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A CD36 ectodomain mediates insect pheromone
detection via a putative tunnelling mechanism
Carolina Gomez-Diaz1,w, Benoı̂te Bargeton1,*, Liliane Abuin1,*, Natalia Bukar2,3, Jaime H. Reina1, Tudor Bartoi4,

Marion Graf1, Huy Ong5, Maximilian H. Ulbrich4,6, Jean-Francois Masson2,3 & Richard Benton1

CD36 transmembrane proteins have diverse roles in lipid uptake, cell adhesion and pathogen

sensing. Despite numerous in vitro studies, how they act in native cellular contexts is poorly

understood. A Drosophila CD36 homologue, sensory neuron membrane protein 1 (SNMP1),

was previously shown to facilitate detection of lipid-derived pheromones by their cognate

receptors in olfactory cilia. Here we investigate how SNMP1 functions in vivo. Structure–

activity dissection demonstrates that SNMP1’s ectodomain is essential, but intracellular and

transmembrane domains dispensable, for cilia localization and pheromone-evoked responses.

SNMP1 can be substituted by mammalian CD36, whose ectodomain can interact with insect

pheromones. Homology modelling, using the mammalian LIMP-2 structure as template,

reveals a putative tunnel in the SNMP1 ectodomain that is sufficiently large to accommodate

pheromone molecules. Amino-acid substitutions predicted to block this tunnel diminish

pheromone sensitivity. We propose a model in which SNMP1 funnels hydrophobic

pheromones from the extracellular fluid to integral membrane receptors.
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Canada H3C 3J7. 4 BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany. 5 Faculty of Pharmacy, Université de
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address: Department of Neurobiology, University of Konstanz, Universitätsstra�e 10, 78457 Konstanz, Germany. * These authors contributed equally to this
work. Correspondence and requests for materials should be addressed to R.B. (email: Richard.Benton@unil.ch).

NATURE COMMUNICATIONS | 7:11866 | DOI: 10.1038/ncomms11866 | www.nature.com/naturecommunications 1

mailto:Richard.Benton@unil.ch
http://www.nature.com/naturecommunications


T
he CD36 (cluster of differentiation 36) family of
transmembrane proteins is broadly conserved in animals
but displays remarkable functional versatility1–4. The three

mammalian CD36 proteins (CD36, SR-BI and LIMP-2) are
implicated in lipoprotein scavenging, fatty acid transport,
innate immune signalling, cell adhesion, lysosomal protein
sorting and gustatory fat detection1–4. Consistently, mutation or
misregulation of CD36 proteins in humans has been linked to
several diseases, including arterial hypertension, diabetes,
cardiomyopathy and epilepsy1–4.

Despite the importance of these proteins, the precise
mechanism(s) by which they function is enigmatic. Many
molecular studies on mammalian CD36 family members have
exploited in vitro biochemical assays, which have identified a
large number of lipidic and protein ligands (for example, fatty
acids, oxidized low-density lipoproteins, thrombospondin 1 and
hexarelin) and correspondingly diverse ligand-binding regions in
the large ectodomain of these proteins1–4. The downstream
consequences of ligand/CD36 protein interactions have mostly
been analysed in heterologous cell culture expression systems.
Such studies have revealed potential roles for these proteins
in mediating ligand translocation across the membrane5,6,
receptor-mediated ligand internalization7, transfer of ligands to
other cell surface signalling receptors8 or direct activation of
intracellular signalling cascades (for example, via Lyn and Yes
tyrosine kinases9). However, demonstration of the relevance of
many of these biochemical and cellular properties of CD36
proteins in their native environment has rarely been tested.
In part, this reflects the challenge of molecular genetic analysis of
CD36 family members that have broad tissue expression and
multiple, essential functions.

The genetic model, Drosophila melanogaster, offers a powerful
system to investigate CD36 protein function in vivo. Drosophila
possesses a repertoire of 14 CD36-like proteins10 (Fig. 1a), most
of which have tissue-specific expression patterns, suggesting that
they have distinct roles11. Two family members, NINAD (neither
inactivation nor afterpotential D) and Santa Maria, are important
for transport of dietary carotenoids from the gut to the
photoreceptors12,13. Others, such as Croquemort and Peste,
have been implicated in immune recognition, as they are required
for the uptake of Staphylococcus aureus and Mycobacteria,
respectively, at least in Drosophila cell lines7,14. In flies,
Croquemort and another CD36 homologue, Debris Buster, act
in phagosome maturation in epidermal cells during clearance of
degenerating neural processes15.

We, and others, previously characterized a Drosophila CD36
family member called sensory neuron membrane protein 1
(SNMP1; originally named SNMP)16–18. Drosophila SNMP1,
as well as its orthologues in other insects, is expressed in
olfactory sensory neurons (OSNs) that detect lipid-derived
pheromones19–23. SNMP1 is targeted to the dendritic cilia that
are exposed to external chemical signals, where odorant receptors
(ORs) are located (Fig. 1b). The best-characterized function of
Drosophila SNMP1 is in OSNs expressing OR67d that, together
with the obligate OR co-receptor ORCO24, detects the male sex
pheromone (Z)-11-octadecenyl acetate (cis-vaccenyl acetate,
cVA)25. Loss of SNMP1 drastically reduces the sensitivity of
these neurons to cVA stimulation16–18, but does not affect
OR67d/ORCO expression or cilia localization. Although these
data implicated SNMP1 as a key component of the pheromone
signal transduction pathway, its mechanism of action is
unknown.

Several non-mutually exclusive models can be envisaged for the
function of SNMP1 in pheromone signalling. SNMP1 could bind
free pheromone molecules and/or complexes of pheromones with
secreted odorant binding proteins (OBPs)26 in the extracellular

space (Fig. 1b). These interactions could simply concentrate
pheromone molecules in the vicinity of pheromone receptors in
the cilia membranes or directly facilitate transfer of these ligands
to their cognate OR. SNMP1 could also participate in pheromone
transduction by coupling to an intracellular signalling cascade, for
example, by recruiting proteins to the cilia membranes via its
cytosolic tails. Regardless of the exact mechanism, the genetic
requirement for SNMP1 in coupling the presence of extracellular
lipidic ligands to downstream cellular responses (that is, neuronal
firing) was reminiscent of the function of mammalian CD36 in
gustatory sensing of fats and immune recognition of pathogenic
bacterial lipids and lipoproteins27,28. These parallels indicate that
SNMP1 might be a relevant model for understanding CD36
proteins in vivo.

Here we describe a structure–function dissection of SNMP1,
using molecular genetic, cellular, biochemical, electrophysio-
logical and homology modelling approaches. Our data demon-
strate that the SNMP1 ectodomain is essential for its function,
but the intracellular domains are dispensable. We also show
that SNMP1 can be substituted by mammalian CD36, whose
ectodomain can interact with insect pheromones. In a structural
model of the SNMP1 ectodomain, we identify a tunnel, which
we suggest may funnel pheromone molecules to their cognate
receptors. Our work provides novel insights into insect
pheromone transduction and highlight both conserved and
divergent molecular mechanisms of CD36 protein function.

Results
Deep evolutionary conservation of SNMP1 function.
To investigate how SNMP1 acts in pheromone detection, we
established a pipeline for in vivo structure–function analysis.
Constructs encoding wild-type or mutant SNMP1—or other
CD36-related proteins—were integrated at a common genomic
location using phiC31 integrase-based transgenesis29. Expression
of these transgenes was induced in OR67d neurons using
the GAL4/UAS system in an snmp1 mutant background, which
lacks endogenous SNMP1 (ref. 16; Fig. 1c). We assessed both
the localization of these proteins to sensory cilia by
immunohistochemistry, and their ability to restore neuronal
responses to cVA—delivered to the antenna in an airstream—by
single sensilla electrophysiological recordings30. In this system,
transgenically expressed wild-type D. melanogaster SNMP1
localizes efficiently to sensory cilia and rescues cVA-evoked
responses (Fig. 1d and Supplementary Table 1).

To determine whether the function of SNMP1 is evolutionarily
conserved, we first expressed enhanced green fluorescent
protein (EGFP)-tagged SNMP1 orthologues from the silk moth
Antheraea polyphemus and the honeybee, Apis mellifera10,21. Both
fusion proteins localize to the sensory compartment and restored
responses to cVA, albeit more weakly than those of an equivalent
Drosophila SNMP1:EGFP (Fig. 2a). These observations indicate
that the function of SNMP1 in pheromone detection has been
conserved since the divergence of these species more than 350
million years ago31, and supports the hypothesis that SNMP1
orthologues function with many different insect ORs to detect
diverse pheromones16,32.

We next asked whether a more divergent member of this
family, Mus musculus CD36, could substitute for SNMP1.
Remarkably, CD36 was both targeted to sensory cilia and capable
of restoring, albeit only partially, responses to pheromone
(Fig. 2b). We confirmed the capacity of CD36 to support
cVA-evoked neuronal activity in a close-range stimulation assay,
which permits pheromone presentation at higher concentrations
than when delivered in an airstream33,34. While snmp1 null
mutant OR67d neurons show no detectable responses to cVA

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11866

2 NATURE COMMUNICATIONS | 7:11866 | DOI: 10.1038/ncomms11866 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


c
Or67d Gal4

UAS SNMP1

SNMP1
rescue

Solvent

10% cVA

Or67d-Gal4/UAS-snmp1x; snmp1–/snmp1–

SNMP1

Wildtype

snmp1–/–

Solvent

10% cVA

Solvent

10% cVA

R
es

po
ns

e 
(s

pi
ke

s 
s–1

)

d

0 1 10

0 1 10
–20

0

20

40

60

80

100

R
es

po
ns

e 
(s

pi
ke

s 
s–1

)

–20

0

20

40

60

80

100

R
es

po
ns

e 
(s

pi
ke

s 
s–1

)

–20

0

20

40

60

80

100

cVA (% v/v)

0 1 10

Axon

Cilium

Pore

Sensillar hair

Sensillar
lymph

Cuticle

Auxiliary
cell

Olfactory
sensory
neuron

OBP (LUSH)

OR67d/ORCO

ODE

SNMP1

ba
DmelSNMP1

AaegSNMP1

AgamSNMP1

AmelSNMP1

BmorSNMP1

ApolSNMP1

DmelSNMP2

DmelDebris Buster

DmelEMP

DmelCG3829

DmelCG10345

DmelCG2736

DmelCG31741

DmelNINAD

DmelCroquemort

DmelCG7227

DmelSanta Maria

DmelPeste

MmusSR-BI

HsapSR-BI

MmusLIMP-2

HsapLIMP-2

MmusCD36

HsapCD36
100

100

100

100

100

100

99

94

55

100

100

98

100

96

54

74

70

51

30

59

39

0.1

*** ***

*

24

14

25

Figure 1 | An in vivo transgenic system for structure–function dissection of SNMP1. (a) Neighbour-joining tree of insect SNMP1 orthologues, and other

Drosophila and mammalian CD36-related proteins (Dmel, Drosophila melanogaster; Aaeg, Aedes aegypti; Agam, Anopheles gambiae; Amel, Apis mellifera;

Bmor, Bombyx mori; Apol, Antheraea polyphemus; Mmus, Mus musculus; Hsap, Homo sapiens). The tree was built with MEGA5 (ref. 68); bootstrap

support (1,000 replicates) is indicated. The scale bar units show amino-acid substitutions per site. (b) Schematic representation of the D. melanogaster

antenna and a detail of a pheromone-sensing trichoid sensillum. The cVA receptor, OR67d, requires an essential co-receptor (ORCO)16,17. Sensillar

lymph contains the OBP LUSH40 and odorant-degrading enzymes (ODEs)69. (c) Schematic representation of the in vivo transgenic expression system.

The GAL4/UAS system was used to drive the expression of wild-type or mutant versions of SNMP1 (SNMP1X), or other CD36-related proteins,

in OR67d-expressing neurons in an snmp1 null mutant background. (d) Analysis of wild-type (w1118), snmp1 homozygous mutant (snmp11/snmp12) and

SNMP1 rescue (Or67d-GAL4/UAS-snmp1;snmp11/snmp12) flies. Left: immunostaining with a-SNMP1 on antennal cryosections. The approximate area shown

is indicated with a dashed black square in the antennal cartoon at the top left. An inset in the wild-type immunostaining illustrates the morphological

landmarks by the overlay of fluorescence and bright-field images. Scale bars, 20mm. Centre: representative traces of electrophysiological recordings of

OR67d neurons in male flies stimulated with solvent (paraffin oil) or 10% cVA. The grey bar indicates the stimulus time (1 s) in this and all subsequent

figures. Right: mean neuronal responses±s.e.m. to the indicated stimuli (see also Supplementary Table 1). As n is equal for all concentrations tested for

each genotype, it is shown in white or grey within or above only the 10% cVA stimulus bar, in this and all subsequent figures. There are significant statistical

differences in neuronal responses due to genotype for both 1 and 10% cVA (Kruskal–Wallis, Po0.0001). Significant differences in cVA responses for the

different genotypes compared with wild-type (w1118) are indicated in the figure; *Po0.05, ***Po0.001.
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presented at close range (Fig. 2c), those expressing either SNMP1
or CD36 exhibit clear increases in spiking frequency (Fig. 2c).
We previously showed that SNMP1 is also required for the
detection of the moth Heliothis virescens sex pheromone
(Z)-11-hexadecenal by its cognate receptor HR13, when

ectopically expressed in OR67d neurons16. Consistent with its
ability to rescue endogenous cVA sensitivity, CD36 was also
capable of enhancing responses of HR13 to (Z)-11-hexadecenal
(Fig. 2d). Although CD36 is, unsurprisingly, less effective than
SNMP1 in these rescue assays (Fig. 2d), our results reveal at least
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partial conservation in the biochemical function of these CD36
family members, whose last common ancestor existed over 700
million years ago31.

The SNMP1 ectodomain is required for pheromone detection.
SNMP1 contains two putative transmembrane domains,
separated by a B420 amino-acid ectodomain, and flanked by
short N- and C-terminal tails (Supplementary Fig. 1). We first
confirmed the predicted membrane orientation of this protein by
expressing SNMP1 bearing a C-terminal EGFP tag in HEK 293
cells, and assessing accessibility of this tag to immunodetection
when cell membranes were unpermeabilized or permeabilized by
detergent (Supplementary Fig. 2). While endogenous EGFP
fluorescence was detected on intracellular and plasma membranes
in both conditions, a-GFP stained these cells only when the
membrane was permeabilized, consistent with an intracellular
location for the SNMP1 C-terminus (Supplementary Fig. 2).

We next tested the requirement for the cytosolic regions in
mediating SNMP1 function by expressing truncated versions of
the protein that lack either the N-terminal or C-terminal tails.
Both of these deletion variants localize to cilia and are capable of
restoring responses to cVA (Fig. 3a,b). To determine whether the
transmembrane regions of SNMP1 are critical, we generated a
chimeric protein in which these domains (as well as the cytosolic
regions) were replaced with those of another Drosophila CD36
protein, NINAD12,13. A non-chimeric NINAD:GFP fusion
protein localizes to the sensory compartment (Fig. 3c), but is
unable to rescue responses to cVA delivered in an airstream
(although NINAD can support very weak cVA-evoked activity in
a close-range stimulation assay (Supplementary Fig. 3)). By
contrast, the NINAD/SNMP1:GFP chimera, which contains only
the ectodomain from SNMP1, restores cVA responsiveness
(Fig. 3d). Together, these results indicate that only the specific
extracellular region of SNMP1 is essential for pheromone
detection, although it is likely that this domain needs to be
anchored to the sensory membrane by transmembrane helices.

To identify which regions of the ectodomain are important,
we expressed a series of 17 versions of SNMP1 bearing non-
overlapping 25 amino-acid deletions along the length of this
sequence (Fig. 3e and Supplementary Fig. 1). All deletion-bearing
proteins failed to rescue cVA responses in snmp1 mutants
(Fig. 3f), supporting the importance of this domain. For most of
these proteins, this lack of function can be ascribed to a complete
localization defect (Fig. 3f,g). However, a subset of SNMP1
deletion mutants containing one of five contiguous deletions was

still detected within sensory cilia (Fig. 3e–g), implicating this part
of the protein either directly in signal transduction or indirectly
through correct folding of the ectodomain to support pheromone
sensing.

Ectodomain disulfide bonds are essential for SNMP1 function.
The SNMP1 ectodomain contains six cysteines that are conserved
across most CD36 family members (Supplementary Fig. 1). In
mammalian CD36, these residues form intramolecular disulfide
bonds and have also been implicated in the formation of
intermolecular cysteine bridges to permit assembly of multimeric
CD36 protein complexes35,36. To test whether SNMP1 forms
intra- and/or intermolecular disulfide bridges we compared the
electrophoretic mobility of SNMP1 by SDS–polyacrylamide gel
electrophoresis/western blotting of antennal protein extracts
under reducing or non-reducing conditions. In the presence of
either dithiothreitol or b-mercaptoethanol, SNMP1 migrates
slower than in the absence of these reducing agents (Fig. 4a
and Supplementary Fig. 4a). These observations are consistent
with SNMP1 forming intramolecular disulfide bridges, to impose
a more compact conformation of the protein. Under all
conditions, we detected only a single band of B70 kDa, which
is slightly higher than the predicted molecular weight of
this protein (B62 kDa). This result contrasts with detection of
higher-molecular-weight species for CD36 under non-reducing
conditions36, and suggests that SNMP1 does not form covalent
intermolecular disulfide bridges.

To confirm the absence of intrinsic multimerization
properties of SNMP1, we performed single-molecule imaging of
SNMP1:EGFP in a heterologous Xenopus oocyte expression
system by total internal reflection fluorescence microscopy37.
This fusion protein was detected in the plasma membrane
in bright fluorescent spots of relatively uniform intensity
(Supplementary Fig. 5a). EGFP photobleaches within a few
seconds under the high-intensity illumination required for single-
molecule observation. Examination of the EGFP intensity traces
allows determination of the number of separate bleaching steps,
and therefore inference of the number of individual EGFP
molecules within a spot. We observed that 93% (n¼ 1,200) spots
displayed a single bleaching step (Supplementary Fig. 5b,c),
indicating that SNMP1:EGFP exists principally in monomeric
form.

We addressed the contribution of the ectodomain cysteines
in SNMP1 function through mutation of individual residues
(SNMP1C265S, SNMP1C294S and SNMP1C332S) predicted to

Figure 2 | Evolutionary conservation of SNMP1 function. (a) Analysis of snmp1 rescue flies (Or67d-GAL4/UAS-XXX;snmp11/snmp12, in this and all

equivalent rescue experiments) expressing C-terminal EGFP fusions of SNMP1 from D. melanogaster, A. polyphemus and A. mellifera. Left: immunostaining

with a-GFP on antennal cryosections. Scale bars, 20mm. Centre: representative traces of electrophysiological recordings of OR67d neurons in male flies

stimulated with 10% cVA. Right: mean neuronal responses±s.e.m. to the indicated stimuli in each genotype. There are significant statistical differences in

neuronal responses to cVA due to genotype (Kruskal–Wallis, Po0.0001). Significant differences in cVA responses compared with snmp1� /� (Fig. 1d) are

indicated in the figure; **Po0.01, ***Po0.001. (b) Analysis of snmp1 rescue flies expressing M. musculus CD36:EGFP (for immunohistochemistry) or

untagged CD36 (for electrophysiology). Left: immunostaining with a-GFP on antennal cryosections. Scale bar, 20mm. Centre: representative trace of

electrophysiological recordings of OR67d neurons in male flies stimulated with 10% cVA. Right: mean neuronal responses±s.e.m. to the indicated stimuli.

There is a significant increase in 10% cVA sensitivity in M. musculus CD36 rescue when compared with snmp1� /� (Mann–Whitney test; ***Po0.001).

(c) Left: representative traces of electrophysiological recordings of OR67d neurons in a close-range stimulation assay with 10% cVA in the indicated

genotypes. The grey arrows indicate the approximate time of closest stimulus position to the sensillum. Right: mean neuronal responses±s.e.m. in each

genotype. There are significant statistical differences in neuronal responses due to genotype (Kruskal–Wallis, Po0.0001). Significant differences in cVA

responses of the different genotypes compared with snmp1� /� are indicated in the figure; *Po 0.05, **Po0.01 and ***Po0.001. (d) Left: representative

traces of electrophysiological recordings of OR67d neurons lacking OR67d and SNMP1, and ectopically expressing the moth pheromone receptor HR13 in

the absence or presence of CD36 and SNMP1, stimulated with 10% (Z)-11-hexadecenal. Genotypes: ‘HR13’, UAS-HR13;Or67dGAL4,snmp11/Or67dGAL4,snmp12);

‘HR13þCD36’, UAS-HR13/UAS-CD36;Or67dGAL4,snmp11/Or67dGAL4,snmp12); and ‘HR13þ SNMP1’, UAS-HR13/UAS-SNMP1;Or67dGAL4,snmp11/Or67dGAL4,snmp12.

Right: mean neuronal responses±s.e.m. in each genotype. There are significant statistical differences in neuronal responses to (Z)-11-hexadecenal

due to genotype (one-way analysis of variance, Po0.0001). Significant differences in cVA responses compared with ‘HR13’ are indicated in the figure;

**Po0.01, ***Po0.001.
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remove one of the three predicted disulfide bridges—based on the
pairings established in other CD36 family members35—or a
mutational combination that removes all three bridges
simultaneously (SNMP1C330-332-341-352S) (Fig. 4b). All four
mutant proteins failed to restore cVA responses, although they

could be detected in the sensory cilia, at slightly—or for
SNMP1C332S, strongly—reduced levels (Fig. 4b). Such
phenotypes are consistent with our deletion scanning analysis
(Fig. 3e–g), in which SNMP1 deletions covering these cysteine
residues (SNMP1D10-SNMP1D14) can localize, but not support
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Figure 3 | The SNMP1 ectodomain, but not the transmembrane or intracellular domains, is required for pheromone detection. (a–d) Analysis of

SNMP1DN-term, SNMP1DC-term, NINAD:EGFP (for immunohistochemistry) or untagged NINAD (for electrophysiology) and SNMP1/NINAD:GFP chimera

rescue transgenes. Left: immunostaining with a-SNMP1 (a,b) or a-GFP (c,d) on antennal cryosections. Scale bars, 20mm. As SNMP1DC-term lacks the

C-terminal peptide epitope of the SNMP1 antibody16, we used an antibody raised against an SNMP1 ectodomain peptide; although this antibody recognizes

SNMP1 in soma, it does not label cilia-localized SNMP1, even in wild-type flies, precluding direct visualization of SNMP1DC-term in this sensory

compartment. Centre: representative traces of extracellular electrophysiological recordings of OR67d neurons in male flies stimulated with 10% cVA. Right:

mean neuronal responses±s.e.m. in each genotype. There are significant statistical differences in neuronal responses due to genotype for both 1 and 10%

cVA (Kruskal–Wallis, Po0.0001). Significant differences in cVA responses of the different genotypes compared with full-length SNMP1 rescue (Fig. 1) are

indicated in the figure; *Po0.05, ***Po0.001. (e) Schematic representation of SNMP1 in which each amino acid is represented by a circle. Putative

N-glycosylation sites are indicated with hexagons and disulfide bonds by dashed grey lines. The 17 ectodomain deletions tested are indicated on the

structure in blue or red, representing those that do or do not localize to sensory cilia, respectively. (f) Summary of the localization and functional properties

of the SNMP1 ectodomain deletion mutants. (g) Phenotypes of SNMP1D5 and SNMP1D13 rescue properties. Left: immunostaining with a-SNMP1 on

antennal cryosections. Scale bars, 20mm. Right: representative traces of electrophysiological recordings of male flies stimulated with 10% cVA.
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cVA detection. These results indicate an essential role for
disulfide bridges in the signalling, but not targeting, function of
the SNMP1 ectodomain.

Ectodomain glycosylation is required for SNMP1 localization.
The ectodomains of mammalian CD36 proteins are characterized
by substantial N-glycosylation, which is essential for correct
protein folding and/or trafficking38. In Drosophila SNMP1, we
identified four consensus N-glycosylation motifs (NXS/T) at N66,
N213, N226 and N440 (Supplementary Fig. 1). Two of these (N66
and N226) are conserved across the majority of CD36 family
members, while the others are found only in subsets of SNMP1
orthologues (Supplementary Fig. 1). We tested whether SNMP1 is
N-glycosylated in vivo by comparing the electrophoretic mobility
of endogenous SNMP1 from antennal extracts treated with the
N-deglycosylating enzyme PNGase F. While SNMP1 normally
runs at B70 kDa, PNGase F treatment restores the migration to
the predicted molecular weight (B62 kDa); the effect of PNGase
F is abolished by denaturation of this enzyme with SDS (Fig. 5a
and Supplementary Fig. 4b). These observations are consistent
with SNMP1 bearing sugar modifications at multiple asparagine
residues.

We next generated transgenes encoding SNMP1 mutants
lacking one or more of these predicted N-glycosylation sites
(Fig. 5b). Mutation of the first site, SNMP1N66Q, led to complete
lack of detectable protein and consequently no restoration of
cVA responses (Fig. 5b). By contrast, individual mutation of any
of the other sites (SNMP1N213Q, SNMP1N226Q or SNMP1N440Q)
or of two of these together (SNMP1N213-440Q) did not produce
such drastic phenotypes, although the SNMP1N226Q single
mutant and the SNMP1N213-440Q double mutant displayed
slightly reduced localization and/or function (Fig. 5b). However,
simultaneous mutation of all three of these asparagine residues
(SNMP1N213-226-440Q) leads to SNMP1 failing to localize to
sensory cilia and to restore cVA responses (Fig. 5b). We conclude
that N-glycosylation at N66—one of the most conserved
glycosylation sites (Supplementary Fig. 1)—fulfils a unique
function in protein folding/stability, while sugar modifications
of the remaining sites have partially redundant contributions to
control trafficking. It is not currently possible to determine
whether N-glycosylation also participates in SNMP1’s signalling
function in cilia.

Binding of insect pheromones to a CD36 ectodomain. The
necessity and sufficiency for the SNMP1 ectodomain suggested
that it might interact with pheromones or complexes of
pheromones with OBPs that are present in the extracellular
lymph bathing OSN cilia. Both possibilities would be compatible
with the ability of CD36 family members to bind proteins,
lipids and lipoproteins1–4. LUSH is an OBP that binds cVA
and is required for high-sensitivity neuronal responses to this
pheromone39,40 (Fig. 1b), although its precise function in signal
transduction is unclear34. Our extensive attempts to detect
binding of LUSH to SNMP1 (in the absence and presence of
cVA) by in vivo co-immunoprecipitation or cell culture surface-
binding assays failed to provide evidence for SNMP1/LUSH
complexes. Although these data do not rule out an interaction
between these proteins, they suggest that SNMP1 and LUSH do
not form a stable complex.

While LUSH is important for pheromone detection, this class
of perireceptor protein is not absolutely essential, as responses of
ORs to pheromones have been described in the presence of
SNMP1 but without the relevant OBP16,34,41. These observations
imply that pheromones alone might be able to bind directly
to SNMP1. Unfortunately, we were unable to express the

ectodomain of SNMP1 recombinantly in bacterial or insect cell
expression systems, precluding our testing of this hypothesis.
However, given the conservation in structural features we have
found between mammalian CD36 and SNMP1, as well as the
ability of mammalian CD36 to substitute for SNMP1 in the
detection of both cVA and (Z)-11-hexadecenal (Fig. 2b–d), we
asked whether pheromone molecules could be bound by this
homologous family member using a CD36 sensor chip42. In this
assay, interaction between the CD36 ectodomain—immobilized
on a self-assembled monolayer—and small molecules is measured
by surface plasmon resonance (SPR)42 (Fig. 6a). We tested three
insect pheromones, cVA, (Z)-11-hexadecenal and bombykol
(a sex pheromone of the moth Bombyx mori26), as well as two
compounds, farnesol and limonene, which are detected by
other classes of SNMP1-expressing OSNs43,44. All five of
these exhibited binding as measured by SPR (Fig. 6b,c and
Supplementary Fig. 6), with the lowest dissociation constants
(representing highest affinity interactions)—for cVA, farnesol and
(Z)-11-hexadecenal—similar in magnitude to those for known
CD36-binding peptides42. To examine the specificity of these
interactions, we tested four other chemicals that only activate
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non-SNMP1-expressing neurons (ethyl acetate, isoamyl acetate,
hexyl acetate or ethyl butyrate)33. None of these showed evidence
of interactions (Fig. 6b,c and Supplementary Fig. 6). Together,
these results are consistent with the ability of insect pheromones
to be directly bound by a CD36 ectodomain.

A protein homology model reveals a putative pheromone
tunnel. During the course of our study, X-ray crystal structures of
the ectodomain of the mammalian CD36 protein LIMP-2
were obtained5,45. The amino-acid sequence of the SNMP1

ectodomain is 25.2% identical to that of LIMP-2, and secondary
structure predictions for these two proteins are highly comparable
(Supplementary Fig. 7). We therefore used homology modelling
to build a three-dimensional representation of the SNMP1
ectodomain using the LIMP-2 crystal structure as template
(Fig. 7a). The SNMP1 ectodomain model is composed of an
antiparallel b-barrel with various short a-helical domains, in
particular, a bundle of helices at the apex (Fig. 7a). The four
predicted glycosylation sites are located on one face of the
ectodomain (Fig. 7a).
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The apical region of mammalian CD36 proteins has been
implicated in binding of both lipidic and protein ligands. For
example, CD36 associates with oxidized phosphatidylcholine and
low-density lipoproteins, and mutation of two conserved lysines
near the apex (K164 and K166) abrogates these interactions,
suggesting the importance of electrostatic interactions with
oxidized phospholipid moieties5,46. These basic residues are not
conserved in precise position, but we identified four surface-
exposed lysines in this region in Drosophila SNMP1 (K158, K168,
K172 and K174) (Fig. 7b and Supplementary Fig. 1). However,
mutation of these residues to alanine did not affect the function of
SNMP1 (Fig. 7c), suggesting that ligands associate with this
protein via a different mechanism.

One unique structural element of the SNMP1 apical region is a
short loop just after a-helix 6 (V185-K194) (Fig. 7b and
Supplementary Fig. 1). This sequence contains several acidic
residues, as well as a pair of SNMP1-specific cysteine residues
(one lies within the following a-helix). Complete deletion of this
loop abolished SNMP1 localization and function (SNMP1D7,
Fig. 3e,f). To test the requirement of this loop more precisely, we
charge-reversed the acidic residues (SNMP1D186R_E190-191R) and
mutated the cysteine pair (SNMP1C187-198S). Both of these sets of
mutations lead to highly diminished dendritic localization of
SNMP1 and a concordant loss in ability to restore cVA responses
(Fig. 7c). While these experiments indicate the importance of this
loop, we cannot currently distinguish its precise function.

An unexpected feature of the LIMP-2 crystal structure was an
internal tunnel formed predominantly by the b-barrel, which
spans most of the length of the ectodomain5,45. This tunnel was
hypothesized to translocate lipidic ligands from the extracellular/
extraluminal compartment to the membrane bilayer5. We
observed the presence of a similar internal cavity in the SNMP1
model (Fig. 8a). This tunnel is sufficiently spacious to
accommodate pheromone molecules, such as cVA, and is lined
with predominantly neutral amino acids (Fig. 8a), while still
retaining the pocket-lining acidic and basic residues that form a
network of hydrogen/ionic bonds in the LIMP-2 tunnel (E93,
R95, K97, D252, K381 and E413)5 (Supplementary Fig. 1).
Although direct biochemical demonstration or visualization of
movement of pheromone molecules through such a tunnel is
technically extremely difficult, we reasoned that blocking this
passageway should reduce the ability of SNMP1 to transduce cVA
signals. Using tunnel predictions47, we identified putative
‘bottleneck residues’ within the SNMP1 tunnel (see Methods).
After excluding prolines—which might have particular important
roles in protein conformation—as well as amino acids with

already-large side groups, we identified a pair of residues, T274
and L439, located at a constriction point at the tunnel opening
furthest from the apical region (Fig. 8a,b). We mutated both of
these residues to tyrosine, which has a bigger side chain. This
SNMP1T274Y,L439Y protein localizes indistinguishably from wild-
type SNMP1 (Fig. 8c,d), but displays substantial diminishment
in its capacity to rescue pheromone responses (Fig. 8c,e). By
contrast, replacement with tyrosine of a small residue located in a
predicted wider part of the tunnel (SNMP1A401Y), affected
neither SNMP1 localization (Fig. 8c,d) nor function (Fig. 8c,e).
We also attempted to block the entrance of the tunnel by
mutation of V353 to tyrosine (Fig. 8a), but this change had little
effect on the protein’s localization or ability to restore cVA
responses (Fig. 8c–e). Finally, we extended functional analysis of
these SNMP1 tunnel mutants by analysing their ability to
support (Z)-11-hexadecenal-evoked responses of HR13 when
this receptor is ectopically expressed in OR67d neurons (Fig. 8f).
While SNMP1A401Y was indistinguishable from
wild type, the bottleneck mutants SNMP1T274Y,L439Y and
SNMP1V353Y exhibited either strongly or slightly diminished
pheromone sensitivity (Fig. 8f).

Discussion
SNMP1 was shown to be expressed in pheromone-sensing
neurons nearly two decades ago21 and genetically implicated in
pheromone transduction 10 years later16,17, but understanding
how this CD36 protein acts has been largely elusive. We consider
here evidence both for and against potential mechanisms of
action of SNMP1 to propose a new model for its function in
pheromone signalling.

One model suggested that SNMP1 acts as an inhibitory subunit
of OR/ORCO complexes, whose influence is released in the
presence of pheromone, thereby leading to an increase in
neuronal firing17. This proposition was based on the prominent
elevated firing of OR67d neurons in the apparent absence of cVA
stimulation, which we and others previously interpreted as
spontaneous activity16,17. Recent evidence18, however, indicates
that this elevated firing reflects instead a highly prolonged,
low-level, ligand-evoked activity due to the exposure of flies to
environmental sources of cVA (for example, male flies in culture
tubes), indicating a role for SNMP1 in controlling pheromone
signalling kinetics (see below) rather than inhibiting
ORs. Moreover, a purely inhibitory function of SNMP1 is
incompatible with observations that expression of SNMP1 is
required to enhance sensitivity of responses of ORs to pheromone
when expressed in ectopic cells16,23.

Figure 8 | Evidence for a pheromone-conducting tunnel in the SNMP1 ectodomain. (a) Representation of the SNMP1 ectodomain tunnel, shown as a slice

through the body of the protein. Charged residues on the tunnel surface are coloured (red: negative; white: neutral; blue: positive). Putative tunnel

bottleneck residues (T274, L439 and V353, green) and a control tunnel-lining residue (A401, yellow) are highlighted. (b) ‘Top’ cross-sectional view (at the

approximate level of the dashed line in (a) of the SNMP1 tunnel, coloured as in Fig. 7a. (c) Analysis of the rescue properties of SNMP1 site-directed mutants

in which predicted tunnel-lining residues are substituted with larger residues. Left: immunostaining with a-SNMP1 on antennal cryosections. Scale bars,

20mm. Centre: representative traces of electrophysiological recordings of OR67d neurons (male flies) stimulated with 10% cVA. Right: mean neuronal

responses±s.e.m. There are significant statistical differences in neuronal responses due to genotype for 0.1, 1 and 10% cVA (Kruskal–Wallis, Po0.001).

Significant differences in cVA responses of the different genotypes compared with full-length SNMP1 rescue are indicated; ***Po0.001. (d) Analysis of the

localization properties of the indicated SNMP1 site-directed mutants using the integrated density ratio of SNMP1 and ORCO immunostaining quantified in

OR67d-expressing sensilla. Mean±s.d. in a scatter dot plot is shown. n is shown in parenthesis below the labels on the x axis. There are significant

statistical differences in localization properties due to genotype (Kruskal–Wallis, Po0.005). Significant differences of the different genotypes compared

with full-length SNMP1 rescue are indicated; *Po0.05). (e) Concentration–response curves of OR67d neurons to cVA in the indicated rescue genotypes.

Curves were fitted using a log versus response-variable slope model with Prism-GraphPad. Mean responses±s.e.m. are plotted. n is shown in parentheses

next to the legend labels. (f) Left: representative traces of electrophysiological recordings of OR67d neurons lacking OR67d and endogenous SNMP1, and

ectopically expressing HR13 in the absence or presence of transgenically expressed SNMP1 proteins, stimulated with 10% (Z)-11-hexadecenal. Genotypes:

UAS-HR13/UAS-SNMP1xxxx;Or67dGAL4,snmp11/Or67dGAL4,snmp12 (‘xxxx’: wild type or mutant variant of SNMP1). Right: mean neuronal responses±s.e.m.

There are significant statistical differences in neuronal responses to (Z)-11-hexadecenal due to genotype (Kruskal–Wallis, Po0.0001). Significant

differences in cVA responses compared with ‘HR13þ SNMP1’ are indicated in the figure; *Po0.05, **Po0.01, ***Po0.001.
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A second model is that SNMP1 transduces signals across the
cell membrane to regulate intracellular signalling cascades.
Although this mechanism is a prominent feature of mammalian
CD36 (refs 7,48), our demonstration that neither cytosolic tail is
required for SNMP1 localization or function argues that SNMP1
is not likely to transmit signals intracellularly, at least for its role
in pheromone signalling we have assayed. These observations also
imply the existence of a novel type of cilia-targeting signal in
SNMP1, as all cilia localization signals identified in other
membrane proteins are found in cytoplasmic domains49.
Moreover, the lack of distinguishing primary structural features
of the SNMP1 transmembrane helices compared with other
CD36 proteins (Supplementary Fig. 1) and the exchangeability of
these sequences by those of NINAD suggest that these regions
simply fulfil a structural role in membrane anchoring, rather than
contributing a specific function in pheromone transduction.
Finally, SNMP1’s inability to assemble into homomeric
complexes suggests it is unlikely to form, for example,
membrane-spanning channels in cilia or rely on receptor
clustering for its function.

A third model posits that SNMP1 forms an extracellular
platform for capture of pheromones or pheromone/OBP
complexes near the sensory cilia membrane16,17. The sensitivity
of the entire ectodomain to small deletions underlies its
importance in SNMP1 function. Moreover, although a
subregion of the ectodomain encompassing the disulfide bonds
appears at least partially dispensable for cilia localization, the
complete loss of signalling function of all deletion mutants
suggests that this ectodomain acts as a single structural entity,
rather than functionally separable subdomains. In support of this
model, we have shown that the ectodomain of mammalian CD36,
which can partially substitute for SNMP1 in vivo, is able to

interact with a variety of insect pheromones. Although it is not
yet possible to assess direct interactions between Drosophila
SNMP1 and pheromones, pioneering studies in A. polyphemus
using a radiolabelled photoaffinity pheromone analogue
identified a single labelled B70-kDa, antennal-specific
membrane protein50. Subsequent biochemical purification
from olfactory cilia of a protein with these properties led to the
initial identification of SNMP1 (ref. 21), suggesting that it
is a prominent pheromone-interacting membrane protein in
olfactory cilia.

Although SNMP1 is very important for cVA detection,
pheromones can directly induce OR-dependent responses in
heterologous neurons or other cells, at least when applied at high
concentration33,51. These data imply that pheromones must
ultimately interact with ORs, and that SNMP1 is not an integral
part of the molecular machinery required for OSN firing. In the
context of the third model, what, then, is the role of the SNMP1
ectodomain? The sequence of this region lacks obvious homology
to other proteins. Consistently, the three-dimensional structure of
the LIMP-2 ectodomain exhibits a novel global protein fold5,45.
The presence of a central cavity in LIMP-2—also preserved in
homology models of CD36, SR-BI (ref. 5) and SNMP1—provides
an intriguing new hypothesis for the ectodomain in acting as a
tunnel for transport of small molecules from the extracellular/
extraluminal space to or into the membrane. While direct
visualization of movement of molecules through such a tunnel
awaits development of appropriate assays, steric blockage of the
predicted tunnel in SR-BI by pharmacological or genetic
manipulations decreases (by about twofold) cholesterol uptake
in cultured cells5,52. Similarly, we find introduction of larger
amino-acid side chains within the presumed SNMP1 tunnel
diminishes pheromone sensitivity.

LUSH

SNMP1

cVA

OR67d/ORCO

Figure 9 | Model for cVA detection. A pheromone molecule is first encapsulated by the OBP LUSH in the extracellular lymph. Direct or indirect interaction

of cVA/LUSH with SNMP1 leads to release of the pheromone molecule and its transfer via the ectodomain tunnel in SNMP1 to the ligand-binding site within

the OR67d/ORCO complex. Apo and cVA-bound LUSH structures are from X-ray crystals (PBD 1T14 (ref. 71) and PDB 2GTE (ref. 39), respectively). The

SNMP1 model is the protein homology model shown in Fig. 8, in which N- and C-terminal sequences encoding the transmembrane helices have been added

by de novo protein folding. The OR67d/ORCO complex is represented as an arbitrarily arranged dimer of a generic OR protein model (OR85b (model

140_12), ORCO (model 310_2)) generated by de novo protein folding based on co-evolutionary couplings53; the stoichiometry and arrangement of this

complex in vivo is unknown. The cilia membrane is represented by a transparent grey rectangle.
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Together these data lead us to propose a model in which
SNMP1 acts by transporting pheromone ligands in the
extracellular lymph via an ectodomain tunnel to the cognate
pheromone detecting OR in the cilia membrane (Fig. 9). Why
should pheromone sensing require such a mechanism? After
entering the lymph, pheromones are thought to be encapsulated
by OBPs (such as LUSH for cVA39,40), which induces a
conformational change in these proteins26,39. Subsequent
release of pheromone molecules might therefore require
energetic input to reverse this conformational change. We
hypothesize that pheromone release is triggered by transient
interaction of OBP/pheromone complexes with SNMP1.
Pheromone molecules must ultimately end up in the ligand-
binding pocket of a cognate OR. Although very little is known
about the biochemistry of OR/ligand interactions, available data
suggest that the binding site lies within the transmembrane
regions53. The tunnel of SNMP1 might therefore facilitate direct
delivery of hydrophobic pheromone molecules to this pocket,
thereby protecting them from exposure to the aqueous lymph
fluid or odorant degrading enzymes that are abundant in this
compartment. Alternatively, and akin to the lipid transport
function of CD36 and SR-BI (ref. 54), the tunnel might direct
pheromone molecules into the lipid bilayer, from where they
move laterally into the OR ligand-binding pocket. This latter
possibility would be analogous to the mechanism by which
ligands enter the binding site in the free fatty acid receptor
GPR40 (ref. 55). Recent analysis of the kinetics of the low-
frequency pheromone-evoked responses to high stimulus
concentrations in the absence of SNMP1 indicated that this
protein is important for both rapid activation and termination18.
It is possible, therefore, that SNMP1 serves to funnel
pheromone molecules both to and from the OR ligand-binding
pocket.

Experimental testing of this model is technically challenging, as
it demands the functional reconstitution of three transmembrane
proteins (SNMP1, OR67d and ORCO), a secreted protein (LUSH)
and a radioactively or fluorescently labelled pheromone ligand in
an assay system that permits biochemical assessment of dynamic
interactions between these components. Moreover, the inability
to recapitulate high-sensitivity responses to cVA by mis-
expression of OR67d, SNMP1 and LUSH in non-pheromone
sensing olfactory sensilla, also hints that other signalling
components are involved39. Nevertheless, the available data do
support the insect pheromone detection system as an elegant
signalling mechanism that couples low-specificity/high-sensitivity
components (such as OBPs and SNMP1 (refs 16,23,26)), with
high-specificity/low-sensitivity components (that is, pheromone-
detecting ORs, which typically recognize a single ligand33). This
mechanism might underlie the widely documented detection of
these important intraspecific signals with both high sensitivity
and specificity26.

CD36-related genes have been identified across animals, as well
as in unicellular eukaryotes56, indicating an ancient origin of this
superfamily. How functionally distinct CD36 proteins have
evolved is poorly understood. Comparison of the properties of
SNMP1 with long-studied mammalian homologues provides
initial insight into this question. Most strikingly, our observation
that mammalian CD36 can compensate for loss of SNMP1
implies the existence of a conserved, ancestral mechanism of
action across this functionally diverse protein family.

Unexpectedly, another insect CD36 protein, NINAD, is much
less effective in replacing SNMP1 function than the mammalian
homologue. We suggest that this reflects a distinction in the
evolution of the CD36 repertoires in mammals and insects. While
mice and humans have only three, broadly expressed CD36
family members, insect species have evolved a dozen or more

proteins10,32. In Drosophila, at least, individual genes exhibit
distinct tissue-specific expression patterns11. These expression
properties might reflect their different roles in, for example,
the digestive, sensory or immune system, where they recognize
different ligands and might couple to other types of
transmembrane receptors. We suggest that, in parallel with
their acquisition of unique expression patterns, the insect proteins
have become structurally and functionally specialized and hence
are unable to effectively substitute for each other. For example,
SNMP1’s lack of dependence on intracellular domains might
reflect its exclusive requirement to transfer pheromone molecules
from the lymph to the ORs, without transducing signals
intracellularly. By contrast, mammalian CD36 appears to have
retained functional versatility, reflecting its implication in
multiple distinct signalling roles in different tissues1–4. Future
study of chimeric versions of SNMP1 and other insect CD36
proteins might help uncover the conserved and divergent
molecular mechanisms by which this protein family recognizes
and transduces external signals in vivo.

Methods
Sequence alignment and phylogenetic analysis. Amino-acid sequences of insect
and non-insect CD36-related proteins (Supplementary Fig. 1) were aligned with
MUSCLE57, using default alignment parameters. This alignment was used to build
a Neighbor Joining tree using MEGA 5.2.2 (ref. 58), with the following settings:
1,000 bootstrap replicates, p-distance and gaps handled by pairwise deletion.

Drosophila strains. Drosophila stocks were maintained on conventional food
medium under a 12-h light:12-h dark cycle at 25 �C. The wild-type genotype used
was w1118. Other lines used were snmp11 and snmp12 (ref. 16), Or67d-GAL4
(ref. 59), UAS-HR13 and Or67dGAL4 (ref. 41). New transgenic lines were generated
by standard procedures with the phiC31-based integration system29 using the
attP40-landing site by Genetic Services Inc. (Cambridge, MA, USA). For all
experiments, 4- to 10-day-old flies were used.

Molecular biology. For all transgenic constructs, the desired sequences were
amplified from appropriate cDNA sources (that is, antennal cDNA from
D. melanogaster, A. mellifera or A. polyphemus, or M. musculus cDNA) using the
KAPA HiFi PCR kit (Kapa Biosystems). PCR products were T:A cloned into
pGEM-T Easy (Promega), sequenced and subcloned with restriction enzymes,
whose recognition sites were incorporated in the PCR primers (Supplementary
Table 2), into the pUAST-attB vector29 or, for C-terminal tagging,
a pUAST-EGFP-attB vector. Deletions and point mutations in the SNMP1-coding
sequence (Supplementary Fig. 1) were introduced by PCR-based deletion and site-
directed mutagenesis of pGEM-T SNMP1, respectively (Supplementary Table 2).
For the pUAST-SNMP1/NINAD:EGFP construct, PCR stitching was used to
generate a sequence encoding an EGFP-tagged chimeric protein comprising the
SNMP1 ectodomain (residues 28–450) flanked by the N- and C-terminal
intracellular/transmembrane domains of NINAD (residues 1–33 and 448–513,
respectively). For HEK 293 cell expression, SNMP1:EGFP was cloned in a modified
version of pCG60. For Xenopus oocyte expression, SNMP1:EGFP was cloned in
pXpress51 to generate the desired capped RNA (cRNA). All the plasmids were fully
sequence-verified.

Biochemistry. Antennal protein extracts from B500 third antennal segments of
wild-type flies, disrupted in a TissueLyzer (Qiagen), were made by incubating lysed
antennae in 250 ml of extraction buffer (20 mM Tris (pH 7.5), 100 mM NaCl,
5 mM KCL, 1.5 mM MgCl2, 4% glycerol, 0.02% n-dodecyl-D-maltoside) for 90 min
at 4 �C, followed by centrifugation at 12,000g for 15 min at 4 �C (ref. 34).
To analyse the presence of disulfide bonds in SNMP1, protein extracts were
incubated in the presence or absence of either 100 mM dithiothreitol (Merck)
or 10% b-mercaptoethanol (Promega) during 3 min at 95 �C. To analyse the
N-glycosylation status of SNMP1, protein extracts were treated with PNGase F
(New England Biolabs) in the absence or presence of 10% SDS during 1 h at 37 �C.
After these treatments, extracts were separated on 4–20% precast gels (NuSep) and
transferred to Hybond-ECL membrane (Amersham), which were probed with
primary antibodies against SNMP1 (ref. 16) diluted to 1:1,000. Goat a-IgG rabbit
secondary antibodies coupled to horseradish peroxidase (Promega W4011) were
diluted 1:10,000. Blots were developed with medical X-ray films (Fujifilm) using the
ECL Plus Western blotting detection system (GE Healthcare). The resulting films
were scanned without any automatic gain.

Cell culture and transfection. HEK 293 cells (American Type Culture Collection,
LGC Standards; not authenticated or tested for mycoplasma) were maintained in
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Dulbecco’s modified Eagle’s medium (GIBCO) supplemented with 10% fetal
bovine serum, without antibiotics. To establish a stable HEK 293 cell line
expressing EGFP-tagged SNMP1, HEK 293 cells were grown to 50–60%
confluence in 10-cm dishes and transfected with 1 mg of pCG-SNMP1:EGFP using
Lipofectamine 2000 (Life Technologies). Cells were split after 24 h and kept under
G418 selection (500 mg ml� 1) for 21 days. Individual clones were then expanded
and tested for SNMP1:EGFP expression.

Histology. For immunofluorescence analysis61,62, 14-mm antennal cryosections in
Tissue-Tek optimum cutting temperature (O.C.T.) compound (Sakura) were
collected on slides and fixed for 7 min in 4% formaldehyde in phosphate-buffered
saline (PBS). After washing twice for 10 min in PBS, sections were permeabilized
for 30 min in PBSþ 0.1% Triton X-100 (P/T) and blocked in 5% heat-inactivated
normal goat serum in P/T (P/T/S) for 30 min. Primary antibodies were diluted in
P/T/S and applied to slides placed horizontally in humidified chambers and left for
36 h at 4 �C. After washing for three times for 10 min in P/T, slides were blocked
again in P/T/S for 30 min and incubated with secondary antibodies diluted in P/T/S
in humidified chambers in the dark for 2 h. Slides were then washed three times for
5 min in P/T and mounted in Vectashield (Vector Labs). The primary antibodies
used were rabbit a-SNMP1 (C terminus)62 (diluted 1:200), rabbit a-GFP
(Invitrogen A-6455) (1:1,000) and guinea pig a-ORCO34 (1:1,000). Rabbit
polyclonal antibodies against the SNMP1 ectodomain (used only in Fig. 3b) were
raised against the synthetic peptide FDEWKDKYDLEDDVVEDTV and affinity
purified (Proteintech Group, Inc (Chicago)) and diluted to 1:200. The secondary
antibodies used were Alexa488-conjugated a-rabbit IgG (Invitrogen A11034) and
Cy3-conjugated anti-guinea pig IgG (Jackson Immunoresearch 106-166-003) and
were diluted to 1:1,000.

HEK 293 cells expressing SNMP1:EGFP were grown on glass coverslips and
washed several times with Dulbecco’s modified Eagle’s medium before fixing them
for 2 min with 4% paraformaldehyde in PBS. Cells were incubated for 5 min with
PBS containing 2% BSA with or without 0.2% Triton X-100 (Sigma) for
permeabilized and unpermeabilized conditions, respectively. Cells were then
incubated during 1 h with rabbit polyclonal antibodies against GFP (Invitrogen
A-6455) diluted to 1:1,000 in PBS with 2% BSA, washed five times with PBS and
incubated for 1 h with Cy3-conjugated a-rabbit IgG (Jackson Immunoresearch
106-166-003) diluted to 1:1,000 in PBS with 2% BSA.

Microscopy was performed using a Zeiss LSM 510 Meta Upright Laser
Scanning Confocal Microscope. Confocal images were processed with ImageJ63 and
Adobe Photoshop CS4. Tissue orientation in all images is dorsal up/lateral left.

For quantification of dendrite immunofluorescence, SNMP1 signal was
quantified selecting the area of a sensillar hair and obtaining the GFP Integrated
Density values for the selected area and normalized with the corresponding ORCO
signal in the same area to avoid the variation in staining intensity that arises from
heterogeneous permeation of antibodies within the sensillar shaft. Image J was used
to obtain the Integrated Density values. Data were analysed using Prism 6 software.
Normality was assessed with D’Agostino–Pearson test, and the Kruskal–Wallis test
was used to compare means among genotypes. The Dunn’s test was used to correct
the P values for multiple comparisons.

Electrophysiology. Extracellular recordings of OSN activity in individual sensilla
of 4- to 10-day-old flies were performed using standard methodology30,34.
The sample sizes (n) indicated in the figures correspond to biological replicates
(different sensilla), with a maximum of three sensilla per animal, mixed genders.
Exact sample sizes for each experimental/group condition are provided in
Supplementary Table 1. Genotypes (not blinded to experimenter) were interleaved
to minimise effects of time-of-day.

For odour presentation in an airstream, 10 ml of odorant were added to a
6� 7.5-mm absorbent strip (Sugi, Kettenbach), which was placed inside a 1-ml
tuberculin syringe (Becton, Dickinson and Company). A charcoal-filtered airflow
(35 ml s� 1) was used to deliver odours to the preparation through a 10-ml
serological pipette that was trimmed to remove the tapered tip, and the cut end
positioned 15 mm away from the preparation. Half of this airflow was diverted
through the odour syringe during odour stimulation periods (1 s) under the control
of the Syntech CS-55 Stimulus controller. cVA (CAS No. 6186-98-7, Pherobank;
purity 99%) and (Z)-11-hexadecenal (CAS No. 53939-28-9; Sigma-Aldrich) were
diluted v/v in paraffin oil as indicated in the figures. For each recording session, we
determined the time of onset of the response of a control sensillum to 10% cVA
(usually B200 ms). Corrected responses were quantified by counting spikes in a
0.5-s window from this time point, subtracting the number of spikes in a 0.5 s
window before stimulation, and doubling the result to obtain spikes/s.

For odour presentation at close range, 2 ml of odorant were added to the tip of a
1-mm filter paper (Whatman). Using a fine micromanipulator the filter paper tip
was approached within B0.1 mm of the third antennal segment, avoiding direct
contact34. The stimulus was presented once in a recording window of 13 s. The
response was quantified similarly to that described above by counting spikes in
0.5-s windows before and after approach of the filter paper, avoiding the window
immediately before the point of closest approach when increases in spike frequency
were observed in the rescue animals.

Sample sizes were fixed before data analysis, based on preliminary studies.
Data were analysed using Prism 6 software. Normality was assessed with

D’Agostino–Pearson tests followed by Mann–Whitney, one-way analysis of
variance or Kruskal–Wallis tests to compare means among genotypes as
appropriate. The Dunn’s test was used to correct the P values for multiple
comparisons. Differences were considered significant if the adjusted P value was
o0.05. Unless indicated otherwise in the figure legends, post hoc tests were
performed to compare the neuronal responses conferred by the mutant SNMP1
proteins with those restored by full-length SNMP1.

Single-molecule imaging. Imaging of SNMP1:EGFP in Xenopus oocyte
membranes by total internal reflection fluorescence microscopy was performed by
injecting cRNA encoding SNMP1:EGFP into Xenopus oocytes at a concentration of
0.02 mgml� 1 in a total of 50 nl water per cell. About 12–24 h after injection and
expression at 15 �C, cells were enzymatically treated with hyaluronidase
(1 mg ml� 1, Sigma) and neuraminidase (1 U ml� 1, Sigma) for 15 min at 4 �C and
manually devitellinized. Multiple oocytes were placed on a coverslip and movies of
500 frames of an area of plasma membrane of 25.6� 25.6 mm were taken at 30
frames per second with a back-illuminated EMCCD camera (Andor iXon DV-897
BV). EGFP was excited at 488 nm and measured using a 525/50 emission filter. To
extract fluorescence intensities, we summed the pixel counts in defined regions of
interest around the centre positions of the spots. Traces of fluorescence intensity
were examined by eye for the presence of multiple bleaching steps.

Surface plasmon resonance. The affinity of a series of ligands was measured
using a CD36-modified SPR sensor42. The SPR sensor was constructed on a dove
prism by depositing a 1-nm chromium adhesion layer and a 50-nm Au film. The
Au film was modified with a 3-MPA-LHDLHD-OH self-assembled monolayer
synthesized as described42. The SPR sensor and a fluid delivery system were
inserted in a miniature SPR instrument64. The 3-MPA-LHDLHD-OH monolayer
was further reacted in the SPR instrument to create a monolayer competent to bind
His-tag proteins. The CD36 ectodomain (amino acids 30–439) was expressed in a
pFastBac1 transfer plasmid with the viral sequence, an epitope FLAG and
hexahistidine tag on the N terminus and immobilized on the SPR chip by exposing
a 5-mg ml� 1 His-tagged CD36 for 15 min. Aqueous solutions of the ligands were
prepared in PBS buffer at different concentrations ranging from sub-mM to mM.
Dimethylsulfoxide at 0.1% was added to PBS for hydrophobic ligands insoluble in
pure PBS. The SPR experiment was recorded in real-time, and successive injections
of the ligands at increasing concentrations established the affinity curve.
A Langmuir isotherm was fitted to the affinity curves to extract the Kd

and maximum SPR signal (DlSPR,max) using MatLab curve-fitting tools.
The ligands tested were the following: farnesol (CAS No. 4602-84-0; Aldrich);
(Z)-11-hexadecenal (CAS No. 53939-28-9; Sigma-Aldrich); mixture of
(þ )-limonene and (� )-limonene (CAS No. 5989-27-5 and 5989-54-8,
respectively; Sigma-Aldrich); bombykol (CAS No. 765-17-3; Pherobase);
11-cis-vaccenyl acetate (CAS No. 6186-98-7; Cayman Chemicals); ethyl acetate
(CAS No. 141-78-6; Fluka); isoamyl acetate (CAS No. 123-92-2; Sigma-Aldrich);
hexyl acetate (CAS No. 142-92-7; Fluka); and ethyl butyrate (CAS No. 105-54-4;
Aldrich). We note that cVA from Pherobank showed affinity for CD36 only at the
highest ligand concentration (432mM) in this assay; the discrepancy between the
binding ability of these different sources of pheromone is unknown.

Homology modelling and tunnel analysis. The secondary structure alignment of
Drosophila SNMP1, and human CD36, SR-BI and LIMP-2 (Supplementary Fig. 7)
was generated with PROMALS3D65. Structural models of the ectodomain of
SNMP1 (residues 46–449) were built using Modeller (mod9.12)66 based on the
chain A of the crystal structure of Homo sapiens LIMP-2 37–429 (PDB ID: 4F7B5;
the other published LIMP-2 structures are very similar45). The only secondary
structure constraint imposed is the bond between residues C265 and C330 since
this bond is not conserved between the template and the target. The models
generated using standard Modeller energy functions (molpdf and DOPE) were
highly similar; the illustrated model was chosen based on accessibility of putatively
glycosylated Asn residues (N66, N213, N226 and N440). These Asn residues
were modified with fucosylated glycans using GLYCAM Web (Woods Group
(2005–2014) GLYCAM Web. Complex Carbohydrate Research Center, University
of Georgia, Athens, GA; www.glycam.com), using the default parameter file
Glycam06. Tunnels were predicted within the ectodomain with Caver Analyst 1.0
(ref. 47) (www.caver.cz), using the default minimal probe radius of 0.9 Å. We found
five tunnels to describe the cavity observed in the full-length SNMP1. Within
residues lining these tunnels 12 were defined as bottlenecks: F56; F60; F115; M222;
T274; T290; D292; P398; F399; K403; L405; and L439. Two of these, T274 and
L439, located near the exit of the tunnel (close to the membrane), as well as V353,
near the entrance, were chosen for mutagenesis. As a control, we also mutated
A401, which lies within the tunnel but is not predicted to be a bottleneck.
Transmembrane domains of SNMP1 were built using Pymol (The PyMOL
Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC), based on secondary
structure predictions from PSIPRED67. Model images were generated with VMD
(www.ks.uiuc.edu/Research/vmd) (developed with NIH support by the Theoretical
and Computational Biophysics group at the Beckman Institute, University of
Illinois at Urbana-Champaign). The representation in Fig. 8a was rendered with
VMD and POV-Ray, and PDB2PQR was used to highlight surface charges. Model
coordinates are provided in Supplementary Data 1.
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Data availability. All relevant data supporting the findings of this study are
available from the corresponding author on request.
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