

of enhancements aimed towards parameter-rich and complex models. We show on a parameter-

rich macroevolutionary model increases of the sampling speed up to 35 times with 32 processors

when compared to a sequential M-H process. More importantly, our framework achieves up to a

twentyfold faster convergence to estimate the posterior probability of phylogenetic trees using 32

processors when compared to the well-known software MrBayes for Bayesian inference of phylo-

genetic trees.

Availability and Implementation: https://bitbucket.org/XavMeyer/hogan

Contact: nicolas.salamin@unil.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Model inference and hypothesis testing is nowadays widely per-

formed using Bayesian inference. The surge of popularity of this

statistical method is tightly linked with the theoretical and computa-

tional developments of Markov chain Monte Carlo methods

(MCMC; Hastings, 1970; Metropolis et al., 1953). Indeed, MCMC

made possible the numerical approximation or sampling of high-

dimensional posterior distribution, thus broadening the inference of

more complex statistical models. Evolutionary biology particularly

benefited from this progress and a large number of applications,

ranging from phylogenetic reconstructions (Lartillot et al., 2013;

Ronquist et al., 2012), divergence time analyses (Drummond et al.,

2006), molecular evolution (Dib et al., 2014), comparative methods

(Beaulieu et al., 2012; FitzJohn, 2012) or population genetics

(Kuhner, 2006; Fischer et al., 2011), makes extensive use of these

MCMC approaches.

While popular, MCMC is limited by its inherent sequential na-

ture and its dependency on user defined transition kernels.

Moreover, complex models require costly computational evalu-

ations of their likelihood function and their high-dimensional par-

ameter-space is usually difficult to explore efficiently. A wide variety

of approaches have been proposed to improve the sampling of some

of these complex models. These solutions range from avoiding the

evaluation of the likelihood function (Marjoram et al., 2003;

Mengersen et al., 2013) to using sequential Monte Carlo (Andrieu

et al., 2010; Cappe et al., 2007) or Hamiltonian Monte Carlo meth-

ods (Duane et al., 1987; Neal, 2011). However, these methods suffer

from limitations that make them less generally applicable. For ex-

ample, some have to be applied on a model-specific basis, may prove

difficult to apply to high-dimensional parameter-space or require

continuous parameters. These limitations are typical of Bayesian in-

ference in phylogenetics. Indeed, the computational complexity of

tree building grows with the length of the sequence data available as
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well as with the number of taxa, which also defines the amount of

parameters and potential phylogenetic trees to consider (Felsenstein,

2004). Moreover, it is well known that sampling from this discrete

space of phylogenetic trees is a particularly difficult task (Bouchard-

Côté et al., 2012; Lakner et al., 2008).

Current approaches to build phylogenetic trees therefore still

heavily relies on MCMC and any enhancements of these methods

would be extremely useful for evolutionary biologists. Several stud-

ies focused on the sampling effectiveness (or mixing) of the MCMC

process and helped to propose theoretical guidelines to specify the

optimal size for transition kernels based on normal distributions

(Gelman et al., 1996; Roberts et al., 1997). These guidelines were

used to develop the adaptive Metropolis algorithm (Haario et al.,

2001), which aims at optimally tuning a transition kernel using the

observed empirical covariance of the Markov chain. The adaptive

Metropolis method has been further improved by using component-

wise scaling (Haario et al., 2005), adaptively tuning the proposal

size to target an optimal acceptance rate (Andrieu and Thoms,

2008) or exploiting the parameter covariance (Roberts and

Rosenthal, 2009; Vihola, 2012). Some of these improvements have

been implemented in the main software to build phylogenetic trees

(Aberer et al., 2014; Drummond et al., 2012; Ronquist et al., 2012).

However, few strategies were explored to improve MCMC effi-

ciency by exploiting parallel computing. While some of these methods

offer interesting properties, they usually suffer from limitations that

hinder their general use on applied problems. For example, prefec-

thing (Brockwell, 2006) aims at predicting the future states of the

Markov chain to pre-process them in parallel. This method is however

limited by the difficulty of accurately predicting the path of the

Markov chain. We refer the reader to the recent review of Green et al.

(2015) for an extensive state-of-the-art description of this domain.

We present here a novel combination of enhancements of the

Metropolis-Hastings (M-H) framework specifically designed to ob-

tain an efficient sampling of parameter-rich and complex models.

We first present a multivariate adaptive proposal that coerces the ac-

ceptance rate, balances the mixing among all parameters and ex-

ploits their potential correlations. We then show that under a

precise coupling of both adaptive MCMC and pre-fetching, we can

achieve synergetic performance gains that exceed the sum of its

parts. Finally, the framework properties are validated on various

test cases and is then challenged on two real biological applications:

a macroevolutionary model (Silvestro et al., 2014b) and on a model

for Bayesian inference of the phylogeny (Felsenstein, 2004).

2 Methods

2.1 Background and notation
Starting from data X and a model M with unknown parameters

H 2 Rd, we are interested in sampling the posterior distribution

pðHjXÞ ¼ f ðHÞ � f ðXjHÞÐ
f ðHÞ � f ðXjHÞ

or its unnormalized density pðHÞ / f ðHÞ � f ðXjHÞ. Sampling this

distribution can be done by setting a Markov chain with pðHÞ as sta-

tionary distribution. This is done by considering a reversible

Markov chain whose transition kernel pðU;HÞ satisfies the detailed

balance equation

pðHÞpðH;UÞ ¼ pðUÞpðU;HÞ 8 ðH;UÞ

The kernel p is based on two functions: an arbitrary transition

kernel qðU;HÞ, also known as proposal window, and an acceptance

probability aðH;UÞ. The probability of leaving the state H is given

by

pðH;UÞ ¼ qðH;UÞaðH;UÞ

with H 6¼ U, while the probability of staying in the same state is

then given by

pðH;HÞ ¼ 1�
ð

qðH;UÞaðH;UÞdU

Hastings (1970) proposed the following acceptance ratio

aðH;UÞ ¼ min 1;
pðUÞqðU;HÞ
pðHÞqðH;UÞ

� �

which simplifies to the original algorithm of Metropolis et al.

(Metropolis et al., 1953) if the transition kernel q is symmetrical.

2.2 An efficient multivariate adaptive proposal
Our framework uses its own multivariate adaptive proposal specific-

ally designed to maintain a low computational cost while exploiting

the potential correlations between parameters in complex and

parameter-rich models.

The original adaptive method presented by Haario et al. (2001)

defines the proposal as U � NðH; kRÞ with k being the optimal scal-

ing factor (Gelman et al., 1996) and R the observed empirical co-

variance of the Markov chain. While being based on the same

concepts, our adaptive process approximates the covariance matrix

R using stochastic approximation methods and optimizes the mixing

by coercing the acceptance rate (Andrieu and Thoms, 2008). Given

the sample Ht observed at iteration t of the MCMC process, the glo-

bal scaling factor k, the parameter mean �H and covariance R are

updated as follow

�H
ðtþ1Þ ¼ �H

ðtÞ þ cðtÞ � ðHðtÞ � �H
ðtÞÞ

Rðtþ1Þ ¼ RðtÞ þ cðtÞ � ½ðHðtÞ � �H
ðtÞÞ�

ðHðtÞ � �H
ðtÞÞ � RðtÞ�

log ðkðtþ1ÞÞ ¼ log ðkðtÞÞ þ cðtÞð�aðtÞ � a?Þ

(1)

with a? defining the target acceptance rate that optimizes the mixing

(Roberts et al., 1997) and �aðtÞ being the average observed acceptance

rate after t iterations.

The step size c impacts the convergence of the approximation

process and must have the following two properties (Robbins and

Monro, 1951):
P1

t¼0 cðtÞ ¼ 1 and
P1

t¼0 ðcðtÞÞ
2 < 1. Sequences

defined as cðtÞ ¼ C=tb with b 2 ½ð1þ gÞ�1; 1� satisfy these conditions

and their rate of convergence is determined by the two user-defined

constants C and g.

Coercing the global scaling factor k guarantees that the overall

proposal acceptance rate is optimal by taking advantage of the in-

formation made available by the MCMC process. However, it

does not ensure a balanced mixing over all parameters.

Component-wise scaling is able to solve this problem at the cost of

d additional likelihood evaluations (Haario et al., 2005). The new

component-wise or local scaling factors K ¼ diagðk1; . . . ; kdÞ, esti-

mated separately for each parameters, can then be used to scale the

proposal over each dimension (corresponding to a parameter) as

follows:

U � NðH;K1=2RK1=2Þ

This approach guarantees a more balanced mixing over all par-

ameters while inducing a significant increase in computational cost.
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A second drawback is the loss of control on the global acceptance

rate. Indeed, independent parameters would lead to a global accept-

ance rate defined as a ¼
Qd

i¼1 ai. However, in the more frequent case

of correlated parameters, the relation between local acceptance rates

ai and the global acceptance rate a remains undefined.

In order to efficiently balance the mixing along all parameters,

our adaptive proposal combines both local and global scaling vari-

ants. This proposal maintains the coercion of the global acceptance

rate by using the global scaling k, which is updated at each iteration.

Component-wise updates are made periodically and the normalized

scaling factors wi ¼ ki=
Pd

k¼1 kk form the local scaling matrix

W ¼ diagðw1; . . . ;wdÞ. The proposal then uses the global scaling to

target the overall size of the move while the normalized local scaling

ensures a balanced mixing over all directions.

U � NðH; kW1=2RW1=2Þ (2)

The method that we propose can still be improved when the par-

ameters H are correlated (Gilks et al., 1995). These correlations are

exploited by using the geometric interpretation of the multivariate

normal distribution. Since this distribution belongs to the family of

elliptical distributions, it can be expressed by the directions of the

principal axes of the ellipsoids. The spectral decomposition of the

covariance matrix

R ¼ QEQ0 ¼ QE1=2ðQE1=2Þ0

gives these directions as the eigenvectors Q ¼ ðV1; ::;VdÞ and their

scaling as the eigenvalues E ¼ diagðe1; ::; edÞ. We can then sample

from the distribution

X � Nðl;RÞ � lþQE1=2Nð0; IÞ

The component-wise scaling factors are used in this case to scale the

size of the moves along the direction of the eigenvector Vi and the

scaled eigenvectors ðk ~WEÞ1=2 can be used to build the following

proposal

U � HþQðk ~WEÞ1=2Nð0; IÞ (3)

Our method is still limited by its additional computational cost

that grows polynomially with the number of dimensions d. The co-

variance matrix is costly to learn since it requires linear algebra

functions with complexity Oðd2Þ. In addition, the generation of ran-

dom moves based on multivariate distributions requires the

Cholesky or eigen-decomposition of the scaled covariance matrix at

a computational cost of Oðd3Þ. The decomposition must be updated

whenever R and K change.

We created smaller blocks of parameters to reduce the computa-

tional burden and monitored the convergence of the adaptive phase

(see supporting materials). Moreover, our adaptive proposal evolves

with the information contained in the covariance matrix. In the initial

phase, parameters are considered independent. The covariance matrix

is learned as usual but moves are independently generated from

U � NðH; kW1=2 ~RW1=2Þ with ~R ¼ diagðr2
1; . . . ; r2

dÞ; (4)

which avoids the Cholesky or eigen-decomposition step. Upon con-

vergence detection of R, the observed degree of correlation between

parameters is assessed. If no significant correlations are detected, the

training phase ends. Otherwise the proposal is switched to a pro-

posal based on the full R matrix (Eqs. (2) or (3)) and the training

phase is prolonged until a second convergence is reached.

2.3 Securing an optimal pre-fetching
Our adaptive proposal greatly improves the mixing properties of the

MCMC, but it can also enhance the performances of a parallel

MCMC method. Markov chains are an inherently sequential process

due to the dependencies between states in two subsequent iterations of

a chain. Obtaining speed improvements by using parallel computing

techniques is therefore an important challenge. Pre-fetching

(Brockwell, 2006) overcomes this limitation by pre-processing the pos-

sible paths that the Markov chain could take during a set of iterations.

The future path of a MCMC can be represented as a decision

tree (Fig. 1). Given that the chain at time t is in state HðtÞ, a new state

UðtÞ is proposed. This new state is then accepted or rejected with

probability aðHðtÞ;UðtÞÞ. Branches of the tree represent these two

possible paths of the MCMC process. Each state, or node, leads to

two subtrees corresponding to either an acceptance or a rejection.

The likelihood computation of the future possible states U can

then be distributed over multiple processors. Given that several

samples are generated during the same amount of time that it pre-

viously took for one, this results in a significant speed up.

However, given the tree structure of the possible paths of the

Markov chain, an exhaustive approach to get D¼k useful sam-

ples, or draws, per pre-fetching iterations would require np ¼ 2k

�1 processors. This strategy scales poorly since the number of

wasted likelihood computations corresponding to unvisited state

grows exponentially with k.

Various strategies (Strid, 2010) aiming at determining the most

probable path in the decision tree have been proposed to improve

the scaling of this method. One of these strategies uses the mean

observed acceptance rate of the chain �a as a predictor for the most

probable paths. As defined in (Strid, 2010, Eq. 8), the efficiency of

this method can be estimated by a performance model that depends

on the acceptance rate and the number of available processors:

Eða; npÞ ¼ E1ðaÞ �Dða; npÞ (5)

where E1ðaÞ defines the mixing efficiency for an i.i.d normal distrib-

uted proposal with d!1 (Strid, 2010, Eq. 7) and Dða; npÞ is the

Fig. 1. Markov chain’s decision tree of depth k¼3
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expected number of draws per pre-fetching iterations (Strid, 2010,

Eq. 1).

The expected number of draws Dða;npÞ is equal to np and thus

optimal for a¼0 or a¼1. With such a, pre-fetching is indeed able

to exactly predict the path of the Markov chain by considering

moves as being always rejected, respectively accepted. Such predic-

tion would be represented by the right most, respectively left most,

branch in the decision tree (Fig. 1). The expected number of draws

Dða;npÞ reduces as a approaches 0.5, since predictions are less ac-

curate. When a reaches 0.5, any path in the decision tree is equally

probable and thus pre-fetching is back to using the inefficient ex-

haustive approach of computing all the possible paths (D ¼ log2np).

On the other hand, the mixing efficiency of a proposal E1ðaÞ
peaks at an optimal a value of 0.234 with d!1 (Roberts and

Rosenthal, 2001). Therefore, the optimal acceptance rate a? for a

given number of processors can be derived from equation 5 and

expresses the optimal trade-off between an efficient mixing and ac-

curate predictions for pre-fetching. In others words, the efficiency of

both method is then controlled by the average acceptance rate a of

the proposals and is optimal for a?.
Therefore, we coupled pre-fetching to our adaptive proposals by

coercing their acceptance rate to the value a? optimizing equation 5

through the global scaling factor k. Although we do not know a pri-

ori the acceptance rate of the MCMC process, this approach ensure

that it will quickly reach the vicinity of the target acceptance rate a?.
This combination of methods will optimize the efficiency of the pre-

fetching method by finding the optimal size of the proposal window

in function of the number of available processors and regardless of

the model.

In return of providing these optimal conditions for the pre-

fetching method, the adaptive proposal also benefits from this cou-

pling. During a pre-fetching iteration, only a certain number of pre-

dicted states are retained, while the remaining unused ones are

discarded. However, our adaptive proposal takes advantage of these

wasted likelihood evaluations. During one iteration, all the accept-

ance rates a estimated to predict the chain path in the decision tree

offer usable information that can help the updating of k. The advan-

tage is that the training process becomes more accurate and adapts

more quickly to the parameter space, because k is adapted more fre-

quently. This results in a better sampling efficiency and reduces the

time required to reach the equilibrium of the Markov chain, also

known as burn-in phase. These improvements apply equally well, if

not better, to the local scaling factors K by processing the unidimen-

sional moves in parallel and thus offering a nearly ideal speed-up

of this costly operation (see Algorithm 1 in the supplementary

materials for an outline of the main steps taking place during an iter-

ation of the presented method).

2.4 Assessing the framework performance
In a first phase, we compare, using simple models, multiple strat-

egies to highlight the contributions of each enhancement that are at

the core of our new framework. Two strategies using non-adaptive

random walk M-H with pre-fetching method are used as reference:

the PF method emulates user-defined proposal windows by using

relevant but sub-optimal size of the proposals, while OPPF uses opti-

mal proposal windows that are scaled based on Eq. (5) and guide-

lines from Roberts and Rosenthal (2001) to target the optimal

acceptance rate a?. These two methods are compared with variants

of our new framework based on pre-fetching and adaptive proposal

scaled locally and globally. The three variants STD, MIXED and PCA

correspond to the three proposals described by Eqs. (4), (2) and (3),

respectively. These experiments and their results are detailed and

discussed in the supplementary materials.

In a second phase, we challenge our best strategy PCA on a

macro-evolutionary model (Silvestro et al., 2014a) on a large em-

piric dataset. Then, our framework is compared with the widely

used MrBayes software (Ronquist et al., 2012) on a codon-

substitution model with fixed tree topology as well as on the task of

inferring trees with a nucleotide model. The complexity of these

models and the fact that MrBayes already incorporate a form of

adaptive proposals offer a more instructive benchmark (all measures

were made using MrBayes 3.2.5 compiled with SSE support and

MPI enabled). Furthermore, while MrBayes was chosen as a refer-

ence, the performance gains measured in this benchmark result from

the presented enhancements of the MCMC method and thus should

apply similarly to any alternative software independently of the effi-

ciency of the likelihood computations.

2.4.1 Performance measures

We measured the efficiency in two ways. We first estimated the sam-

ple size (ESS; Liu, 2008) that gives an indication of the potential

number of usable samples. This number is defined as the ratio be-

tween the total number of samples and their integrated auto-

correlation time (ACT). Then, in order to properly assess the per-

formance of our framework on the inference of trees, we measured

the convergence rate of the phylogenetic tree distribution using the

average standard deviation of split frequency (ASDSF; Lakner et al.,

2008). The overall performance of the framework is measured using

the speedup S defined as

S ¼ �gðnp;MÞ
�tðnp;MÞ

� �gð1;MRÞ
�tð1;MRÞ

(6)

with the �gðnp;MÞ being the averaged measures (i.e. ACT or ASDSF),
�tðnp;MÞ the averaged run time for np processors and the method M.

We mainly compare the measures of each method M to the reference

method MR with 1 processor. The speedup indicates the gain pro-

vided by the increase in mixing or rate of convergence in addition of

the loss caused by the additional time spent during the adaptive

phase plus the overhead of the communications between processors.

2.4.2 Hierarchical bayesian model

The model PyRate (Silvestro et al., 2014a) is used to illustrate the

actual performance of our methods on simulated and real datasets.

This hierarchical Bayesian model analyses speciation and extinction

rates of large collections of fossils and estimates large numbers of

parameters including the preservation rate, the time of speciation

and extinction of each species and the speciation and extinction

rates with their variation trough time. This model has a complexity

order of OðNÞ and only few parameters are correlated. These prop-

erties are particularly interesting because the relatively inexpensive

likelihood will highlight the overhead of the framework, while the

low amount of correlations will illustrate its ability to exploit

correlations.

Our framework was challenged on a large dataset of plant fossils

(Silvestro et al., 2015). This dataset contains 22 415 fossil occur-

rences assigned to 443 plant genera. It spans over a hundred millions

of years divided in 31 predefined epochs, which were defined by the

stratigraphic geological time scale.

2.4.3 Codon-substitution model

We use the well-known model of codon substitutions M2a, which

was developed to identify positive selection on protein coding genes,
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to illustrate the mixing performance of our framework on methods

for molecular evolution (Yang et al., 2000). Given a fixed phylogen-

etic tree and a set of protein coding sequences, the M2a model esti-

mates the selective pressure on codon sites through the use of a

mixture of three site-classes having different synonymous to non-

synonymous substitution rates x: purifying selection (x0 < 0), neu-

tral evolution (x1 ¼ 1) and positive selection (x2 > 1). Beside the es-

timation of the parameter values for each site-class x and their

respective proportions, this model estimates the overall transition-

transversion rate and the branch lengths of the tree. The computa-

tional cost of the M2a model exceeds significantly the cost of the

PyRate model since it requires matrix exponentiations and matrix-

matrix operations (both having a complexity order of OðN3Þ) that

depends on the alignment length and the tree size. It thus offers a

completely different sampling challenge than the one of PyRate.

The performance of our framework was tested by computer

simulations. We used two simulated datasets created using

INDELible (Fletcher and Yang, 2009). These datasets represented

alignments formed of 100 codons simulated under mild purifying se-

lection (x ¼ 0:8) on phylogenetic trees having 16 taxa (Dataset 1)

and 32 taxa (Dataset 2). We took particular care to ensure an in-

formative comparison of our implementation with MrBayes. The

simulated phylogenetic tree was used as a fixed tree topology and

the MC3 method was disabled. Under this circumstance, our imple-

mentations and MrBayes sampled the same set of parameters and

both used adaptive proposals.

2.4.4 Estimating phylogenetic trees distribution

As a final illustration, we challenged our framework with the esti-

mation of the posterior distributions of phylogenetic trees with their

branch lengths and parameters of a general time reversible (GTR)

model of nucleotide substitution (Tavaré, 1986). This substitution

model presents a lesser computational challenge than the codon

model M2a. However, the major difficulty resides in properly sam-

pling the space of potential phylogenetic trees. This tree space grows

exponentially with the number of taxa and can only be explored

with specific tree proposals (Felsenstein, 2004). For that matter, we

implemented two widely used tree proposals: the Stochastic Nearest

Neighbor Interchange (stNNI) and the Extending Subtree Pruning

and Regrafting (eSPR) in our framework.

We compared our framework performance to MrBayes under

two different settings. In the first setting, later referred as Ref

MrBayes, only the stNNI and eSPR tree proposals were enabled to

mimic our own implementation. In the second setting, later referred

as Full MrBayes, the default configuration of MrBayes was used.

All the aforementioned settings (including our framework) were

compared with and without the MC3 method on two empirical DNA

datasets used in Lakner et al. (2008) and available in TreeBASE

(http://www.treebase.org). The first one, M2017 (legacy ID M336)

has 27 taxa and 1949 sites, while the second dataset, M2152 (legacy

ID M520) has 67 taxa and 1098 sites. Finally, to give an insight of our

method potential on larger dataset, we used a DNA empirical dataset

published by Pyron and Wiens (2011) representing over 2800 species

of amphibians with more than 10 000 sites.

3 Results and discussion

3.1 Performance gain on PyRate model
We challenged our new framework by analysing a large dataset of

plant fossils (Silvestro et al., 2015) with PyRate. The complex and

heterogeneous parameter space of the empirical model highlighted

the full potential of our new framework. Adaptive methods revealed

speedups between 2 to over 35 times when compared to the non-

adaptive OPPF method depending on the number of processors used

(Fig. 2a). PCA surpassed the other adaptive methods by exploiting

the small amount of correlation that existed in the model.

In this application, the number of free parameters to estimate

was approximately 1000, which makes it almost impossible for a

user to guess a sensible set of proposal distribution for this real data-

set. Indeed, the mean variance of the observed chain for species birth

and death times ranged from 1 to 425 with average value of 138 and

standard deviation of 110. Using the average variance to define the

proposal distribution would result in some parameters being nearly

never sampled. Actually moves configured with the observed aver-

age variance would be rejected almost all the times when applied to

parameters with variances one hundred-fold smaller. We therefore

fixed an arbitrary size for proposal distribution of 	5 for OPPF,

which allowed each parameter to be sampled.

To illustrate the gains of the adaptive methods, let us consider

the case where we would like to sample this model with an average

ESS of 500 per parameter. The runtime of such a task can be esti-

mated by adding the time TBI spent in the burn-in to the estimated

sampling time TS. The former is directly measurable, while the latter

can be estimated based on the desired number NESS of ESS and the

(a) (b)

Fig. 2. Result for PyRate model on plant fossils data. The figure on the left shows the speedup of each method using OPPF with 1 processor as the reference. The

right figure shows the parallel scalability of the framework when compared or combined to a parallel computation of the PyRate likelihood. Settings for these

simulations were d 	 1000; 8
 106 iterations and 3 runs
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average observed time TESS required to produce one ESS. Therefore,

the time to produce an average of 500 ESS using the PF method

with one processor would be given by

TPF ¼ TBI þ TS ¼ TBI þNESS � TESS

¼ 1600þ 500 � 47 ¼ 2:35 � 104 seconds

(i.e. 7 h). Switching to the PCA method, it would take only two and

a half hours to reach the same level of ESS on one processor

(TBI ¼ 2670; S ¼ 12) and the time would reduce to 17 minutes if 16

processors (TBI ¼ 230; S ¼ 1:6) would be used.

Beside the differences in computation time, the OPPF method

would further produce a highly uneven sampling of all parameters

due to the suboptimal proposal distributions. This was illustrated by

the variation of ACT over all parameters. We observed an average

ACT of 740 with standard deviation of 877 for the PF method. The

PCA method produced in contrast a far more reliable quality of sam-

pling and its ACT variation reached only 193 6273 for 1 processor

and 219 6177 for 16 processors.

3.1.1 Comparison with parallel likelihood

We measured the raw parallel performance gain of our framework

when confronted or combined to a parallel computation of the

PyRate likelihood. We thus compared the performance of the PCA

adaptive proposal combined with a) a parallel likelihood, b) pre-

fetching (our framework) and c) both methods.

Our framework performance (variant b) clearly surpassed the

parallel likelihood one. It showed a nearly linear speedup up to 8

processors and notable gains up to 48 processors, while the parallel

likelihood (variant a) showed a nearly linear speedup up to 4–6 pro-

cessors before reaching a plateau with no gain in performance (Fig.

2b). The combination of both methods (variant c) showed the poten-

tial of coupling model dependent improvements with our frame-

work by greatly increasing the parallel scalability and reaching

speedups of 	40 for 64 processors and 	60 for 128 processors.

For this measures, we used the PCA proposal as the reference

method in order to measure the parallel scalability without being

biased by the gain induced by our adaptive proposals. Thus the

speedup was measured according to Eq. (6) with MR ¼ PCA using

the PyRate model on the plant fossil dataset.

3.2 Performance gain on phylogenetic models
3.2.1 Mixing on codon-substitution models

We assessed the performance of our framework on the M2a model of

codon substitutions with simulated data. As a reference, we compared

a sequential execution of STD with one parameter per block against

the adaptive MCMC based algorithm implemented in MrBayes. The

average ESS obtained were comparable, yet slightly better for our

STD variant (Fig. 3a and c). We then compared our best method, PCA,

with 12 parameters per block and showed an improvement in sam-

pling performances. Indeed, the increase of average ESS when com-

pared to MrBayes went from more than a twofold factor on a

sequential execution up to a twentyfold factor with 32 processors.

While representing the mixing efficiency of these methods, the

ESS does not take into account the added computational complexity

brought by moving multiple parameters at once. Indeed, Bayesian

software for phylogenetic inference such as MrBayes are taking ad-

vantage of the possibility to partially update the likelihood when

one or few parameters are changed. The computational cost during

an iteration is then linked to the amount of parameters updated.

Therefore, using the ESS speedup defined by Eq. 6 is more appropri-

ate given that it encompasses these increases in computational cost

by normalizing the ESS by the execution time. However, since our

implementation outperformed MrBayes on this model (see support-

ing materials), we had to define as reference, MR, an

Hypothetical MrBayes by defining the average reference ESS,

�gð1;MRÞ, as the one of MrBayes and the average runtime, �tð1;MRÞ,
as the one of our STD implementation. The reference thus represents

the effective sample size of MrBayes normalized by the runtime of

our method with settings closest to MrBayes (i.e. updating only one

parameter per iteration).

The obtained ESS speedups (Fig. 3b and d) show that our imple-

mentation were still outperforming the hypothetical reference method

from close to a twofold factor on a sequential execution and up to ap-

proximately a tenfold factor with 32 processors. However, in the se-

quential case, the simple STD method was more efficient than the PCA

variant. This is explained by considering the overhead of more costly

partial likelihood computations and the added cost of learning param-

eters correlation. However, as soon as several processors were used,

and thus our coupling of the adaptive proposals with the pre-fetching

method was employed, the PCA variant was more efficient by

(a) (b)

(c) (d)

Fig. 3. Result for the ESS and ESS speedup comparison with MrBayes on the M2a codon substitution model with simulated data. (a) and (c) The average ESS per

parameter on the first, respectively second, datasets for MrBayes, the STD method using single parameter moves and the PCA method with multiples parameters

per block. (c) and (d) The ESS speedup for the same methods on the same datasets using an hypothetical MrBayes implementation as reference. Simulations

were run for 2 � 105 iterations
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proposing bolder moves and using the parallel resources to learn cor-

relations more accurately and quickly.

3.2.2 Convergence on phylogenetic tree distributions

Our framework was finally evaluated on the sampling of the poster-

ior distributions of trees and parameters of the model of nucleotide

substitution. At this task, our best method, PCA with 32 processors,

was able (Fig. 4) to converge towards the posterior distribution up

to 10-20 times faster than its equivalent Ref MrBayes. When com-

pared to the default settings of MrBayes (Full MrBayes) with

more advanced tree proposals, our method still showed faster con-

vergence rate as soon as 4–8 processors were used. Against this

MrBayes setting, the convergence speedup reached approximately a

fourfold factor with 32 processors.

Figure 4a and c illustrate the speedup in ASDSF convergence on

datasets M2017 and M2152, respectively, using Ref MrBayes set-

ting without MC3 as reference. Indeed, the Ref MrBayes setting

showed similar execution time and convergence performance as our

STD variant with updates on one parameter per iteration (see appen-

dix). PCA slightly outperformed Ref MrBayes in the sequential case

but was still far from the performance offered by Full MrBayes.

However as the number of processors used increased, the perform-

ance of PCA exceeded both MrBayes settings. To highlight the ver-

satility of our framework, we applied the same experiment but with

MC3 enabled on our framework and MrBayes. Figure 4b and d

show the speedup in ASDSF convergence on both datasets with four

parallel tempered chains. The trend shown in this second experiment

is consistent with our previous results and the speedup of PCA

increased with the number of processors used and surpassed the per-

formance of Ref MrBayes and Full MrBayes.

The improvement on convergence rates brought by our frame-

work on this problem is linked with the difficulty of moving

through the phylogenetic tree space. Tree proposals are usually

suffering from a low acceptance rate and are thus frequently re-

jected. Indeed, in our experiment, the acceptance rates for tree pro-

posals were lower than 0.05. Such moves are not currently

adaptive, but they remain easily predictable and therefore exploit-

able by the pre-fetching method. While this assumption of low ac-

ceptance rate on tree proposals is true for most datasets, it might

falter on some of them. To get around this limitation, tree

proposals could be made adaptive by tuning the extension prob-

ability (e.g. for eSPR) or the proposals on branch lengths that are

jointly applied to tree modifications.

Our results suggest that the approach that we propose has large

potentials on more challenging datasets, but the datasets used in

previous experiments were easily analyzable using existing soft-

ware. We therefore used a large dataset representing more than

2800 species with 12 genes of the amphibian family (Pyron and

Wiens, 2011) to challenge both Full MrBayes and PCA. For this

experiment, we compared four separate runs of Full MrBayes

using each four tempered chains with four separate runs of our

best method, PCA, with 4 tempered chains having each 32 proces-

sors dedicated to our coupling of adaptive MCMC and pre-

fetching. While Full MrBayes took more than five days to ap-

proach a likelihood plateau (Fig. 5), PCA reached it in less than one

day. It is worthwhile to mention that if PCA would be augmented

with the advanced tree proposals present in Full MrBayes, fur-

ther performance gains could be observed.

4 Conclusion

Building an efficient MCMC sampler for parameter-rich and complex

models is challenging given their inherent expensive computational

cost and high parameter-dimension d. Indeed, most of the existing

MCMC enhancements may prove inefficient due to their increase in

computational effort caused by additional likelihood evaluations or

complex operations depending on d (OðdxÞ; x > 1) (e.g. Haario et al.,

Fig. 5. Trace of the log likelihood when estimating the posterior distribution of

the phylogenetic tree, branch lengths and nucleotide substitution parameters on

an empiric dataset having 2800 species with 12 genes of the amphibian familiy.

Average trace and 95% confidence interval are shown for 4 independent runs

with of 4 parallel tempered chains of Full MrBayes and PCA with 32 processors

(a) (b)

(c) (d)

Fig. 4. Results for the ASDSF convergence speedup comparison with MrBayes when estimating the posterior distribution of the phylogenetic tree and the nucleo-

tide substitution parameters on empiric datasets (TreeBASE M2017 and M2152). (a) and (c) The ASDSF speedup the first, respectively second, datasets for two

settings of MrBayes and our PCA method with multiples parameters per block. (c) and (d) illustrate the ASDSF speedup on the same datasets when the previous

methods are augmented with PCA
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2005). We presented a M-H framework that overcomes this difficul-

ties by using the coupling of a novel adaptive proposal and pre-

fetching. We showed that our new framework improved the mixing,

reduced the burn-in phase and speed up the sampling by an order of

magnitude when applied to several models of varying complexity

including the difficult task of estimating the posterior probability of

phylogenetic trees using evolutionary models.

Model dependent enhancements can be used to further improve

the performance gain highlighted, as demonstrated by the addition of

parallel likelihood computations (Fig. 2b) or MC3 (Fig. 4). Therefore

existing evolutionary biology state-of-the-art software, such as

MrBayes (Ronquist et al., 2012) or ExaBayes (Aberer et al., 2014),

could directly benefit from this framework. Furthermore, since this

method is based on speeding up a single M-H process, it could be

used as the core of more advanced MCMC methods such as trans-

dimensional MCMC (Sisson, 2005) or even Bayes factors computa-

tion using thermodynamic integration (Lartillot and Philippe, 2006).

Further capabilities could be built on top of this framework by

exploring new approaches such as adaptive tree proposals or an

automatic clustering of parameters into optimal blocks. Therefore,

beside broadening the range of evolutionary hypothesis tractable

using Bayesian inference, our parallel M-H framework provides a

potential basis for a new generation of efficient parallel MCMC

samplers for parameter-rich models such as those that are currently

developed in biological studies.
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