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Abstract  

This thesis consists of three scientific publications that use machine learning methods to 
understand industrial processes that were designed to improve environmental quality. My work 
contributes to efforts to make numerical models for simulation and process control that can be 
applied to improve equipment design and process performance. The personal gain achieved was 
acquisition of the knowledge and practical skills needed to make better quantitative data analysis 
and predictive models. 

Chapter 1 reports the analysis of data obtained from continuous torrefaction trials conducted in an 
integrated pilot plant. The purpose of the work was to gain insights into the process behavior that 
might be useful in the conception of a process controller that aims to obtain a product having a 
high and constant calorific value from heterogeneous raw biomass having a low and fluctuating 
calorific value. Principal components analysis of on-line operational data showed that the first 10 
principal components account for only 75% of the total variance in the system. This indicates that 
the data cannot be summarized by only a few latent variables. The Hotelling’s t-squared statistic 
and the first principal component scores were analyzed to identify the periods of process instability 
and then to identify the disturbance and the manipulated parameters that contribute to the variance 
during these periods. A Partial Least Squares regression model was developed to map the relation 
between principal components and the heating value of the torrefied product. The presence of 
significant and persistent correlations between changes in the values of two parameters, was 
assessed by determining the correlations at different lag times.  

Chapter 2 reports the development of artificial neural network predictive models of data acquired 
during 12 months of operation of an anaerobic digester treating food wastes. The purpose of the 
work was to make a predictive model to map process performance, evaluated in terms of CH4 
production, to measurable operational parameters. The models were then assessed for use as 
decision tools to control the digester feeding rate. Three separate model architectures were 
evaluated: 1) Long short-term memory (LSTM) 2) Convolutional (CNN) and 3) a hybrid model 
featuring parallel data flow through LSTM and CNN layers. The LSTM model was found to have 
the lowest RMSE between predicted and measured biogas production. However, the 1-layer CNN 
proved to more accurately make correct feeding decisions (58%) which was slightly lower than the 
rate obtained by skilled operators (63%).  

Chapter 3 reports the development of a problem-solving approach and a simulation tool for use in 
designing upflow anaerobic filters (UAF) for wastewater treatment. The multi-layer perceptron 
(MLP) artificial neural network model was found to be more accurate than a 4th degree polynomial 
model and more appropriate than the LSTM model. The Root Mean Squared Error (RMSE) of 
the predicted responses on unseen test data was 10.1% of the range of the true response values 
and the coefficient of determination (R2) was 0.66. The MLP model was then used to run 
simulations of different design values of the UAF packing diameter, packing material type and the 
bioreactor height to diameter ratio. The ranked results of simulation were used to select the optimal 
design values.  
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Résumé 
Cette thèse se compose de trois publications scientifiques qui utilisent des méthodes 
d'apprentissage automatique pour comprendre des processus industriels qui ont été conçus pour 
améliorer la qualité de l'environnement. Mon travail contribue aux efforts visant à créer des 
modèles numériques pour la simulation et le contrôle de processus. Les modèles peuvent être 
appliqués pour améliorer la conception d’équipements et les performances de processus. Le gain 
personnel réalisé a été l'acquisition des connaissances et des compétences pratiques nécessaires 
pour mieux analyser des données quantitatives et mieux concevoir des modèles prédictifs. 

Le chapitre 1 rapporte l'analyse des données obtenues à partir d'essais de torréfaction en continu 
menés dans une usine pilote intégrée. Le but du travail était de mieux comprendre le comportement 
du procédé et d’extraire des informations qui pourraient être utiles dans la conception d'un 
contrôleur de procédé visant à obtenir un produit ayant une valeur calorifique élevée et constante 
à partir de biomasse brute hétérogène ayant une valeur calorifique faible et fluctuante. L'analyse en 
composantes principales des données opérationnelles en ligne a montré que les 10 premières 
composantes principales ne représentent que 75 % de la variance totale du système. Cela indique 
que les données ne peuvent pas être résumées par seulement quelques variables latentes. La 
statistique t-carré de Hotelling et les scores de la première composante principale ont été analysés 
pour identifier les périodes d'instabilité du processus, puis pour identifier les paramètres de 
perturbation et les paramètres manipulés qui contribuent à la variance au cours de ces périodes. Un 
modèle de régression des moindres carrés partiels a été développé pour décrire la relation entre les 
composants principaux et le pouvoir calorifique du produit torréfié. La présence de corrélations 
significatives et persistantes entre les changements des valeurs de deux paramètres a été évaluée en 
déterminant les corrélations à différents temps de latence. 

Le chapitre 2 rapporte le développement de modèles prédictifs à réseaux de neurones artificiels 
entrainés avec des données acquises pendant 12 mois de fonctionnement d'un digesteur anaérobie 
traitant des déchets alimentaires. L'objectif des travaux était de réaliser un modèle prédictif 
permettant de décrire la relation entre les performances du procédé, évaluées en termes de 
production de CH4, et des paramètres opérationnels mesurables. Les modèles ont ensuite été 
évalués pour être utilisés comme outils de décision pour contrôler le taux d'alimentation du 
digesteur. Trois architectures de modèles distinctes ont été évaluées : 1) Long short-term memory 
(LSTM) 2) convolution à 1 couche (1-D CNN) et 3) un modèle hybride présentant un flux de 
données parallèle à travers les couches LSTM et 1-D CNN. Le modèle LSTM s'est avéré avoir le 
RMSE le plus bas entre la prédiction de la production de biogaz et la production réellement 
mesurée. Cependant, le 1-D CNN s'est avéré plus précis comme aide à la prise de décision 
d'alimentation du digesteur. Le taux de décisions correctes était de 58%, ce qui était légèrement 
inférieur au taux obtenu par des opérateurs qualifiés (63%). 

Le chapitre 3 rapporte le développement d'une approche de résolution du problème de 
développement d’équipements et un outil de simulation à utiliser dans la conception de filtres 
anaérobies à flux ascendant (UAF) pour le traitement des eaux usées. Le perceptron multicouche 
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(MLP) s'est avéré être plus précis qu'un modèle polynomial du 4e degré et plus approprié que le 
modèle LSTM. L'erreur quadratique moyenne (RMSE) des réponses prédites sur les données de 
validation était de 10,1% de la plage des valeurs de réponse réelles et le coefficient de détermination 
(R2) était de 0,66. Le modèle MLP a ensuite été utilisé pour exécuter des simulations de différentes 
valeurs de conception du diamètre de garnissage, du type de matériau de garnissage et du rapport 
hauteur/diamètre du bioréacteur. Les résultats classés de la simulation ont été utilisés pour 
sélectionner les valeurs de conception optimales.  
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Synthesis 

Advances in data acquisition capacity, computing power and open-source libraries for data 
processing have opened a new and wide horizon for progress in the application of information 
systems knowledge and technology towards improving environmental quality. The range of 
possible environmental applications of IoT, big data, and machine learning includes studies of 
natural ecosystems, optimization of ecosystems services and the design of industrial machines to 
treat, for example, water, wastewater, municipal solid waste, and combustion and other waste gases. 
New approaches, skills and methods are needed to fully exploit this potential. My personal aims in 
undertaking a PhD were to change my perspective towards data acquisition and to learn how to 
use machine learning tools to extract more useful information from raw data. This thesis compiles 
three scientific publications that use machine learning methods to understand industrial processes 
that were designed to improve environmental quality. 
 
In the first article titled “Multivariate analysis of biomass torrefaction pilot plant operation data to support the 
development of a process model and controller” I report the results of the analysis of data obtained during 
continuous torrefaction trials conducted in an integrated pilot plant (100 kg/h capacity). 
Torrefaction is a thermal process that yields solid, gas and condensable vapor phases. A process 
control strategy is required to specify and adapt the treatment conditions during a continuous 
process to assure process stability and to optimize the product yield and the energy efficiency of 
the process.  
 
Why? 
The purpose of the work was to extract information from the data that could be used to develop 
a process control strategy. An effective process control strategy would make it possible to accept 
raw materials having a wide range of physical and chemical characteristics and to process the raw 
material with minimal human intervention. In contrast, a process that requires a narrow range of 
raw material physical and chemical characteristics would require labor intensive presorting and a 
larger capacity for raw material storage. Consequently, the ability to accept raw materials having a 
wide range of physical and chemical characteristics is desirable because it would reduce investment 
and operating costs and increase the processing rate. Pilot plant data acquisition required many 
online and labor-intensive off-line measurements. An industrial scale plant might have even more 
on-line measurements. It might be possible to replace many off-line measurements by automatic 
measurements and machine learning based soft sensors. Development of an optimal process 
controller would require identification of the most important parameters influencing the process, 
the parameter values that indicate process instability and consequently need to be adjusted, and the 
lag-times between changes in manipulatable parameter values and the response. This knowledge 
would help to make the optimal selection of sampling points. 
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How? 
The dataset acquired during pilot plant trials comprised 95 process variables including 23 on-line 
temperature measurements and 34 off-line measurements. The methods of Principal components 
analysis (PCA) and Partial least squares (PLS) regression were used to identify the most important 
parameters influencing the process. Parameter values that have a high positive correlation might 
be redundant. Thus, grouping these variables to create a new latent variable might be more 
informative than giving more importance to one member of the group, or than including all the 
members of the group as predictors in a model.  The method of PCA approximates a complete 
data matrix by latent variables of lower dimension thereby removing redundant information. The 
method of PLS, sometimes called projection to latent structures, also makes use of the latent 
variable concept. The method of PLS regression maps a relationship between latent variables and 
a response variable. The regression coefficients are latent variables that group correlated predictors. 
The relative magnitude of the regression coefficients is an indication of the importance of the 
variables that are members of the group. In a stable process, the variation in parameter values about 
the expected values of the parameter is low. The Hotelling’s t-squared statistic quantifies the total 
process variation at an instance. Plots of the Hotelling’s t-squared statistics were used to identify 
the periods of process instability. The first principal component scores were then analyzed to 
identify the disturbance parameters and the manipulated parameters that contribute to the variance 
during these periods of process instability. The presence of significant and of persistent correlations 
between changes in the values of two parameters, was assessed by determining the correlations at 
different lag times. The parameters that had correlations with many other parameters were 
identified by calculating the total correlated lag times for each parameter pair. 
 
Results 
Principal components analysis of on-line operational data showed that the first 10 principal 
components account for approximately 80% of the total variance in the system. These are the most 
important indicators of process instability. Further analysis of the first principal component 
loadings identified the correlated parameters and the parameters that behave inversely during 
process operation. Analysis of the first principal component loadings identified the correlated 
parameters and the parameters that behave inversely during process operation.  
A Partial Least Squares (PLS) regression model was developed to map the relation between the 
principal components obtained from process operational parameters and the Calorific Value of the 
torrefied product. The model does not explain 100% of the variation in the dataset because the 
number of the predictors used in the model is lower than the number of prediction vectors in the 
original dataset. One observes that adding more than 9 principal components does not increase the 
fraction of the total variance in the system that is explained by the model. It was found that the 
torrefaction temperature and the CO2 content were important coefficients of the regression 
equation. Consequently, these parameters should be included in the process control strategy. In 
contrast, the remaining parameters showed less variation during the process operation. 
Consequently, some of these sensors and locations might be redundant and the measured values 
might have less impact on the process performance.  
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An average lag time of 41 and 34 minutes was found respectively between the thermal oil flow to 
the entry and exit sections of the torrefactor and many other process parameters. In contrast, the 
thermal oil flow to the central section of the torrefactor preceded changes in many other process 
parameters by an average of 24 minutes. 
 
Conclusions 
The results demonstrate the usefulness of the approach in understanding a complex system. For 
example, the results of this study demonstrate the importance of monitoring the torrefaction vapor 
CO2 content and including these measurements in a process control strategy. The identification 
and the quantification of significant lag times between changes in the torrefaction thermal power 
supply and the product calorific value indicate that the mechanical design should be modified to 
reduce the response time and more precisely control the supply of thermal power to the process. 
The approach, methods and skills learned can be applied to other thermal treatment systems such 
as the pyrolysis of municipal solid wastes and combustion gas treatment.  
 
In the second article titled “LSTM and 1-D Convolutional Neural Networks for predictive 
monitoring of the anaerobic digestion process” I report a comparison of 3 different artificial neural 
network model architectures trained on data acquired during 12 months of operation of an 
anaerobic digester treating food wastes. A novel control strategy based of the prediction of biogas 
production 4 hours in the future is proposed. 
 
Why? 
The purpose of the work was to make a predictive model to map process performance, evaluated 
in terms of CH4 production, with practically measurable operational parameters. A predictive 
model could be used to automatically control the rate of waste food feeding to the digester. The 
automatic control strategy would help to intensify the anaerobic digestion process and to achieve 
the goals of small size, a short hydraulic retention time and long-duration autonomous operation. 
 
How? 
Principal Component Analysis (PCA), Independent Component Analysis (FastICA) and Partial 
Least Squares (PLS) regression methods were used for dimensionality reduction and to identify the 
parameters that make the greatest contribution to process stability. Three separate predictive model 
architectures were evaluated: 1) Long short-term memory (LSTM) 2) Convolutional (1-D CNN) 
and 3) a hybrid model featuring parallel data flow through LSTM and 1-D CNN layers. The process 
control strategy aimed to decide when to feed raw food waste to the digester. If the CH4 production 
was predicted to increase, then the decision was to feed the digester. 
 
Results 
The daily feed volume, pH, ammonium concentration and volatile fatty acid concentration were 
identified as being the relevant parameters for use to train and test the Neural Network models. 
The 3 different model architectures were evaluated in terms of the RMSE between the predictions 
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and the true values. The LSTM and the 1-D CNN models proved to be accurate with RMSE values 
of, respectively, 0.017 and 0.026. However, model testing with new data showed that the LSTM 
did not have the ability to generalize. The hybrid model was not accurate (RMSE = 0.19). In terms 
of the frequency of correct feeding decisions the 1-D CNN model was found to have the highest 
rate of correct feeding decisions (58%) which was slightly lower than the rate obtained by skilled 
operators (63%). 
 
Conclusions 
The result of dimensionality reduction using PCA, ICA and PLS methods was the selection of only 
3 predictors for use in the ANN model. This is practically useful for the selection of the relevant 
process sensors. However, the observed low accuracy of the decisions to feed suggests that the 
data acquisition strategy should be modified to include additional process sensors or a higher 
sampling rate. Alternatively, the ANN model could be improved to make better use of the data. 
Although the predictive model built using 1-D CNN architecture was slightly less accurate than 
the LSTM model, the state image approach is intuitively interesting and merits further development 
for use in process control. Moreover, the 1-D CNN model proved to more accurately predict 
future biogas production. Considering that the acquired training data is the result of the decisions 
made by expert operators, the capacity of the model to predict future conditions should be 
compared to the capacity of the skilled operators to predict future conditions.  The comparison is, 
thus, the ratio of correct decisions made using the model to correct decisions made by the 
operators. This ratio is 58%/63% (0.92). In conclusion, the control strategy using the 1-D CNN 
model was nearly as accurate as feeding control by skilled operators. 
 
In the third article titled “An Artificial Neural Network for Simulation of an Upflow Anaerobic 
Filter Wastewater Treatment Process” I built an artificial neural network predictive model based 
on data acquired during 7 months of continuous operation under industrial conditions and on 
supplementary mock data. I used the model as a simulation tool to assess different design values 
of the anaerobic filter packing material diameter, packing material type and the bioreactor height 
to diameter ratio. The study hypothesis was that different sets of design values can be distinguished 
by simulation of previously untested data. Thus, the design values of the industrial equipment 
would be selected based on significant differences in the mean response values of simulation runs. 
Additionally, I proposed to build a mobile data acquisition system and use an experimental 
approach that aims to save time and reduce costs. 
 
Why 
The conventional methods of modeling wastewater treatment processes involve the use of 
controlled experiments under strictly defined laboratory conditions and the use of established 
mechanistic models. For example, the ADM-1 modeli is implemented as a differential and algebraic 
equation comprising 26 component dynamic concentration variables and 8 implicit algebraic 
variables that describe a system of subprocesses most of which are microbe mediated biochemical 
transformations defined by stoichiometry and kinetic coefficients. Quantification of mass flows is 
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simplified by lumping components into classes such as proteins, Chemical Oxygen Demand 
(COD), which is a practically useful expression of pollution strength as the mass of oxygen required 
to oxidize a pollutant, soluble carbohydrates, Long Chain Fatty Acids (LCFA), etc. Use of the 
model involves the determination of the kinetic coefficients and chemical species by time and 
resource intensive laboratory studies. In practice, to save money and time, many of the required 
values are selected from the literature.  
Although the mechanistic models and the associated research to develop them have served to 
improve the understanding of the system of biochemical processes involved in anaerobic digestion, 
the models do not account for important features such as the bioreactor mechanical design, the 
hydrodynamic parameters and the large and frequent variations in the influent characteristics, 
microbial populations and operating conditions that are often encountered in industrial conditions. 
Based on my own professional experience, I identified several inadequacies in this approach and 
then aimed to make an improved approach to the design of environmental bioprocesses.  
For example, the conventional approach might not adequately account for the variation 
encountered under real industrial, and especially under real environmental, conditions where it is 
not possible to continuously measure and regulate the substrate composition and mass flow. I 
imagined that it would be more efficient to build a predictive model of a swarm of data points 
collected under real industrial conditions. 
The standard models require the determination of biochemical parameters such as kinetic 
constants, inhibition factors and chemical intermediates. Acquisition of this data requires 
laboratory experimentation under artificial conditions. In practice many of the required values are 
assumed and the effects of actual industrial operating conditions are not studied. The conventional 
workflow to develop environmental bioprocesses could be improved, for example, by reducing the 
time and resource requirements for laboratory experimentation and by collecting data under real 
operating conditions. Additionally, data collection systems could be designed to make it possible 
to easily vary and measure real mechanical parameters under real operating conditions.  
In the case of the upflow anaerobic filter (UAF) studied, the goal was to determine the design 
values of the packing material spherical diameter, type of packing material and fixed bed height to 
diameter ratio must be specified. Finding the optimal combination of design values using 
conventional methods would be time consuming and costly.  
 
How 
The use of Artificial Neural Networks is a black-box approach to modeling complex systems. Using 
a black-box approach made it possible to not include the conventional bioprocesses parameters 
such as kinetic constants, microbial inhibition factors, and hydrodynamic parameters that are 
difficult to measure. Instead, easy to measure parameters like influent flow rate, exit gas 
composition and the dimensions of constructed mechanical features were the only predictors used 
in the model. Following recent developments in image recognition methods, the ANN model was 
highly overparameterized to make it possible to simulate by interpolation using new predictors. 
The ratio of model parameters to data was 35.  
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Data were acquired using a test unit installed in a municipal wastewater treatment plant and 
continuously fed primary effluent. The experimental dataset was acquired before deciding to use 
an artificial neural network modeling approach. The predictors were a small dataset of 3 mechanical 
parameters. Since ANN models require large datasets, I created surrogate data and I created mock 
experiments to supplement the experimental dataset. The use of mock data was necessary for this 
proof-of-concept study. However, mock data should not be used to design a commercial 
bioreactor. The proposed method to improve the design process of a commercial bioreactor would 
require a dataset comprised of actual measurements. Next, I made numeric models and compared 
the prediction accuracy of a 4th degree polynomial, a multi-layer perceptron (MLP), and an LSTM 
model. The MLP model proved to be the most accurate.  
The MLP model was saved and reloaded for use as a simulation tool to aid in designing the UAF 
bioreactor. The use of simulations during the design process is a common practice to test different 
designs. The final design specification can be determined after comparing the simulated test cases. 
A full factorial design was used to specify 125 permutations of the 3 mechanical parameters 
(factors) at 5 levels. To make comparison between simulated experiments possible, the same daily 
influent flow rate profile was used to run all 125 test cases. I ran 20 replicates of each simulated 
experiment. The experiments were then ranked according to average total calorific value (CV) 
reduction.  
 
Results 
The coefficients of determination (R2) of the MLP and of the 4th degree polynomial models were, 
respectively, 0.66 and 0.37. The prediction accuracy of the MLP, evaluated in terms RMSE between 
predicted and observed calorific value reduction during validation tests, was 10.1%. I built, trained, 
and evaluated all possible MLP architectures having between 1 to 13 hidden layers and from 8 to 
4096 units per hidden layer. I observed that the models having between 64 and 2048 units per layer 
had the highest accuracy and that using between 2 and 6 hidden layers yields similar results. The 
results of 125 simulations were ranked by total CV reduction. The ranked CV reductions covered 
a wide range with the highest ranked value more than 3 times greater than the lowest ranked value. 
The very low p-value of the difference between the means of the highest ranked CV reductions 
made it possible to select the design values for the industrial UAF bioreactor. This result 
demonstrates that a dataset generated during a 6-month experimental phase can be used to make 
simulations covering more than 60 years of continuous operation. 
 
Conclusions 
Machine learning and artificial neural networks are already well-established methods to model 
environmental bioprocess data. The originality of this work lies in the use of a neural network for 
simulation of a designed bioprocess. The paper described, for the first time, a new workflow and 
the use of a MLP as a simulation tool to specify the constructive features of an Upflow Anaerobic 
Filter. Unlike conventional experimental designs, the proposed workflow allows the physical-
chemical parameters, such as stream composition, and the temporal factors to vary within their real 
ranges. Thus, the use of Artificial Neural Network predictive models for simulation simplifies 
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experimental planning and data acquisition because the requirement is only to build a wide ranging 
and dense dataset that covers the actual industrial conditions in the field. The design values of 
mechanical predictors were set according to an experimental plan based on the orthogonal Taguchi 
arrays. The acquired and mock data were used to build a highly parameterized neural network 
model. The study hypothesis that different sets of design values can be distinguished was tested by 
comparing the mean performance attained by each set of 125 different simulated experimental 
conditions. The conclusion is that the set of mechanical predictor values that resulted in the highest 
mean performance are the best design values for the anaerobic digester.  
The use of artificial neural networks is intended to complement existing DEA models and other 
mechanistic approaches to modeling. The reliability or trustworthiness of a neural network model 
is assessed by evaluating the error between the predictions and the measured data. This method is 
a powerful way to validate the predictive capacity of the model and the conclusions obtained using 
the model. However, artificial neural networks are black-box models that do not contribute to our 
understanding of the underlying process physics and chemistry. Consequently, our ignorance about 
the real biochemistry is still a limitation of artificial neural network predictive models. In contrast, 
the mechanistic models have the merit of trying to be complete representations of the processes. 
 
 
 
Motivation for writing this thesis 
The motivation for writing this thesis comes from my personal dissatisfaction with conventional 
modeling approaches, the observation that Artificial Neural Networks have demonstrated their 
capacity and usefulness as a prediction tool to solve non-linear and complex problems in 
engineering applicationsii, recent increases in computing power, and the availability of open-source 
libraries that made it possible for me to build models to map complex, non-linear relationships 
between input and output data.  
In all three articles I used conventional machine learning methods to extract latent information 
from datasets and build predictive models. The motivation for writing the first article came from 
my personal discovery that the conventional machine learning toolbox contains powerful open-
source methods and libraries that could be practically useful for analyzing the dataset obtained 
from torrefaction pilot plant operation. Similarly, the motivation for writing the second article came 
from my personal discovery of the wide variety of possible ANN architectures and the intuition 
that the CNN state-image approach was suited to modeling the anaerobic digestion process. The 
motivation for writing the third article came from my intuition that a dense dataset acquired under 
nearly industrial conditions could be used to make an ANN that would be useful for simulation. 
To test this hypothesis, a MLP predictive model of an upflow anaerobic filter was built and used 
for simulation. Thus, the innovative content and contribution of this thesis is: 1) a demonstration 
of a new approach that does not require designed laboratory experiments, 2) an additional 
application of machine learning tools to environmental processes, and 3) the use of an MLP model 
for simulation and selection of mechanical constructive features. 
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Discussion of artificial neural network versus mechanistic approaches to modeling environmental bioprocesses 
Since an artificial neural network is always a “black box”, the user renounces to obtaining 
knowledge about the physical, chemical, and biological mechanisms of the modeled process. In 
contrast, the mechanistic approach aims to describe, in precise terms, the physical, chemical, and 
biological mechanisms of the modeled process. In my opinion, these two approaches are 
complementary. Work to develop and improve both ANN and mechanistic models should 
continue. When used with machine learning methods, the ANN approach identifies and uses the 
most relevant predictors to obtain a robust model that is often more accurate than a mechanistic 
model over a wide range of operating conditions. The accuracy is due to using the basic machine 
learning method of training the model using a very large dataset, calculating the error between 
predictions and true values, and then adjusting the model parameters to improve the accuracy of 
the predictions. The most relevant predictors are not necessarily the same as those used in a 
mechanistic model. Moreover, the most relevant predictors might be unique characteristics of the 
equipment design and not reveal anything about the underlying physics, chemistry, or the biological 
processes. Consequently, one can build an accurate predictive model of an environmental process 
without knowing or learning anything about how the process works at the physical, chemical, or 
biological level. Thus, the ANN approach is often practically useful for engineering applications 
without contributing to theoretical understanding.  
The mechanistic modeling approach, however, attempts to build a system of interrelated equations 
each describing precisely defined physical, chemical, or biological sub-processes. The development 
of this approach involves scientific discovery and theory. The strength of this approach lies in the 
theoretical understanding of the subprocesses and their interrelationships. This understanding of 
basic mechanisms might be useful in the design new or optimized processes because the designers 
will know where to focus their attention and experimental investigations.  
The ANN method is data driven. Usually, the more data available, the more accurate the model. 
Additionally, the model can continuously improve with the use of new data. In contrast, the 
mechanistic model is built using experimentally acquired data and has a more limited capacity to 
integrate new data acquired during industrial operations. Given the current trend of increasing 
operational data acquisition, the power of ANN and machine learning approaches will certainly 
increase. 
 
Wider application of the results 
The machine learning methods that I learned while preparing this thesis can be applied to any 
complex system. For example, PCA and PLS are practical methods to gain insights into complex 
datasets, to detect deviations from normal conditions, to identify the most important predictors, 
and for root cause analysis. This thesis focused on machines. However, the methods can be applied 
to improve designed natural systems such as forests, wetlands, lakes, and oceans. Natural 
ecosystems can be modified and controlled to provide economically valuable ecosystem services 
that promote, for example, water and air purification, fish populations, pest control, and resistance 
to fires. 
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Availability of computer code and data 
The Matlab® and Python code used to analyze the data and make the models is available on 
request. The data that support the findings of the torrefaction and the anaerobic digestion pilot 
studies are available pending approval of the owners. The data that support the findings of the 
upflow anaerobic filter study are available from the author on request.  
 

 
i Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WT, Siegrist H, Vavilin VA. 
The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci Technol. 2002;45(10):65-73. 
ii Yilmazkaya E., Dagdelenler G., Ozcelic Y., Sonmez H. Prediction of mono-wire cutting machine performance 
parameters using artificial neural network and regression models. Engineering Geology 239 (2018) 96–108. 
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Abstract. Torrefaction of biomass is a thermal treatment process executed in an oxygen poor environment in 
order to improve storage and combustion properties. This paper reports the results of multivariate analysis of data 
obtained from a continuous torrefaction trial conducted in an integrated pilot plant (100 kg/h capacity) 
comprising automated feeding, drying, torrefaction, torrefaction gas combustion and product cooling. The 
purpose of the work was to gain insights into the process behaviour that might be useful in the conception of a 
process controller that makes it possible to obtain a product having a constant calorific value from heterogeneous 
raw biomass having a fluctuating calorific value. The questions addressed in this paper are; what are the most 
important predictors of final product calorific value, what parameters should be manipulated, what is the lag time 
between parameter adjustment and response, which manipulated parameters account for deviations from mean 
process values during operation and what is the predicted product calorific value as a function of the important 
manipulated parameters? Time series data collected during 35 hours of continuous operation and composed of 
observations of 95 process variables including 23 on-line temperature measurements and 34 off-line 
measurements of raw and torrefied biomass properties such as moisture content and calorific value were 
analysed. The results of PCA and PLS analysis identified the dryer temperature as having the most important 
influence on process stability and the temperature of the central torrefactor section as having the most important 
influence on product calorific value.  

 

1 INTRODUCTION 

In the global effort to reduce fossil CO2 emissions and to mitigate climate change, biomass is considered to be 
an important renewable raw material for the production of fuels and chemicals. However, the use of biomass is 
complicated by its instability and inhomogeneous proximate and ultimate parameters such as moisture, volatiles 
and oxygen content. Torrefaction has been proposed as an effective solution to problems such as biomass 
instability during storage, high grinding energy requirements and inefficient combustion and gasification due to 
inhomogeneity of the fuel. To study and address these challenges, a complete pilot biomass torrefaction system 
was built and used to tests a variety of feedstocks including hard wood chips, forest residues and branches from 
urban tree maintenance.  

An overview of the values measured during the pilot torrefaction trials was obtained from the plots of time-
series sensor data. However, given the large number of on-line and off-line measurements and the differences in 
the types of measured properties, it is difficult to make practically useful conclusions about the process control 
strategy from these observations. Alternative techniques of methodical analysis of on-line and off-line data are 
required to identify the relevant measured and manipulated variables and to rank them in terms of their 
explanation of process variance and correlation thereby leading to useful insight into the process and contributing 
to the development of strategies to control the process. 

As a complement to feed-back control which compensates for predictable disturbances, multivariate analysis 
of process data is used to detect and diagnose occurrences of special events and then to remove them by 
improvements to the automatic control system [1]. 
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This paper reports the first PCA and PLS analysis of the pilot plant operation data. Principal components 
analysis (PCA) approximates a complete data matrix by latent variables that are matrix products of lower 
dimension thereby removing redundant information. This objective is realized by creating lines (principal 
components) and planes that are least squares approximations of the data points that make the variance of the 
coordinates on the line or plane as large as possible [2]. In a similar manner, Partial Least Squares (PLS) 
regression also known as Projection to Latent Structures (PLS) establishes a relationship between the predictor 
variables and the response variable(s) [2]. PCA and PLS are useful methods to obtain an overview of data and 
the relationships between blocks of data in the early stages of a project [2]. In an industrial process, tens of 
thousands of data points are easily collected and all of these data should be used to effectively monitor and 
diagnose process performance. However, only a few underlying events are driving a process at any given time. 
By examining process data from a large number of measured variables in the projection space defined by a small 
number of latent variables it is often possible to extract useful information that can be used to improve the 
process[1]. PLS has the ability to analyze data with many, noisy, collinear, and even incomplete variables [3]. 
Another useful procedure to monitor a multivariate process consists in comparing the Hotelling T2 statistic 
obtained from principal component scores to a value of T2 corresponding to a confidence interval obtained from 
an F-distribution [4]. Lestander [5] studied memory effects in wood pelleting plant by evaluating the cross 
correlations between process operational parameters and off-line measurements of product qualities such as pellet 
dryness. Calculating the cross-correlations resulting from simulated time delays between process parameters 
gives an indication of lag-times between changes to manipulated parameters within the process and their effect on 
other process parameters. 

The methods and results described in this paper can be used to achieve the process control goals of increasing 
the product calorific value and production rate while at the same time widening the acceptance limits of the 
biomass raw material quality. 

2 PILOT PLANT AND TRIALS 

2.1 Pilot plant description 
The pilot plant was designed to accept and thermally treat shredded or chipped woody biomass having a 

moisture content of up to 35%. Biomass is continuously transferred by belt conveyor from a 10 m3 feed hopper to 
a counter current tumbling dryer that is heated by exhaust gas mixed with air and by a thermal oil jacket. Dryed 
chips are transferred via a rotary valve to a screw-conveyor torrefactor that is heated by thermal oil. The torrefied 
producted is cooled by a water mist, then further cooled during transfer through a water-jacketed cooling screw 
to a hopper scale, and finally discharged into 1m3 big-bags. Torrefaction gas flows through a heated pipe to a 
Flox® burner system with a turbo-compressor. Natural gas is blended with torrefaction gas to compensate for the 
lack of thermal energy supplied from torrefaction gas combustion. The plant is equipped with an HMI, PLC and 
data logger designed to provide completely automated continuous operation except for manual loading of the 
feed hopper and handling of the big bags. 
 
2.2 Process sensors and on-line measurement 
All of the measured variables were logged at 5-second intervals. Temperature sensors are either type K 
thermocouples or Pt100 temperature detectors (Endress-Hausser, CH). An IR sensor (Raytek, USA) measures the 
wood chip surface temperature at the dryer exit. The CO2 and O2 content of the torrefaction gas were measured 
using respectively an IR sensor (Dynament, UK) and a lambda (Bosch, DE) probe.  The flow rate of hot gas 
entering the dryer was measured using a Pitot tube (Kimo, F).   
 
2.3 Off-line measurements  
Raw materials and torrefied product were characterized according to ISO specifications for solid biofuels [6]. 
Water consumption, cooling water temperatures and flow rates, thermal oil flow rate and the ambient temperature 
were measured or calculated off-line. Natural gas flow rate was confirmed by an off-line volumetric gas counter. 
 
2.4 Process control 

The primary objective of the process controller is to assure that fresh biomass is fed at the rate required to 
produce torrefied biomass at the requested rate. The strategy to attain this objective involves control loops that 
link system sub-processes that are controlled individually by PID process controllers. The dryer PID controller 
aims to achieve a temperature set point by controlling methane flow to the burner, the thermal oil and hot gas 
flow rates to the dryer and the torrefaction residence time. The torrefactor PID aims to attain a temperature set 
point by controlling thermal oil flow to the torrefactor. The control of auxiliary systems and safety features are 
not described in this paper. 
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2.5 Torrefaction trial procedure 
Biomass raw materials were sampled at the time of delivery and again from the point of belt conveyor loading at 
between 1 and 2 hour intervals during pilot plant operation and then characterized after the torrefaction trial. 
Given the long heat-up and cool down times, 20 m3 of raw biomass is the minimum amount tested during a trial. 
Natural gas only is supplied to the burner for ignition and during the following 4 hours that are required to bring 
the pilot plant to the operating temperature of approximately 250° in the torrefactor after which natural gas and 
torrefaction gas are co-combusted. The initial biomass loading rate is set to less than 50% of the capacity and 
then gradually increased. Process set points and PID controller values were set manually based on previous 
experience and on observations made during the current trial. Grab samples of the product were manually 
obtained at intervals of between 1 and 2 hours. 

3 DATA AND ANALYSIS 

3.1 On-line data 
Since the on-line data have units of °C, amperes, Nm3, kg, kg/h, bar, mbar and %, the data were unit-variance 
scaled by dividing each column by its standard deviation thereby assigning equal weights to each data column. 
The data were mean centered to move the center of the data to the origin of the variable coordinate system. Unit-
variance scaling combined with mean centering is called auto-scaling [2]. Since torrefaction is intended to be a 
continuous process, only the data acquired between the time of the first appearance of torrefied product and the 
beginning of cool down were considered in this study. Table 1 lists the on-line probes considered in this study 
and their corresponding short names and i.d numbers.  
 

Probe ID Parameter 
Param.

N° 
Probe ID Parameter Param. 

N° 
F101PV Biomass feed rate 1 T403bPV Final torrefactor heating segment 21 

T201PV Initial dryer heating segment 2 T403sPV Torrefactor final chamber 22 

T202PV Middle dryer heating segment 3 T404PV Thermal oil temperature, torrefactor 23 

T203PV Final dryer heating segment 4 T405PV Immersed in wood chips, torrefactor exit 24 

T203sPV Final dryer heating segment 5 T406PV Torrefaction gas, burner entrance 25 

T204PV Dryer thermal oil 6 T407PV Exhaust gas, burner exit 26 

T205PV Post dryer exit gas 7 T408PV Exhaust gas, between the heat exchangers 27 

T206PV Heat exchanger exit gas 8 P401PV Torrefaction gas pressure 28 

T207aPV Wood surface, dryer exit 9 P402PV Thermal oil reservoir pressure, torrefactor 29 

T207bPV Immersed in wood chips, dryer exit 10 Q401PV O2, torrefaction gas 30 

T208PV Hot gas entering dryer  11 Q402PV CO2, torrefaction gas 31 

F202PV Gas flow rate entering dryer 12 TO401IPV Current, torrefactor motor 32 

SE201FPV Current, dryer motor 13 VR401PV Thermal oil by-pass valve, torrefactor 33 

VT201IPV 
Current, rotary valve between the 

dryer and torrefactor 
14 

VR402SP Thermal oil by-pass valve, torrefactor central 
section 

34 

VR201PV Thermal oil by-pass valve, dryer 15 
VR403SP Thermal oil by-pass valve, torrefactor final  

section 
35 

VR202SP 
Thermal oil by-pass valve, dryer 

central section 
16 

T501PV Interior cooling screw, midway 36 

VR203SP 
Thermal oil by-pass valve, dryer 

final  section 
17 

T502PV Interior cooling screw, exit 37 

T401PV Initial torrefactor heating segment 18 T601PV Turbo exit 38 

T402PV Middle torrefactor heating segment 19 F601PV Methane flow rate 39 

T403aPV Final torrefactor heating segment 20 VE601IPV Current, dryer ventilator motor 40 

Table 1. on-line parameters  
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3.2 Off-line data 
The quality of the raw material and the torrefied were determined after the torrefaction trial. Table 2 summarizes 
the main characteristics of the biomass raw material and the torrefied product. 
 

  Raw material Product 

Biomass quality parameter Unit 
Mea

n Std CV (%)  
Mea

n Std CV (%)  

Humidity % 24.0 1.5 6.2 5.8 3.2 55.0 

Volatiles content % 81.7 0.3 0.3 77.3 2.3 2.9 

Ash content % 1.0 0.2 18.6 0.9 0.2 25.0 

Fixed carbon % 17.3 0.1 0.6 21.8 2.1 9.7 

Upper Calorific Value, dry 
MJ/k

g 19.9 0.2 0.8 21.0 0.4 2.1 

Lower Calorific Value, as received 
MJ/k

g 13.6 0.4 3.1 18.6 0.9 4.8 

Lower Calorific Value, dry 
MJ/k

g 18.7 0.1 0.8 19.9 0.5 2.3 

Table 2. Biomass properties 

3.3 Principal Component Analysis of on-line data 
Figure 1 shows the percent of the total variance in the on-line measurements explained by each principal 
component. The first principal component accounts for only 25% of the variance in the system and the first 10 
account for only 75% of the total variance. This result indicates that the pilot system has many non-correlated 
measurements and few redundant measurements. Figure 2 shows that 4 principal components explain 75% of the 
variation in the temperature data. This indicates that some of the temperature probes might be redundant.  

 
Figure 1. Variance in all on-line data explained by principal components 

 

Figure 2. Variance in temperature data explained by principal component 
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3.4  Process instability 
The Hotelling T-squared statistic is a measure of the multivariate distance of each observation from the center of 
the data set [7]. A time series plot of the calculated T-squared statistic and the alpha value calculated from the F-
distribution reveals process instability as the periods of large deviations from the center of the data set when the 
value of the T-squared statistic is greater than the value of alpha. Score plots produced at the times when T- 
squared exceeds alpha identify the particular sensors and the manipulated parameters that contribute to the 
variance during periods of process instability.  
 
3.5 PLS analysis of product calorific value 
PLS is often used to predict the values of time-consuming off-line physical sample measurements in real-time 
using the online data from the process. PLS is a latent variable method having the objectives of providing the 
best explanations of the predictor and response variable spaces and in predicting the greatest relationship 
between the predictor and response variable spaces [2]. In this study the predictor space is comprised of the 40 
on-line parameters listed in table 1 and the response space is the lower calorific value of the dry torrefied 
product. 
 
3.6 Correlation analysis of dryer heating 
Since the results of principal component analysis of all of the process data showed that the dryer contributes the 
greatest amount of overall process variance, the dryer was further analyzed by determining the correlations 
between dryer operating parameters including the biomass feed rate.  
 
3.7 Lag times between on-line parameters 
Lag times between all possible combinations of 40 on-line operational parameters were determined using the 
Matlab® [7] finddelay function embedded in for loops. The function creates time delays between parameters, 
evaluates the resulting cross correlations and returns the delay in terms of the difference in the sample row 
numbers that results in a significant cross correlation. 

4 RESULTS AND DISCUSSION 

4.1  Principal Components Analysis of on-line data 
Analysis of the first Principal Component loadings show that the variance in final dryer section (T203s) 
contributes the most to overall process variance. Taken together, the dryer temperature probes make a greater 
contribution to process variance than the torrefactor temperature probes. However, the difference is not great and 
the difference might also be explained by the position of the probes in the dryer and the torrefactor. 

P
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Figure 3. First Principal Component loading 

Figure 4 plots the first and second principal component loadings. The parameters that have loadings located in 
diagonally opposite quadrants behave inversely during process operation [2]. When the value of one measured 
parameter increases, the value of the parameter in the diagonally opposite quadrant decreases and the greater the 
separation on the plot, the greater the opposing effect. The greatest number of scores are located in the right 
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quadrants indicating that many measured values are positively correlated. The location of the measured 
parameters numbers 1, 16, 17, 33, 34 and 35 in the lower left quadrant indicates that when the measured values 
increase, the measured values of the other parameters decreases. Measured parameter number 1 is the biomass 
feed rate and numbers 16, 17, 33, 34 and 35 are the fraction of opening of the valves controlling thermal oil flow 
into the dryer and the torrefactor. One can conclude that when the raw material feed rate increases, the thermal 
oil valves open and the temperatures throughout the system decrease. 
 

 
Figure 4. Loading plot, Principal components 1 and 2 

 
4.2 Process instability 
Periods of process instability can be defined as periods when the T-squared statistic exceeds an alpha limit of 
5%. Figure 5 shows the T-squared statistic calculated from the first principal component scores of 40 on-line 
parameters.  
 

 
Figure 5. T-squared 

 
The value of the T-squared statistic increases around observations 10’000 and 18’000 indicating high variance of 
the on-line measurements and process instability. In order to identify the parameters that deviate the most from 
the central values during process instability, score plots of the measured parameters at observations 10’025 and 
18’700 were examined. The score plots show that the highest scores during both periods of instability were those 
of the dryer temperatures, in particular the temperature of the final dryer section just before transfer to the 
torrefactor.   
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Figure 6. First Principal Component scores, observation n°10'025 

 

Figure 7. First Principal Component scores, observation n°18'700 

 
4.3  Predictors of product quality 
Provided that the product respects the limit values for environmental contaminants, the Net Calorific Value 
(NCV) is the most important quality indicator of the of the torrefied product because the NCV indicates the 
amount of thermal energy produced in a typical non-condensing biomass burner and is influenced by the moisture 
content of the fuel. According to ISO 17225:8, the NCV must always be greater than 21 MJ/kg.  The Gross 
Calorific Value (GCV) includes the latent heat of condensation of the combustion products and indicates the 
chemical energy stored in the fuel independently of the fuel moisture content. Since variations in product 
humidity during the pilot trials is largely explained by the spray cooling system and improvements should reduce 
the variation in product moisture content, the product quality from the pilot plant was evaluated in terms of GCV.  
A linear expression involving beta values for each process parameter was obtained by PLS regression of 40 on-
line process parameters and the product GCV. R-squared is 0.76.  

032



First A. Author, Second B. Author, and Third C. Coauthor. 

 
Figure 8. Response variance explained by PLS predictor components 

 
The beta-values shown in figure 9 show the relative importance of each predictor parameter in determining the 
product GCV. 
 

 
Figure 9. PLS β values, Product UCV as a function of on-line process parameters 

As indicated by the relative values of β, the torrefactor temperature values have a more important influence on 
GCV than the dryer temperature values. Interestingly, the biomass feed rate and the methane feed rate do not 
have an important influence on the product GCV while the CO2 concentration of the torrefaction gas has an 
important influence on product GCV. PLS regression of on-line data and the off line determinations of the 
calorific value of the torrefied product were used to make a predictive model. 
 

UCV, dry = 1.7 + X*β + Yresidual     (1) 
 

Were X is the matrix of on-line measurements, β is a vector of coefficients and Yresidual is a vector of residuals 
returned by the Matlab® plsregress function. The Y-intercept of 1.7 was also returned by the Matlab® plsregress 
function. The model was cross-validated with a separate torrefaction batch by comparing the values predicted 
from the on line measurements to the measured calorific value of the product (Figure 10). Using the first 9 
principal components results in the model having the best fit to the off-line data. 
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Figure 10. Cross validation of the PLS regression model 

4.4 Dryer heating  
Since biomass drying requires by far the greatest amount of thermal energy consumed by the process, the 
correlations between manipulated parameters and dryer outlet temperature were examined in order to identify 
ways to optimize the dryer and the control of the dryer. Figure 11 shows the correlations between the dryer 
operating parameters including the biomass feed rate. The code numbers are explained in table 1. The 
temperature measurements of probe 207b are highly correlated with the temperature and the flow rate of the hot 
gas entering the dryer. The biomass feed rate is inversely correlated with the temperature in the middle of the 
dryer suggesting that the feed rate is limited by the temperature of the central section of the dryer. 

 
Figure 11 Correlations between dryer operating parameters 

 
4.5 Lag times between sub-process  
Figure 12 shows the 40 on-line measured parameters on the horizontal axis. The vertical axis shows all of the 
parameters having significant lags for each of the measured parameters. The height of each bar corresponds to 
the lag duration. The existence of a lag implies a significant and persistent correlation between changes in the 
values of two parameters during the torrefaction run. Positive values indicate that the parameter lags the 
parameters shown on the horizontal axis. Negative values indicate that the parameter precedes the parameters 
shown on the horizontal axis. In other words, the parameter is regularly changed after observing certain values of 
other measured parameters.  Knowing the duration of the lag might be useful in tuning the process control 
algorithm. Absence of a lag between two parameters implies that the relation between the parameters depends on 
factors that are not correlated during the entire torrefaction run. 
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Figure 12 Lag duration 

As shown in figure 12, the thermal oil control valves of both the dryer and the torrefactor are correlated with 
many other process parameters. The O2 content of the torrefaction gas is also correlated with many other 
parameters. The average lag time between these parameters and the group of other correlated parameters is 
presented in table 3. 
 

Parameter 
mean lag 
(minutes) 

VR201PV -6.73 

VR202SP -0.87 

VR203SP 6.88 

VR401PV 41.1 

VR402SP -23.58 

VR403SP 34.26 

Q401PV -31.02 

Table 3 Mean lag times relative to the on-line parameter 

5 CONCLUSIONS 

This study showed that PCA and PLS are useful methods for analyzing multivariate data obtained from a biomass 
torrefaction system. PCA of the entire system during stable operation showed that the temperature of the final 
dryer section, the temperature of the chips leaving the dryer and the temperature of the hot gas leaving the burner 
make the greatest contribution to the overall variance in the operational parameters. Principal component score 
plots obtained during periods of process instability are particularly useful in identifying the parameters that 
contribute the most to the total variation. The temperature of the thermal oil entering the dryer and the 
temperature of the gas leaving the dryer are reliable indicators of a disturbed process. PLS identified the 
predictor variables that make the most important contribution to the product calorific value. The temperature in 
the central section and the position of the valve controlling thermal oil flow to the central section of the 
torrefactor in particular are important parameters that can be manipulated in order to increase the product 
calorific value.  An equation that estimates the product calorific value as a function of 40 predictor variables 
reduced to 9 principal components was developed and cross validated with data obtained from a separate 
torrefaction batch. The valves that control thermal oil flow to the different sections of the dryer and the 
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torrefactor were found to have lagged correlations with many other measured parameters. These lag times should 
be accounted for in the process control algorithm. 
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First Principal Component loading

Conclusions
• The temperature of the thermal oil entering the dryer and the temperature of the gas leaving the dryer are reliable indicators of a disturbed process.
• The temperature in the central section and the position of the valve controlling thermal oil flow to the central section of the torrefactor in particular are

important predictors that can bemanipulated in order to increase andmaintain the product calorific value.
• There is a lag time of 20 to 35 minutes between changes in thermal oil temperature in the torrefactor and many other process parameters.

UCV, dry = 1.7 + X*β + Yresidual
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PROCESS MODEL AND CONTROLLER

Mark McCormick1 and Boris Correa2

1. University of Applied Sciences and Arts Western Switzerland, HEIG‐VD, Thermal Engineering Institute, Industrial Bioenergy Systems unit, Centre
St Roch, Avenue des sports 20, 1401 Yverdon‐les‐Bains, Switzerland. 2. GRT Technologies and Engineering (GRT) SA, Rue des Ducats 40 B, 1350
Orbe, Switzerland. *Corresponding author: tel: ++41 (0)24 557 61 51, E‐mail: mark.mccormick@heig‐vd.ch

Purpose of the study

Torrefaction of biomass is a thermal treatment process executed in an oxygen poor environment in order to improve storage and combustion properties. The purpose
of the work was to gain insights into the process behavior that might be useful in the conception of a process controller. Methodical analysis of on‐line and off‐line
data are required to identify the relevant measured and manipulated variables and to rank them in terms of their explanation of process variance and correlation
thereby leading to useful insight into the process and contributing to the development of strategies to control the process. This paper reports the first Principal
Components Analysis (PCA) and Partial Least Squares (PLS) regression analysis of the pilot plant operation data.

Score plot Process stability

PC1 loading during process instability (observation n°18,700) Predictor variance explained by the principle components Relative importance of process parameters to product GCV prediction

Cross correlations of dryer parametersCross validation of the GCV prediction model
Lag‐time between process parameters

Probe ID Parameter Param. N° Probe ID Parameter Param. N°

F101PV Biomass feed rate 1 T403bPV Final torrefactor heating segment 21

T201PV Initial dryer heating segment 2 T403sPV Torrefactor final chamber 22

T202PV Middle dryer heating segment 3 T404PV Thermal oil temperature, torrefactor 23

T203PV Final dryer heating segment 4 T405PV Immersed in wood chips, torrefactor exit 24

T203sPV Final dryer heating segment 5 T406PV Torrefaction gas, burner entrance 25

T204PV Dryer thermal oil 6 T407PV Exhaust gas, burner exit 26

T205PV Post dryer exit gas 7 T408PV Exhaust gas, between the heat exchangers 27

T206PV Heat exchanger exit gas 8 P401PV Torrefaction gas pressure 28

T207aPV Wood surface, dryer exit 9 P402PV Thermal oil reservoir pressure, torrefactor 29

T207bPV Immersed in wood chips, dryer exit 10 Q401PV O2, torrefaction gas 30

T208PV Hot gas entering dryer 11 Q402PV CO2, torrefaction gas 31

F202PV Gas flow rate entering dryer 12 TO401IPV Current, torrefactor motor 32

SE201FPV Current, dryer motor 13 VR401PV Thermal oil by‐pass valve, torrefactor 33

VT201IPV Current, rotary valve between the dryer and torrefactor 14 VR402SP Thermal oil by‐pass valve, torrefactor central section 34

VR201PV Thermal oil by‐pass valve, dryer 15 VR403SP Thermal oil by‐pass valve, torrefactor final section 35

VR202SP Thermal oil by‐pass valve, dryer central section 16 T501PV Interior cooling screw, midway 36

VR203SP Thermal oil by‐pass valve, dryer final section 17 T502PV Interior cooling screw, exit 37

T401PV Initial torrefactor heating segment 18 T601PV Turboexit 38

T402PV Middle torrefactor heating segment 19 F601PV Methane flow rate 39

T403aPV Final torrefactor heating segment 20 VE601IPV Current, dryer ventilator motor 40
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Abstract. Anaerobic digestion is a natural process that transforms
organic substrates to methane and other products. Under controlled con-
ditions the process has been widely applied to manage organic wastes.
Improvements in process control are expected to lead to improvements in
the technical and economic efficiency of the process. This paper presents
and compares 3 different neural network model architectures for use as
anaerobic digestion process predictive models. The models predict the
future biogas production trend from measured physical and chemical
parameters. The first model features an LSTM layer, the second model
features a 1-D convolutional layer and the third model combines 2 sep-
arate inputs and parallel treatment using LSTM and 1-D convolutional
layers followed by merging to produce a single prediction. The predictions
can be used to adaptively adjust the substrate feeding rate in accordance
with the transient state of the digestion process as defined by liquid feed-
ing rate, the organic acid and ammonium ion concentrations and the pH
of the digester liquid phase. The training and testing data were obtained
during 1 year of continuous operation of a pilot-plant treating restaurant
wastes. PLS regression and ICA were used to select the most relevant
process parameters from the data. The 1-D Convolutional based model
comprising 272 trainable parameters predicted the future biogas flow
rate changes with accuracy as high as 89% and an average accuracy of
58% . The work-flow can be applied to optimize the control of the study
digester and to control bioreactors in general.

Keywords: LSTM, 1-D Convolutional Neural Network · Bioprocess

1 Introduction

Restaurants, hotels, markets, fisheries and other small to medium size agro-food
industries generate 88 million tonnes of organic waste per year in Europe of which
47 million tonnes per year are household food wastes and 17 million tonnes per
year are food processing wastes [1]. This waste stream contains valuable com-
ponents such as water (approximately 80% by mass) and valuable energy and
c© The Author(s) 2019
I. V. Tetko et al. (Eds.): ICANN 2019, LNCS 11731, pp. 725–736, 2019.
https://doi.org/10.1007/978-3-030-30493-5_65
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substances such as proteins and organic acids. In the context of the circular
economy and current objectives to improve energy efficiency, recycle water and
valuable substances, produce energy from renewable sources, reduce greenhouse
gas emissions and close nutrient cycles, the waste management sector offers many
opportunities to implement innovative technical solutions. Anaerobic digestion
has been proposed as a technical solution to manage organic wastes. This study
aims to contribute to the strategy used to control a high-performance anaerobic
digester supplied by Digesto Sarl. The strength of the Digesto R©. digestion mod-
ule is the ability to treat small to medium quantities of waste on their site of
production, without any transport and in an automated mode (programmable
logic controller for distance monitoring of the digester performances and for
breakdown prevention). The elimination of transport costs and a high degree of
automation make it the appropriate treatment solution for many end-users [2].

Currently, anaerobic digestion is successfully applied to reduce the organic
matter content and to improve the dewatering properties of excess wastewa-
ter treatment sludge. Anaerobic digestion is also used to produce energy from
municipal solid wastes, garden wastes and from energy crops. These processes
are characterized by large bioreactors, long hydraulic retention times between
20 and 60 days and by regular feeding of well characterized and homogeneous
substrates. In contrast, small-scale, on-site digestion of restaurant wastes would
require an intensified bioprocess featuring a small digester, a short hydraulic
retention time of less than 10 days and the capacity to tolerate wide variations
in the feeding rate and the substrate composition.

Anaerobic digestion is a complex process characterized by non-linear func-
tions and interactions between many different biochemical processes. A high-
performance control strategy is thus required to intensify the anaerobic digestion
process and to achieve the goals of small size, a short hydraulic retention time
and long-duration autonomous operation. Artificial Neural Networks, and espe-
cially Deep Neural Networks, have demonstrated their capacity to map complex
and non-linear relations between data. The purpose of this work is to construct
models based on some popular Neural Network architectures and to assess their
capacity to predict biogas production.

2 Materials and Methods

2.1 Machine Learning

Multivariate statistical analysis approaches have been used to detect faults
and abnormal operation of anaerobic digestors treating waste activated sludge
(WAS). Using Principal Component Analysis (PCA), Hotelling’s T-squared and
Shewhart control charts, the transitions to unstable periods were associated with
accumulation of volatile fatty acids [3]. Computational self-adapting methods
(Support Vector Machines, SVM) were compared with an analytical method to
predict the total ammonia nitrogen (TAN) concentration in the effluent from a
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two-stage anaerobic digestion (AD) process treating poultry wastes. The SVM-
based model outperformed the analytical method for the TAN prediction, achiev-
ing a relative average error of 15.2% against 43% for the analytical method.
Moreover, SVM showed higher prediction accuracy in comparison with Artificial
Neural Networks [4]. Machine learning methods have been used to estimate the
state of biogas plants, as defined by the ADM-1 model of the anaerobic digestion
process, using on-line measurements of parameters such as biogas production,
CH4 and CO2 content in the biogas, pH value and substrate feed volume [5].

In contrast to the conventional approach of using recurrent networks, espe-
cially LSTM layers, for sequence processing, convolutional architectures have
demonstrated longer effective memory and have outperformed recurrent net-
works across a diverse range of tasks [6]. In the field of aircraft control, a “state-
image” approach to capture the inflight state variables produced a feature map
that contained the values of the in-flight parameters at a given moment. The
control strategy also included historical data. A Convolutional Neural Network
(CNN) and a Recursive Neural Network with Long Short-Term Memory (RNN
(LTSM)) layers were implemented in parallel to output vectors that were subse-
quently merged and processed in fully connected layers. Inputting data to differ-
ent branches to allow separate extraction of the time dependent and the current
parameter values was expected to lead to improved accuracy when compared to
sequential treatment by CNN and LSTM layers [7].

2.2 Experimental Set-Up

The study digester was a machine comprising tanks, pumps, heating elements,
sensors and command and data acquisition capacities. The total liquid working
volume was 630 liters. Shredded restaurant wastes were fed to the digester at reg-
ular intervals. The study data was acquired from on-line measurements and by
analysis of samples collected at intervals between 1 and 7 days during 366 days of
continuous operation. The study data included 22 parameters that characterize
the input waste stream. Characterization of the digestion process included man-
ual measurement of 44 parameters that describe the liquid and gas phases. The
on-line measurements included redundant measurements of liquid and gas phase
physical-chemical properties and the measurement of 7 mechanical parameters
such as internal pumping and agitation. A total of 83 parameters were consid-
ered for the study. The digestion process was controlled manually using only the
expert knowledge of the operators. The operating conditions were adjusted ad
hoc during the study to optimize the rates of biogas production and the removal
of the organic fraction of the waste. In this study, fixed duration feeding intervals
were defined. At the start of each time interval a decision was made to feed or
to not feed the substrate to the digestion machine.

2.3 Problem Solving Approach

Autonomous operation of the digester would require automated transfer of raw
waste from a buffer tank to the digestion machine. The problem is to decide when
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the raw waste should be transferred (fed) to the digestion machine. Overfeeding
would upset the bioprocess and can lead to ceased waste degradation and biogas
production. Underfeeding would lead to inefficient use of the digester. A useful
model should make predictions that agree with the actual values that were mea-
sured after the prediction. The digester should be fed only when the biological
state is conducive to waste degradation and biogas production. Therefore, the
purpose of the neural network model is to automate decision making. To solve
the problem, a supervised approached based on mapping measured process pre-
dictor variables to a single measured response variable was chosen. The models
were trained and tested using simultaneously measured prediction and response
values. The models were tested by comparing predicted to measured values of
the response variable.

The proposed anaerobic digester control strategy is to compare the predicted
future biogas flow rate trend to the actual biogas flow rate TREND. Increased
biogas production rate is associated with improved bioprocess quality. Decreased
or stable biogas production rate is associated with deteriorating bioprocess qual-
ity. If the predicted future biogas flow rate is higher than the actual measured
biogas flow rate, then the decision is to feed the digestion machine. If the pre-
dicted biogas flow rate was the same as or lower than the actual measured biogas
flow rate, then the decision was to not feed the digestion machine.

2.4 Data Analysis and Preprocessing

Analysis and data augmentation techniques were used to prepare a single dataset
for use in developing all the Neural Network models. Raw data analysis aimed
to identify the parameters to use to train and test the Neural Network model.
Principal Component Analysis (PCA), Independent Component Analysis (Fas-
tICA) and Partial Least Squares (PLS) regression algorithms from Scikit-learn
[8] were used for dimensionality reduction and to identify the parameters that
make the greatest contribution to process stability. A plot of the weights of the
first principal components shows that the waste loading rate, total solids, car-
bon and nitrogen content of the feed, and the total solids concentration in the
of the digester make the greatest contributions to overall variance of the system.
However, these parameters can be measured only manually and manipulation
by the operators is difficult or impossible. Consequently, they are not practically
useful in a neural network model for process control.

ICA is recommended when the data has a high degree of kurtosis. Since sharp
peeks were observed for biogas H2 content, and liquid phase ammonium and
volatile fatty acid content, the raw data were analyzed using ICA. ICA analysis
showed that the H2 content of the biogas and the volatile fatty acid content
of the digester were the most important independent components of the data.
The raw data was used in the DNN models without pre-treatment to remove
kurtosis because spiking of both H2 and volatile fatty acids is not unusual in the
anaerobic digestion process. The H2 concentration in the biogas can be measured
on-line. However, no sensors for volatile fatty acids are currently available at an
affordable price. The method of Partial Least Squares Regression was used to
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map the matrix of predictor variables to the biogas production rate. The results
of PLS analysis showed that regression equation coefficients for the nitrogen
content of the feed and the digester loading rate had the greatest magnitudes.

Considering the results of PCA, ICA and PLS regression analysis, knowledge
of the anaerobic digestion process and the practical aspects of data acquisition,
the following parameters were selected for inclusion in the dataset used to build
the Neural Network models with 4 input features and 1 target variable.

– Predictor variables (input features)
• Total mass of feed (water + waste + co-substrate) [kg/day]
• pH
• Ammonium concentration [mg N/liter]
• Volatile fatty acid concentration [mg Acetic Acid/liter]

– Response variable (target)
• Biogas flow rate [liter/hour]

Pre-processing included augmentation of the number of data points. In par-
ticular, the frequency of values obtained from off-line measurements of physical-
chemical parameters was increased from approximately 1 per week to 1 per hour.
The number of data points was increased by resampling to create one-hour time
intervals followed by linear interpolation of the off-line data to fill the new sam-
pling times. Interpolation was assumed to be valid because the changes in bio-
logical systems occur slowly over several days. The augmented dataset included
8733 rows of data representing the selected input features and the target. Using
the Scikit-learn MinMaxScaler function, the previously standardized data were
then normalized to values between 0 and 1. Figure 1 shows the pre-processed
dataset that was used to build the Neural Network models. Five series of train-
ing and test data were obtained using the Scikit-learn TimeSeriesSplit function
which respects the sequential order of the original data.

2.5 Neural Network Architectures

The study aimed to compare the recurrent, convolutional and combined neural
network modeling approaches to solving a time series analysis problem having
at 4 features. The models were built using Python 3.6.8 and the Keras 2.2.4 API
running on top of TensorFlow 1.3.0 library for machine learning. The 3 architec-
tures selected for development and the rationale for selection are summarized in
Table 1 and the models are summarized in Fig. 2.

Long Short-Term Memory (LSTM). The sequential model was constructed
using a single LSTM layer followed by a Dense layer. The input was a 3D ten-
sor with shape (batch size, timesteps, input dim) where batch size is the
number of sample batches, timestep was set to four hours and input dim was
equal to the number of features. The LSTM layer had 160 units, used the tanh
activation and hard sigmoid recurrent activation functions with zero dropout.
Unit forget bias was set to false since this setting was found to give a more
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Fig. 1. Training and testing data after preprocessing. (a) Normalized training data of
predictor variables. blue line: total volume of feed; red line: pH; green curve: ammonium
concentration; orange line: volatile fatty acid concentration. (b) Normalized training
data of the response variable, i.e. biogas flow rate. (c) Normalized test data of predictor
variables. Same color code of panel (a). (d) Normalized test data of the response
variable. (Color figure online)

accurate prediction. The model output was from a single dense layer having 1
unit, relu activation and use bias set to False. The model had 105,760 trainable
parameters.

1-Dimensional Convolutional Layer (Conv1-D). The sequential model
was constructed using a single Conv1D layer followed by a MaxPooling1D layer
followed by a Dense layer. The input was a 3D tensor with shape (batch size,
timesteps, input dim), where batch size is the number of sample batches,
timesteps was set to four hours and input dim was equal to the number of
features. The Conv1D layer had 16 filters, a kernel size of 4, stride of 1, padding
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Table 1. Evaluated Neural Network architectures

Neural network
architecture

Rationale for selection

LSTM, biogas flow rate
predictions

Expert knowledge that bioprocesses have long and
variable lag-times between measured predictor values
and responses. Historical information

1-D CNN, biogas flow
rate predictions

Potential to extract useful information from detailed
analysis of features at given moments. State image
concept

LSTM/1-D CNN hybrid,
biogas flow rate
predictions

Potential to improve accuracy by separate processing of
historical and state image information followed by
merging the information

set to same, and used the relu activation function. The pool size of the Max-
Pooling layer was set to 4. The model output was from a single dense layer
having 1 unit, relu activation and and use bias set to False. The model had
272 trainable parameters.

LSTM/Conv1-D Hybrid. The Keras Model Class API was used to construct
a model having 2 separate input and processing branches and a single output.
The first branch included an LSTM layer followed 2 dense layers. The LSTM
layer had the same configuration as the layer described above. The first dense
layer had 48 nodes and used the relu activation function. The final dense layer
had 1 node and used the relu activation function. The second branch included a
Conv1D layer followed by MaxPooling1D Dense and Flatten layers. The Conv1D
layer had the same configuration as the layer described above. The MaxPool-
ing1D layer strides were set to 1 and padding was set to same. The two branches
were merged using the Keras concatenate layer. The merged output was further
passed to a dense layer with 8 hidden nodes. Model output was from a dense layer
having 1 node and using the relu activation. The model had 106,158 trainable
parameters.

3 Results

The augmented dataset was split into 5 different pairs of training and test sets
using the TimeSeriesSplit function. Each pair comprised separate sets of consec-
utive 1-h intervals and a total of between 5000 and 8500 timestamps. The LSTM,
Conv1D and hybrid LSTM/Conv1D models were trained for 1000 epochs with
a batch size of 4 h. Loss during training was assessed using mean square error.
The loss during training of the 3 models is shown in Fig. 3.

The models were tested on data obtained previously using the TimeSeriesS-
plit function. The prediction accuracy was assessed visually by plotting the pre-
dicted values and the measured values at 4-h intervals corresponding to the
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Fig. 2. Artificial Neural Network architectures: (a) LSTM, (b) Conv1D and (c) Hybrid
LSTM/Conv1D architectures

Fig. 3. Comparison of training loss for the 3 ANN architectures.

batch-size of 4 times 1-h timestamps. The RMSE for the individual sample pairs
was calculated at the same 4-h interval (batch).

The predicted and the observed biogas flow rates for the 3 different regression
models are shown in Fig. 4abc. The RMSE of each batch is shown in Fig. 4def.
To assess the accuracy of the 3 models over a long duration, the overall RMSE
was also calculated for the entire population of batches.

Table 2 shows the overall RMSE of the 3 models.
Since the purpose of the model is to decide if the digester should be fed

at the beginning of a time interval, a special evaluation procedure was devel-
oped to rate the models in terms of their capacity to make the correct decision
regarding digester feeding. To rate the models, the consequences of the model’s
decision were compared to the actual change in measured biogas flow rate 4 h
after the decision. Any decision to feed the digester, followed by an observed
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Fig. 4. Predicted (dashed red curve) and observed (solid blue curve) biogas production
for LSTM (panel a), 1-D CNN (panel b), and LSTM/1-D CNN hybrid (panel c). The
corresponding errors (RMSE) are presented in panels d,e,f for LSTM, 1-D CNN and
LSTM/1-D CNN hybrid ANN architectures, respectively. (Color figure online)

Table 2. RMSE of the entire population

Model (ANN architecture) RMSE (%)

LSTM 1.7

1-D CNN 2.6

LSTM/1-D CNN hybrid 19.0

decrease in biogas production, was an incorrect decision. Any decision to feed
the digester, followed by an observed stable or increased biogas production, was
a correct decision. The model accuracy was simply the ratio of correct decisions
to requested decisions expressed as a percentage. To validate the 1-D convolu-
tional DNN model, 12 new data sets generated by splitting the original data
were used to predict the biogas production trend 4-h in the future. The average
accuracy of the prediction was 58% with a standard deviation of 24% and a
range between 28% and 100%.

To investigate the response time between changes in the measured predictor
and response variables, the error of the LSTM model predictions was evaluated
at different lag-times after the feeding decision. In this case, error was defined
as the RMSE of the measurements and predictions made at 1-h intervals during
the time sequence. Population RMSE was calculated for lag-times from 1 to
100 h after a feeding decision. The results show that the model is most accurate
when the lag-time between the feeding decision and the time off comparison
of the predicted to the observed values is much greater than 4 h. This result
suggests that the biological response time of biogas production to changes in the
4 measured process parameters used this study is longer than 4 h (Fig. 5) .
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Fig. 5. RMSE of the predicted and observed biogas production at different times after
measurement of predictor variables (LSTM model).

4 Discussion

The treatment of restaurant wastes is a particularly challenging application of
anaerobic digestion because the loading rate and composition of the wastes vary
over a relatively large range when compared to the treatment conditions for
anaerobic digestion of waste activated sludge, manure and energy crops. Con-
sequently, the feed controller must have the capacity to map a wide range of
values of the relevant process parameters and account for long-duration trends.
The results of this work show that a one-dimensional convolutional Deep Neural
Network model trained using state image data obtained by measuring 4 param-
eters could be implemented as a control model to regulate substrate feeding
to an anaerobic digester treating restaurant wastes. This results suggests that
the convolutional network and state image approach leads to a more effective
model because this approach is less influenced by the long and variable lag-times
obeserved in a real bioprocess. In contrast, the LSTM model takes long range
trends into account. Both the 1-D convolutional model and the LSTM models
achieved low RMSEs between predicted and observed values of the first data
set. However, model testing with new data showed that the LSTM did not have
the ability to generalise. The hybrid LSTM/1-D convoltional network had the
highest RMSE and the least ability to generalise.

The study demonstrated that the prediction accuracy of the neural network
model is similar to the prediction accuracy of simply ajusting the feeding rate
according to the observed trend in biogas production.

The average prediction accuracy of 58% should be compared to the accuracy
of 63% obtained by simply following the trend in biogas production. The trend
in biogas production was the result of ad hoc control of the digester by skilled
operators working in a laboratory. It seems unlikely that a prediction accuracy
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as high as 63% could have been achieved in an industrial setting without control
by skilled operators. Importantly, the measured parameters of input liquid flow,
output biogas flow, digester pH and digester ammonium content can be measured
on-line using commercially available sensors. However, no sensor to measure
volatile fatty acids is available commercially.

Considering that approximately 80% of the data points for pH, ammo-
nium and volatile fatty acids concentrations were obtained by interpolation
between values measured only 1 or 2 times per week, the accuracy of the model
could be improved by increasing the sampling frequency thereby obtaining real
data. Higher data resolution and consequently higher model accuracy could be
achieved using on-line sensors.

5 Conclusion

This study evaluated 3 Neural Network architectures for use as supervised learn-
ing models to predict biogas production in an anaerobic digester. The models
were constructed, trained and tested on the same time series dataset obtained
from long-duration operation of an anaerobic digester treating restaurant wastes.
Of the 3 models evaluated, the 1-D convolutional model was best able to accu-
rately predict biogas production trends on new data as evaluated in terms of
the ratio of correct predictions to the total number of requested predictions.
The results suggest that the feeding rate of the study digester can be controlled
using an 1-D Convolutional based DNN controller. Future work should aim to
improve the resolution of the training data set by implementing on-line sens-
ing of the relevant process parameters. During this study, the digester feeding
rate was the only manipulated parameter. Future work should also aim to con-
trol additional manipulatable parameters and the mechanical parameters of the
digestion process. Considering the wide range of variation observed in the input
and target variables, the collection of time series data over a very long duration
is required to make an accurate model.
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The Problem
Restaurants, hotels, markets, fisheries and other small to medium size agro-food
industries generate 88 million tonnes of organic waste per year in Europe of which 47
million tonnes per year are household food wastes and 17 million tonnes per year are
food processing wastes. Anaerobic digestion has been proposed as a technical solution
to manage organic wastes. Currently, anaerobic digestion is successfully applied to
reduce the organic matter content and to improve the dewatering properties of excess
wastewater treatment sludge. Anaerobic digestion is also used to produce energy from
municipal solid wastes, garden wastes and from energy crops. These processes are
characterized by large bioreactors, long hydraulic retention times between 20 and 60
days and by regular feeding of well characterized and homogeneous substrates. In
contrast, small-scale, on-site digestion of restaurant wastes would require an intensified
bioprocess featuring a small digester, a short hydraulic retention time of less than 10
days and the capacity to tolerate wide variations in the feeding rate and the substrate
composition.
The problem is to decide when the raw waste should be transferred (fed) to the
digestion machine. A useful model should make predictions that agree with the actual
values that were measured after the prediction. The purpose of this work is to construct
models based on some popular Artificial Neural Network (ANN) architectures and to
assess their capacity to predict biogas production with the aim of using the models in
anaerobic digester process control.

Methods
The study digester was a machine comprising tanks, pumps, heating elements, sensors
and command and data acquisition capacities. The study data was acquired from on-line
measurements and by analysis of samples collected at intervals between 1 and 7 days
during 366 days of continuous operation. A total of 83 parameters were considered for
the study. The digestion process was controlled manually using only the expert
knowledge of the operators. The operating conditions were adjusted ad hoc during the
study to optimize the rates of biogas production and the removal of the organic fraction
of the waste.
Considering the results of PCA, ICA and PLS regression analysis, knowledge of the
anaerobic digestion process and the practical aspects of data acquisition, the following
parameters were selected for inclusion in the dataset used to build the Neural Network
models with 4 input features and 1 target variable (see Table 1).
Table 1. Parameters of the model

Figure 2. Comparison of training loss for the 3 ANN architectures.

Figure 3: Predicted (dashed red curve) and observed (solid blue curve) biogas production for LSTM
(panel a), 1-D CNN (panel b), and LSTM/1-D CNN hybrid (panel c). The corresponding errors (RMSE)
are presented in panels d,e,f for LSTM, 1-D CNN and LSTM/1-D CNN hybrid ANN architectures,
respectively.

Since the purpose of the model is to decide if the digester should be fed at the
beginning of a time interval, a special evaluation procedure was developed to rate the
models in terms of their capacity to make the correct decision regarding digester
feeding. To rate the models, the consequences of the model’s decision were compared
to the actual change in measured biogas flow rate 4 hours after the decision. Any
decision to feed the digester, followed by an observed decrease in biogas production,
was an incorrect decision. Any decision to feed the digester, followed by an observed
stable or increased biogas production, was a correct decision. The model accuracy was
simply the ratio of correct decisions to requested decisions expressed as a percentage.
Only the 1-D convolutional ANN demonstrated the capability to generalize. To further
validate the 1-D convolutional DNN model, 12 new data sets generated by splitting
the original data were used to predict the biogas production trend 4-hours in the
future. The average accuracy of the prediction was 58 % with a standard deviation of
24 % and a range between 28 % and 100 %.

Discussion
The results of this work show that a 1-dimensional convolutional Deep Neural Network
model trained using state image data obtained by measuring 4 parameters could be
implemented as a control model to regulate substrate feeding to an anaerobic
digester treating restaurant wastes. This results suggests that the convolutional
network and state image approach leads to a more effective model because this
approach is less influenced by the long and variable lag-times observed in a real
bioprocess. In contrast, the LSTM model takes long range trends into account. Both
the 1-D convolutional model and the LSTM models achieved low RMSEs between
predicted and observed values of the test data set. However, model testing with new
data showed that the LSTM did not have the capability to generalize. The hybrid
LSTM/1-D convolutional network had the highest RMSE and the least capability to
generalize.
The study demonstrated that the prediction accuracy of the 1-D convolutional neural
network model is similar to the prediction accuracy achieved by simply adjusting the
feeding rate according to the observed trend in biogas production. The average
prediction accuracy of 58% should be compared to the accuracy of 63% obtained by
simply following the trend in biogas production. The trend in biogas production was
the result of ad hoc control of the digester by skilled operators working in a laboratory.
It seems unlikely that a prediction accuracy as high as 63% could have been achieved in
an industrial setting without control by skilled operators.

Acknowledgement: This work was supported by Swiss Innovation cheque #32609 and 
by F.R. Mahrer of Digesto Sarl, Puplinge(GE), Switzerland.

Results
The LSTM, Conv1D and hybrid LSTM/Conv1D models were trained for 1000 epochs
with a batch size of 4 hours. Loss during training was evaluated using mean square
error. The loss during training of the 3 models is shown in Figure 2. No significant
improvement in the training loss was expected after 1000 epochs.

Neural Network architecture Rationale for selection

LSTM Expert knowledge that bioprocesses have long and variable lag-
times between measured predictor values and responses. Capacity 
to extract historical information.

1-D CNN, Potential to extract useful information from detailed analysis of 
features at given moments. State image concept.

LSTM/1-D CNN hybrid, Potential to improve accuracy by separate processing of historical 
and state image information followed by merging the information.

Figure 1. Artificial Neural Network architectures: (a) LSTM, (b) Conv1D and (c) Hybrid 
LSTM/Conv1D

The predicted and the observed biogas flow rates for the 3 different regression models
are shown in Figure 3abc. The RMSE of each batch is shown in Figure 3def. To assess
the accuracy of the 3 models over a long duration, the overall RMSE was also calculated
for the entire population of batches. The resulting RMSEs of the LSTM, 1-D CNN and
the LSTM/1-D CNN hybrid were respectively 1.7, 2.6 and 19.0%.

The number of data points was increased by resampling to create one-hour time
intervals followed by linear interpolation of the on-line data to fill the new sampling
times. Interpolation was assumed to be valid because the changes in biological systems
occur slowly over several days. The augmented dataset included 8733 rows of data
representing the selected input features and the target. Using the Scikit-learn
MinMaxScaler function, the previously standardized data were then normalized to
values between 0 and 1. Five series of training and test data were obtained using the
Scikit-learn TimeSeriesSplit function which respects the sequential order of the original
data.
The study aimed to compare the recurrent, convolutional and combined neural network
modeling approaches to solving a time series analysis problem having 4 features. The 3
architectures selected for development and the rationale for selection are summarized
in Table 2 and the models are summarized in Figure 1.

Table 2. Evaluated Neural Network architectures

Predictor variables (input features) Response variable (target)

Total mass of feed (water + waste + co-substrate) [kg/day] Biogas flow rate [liters/hour]

pH

Ammonium concentration [mg N/liter]

Volatile fatty acid concentration [mg Acetic Acid/liter]
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Abstract: The purpose of this work was to develop a problem-solving approach and a simulation
tool that is useful for the specification of wastewater treatment process equipment design parameters.
The proposition of using an artificial neural network (ANN) numerical model for supervised learning
of a dataset and then for process simulation on a new dataset was investigated. The effectiveness
of the approach was assessed by evaluating the capacity of the model to distinguish differences
in the equipment design parameters. To demonstrate the approach, a mock dataset was derived
from experimentally acquired data and physical effects reported in the literature. The mock dataset
comprised the influent flow rate, the bed packing material dimension, the type of packing material
and the packed bed height-to-diameter ratio as predictors of the calorific value reduction. The
multilayer perceptron (MLP) ANN was compared to a polynomial model. The validation test results
show that the MLP model has four hidden layers, each having 256 units (nodes), accurately predicts
calorific value reduction. When the model was fed previously unseen test data, the root-mean-square
error (RMSE) of the predicted responses was 0.101 and the coefficient of determination (R2) was
0.66. The results of simulation of all 125 possible combinations of the 3 mechanical parameters and
identical influent wastewater flow profiles were ranked according to total calorific value reduction.
A t-test of the difference between the mean calorific value reduction of the two highest ranked
experiments showed that the means are significantly different (p-value = 0.011). Thus, the model
has the capacity to distinguish differences in the equipment design parameters. Consequently, the
values of the three mechanical feature parameters from the highest ranked simulated experiment
are recommended for use in the design of the industrial scale upflow anaerobic filter (UAF) for
wastewater treatment.

Keywords: artificial neural network; environmental engineering; wastewater treatment; upflow
anaerobic filter; bioprocess simulation; anaerobic; biogas

1. Introduction

Bioprocesses are defined as controlled conditions that result in the biological agent-
mediated transformation of a substrate chemical into a specific product chemical. Wastewa-
ter treatment processes are environmental bioprocesses designed to improve environmental
quality. They are often designed, simulated, and optimized using the conventional Interna-
tional Water Association (IWA) approach to modeling the wastewater treatment process
implemented as differential and algebraic equations [1]. Process specification includes the
evaluation of the physical and chemical parameters of the feed and product streams and of
the internal biochemical and physical-chemical process steps. Initial bioprocess develop-
ment is typically conducted in small laboratory bioreactors (between 1 and 10 L working
volume) of standard mechanical configurations using defined synthetic substrates under
highly controlled conditions. Factorial designed experiments with polynomial regression
analysis and hybrid (discrete/continuous) systems approaches are used to determine the
significant parameters and the operating set points [2–4].
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This conventional approach might not adequately account for the variation encoun-
tered under real industrial, and especially under real environmental conditions where it
is not possible to continuously measure and regulate the substrate composition and mass
flow [5,6]. In a review of the hydrodynamic models of anaerobic bioreactors, Liotta et al. [7],
presented and compared the conventional numeric mathematical approaches including
plug flow, tank in series, dispersion and computational fluid dynamic models. This review
noted that model calibration often aims to assess key hydrodynamic parameters using
tracer tests and that the kinetic constants are assessed if the biochemical modules are
implemented. It was also noted that there are few attempts to apply the models for the
optimum design and scale-up of bioreactors. Thus, a more comprehensive and integrated
approach is needed.

Bioprocesses involve complex interactions between the temperature, liquid flow pa-
rameters, substrates and a dynamic community of microbes that are difficult to specify,
model and control [8,9]. Additionally, the mechanical characteristics and constructive
features of the full-scale bioreactor can be very different from those at the laboratory scale.
To address these issues, many researchers have recognized the usefulness to shift towards
a “black-box” approach for modeling environmental bioprocesses and engineered systems.
Instead of attempting to characterize biochemical reaction mechanisms, a “black-box” ap-
proach aims to build a robust model of the process based on easily measurable system
parameters such as influent flow rate, product flow, vessel dimensions and constructive
features, and operating set-points [10,11]. This approach does not require the determina-
tion of bioprocess parameters such as feed and product stream composition, fluid flow
parameters, kinetic coefficients, inhibition factors and the identity of the active microbes,
but requires a large dataset that covers a wide range of operating conditions.

Artificial neural network (ANN) models are “black-box” models. They are calculation
tools, rather than precise descriptions of chemical reaction mechanisms and physical
reactors. ANNs have demonstrated their capacity to map complex and non-linear relations
between data [12–14] with applications to environmental bioprocesses [15–18]. For example,
an ANN model of empirical data has been developed to investigate the optimum conditions
for formaldehyde removal from air by a bio trickling filter [19]. The authors used the model
to assess removal efficiency as a function of operating conditions and sensitivity analysis
was used to determine the relative contribution of each input parameter to the outputs.
In another study, a multilayer perceptron (MLP) model was developed to simulate and
predict sprinkler precipitation from the input parameters of operating pressure, wind
speed, wind direction and sprinkler nozzle diameter with the goal of reducing the time
and cost of determining sprinkler irrigation uniformity coefficients [20]. To optimize the
hydrodynamic parameters on inverse fluidized bed reactors, an MLP model was also
trained using the same data organized in the same Box–Behnken experimental plan as
was used to make a model based on the response surface methodology (RSM) [21]. This
study found that the ANN model more accurately predicted dependent variables whereas
both the RSM and the ANN models were helpful in optimization. Moving in the same
direction, another study used a macroscopic, black-box approach to overcome the difficulty
in modeling a hybrid and multivariate filtration process [22]. The authors successfully
approximated the breakthrough curves using an ANN model using operational parameters
(i.e., feed flow rate, initial concentration, adsorption bed length and filter sheet type) as
predictors, and easily measurable objective variables to evaluate the process performance.
In another study, correlation analysis and decomposition of the time series were used to
identify the most important process parameters [23]. The authors then built an ANN-based
intelligent system to predict effluent COD from the important process parameters. The
model achieved a prediction accuracy (MAPE) of 10.8%.

Anaerobic contact processes for domestic sewage treatment were first described in the
mid-20th century [24–26]. In this framework, an upflow anaerobic filter (UAF) bioreactor
was proposed [27–30]. The UAF is type of fixed bed bioreactor comprised of a vessel that
contains a packed bed of solid supports (packing) on which a strongly attached biofilm
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develops [31]. Influent wastewater enters below the bed, flows upwards, comes into contact
with the biofilm and then exits the vessel from an outlet located above the bed. The biofilm
is composed of a community of microorganisms which are the functional agents of the
biotransformation of substrate to product. By a process known as anaerobic digestion,
some components of the wastewater are transformed into biogas that exits the system,
thereby reducing the water pollution. The advantage of the design is the dense, fixed film
community of bacteria that tolerates variations in influent stream flow rate and quality,
thus making it possible to reduce the vessel volume and to treat influent wastewater, whose
characteristics such as chemical composition, temperature and flow rate vary over a wide
range.

Evidently, the use of machine learning techniques is common in the field of wastewater
treatment process modeling. Among machine learning techniques, it was recently reported
that ANNs comprised 65% of the models used in WWTP process forecasting [23]. The
majority of studies focused on wastewater treatment plant operational parameters that
predict effluent quality. The models were mainly used for fault detection and operations
forecasting. Very few studies have focused on mechanical design parameters as predictors
of effluent quality. In this context, the present study is different because the model predictors
are the mechanical features of the process equipment, and additionally, the model can
be used to simulate different mechanical feature values during the equipment design
process. To develop high-performance environmental bioprocesses, what is needed is a
simulation tool that is capable of accounting for many complex and varying hydraulic and
biological system parameters, variations over daily or even seasonal time periods, variable
process control parameters, fixed mechanical constructive parameters and the non-linear
and temporal relations between them [5,11,32]. Hence, a method for non-linear system
identification and for fixed mechanical parameter estimation is required. This study aimed
to develop a method to meet these requirements in the context of designing a fixed bed
bioreactor.

The present work is a proof of concept study. The method and original workflow
presented herein are intended to improve the entire environmental bioprocess development
workflow from raw data collection to design specification. This study tests the hypothesis
that an artificial neural network model can be used to distinguish different sets of upflow
anaerobic filter mechanical set-point values by simulation. The experimental plan and the
method to build and use the artificial neural network model are presented and discussed.
Thus, the specific objectives of this study are to demonstrate and evaluate:

• An efficient experimental plan that can be implemented in field conditions;
• The accuracy of the artificial neural network predictive model;
• The selection of mechanical constructive parameters based on significant differences

in the performance results obtained by simulation.

2. Materials and Methods
2.1. Problem Solving Approach

The approach to solving the problem consists of the following steps:

• Installation of a bioreactor testing and data acquisition system at an industrial site;
• Preparation of an experimental plan to vary the operational parameters such that the

test system is exposed to the full range of possible industrial conditions;
• Operation of the test system according to the experimental plan to acquire raw data;
• Restructuring and pre-treatment of the raw dataset according to the requirements of

ANN models and to describe individual experiments according to the experimental plan;
• Construction of an artificial neural network model;
• Training and validation of the ANN model using supervised learning;
• Use of the ANN model to simulate test cases where mechanical parameters are varied

within the range of tested values;
• Ranking of the simulation results in terms of the predicted performance of the upflow

anaerobic filter bioreactor;

053



Sustainability 2022, 14, 7959 4 of 23

• Selection of the mechanical parameters according to the ranking of the simulation results.

2.2. Direct Experimental Data

The test unit used in this study was a purpose-built cylindrical, unheated, fixed bed
bioreactor having a vessel liquid volume of 37 L (vlv = 37 L). The test unit was installed
at a municipal wastewater treatment plant located in Yverdon-les-Bains, Switzerland,
and was continuously fed raw primary sedimentation basin overflow using a peristaltic
pump set to deliver wastewater at a specified flow rate between 127 and 516 L·day−1.
Three major mechanical factors were considered to affect the bioprocess: the packing
equivalent spherical diameter (ESD), the packing material type (MAT), and the fixed bed
height/diameter ratio (HDR). More than 95% of the packing material used was torrefied
wood chips (TWD) with low sphericity (ESD = 12 mm). In order to evaluate other
packing materials, the remaining 5% was composed of a mixture of polyvinyl chloride
(PVC) chips, polyethylene tubes, polyurethane foam (PUF) cubes, ceramic and glass chips
placed throughout the fixed bed. The relative biofilm activity of each type of material was
determined by the dehydrogenase enzyme activity tests [33] of packing material samples
removed from the bioreactor during the experiments. The fixed bed height/diameter ratio
of our experimental bioreactor was 1.8 (HDR = 1.8).

Data were collected during continuous operation under industrial conditions from
4 May until 12 December 2017. The water temperature (inlet, fixed bed, and outlet),
the pH (inlet and outlet), the biogas flow rate, as well as and the CH4 and the CO2
contents were continuously recorded with irregular interruptions for maintenance. The
flow meter and the gas analyzer proved to be inadequate for continuously and accurately
measuring, respectively, the flow and the CH4 and CO2 content of biogas produced during
the experimental study. For this reason, the response variable used to assess treatment
effectiveness was the wastewater calorific value reduction (∆CV) achieved by passage
through the bioreactor. Based on the conservation of energy, the daily total calorific value
reduction CVdt (in kJ·day−1) is an indicator of the total amount of pollutant-derived
carbon exiting the bioreactor as CO2 or CH4 and consequently an indicator of treatment
effectiveness. Total solids and other conventional wastewater quality parameters were
determined from samples taken on 17 days. The calorific value (CV) of dried total solids
was determined over 10 days.

2.3. Surrogate Data

The influent and effluent total solids (respectively TSi and TSe in g·L−1) and calorific
values (respectively, CVi and CVe in kJ·g−1) were used to calculate the sample calorific
value reduction (∆CV) in kJ·L−1 as follows:

∆CV = (TSi × CVi)− (TSe × CVe) (1)

Assuming a positive correlation between the biological activity and temperature, the
estimated calorific value reduction (∆̂CV) for one day can be calculated as a function of
temperature T (in K) and the influent flow rate Q as follows:

∆̂CV = a · kB · T
Q

+ C (2)

where kB is the Boltzmann constant (kB = 1.380649× 10−23 J·K−1 ), a is a constant in days−1,
and C is a constant in J·L−1.

Given the 21 observed or derived data points, we computed a linear regression of
Equation (2) (package SciPy optimize curve fit) with ∆̂CV expressed in J·L−1. The result
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yields a slope b = 65.5 and an intercept C = 178.4. Then, knowing temperature T and
influent flow rate Q, it is possible to estimate ∆̂CV with the equation:

∆̂CV = 65.5 · T
Q

+ 178.4 (3)

Equation (3) was then used to generate the surrogate data points. The resulting
series of 170 data samples of calorific value reduction, including direct and supplemental
surrogate data, that constitute a single experiment is referred to as the reference dataset and is
shown in Figure 1. The data used and a detailed description of the method to generate the
reference dataset are presented in a separate document containing supplementary materials.
A single experiment is defined by a unique set of four predictors with specific values. This
study includes nine different experiments that had different predictors as described below.

Figure 1. Reference dataset of 170 sampled values of calorific value reduction ∆CV (J · L−1). Red
diamonds: direct measurements (n = 21); blue dots: surrogate values (n = 170).

2.4. Mock Experiments

The use of a large and dense dataset is necessary for the training and validation of any
ANN model. The experimental design must generate the data points needed to make a
valid mapping of the predictor to response variables as assessed by a low value of the error
function and the high accuracy of the predictions made using the model. An industrial
implementation of the proposed problem-solving approach would require an experimental
dataset that fulfills three conditions: (i) the dataset is acquired during operation over
a wide range of relevant parameter values; (ii) the dataset is as large and as dense as
possible; and (iii) the dataset can be acquired within the technical and economic constraints
of the available resources. These requirements could be met using standard probes and
data acquisition devices and by manipulating mechanical parameters in a bioreactor test
unit designed for this purpose. However, the experimental data described above were
acquired before deciding to use ANN models. Consequently, the mechanical set points
were not varied, and the size of the experimental dataset is too small to be used to train
ANN models. In order to overcome this limitation, additional data derived from mock
experiments that use variation of the mechanical set points can be generated for the purpose
of demonstrating the approach.

Hence, a mock dataset was created, comprising response values (CVdt) derived from
the experimental reference dataset obtained using the UAF test unit and four predictors: the
actual influent flow rate Q and three mechanical factors that were previously described—
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i.e., the packing equivalent spherical diameter ESD, the packing material type MAT, and
the fixed bed height/diameter ratio HDR. The response values, CVdt of the mock dataset
were obtained by multiplying the calorific value reduction of the reference dataset by a set of
coefficients representing the possible effects of the three mechanical factors as shown in
Equation (4).

CVred =
170

∑
i=1

Ci(Qi ∗ Si + Qi ∗ Mi + Qi ∗ Hi) (4)

where:
CVred = a vector of calorific value reductions for a single mock experiment;
Qi = the influent flow rate on the ith day;
Ci = the change in the calorific value of the influent stream on the ith day of the

reference experiment;
Si = the spherical diameter effects on calorific value reduction on the ith day;
Mi = the material type effects on calorific value reduction on the ith day;
Hi = the height-to-diameter effects on calorific value reduction on the ith day.

The effects due to a different spherical diameter, material type and height-to-diameter
were derived from observations reported in the literature. A detailed description of the
method used to generate the mock data and the references on which the ad hoc method are
based are available in a separate document containing supplementary materials.

2.5. Experiment Plan to Obtain the Mock Experimental Dataset

The most efficient experimental plan should generate the dataset required to make
an accurate ANN model in short duration with few experiments. Orthogonal arrays
have the property that in every pair of columns, each of the possible ordered pairs of
elements appears the same number of times [34]. The Taguchi arrays are a well-known
set of orthogonal experiment designs that have demonstrated their usefulness in making
predictive models. The Taguchi L9 experimental plan with four factors set to three different
levels requires nine experiments [35]. With reference to the Taguchi L9 layout, a surrogate
dataset for use in making an ANN model was generated using only three mechanical
factors set to three levels. The fourth factor, the experimentally obtained influent flow
rate, was a continuous vector without discrete levels. The influent flow rate comprises all
the changes in the input material flux and is the only predictor that changes during an
experiment Consequently, the influent factor levels change in an uncontrolled way. The
same influent profile was used in each of the nine mock experiments.

Since each mock experiment had 170 sample points, the total number of response
data points was 1530 (1530 = 170 × 9). The total number of predictors (4 factors) was 6120
(6120 = 1530 × 4). Figure 2 shows the reference dataset of daily CVdt (black cross) and the
response values from nine separate mock experiments. The density curves on the right
side of Figure 2 show that the response values of the mock experiments were distributed
over a wide range. The experimental plan with the levels of the mechanical factors and the
corresponding CVdt response values (median and mean ± SD) for each mock experiment
are presented in Table 1. This table also shows the rank of the mock experiments. The
higher the value of CVdt, the better the treatment effectiveness.
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Figure 2. Daily calorific value reduction (CVdt). Reference experiment and surrogate data for
1530 sample points from the mock experiment plan. On the righthand side, there are the binned
calorific value reductions of the corresponding mock experiments. Black crosses show the reference
data points.

Table 1. Experimental plan (mock experiments). Three levels for each mechanical factor. The same
influent profile was used in all the mock experiments. ESD: equivalent spherical diameter (in mm);
MAT: packing material type (TWD: torrefied wood chips, PUF: polyurethane foam, PVC: polyvinyl
chloride); HDR: bed height/diameter ratio. The response data are median (mean ± SD) CVdt values
(daily calorific value reduction) computed for each mock experiment distribution (see Figure 2).

Experiment Number ESD MAT HDR CVdt Rank

E1 4 PVC 0.5 48.5 (46.4 ± 22.9) 9
E2 (reference experiment) 12 TWD 1.8 71.4 (75.9 ± 30.4) 4
E3 36 PUF 3.6 79.6 (80.2 ± 50.4) 2
E4 4 TWD 3.6 60.9 (61.8 ± 16.9) 6
E5 12 PUF 0.5 43.8 (49.7 ± 27.4) 8
E6 36 PVC 1.8 92.7 (91.0 ± 35.5) 1
E7 4 PUF 1.8 51.3 (54.0 ± 19.3) 7
E8 12 PVC 3.6 62.2 (69.1 ± 18.6) 5
E9 36 TWD 0.5 82.5 (79.4 ± 44.7) 3

2.6. Data Preprocessing

The data from the mock experiments were preprocessed to obtain a single dataset
for use in training and validating all the models. The Scikit-learn [36], Matplotlib [37],
Pandas [38], and Scipy [39] libraries were used for data processing and plotting.

The null hypothesis that the sample calorific value reductions are normally distributed
was tested using the Shapiro–Wilk test. The calculated statistic of 0.965 indicates that the
sample distribution is not normal (p-value < 10−8). The calorific value reductions from
the mock experiments are skewed to the right (sample statistic = 0.77). The kurtosis value
(0.77, Fisher definition) indicates that the distribution of calorific value reductions has a
longer tail than a normal distribution. To obtain a distribution closer to normal, the z-score,
log, log(1+y), and the Yeo–Johnson transformations were compared. The Yeo-Johnson
transformation of the response data from the nine mock experiments was found to yield the
distribution that is the closest to normal (Shapiro–Wilk statistic = 0.997, p-value = 0.00198).
The predictor data were not transformed.
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Then, the complete predictor and response value datasets were Min–Max scaled to
the range [0, 1]. The prediction accuracy of an MLP model with five hidden layers with
256 units per hidden layer was assessed in terms of RMSE and R2.

Compared to training an MLP with raw mock data, training with transformed data
improved the accuracy of the predictions. Consequently, the raw data pre-processing dur-
ing further model development and simulation included the Yeo–Johnson transformation
of the response data.

Then, the dataset was split into training and validation sets with a ratio of 80:20,
and, respectively, 1224 and 306 sets of predictor and response values corresponding to

1530 sampling events (days). The Kolmogorov–Smirnov statistic (K-S) ks_2samp [39] on
two samples was computed to test the null hypothesis that the training and validation
response datasets were drawn from the same source. The null hypothesis can be rejected at
the 99.9% confidence level if the K-S statistic is greater than the critical value (D) of 0.12.
The calculated K-S statistic of 0.051 is less than the critical value (p-value = 0.53). Thus,
the training and the validation response value datasets have the same distribution and
were drawn from the same source.

Depending on the study objectives, the time-series order of the dataset was preserved
or shuffled. The shuffle parameter was set to False when the temporal features of an
experiment were preserved and to True when the temporal features of an experiment were
not included in the dataset. Random_state was set to 42 to assure that the preshuffling
operation was always the same.

2.7. Predictive Models

The selection of an appropriate predictive model depends on the intended use of the
model and on the features of the dataset. In this study, the intended use was to predict a
continuous response. Since this is a regression problem, a polynomial regression model
was compared to a multilayer perceptron (MLP). Time-series datasets have features that
vary over different time periods. In the context of this study, the type of variations include
seasonal temperature changes and differences in the flow rates and composition between
the day, the night and weekends. Different modeling strategies that include long short-term
memory (LSTM) layers, for example, were developed to exploit the specific features of time-
series datasets. In contrast, the multilayer perceptron (MLP) architecture is not specifically
designed to account for temporal features. Consequently, the model selection approach
included an analysis of time dependency, an assessment of conventional regression analysis
with a polynomial model, and a comparison to the LSTM and MLP ANN architectures.
The LSTM model proved to be less accurate than the MLP model when trained and tested
using preshuffled data. Model training with an unshuffled time series dataset is not useful
when the aim is to build a model for use in simulating different test cases. Since the aim of
this work was to evaluate different predictor values by simulation, the LSTM strategy of
response feature modeling was abandoned. The LSTM model and results are presented in
the complementary information.

2.7.1. Polynomial Model

A fourth-order regression equation that mapped four predictors to calorific value
reduction was fit to unshuffled time series data and then to data that were preshuffled. In
both cases, 100 replicate runs were executed using the leave-one-out method to introduce
randomness between runs.

The number of regression coefficients was arbitrarily chosen with reference to the
four experimentally manipulated predictors. The variance inflation factors (VIFs) were
calculated to test for the multicollinearity of the predictor variables. The VIF evaluates the
variance of the estimated coefficients and increases to greater than 10 when the predictor
variables are highly correlated and values greater than 4 should be investigated [40].

The evaluated array comprised four columns, each representing a predictor variable
before Min–Max scaling, and 1530 rows representing the nine experiments (170 × 9 =
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1530). The calculated variance inflation factors for ESD, MAT, HDR and influent flow were,
respectively: 2.3, 2.0, 2.8, and 3.8.

2.7.2. Multilayer Perceptron (MLP) Model

The multilayer perceptron (MLP) ANN models were built using Python 3.7.6 and the Keras
2.3.0 API running on top of the TensorFlow 2.0 library for machine learning. The sequential
model architecture was used. The input object shape was set to 4 (input_shape = (4,)). The
input object received a single input array containing four vectors corresponding to the
four predictors (ESD, MAT, HDR, Q). The output from the input object was passed to the
first hidden layer comprised of dense units. The subsequent MLP hidden layers were
constructed using identical dense units.

The accuracy of an ANN model can depend on the values of a unique set of weights
determined by a single model training and validation run. Since the aim was to develop a
general method to build ANN models for use in simulation, the focus was on the model
architecture and not on the weights that were obtained from a particular training run. To
do this, the initializer seed was set to None so that the unit weights were reinitialized before
every model build, train, and test operation.

Different MLP models were built using an iterative process of adding layers and units,
setting hyper-parameter values, and evaluating the prediction accuracy. The preliminary
best result was a model having 6 hidden layers, each with 192 units per layer. Using this
model, different hyper-parameters were then evaluated using semi-automated trials. The
RMSprop optimizer [41] was found to perform slightly better than the Adam optimizer.
The RMSprop training algorithm maintains a moving average of the square of gradients
and divides the gradient by the root of this average. The learning rate was set as low as
1 × 10−5, which is only 1% of the default value of 1 × 10−3. The discounting factor for the
history/incoming gradient, (rho) was set as high as 0.99 which is higher than the default
value of 0.90. The momentum applied to the optimizer was set as high as 0.9.

The layer hyperparameters use_bias and bias_initializer were set to True and
zeros, respectively. The TruncatedNormal initializer with a mean set to 0.0 and stddev set
to 0.1 was used to set the initial weights of the hidden layers. The final hyperparameters
settings were as follows: learning rate = 1 × 10−4, rho = 0.99, momentum = 0.05, epsilon
= 1 × 10−7, centered = True. The learning rate was 10 times less and the momentum
slightly more than the default values.

Regularization was applied using dropout. Drop-out layers were placed between the
hidden layers to remove a fraction of the preceding layer’s units. The rate argument sets a
fraction of the drop-out layer units to zero during training. Setting the different percentages
[0.1, 1, 2, 3, 4, 5, 10, 25] of the dropout layer units to zero was evaluated. The final model
had four dropout layers with the rate argument set to 0.05 (5% set to 0) in each layer.

The model output layer comprised a single dense unit connected to all the units of the
preceding hidden layer, and with neither weights, nor bias, nor hyperparameters.

The compiled regression models were trained using a mini-batch gradient descent
back-propagation learning algorithm. The default Keras MeanSquaredError class instance
argument was used to output the average loss of each batch and was also used to evaluate
the loss during each training epoch.

I only observed a small improvement in the prediction accuracy when more than
40 samples were used for model training.

Batch size of 1, 2, 4, 8, and 16 (days) were tested. Batch sizes of 1, 2, and 4 days resulted
in the same accuracy. Setting the batch size to 8 or 16 days resulted in lower accuracy.
I selected a batch size of four for the final model.

To determine the number of hidden layers and hidden layer units, all possible MLP
architectures having between 1 and 13 hidden layers and between 8 and 4096 units per hid-
den layer were built, trained, and evaluated. Model building, training, and evaluation were
repeated for each combination of layer and node numbers with the random initialization
of the model weights. At the University of Lausanne high-performance computing center,
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130 runs were then executed in 4 h using 1 NVIDIA A100 GPU and 10 GB of memory.
The prediction accuracy of the validation tests was evaluated in terms of the coefficient of
determination (R2) and the slope of the regression line. There were small differences in the
accuracy of the predictions between different model rebuilding operations. The models
with more than 512 units per layer were frequently less accurate than the other models.
The models with between 32 and 512 units per layer and between 2 and 6 hidden layers
yielded similar and acceptable results.

2.8. Use of the Model for Simulation

The study hypothesis that the artificial neural network model can be used to dis-
tinguish different sets of up flow anaerobic filter constructive feature set point values
by simulation was tested after building the model. The capacity to distinguish different
constructive features was evaluated using a t-test. The results section contains a complete
description of the method.

3. Results

Since all the models were evaluated using the same test data, the most appropriate
model can be selected based on the accuracy of the predictions. The accuracy of the
predictions was evaluated in terms of the root-mean-square error (RMSE) metric, which is
calculated from the differences between true and predicted response values, the coefficient
of determination (R2), and the slope of the regression line of predicted and true values. Both
the polynomial and the MLP models were built, trained and validated separately using
both the unshuffled time series and preshuffled data sets. The plots of predicted versus
true values are shown in Figure 3 (unshuffled) and Figure 4 (preshuffled).

Figure 3. True versus predicted values (unshuffled, true times series data); polynomial model: blue;
MLP model: red.

To evaluate the prediction accuracy, 100 runs of the polynomial model were run using
the leave-one-out method to introduce randomness between runs. The accuracy of the
MLP model was assessed after making 100 training and validation runs with random
weight initialization between runs. The results are shown in Table 2. The high slope and
the small RMSE demonstrate the accuracy of MLP model. The small variation between
runs demonstrates that the prediction accuracy is due to the architecture and not to a
set of particular weights and thus contributes to the confidence of the results obtained
by simulation.
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Table 2. Evaluation of model prediction accuracy.

Type of Numerical Model RMSE (%) R2 Slope

Fourth degree polynomial, true time series 14.9 0.29 0.24
Fourth degree polynomial, shuffled time series 14.0 0.37 0.35
4-layer MLP, true time series 12.7 0.48 0.38
4-layer MLP, shuffled time series 10.1 0.66 0.67

Figure 4. True versus predicted values (preshuffled data); True versus predicted values (preshuffled
data); Polynomial model: blue; MLP model: red.

3.1. Polynomial Model

In terms of RMSE and (R2), the fourth degree polynomial model was less accurate
than the MLP. When unshuffled, true time-series data were used to build the model, and
the RMSE was 0.149. The coefficient of determination of a plot the validation test’s true and
predicted values was 0.29. When preshuffled data were used to build the model, the RMSE
was 0.140. The coefficient of determination of a plot the validation test’s true and predicted
values was 0.37. As shown in Figure 3, the prediction accuracy was very low when the true
values were less than 20% and more than 80% of the maximum.

3.2. MLP Model

When unshuffled data were used to build the model, the RMSE was 0.127. The coeffi-
cient of determination of a plot of the validation test’s true and predicted values was 0.48.
When preshuffled data were used to build the model, the RMSE was 0.101. The coefficient
of determination of a plot of the validation test’s true and predicted values was 0.66. Com-
pared to the polynomial model, the range of accurately predicted values is greater in the
MLP model. This difference is also shown in Figure 4 (preshuffled) by the higher slope of
the MLP model compared to the polynomial model.

3.3. Time-Series Effects

To investigate the possible time series effects, the autocorrelation function was calcu-
lated for 100 days. The autocorrelation coefficient falls to and remains less than 0.5 after an
initial 1-day lag and there is a small positive or negative autocorrelation of the time series
data after day 16. The calculated Durbin–Watson test statistic (D) was 0.146. The maximum
p-value of the correlation coefficient of each time lag, at the 95% level of confidence, was
7.91 × 10−10. Since the value of the test statistic (D) is less than 2, the time series of the
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daily calorific value reduction is positively autocorrelated. These two observations of
the response data being autocorrelated imply that the data might have time-dependent
features.

However, since the aim of this study was to build a model for use in simulation when
fed previously unseen data, the effects of data shuffling and the results of the model valida-
tion tests must be considered. The effect of data shuffling prior to training using shuffled
data was compared to the effect of training using the actual (not shuffled) time-series data.
As shown in Figure 3 (unshuffled), Figure 4 (preshuffled), and in Table 2, the prediction
accuracy of the polynomial and MLP models was higher when the models were trained
using preshuffled data than when the models were trained using the unshuffled time-series
data. The results of model validation tests are shown in Table 2. The predictions made
by both the polynomial and the MLP models are less accurate when tested using true
time-series data. These results indicate that the performance of the studied processes is not
time-series-dependent, and that each day can be treated as an independent sampling point.

3.4. Model Selected for Use in Simulation

In terms of the RMSE, coefficient of determination (R2), and slope of the regression
line, the MLP model yielded a better result than the polynomial model when trained using
preshuffled data.

To further compare the polynomial and the MLP models, a t-test was performed to test
the null hypothesis that the populations of predictions made using the two different models
are the same. The p-values were obtained from 100 runs of the polynomial and the MLP
model with random weight initialization between runs. Assuming the equal variances of
the two populations and using the Bonferroni correction for 306 samples, the analysis of
the p-values showed that the populations are statistically different at the 0.01 alpha level.

The results of the evaluation of 100 replicates of the models in terms of validation
mean RMSE, coefficient of determination (R2), and slope of the regression line are shown
in Table 2. Since the four-layer MLP trained using shuffled data was more accurate than
the other type of models tested, it was selected for use in simulation.

Figure 5 shows the training and validation losses over 100 epochs. We observed that
training and validation loss curves meet after 20 epochs. Although the training and test
loss curves separate after 25 epochs, the test loss curve does not rise. The training loss
curve decreases at a lower rate before flattening after 80 epochs. The observation that the
validation loss does not increase while the training loss remains almost constant indicates
that the model is not overfit.

The outcome of model construction, evaluation, and tuning was the selection of the
MLP architecture having 264,705 trainable parameters and 4 hidden layers, each with 512
identical dense units. The dataset was preshuffled. The four model input vectors were
the packing spherical diameter, packing material type, packed bed height-to-diameter
ratio, and the influent flow rate. The only model output was a vector of the daily calorific
value reductions (∆CV expressed in J · L−1) of the influent stream pollution load. After
training the MLP model to achieve an acceptable loss during validation, the architecture
and hyperparameters of the complied model were saved in HDF5 format for subsequent
reloading and use for simulation.
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Figure 5. Decrease of MAE during training and validation of the MLP model. Training loss: green;
Test loss: black.

3.5. Evaluation of the Experimental Plan

The experimental plan should generate predictions from independent experiments. If
the predictors used in the mock experiments were not independent, then some of the exper-
iments would be redundant and consequently bias the experimental results. Redundancy is
manifested by the similarity of the response profiles. To investigate a possible redundancy
in the experimental plan arrays, response datasets constructed using three different ways
of combining two mock experiments were tested: (1) Taguchi-inspired experimental matrix;
(2) removing one of the two most similar experiments; and (3) removing one experiment at
random. The combination of nine experiments based on the L9 array described above was
evaluated using the Kolmogorov–Smirnov test with a significance level set to 0.10 to assess
the independence of all combinations of 2 mock experiments from the experimental plan.
The corresponding value of the K-S test statistic was 0.18. Out of 36 possible combinations
of 2 mock experiments, the calculated K-S statistic was greater than 0.18 in 3 cases. This
implies that the experiments included in these three combinations might be redundant.
The combination of experiments E3 and E9 had the highest p-value (0.44). Consequently,
experiment E3 was removed from the experimental plan. To test the effect of removing
the most redundant experiment, the MLP model was then built and evaluated with the
experiment E3 removed.

To test the effect of removing a randomly selected experiment before each run, 100 repli-
cates of the MLP model were run using a leave-one-out approach. The prediction accuracy
was used to evaluate the effect of removing mock experiments from the experimental plan.
Table 3 shows the tested combinations of mock experiments and the resulting RMSE and
the coefficient of determination (R2) of the predictions.

Table 3. Experimental plans evaluated.

Experiment Combination Description RMSE R2

Experimental plan as described above (9 experiments) 0.101 0.66
Experimental plan with experiment E3 removed 0.096 0.72
Experimental plan with 1 experiment removed at random 0.156 0.13

A slightly better result, in terms of RMSE and the coefficient of determination (R2),
was obtained when redundant experiment E3 was removed. The random removal of a
single experiment increased the RMSE and reduced the coefficient of determination (R2).
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The apparent redundancy in the experimental results might be due to real biological or
physical causes expressed in the full L9 predictor dataset. For this reason, and because
the Taguchi L9 array is a balanced array designed to consider all of the factors and levels
equally and to specify a minimal number of experiments, no experiments were removed.

3.6. Use of the MLP for Simulation

The previously trained and saved MLP model was reloaded for use as a simulation tool
to aid in designing UAF systems for specific use cases. The simulation tool can be used
to select the best design specification from comparable simulated test cases. To do this,
test cases were defined to explore the possible combinations of influent flow rate, packing
material spherical diameter, type of packing material, and fixed bed height-to-diameter
ratio within the range of the values used to train the model.

A full factorial design was used to specify a set of 125 permutations of the three
mechanical parameters (factors) at five levels. In our simulation step, the high and low-
level set-points used were the same as those used in the Taguchi L9 mock experiment
design that was followed during the data generation step. The middle level value was
the same as the value used during experimental data acquisition. The level values of the
mechanical predictors are shown in Table 4.

Table 4. Level values of the mechanical predictors.

Mechanical Predictors (Factors) Tested Values (Levels)

Packing diameter—ESD [mm] 4, 8, 12, 24, 36
Type of packing material—MAT 1, 1.85, 2.7, 6.85, 11

Fixed bed H/D ratio—HDR 0.5, 1.15, 1.8, 2.9, 4

For each simulation run, a new daily influent flow rate profile was created de novo
using the NumPy random uniform generator. All values within the actual minimum and
maximum values observed during data acquisition were equally likely to be drawn. To
make a comparison between all possible experiments, the same daily influent flow rate
profile was used in each experiment conducted during a single simulation run.

As shown in Figure 6, the number of binned influent flow rates observed during the
period of data acquisition covered a wide range between 2 and 22 with modes around 200
and 460 L·day−1. Regarding the simulations, the number of binned influent flow rates
varied within a more narrow range of between 3 and 14. The coefficient of variation within
a bin ranged between 1.3% and 4.8%.

A simulation run consisted in loading the previously built MLP neural network
model and then feeding a (21,250, 4) tensor corresponding to 125 experiments of 170 days
duration, each having four predictors. Bioreactor performance was evaluated in terms of
the total calorific value reduction determined by the simulation. The number of replicate
simulations required for a one-sided confidence interval (alpha/2) of 0.5% was estimated
using the critical value from the normal distribution and the maximum sample standard
deviation [42]. The minimum number of replicates is seven. The sum of the daily total
predicted Min–Max scaled calorific value reduction was calculated for 20 replicates of the
simulated experiments. The results of the 125 simulated experiments were then ranked
according to the mean calorific value reduction.

The box plot (Figure 7) shows the means and the distribution of values within repli-
cations of a single experiment and the range of predicted cumulative total calorific value
reductions. Identical influent streams were fed to all 125 experiments included in a single
replication. However, each replication had a unique randomly generated influent stream
flowrate profile.
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Figure 6. Influent flow rate: experiments (blue bars); simulations (green bars).

Figure 7. Box plot of the predicted calorific value reduction. Results of 125 simulated experiments us-
ing the MLP model. The boxes enclose all values in the 25th through the 75th percentiles. The whisker
reach is set to two times the range of boxes. The green lines show the mean of the simulation runs.

The null hypothesis of no difference between the means of the three highest ranking
experiments was tested using a t-test and assuming equal variances in the sample popula-
tions. Simulated experiments SE125, SE119 and SE100 yielded the highest total calorific
value reduction. Since the simulated experiment SE119 had the second highest ranking
mean total calorific value reduction, the significance of the difference between SE125 and
SE119 was tested. The calculated p-value of the difference between experiments SE125
and SE119 is 0.0108, indicating that the rejection of the null hypothesis is expected to be
erroneous in much less than 2% of experiments. The calculated p-value of the difference
between experiments SE125 and SE100 is 0.0027, indicating that the rejection of the null
hypothesis is expected to be erroneous in less than 1% of experiments. Thus, the null
hypothesis is rejected and the mechanical set point values used in experiment SE125 are
expected to yield the highest total calorific value reduction during more than 98% of the
tested influent flow regimes.

065



Sustainability 2022, 14, 7959 16 of 23

The spherical diameter was 36 in the 3 highest ranked experiments. In the three
highest ranked experiments, the material type code was 1 or 1.85, indicating that the
packing material with a smooth surface is appropriate. The height-to-diameter ratio was
4 in the 2 highest ranking experiments and 2.9 in the third highest ranking experiment.
Consequently, the bioreactor should be long.

The same MLP model was reloaded and used to simulate influent flow rates in the
low range of 127–321 L per day. The simulation results show that using the mechanical
parameters ESD = 4, MAT = 11, and HDR = 4 results in the highest calorific reduction.
Consequently, if the influent flow rate is low, then a small diameter and rough surfaced
packing material should be used.

These design recommendations are based on mock data and are meant to only illustrate
the method. The design recommendations are not meant for use in constructing a real
upflow anaerobic filter. The design recommendation for use in constructing a real upflow
anaerobic filter must be based on real measurements made during experiments.

4. Discussion

The method and workflow presented in this study are intended to improve the entire
environmental bioprocesses development workflow from raw data collection to design
specification. The present study demonstrates, for the first time, the workflow and use of
an MLP as a simulation tool to specify constructive features of an upflow anaerobic filter.
The contributions of this study are compared to existing work and the advantages of the
proposed method are discussed below.

4.1. Comparison to Existing Methods

Many laboratory and industrial studies describe the use of numeric models for wastew-
ater treatment system identification and process performance forecasting based on water
quality parameters. For example, in the context of a study to optimize the operating cost
of a large activated sludge wastewater treatment plant, Koncsos [43] built an MLP neural
network model to predict the concentrations of components such as ammonium (NH4-
N) and nitrate (NO3-N). The ANN model was trained and validated using a surrogate
dataset generated using the variants of established activated sludge models (ASMs). For
NH4-N and NO3-N, the correlation coefficients (R2) of the predictions made by the ANN
with ASM dataset were, respectively, 0.889 and 0.954. For suspended solids, expressed as
COD, the correlation coefficients (R2) of the ANN with ASM dataset were 0.987 for the
0–5 min interval and 0.843 for the 10–20 min future interval. In contrast, the intended use
of the model built during the present study was simulation, and not operational process
forecasting. Moreover, the purpose of simulation was to design equipment and not to
optimize process control. The predictive model built during the present study did not
include influent water quality parameters. The constructive features of the bioreactor
and the influent flow rate were the only predictors of process performance. Additionally,
the prediction interval was 170 days and the process performance was assessed by the
cumulative calorific value reduction during this period rather than parameter prediction
during a short interval. Forecasting models were also applied to anaerobic processes. For
example, in a study of industrial starch processing wastewater treatment by an upflow
anaerobic sludge blanket (UASB) bioreactor, Antwi et al. [44] built an MLP to predict COD
removal from influent (COD, NH4, pH, OLR) and effluent parameters (VFA and biogas
yield) in the predictor dataset. The coefficient of determination (R2) of the data reserved
for testing was 0.87. This work is an accurate mapping of the selected prediction to re-
sponse variables that helps to understand a complex process. In comparison, the present
study did not include effluent parameters in the predictor dataset and the aim was to
develop a simulation tool. With the goal of intensifying biogas production in a modern
wastewater treatment plant, Sakiewicz et al. [45] built general regression neural network
(GRNN), radial basis function (RBF) network and MLP models of data acquired during
3 years of continuous plant operation. This study focused on identifying the important
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parameters that affect process performance. Their analysis approach made it possible to
conclude that the technical control process parameters have a more important influence
on process performance than the wastewater quality indicators. Consequently, attention
should be focused on mechanical features such as process control settings rather than on the
wastewater stream quality and microbiological features of the anaerobic digestion process.
Importantly, this result suggests that it might be possible to build a high-performance
numerical model of technical environmental bioprocesses without the knowledge of the
conventional water quality parameters and the biochemical parameters used in the IWA
mathematical modeling approach. In contrast to the present study, they did not consider
mechanical constructive features and they did not run simulations using neural network
models.

Although less frequently used than operational parameters, some mechanical pa-
rameters have been included in numeric models of wastewater treatment processes. For
example, the packing material dimension, packing material surface features, the bioreactor
geometry and the influent flow rate are known to have an effect on UAF performance.
Bolte et al. [46] included the flow rate, surface area and porosity of the support medium
in a mathematical model used to simulate anaerobic filters treating dilute waste streams.
In an expired patent [47], it is claimed that the diameter of the biomass support spheres
must be sufficient to generate the surface shear forces required to shed microorganisms,
and thereby prevent bed clogging. In a laboratory study of an upflow anaerobic packed
bed reactor treating organic waste streams, Tay et al. [48] examined the significance of
media factors such as media roughness, specific surface area, porosity and pore size on
treatment performance. They found that media pore size and porosity play significant roles
in the performance of the reactor. Different media types can have different pore sizes and
porosity. For example, PVC has a smooth, non-porous surface, and foam can have a rough,
porous surface. Consequently, different packing material diameters, material types, sizes
and surface characteristics were investigated as predictors in the present study. Tests of
anaerobic digestion of food industry wastewater in 10-liter anaerobic filters fed batches of
influent from an industrial site showed that most of the organic substrates were used in
the bottom of the reactor [49]. This implies that there is an optimal fixed bed length. If the
fixed bed is too short, then the bioreactor is less effective. If the fixed bed is too long, then
the bioreactor construction costs and the space requirements are unnecessarily high. These
observations led to the decision to investigate the fixed bed height-to-diameter ratio during
the present study. By integrating these important, and previously recognized, mechanical
features into a single ANN predictive model, the present study contributes to the UAF
design process.

Additionally, this study contributes to the development of methods to build and use
neural networks in the field of environmental systems. In the present study, the intended
use of the artificial neural network for simulation is very different from other possible
uses such as fault detection or real-time forecasting. This use requires a predictive model
that fits a large dataset acquired during a long time period. The suitability for use in
the field of wastewater treatment, and in particular to model the upflow anaerobic filter,
was an additional requirement. Considering these requirements, the polynomial, MLP,
and LSTM models are among the natural candidates. Referring again to the study of
Sakiewicz et al. [45], general regression neural network (GRNN), and the radial basis func-
tion (RBF) network and MLP models of data acquired during 3 years of continuous plant
operation were built and evaluated. They determined that the MLP model with two hid-
den layers with 13 and 9 units per layer was the most accurate. In a laboratory study
that compared the predictive ability of the numerical models of upflow anaerobic filters,
Yilmaz [50] demonstrated that an MLP having only one hidden layer with six units more
accurately predicted the methane yield than the conventional multi-linear regression or
the Stover–Kincannon models. Using a surrogate dataset obtained from the simulations of
an activated sludge wastewater treatment plant made using the ASM model, Demir [51]
built an MLP neural network model to predict COD, phosphorus and nitrogen removal
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from the influent concentrations and operating parameters that control internal recycle.
The coefficient of determination (R2) of true to predicted values was between 0.95 and 0.99.
This study showed how the design engineer can use the model to determine design and
operational parameters by simulation and sensitivity analysis. Instead of using sensitivity
analysis, we selected the design parameters by ranking the results of simulations made
using all possible permutations of three design parameters. In the context of the forecast
modeling of N2O concentrations in wastewater treatment plants, Hwangbo et al. [52] ob-
served that an LSTM model outperformed a DNN model in terms of forecast prediction
accuracy. They noted that the LSTM-based forecasting modeling depends on the response
data, whereas all sensor data can be used as predictors in DNN models. Consequently, they
concluded that the LSTM-based model is not suitable for process modeling that includes
every measured variable. This fundamental difference between the LSTM and MLP model
architectures might explain the inaccuracy, in terms of (R2), of the predictions made during
the present study using the LSTM model. In agreement with this conclusion, the MLP
model was selected for use in simulation during the present study. The accuracy and
capacity of a numeric model for a specific use case, such as simulation, partly depends
on the model architecture. Since there is no established methodology to determine the
architecture, the subject is a popular research topic. Dibaba et al. [53] used a differential
evolution (DE) approach to tune an ANN model of an upflow anaerobic contactor (UAC)
for biogas production from vinasse. The ANN model predicted effluent chemical oxygen
demand (COD), total suspended solids (TSSs), volatile fatty acids (VFAs) and biogas pro-
duction from the characteristics of the influent vinasse. Their DE method involved the
random manipulation of the MLP dimensions and hyperparameters and then selection
of the best configuration based on the error. Using the DE method, the performance of
the ANN model, in terms of the coefficient of determination (R2), improved from 0.891
to 0.921. In comparison, the present study included a broad search and the evaluation of
130 different combinations of the number of hidden layers and units in order to select the
optimal MLP architecture. A semi-automated trial and error approach to determine the best
MLP hyperparameter settings in terms of the coefficient of determination (R2). Building on
this experience, MLP models having from 1 to 13 hidden layers and from 8 to 4096 units
per layer. The time requirement to build and train a large neural network is no longer an
issue. The selected neural network had 4 hidden layers, each having 256 units. This model
was built and trained for 100 epochs in 3 h using a laptop (HP EliteBook 840 G4, Intel Core
i5-7200U CPU@2.50 GHz, 8 Go RAM).

Forecasting a parameter value requires a model that maps predictor values, that
change in time and often in an irregular way, to a response value. In contrast, a numeric
model that simulates fixed mechanical values does not have to account for changes in
the predictors. A model that simulates mechanical values is comparable to a physical
prototype with features that closely resemble those of the final machinery. Prototype testing
consists of executing an experimental plan to expose the physical device to the expected
service conditions. Given the benefit of the close resemblance of the prototype to the final
machinery, an overparameterized neural network might be desirable. The MLP used in this
study was highly overparameterized with many more trainable model parameters than
data points. Contrary to conventional practice, recent evidence has shown that there are
significant benefits to having more parameters than data points when training a neural
network [54]. The authors cite a state-of-the-art image recognition system, with a parameter-
to-data point ratio of 400, as an example of such large-scale overparameterization. Early
stopping during training results in an overparameterized neural network that is effective for
interpolation. Consequently, the model used for simulation was highly overparameterized
and trained until the number of epochs was sufficient to assure a low prediction error. The
ratio of model parameters to data points was 35.

Although the present study did not aim to develop a soft sensor, the calorific value
reduction could be considered as a composite parameter that describes process performance.
ANN-based soft sensors are used to predict unmeasured or impossible to measure variables.
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For example, Pisa et al. [55] developed an MLP-based soft sensor to predict effluent total
nitrogen since this parameter cannot be measured online. The prediction structure included
LSTM cells that predicted effluent concentrations 4 h in the future based on input data from
the previous 10 h. It is currently not possible to measure effluent calorific reduction online.
The MLP predictive model developed during this study could be improved to build an
ANN-based soft sensor for calorific value reduction.

4.2. Contribution of the Proposed Method

The conventional workflow to develop environmental bioprocesses could be improved,
for example, by reducing the time and resource requirements for laboratory experimenta-
tion and by collecting data under real operating conditions. To meet this requirement, a data
acquisition system was designed to make it possible to easily vary real mechanical features
and to measure process parameters under real, industrial, operating conditions. This study
demonstrated that it is not necessary to include conventional bioprocesses parameters such
as kinetic constants, microbial inhibition factors, and hydrodynamic parameters that are
difficult to measure in industrial conditions. For this reason, the proposed method can be
described as a “black-box” approach.

Since the prediction accuracy of an ANN model depends on the number of raw data
points, the data acquisition unit and the experimental plan should make it possible to
acquire a very large dataset and to vary the relevant mechanical parameters. The most
practical way to address this problem is to allow these parameters to naturally vary during
the experiment thereby including the complexity of the industrial conditions in the dataset
used to build the ANN. In the present study, the influent flow rate widely and irregularly
varied during experimental data acquisition. The proposed method also takes advantage
of advances in sensing and data acquisition techniques that make it possible to measure
process parameters that might be meaningful when using the “black-box” approach but
meaningless in a conventional dynamic chemical equilibrium approach to bioprocess
modeling. Thus, the present study contributes to the movement towards the use of in-line
measurement and data intensive methods during process development.

This study demonstrated that it is possible to acquire the data required to build a
useful numeric model without laboratory experiments and that a balanced experimental
array design can help to improve the prediction accuracy of the model. The experimental
plan should reflect the highly variable quality of the influent wastewater stream in terms of
composition, flow rate and temperature that, because of economic constraints, cannot be
regulated in an industrial context. The use of a modified Taguchi experimental design to
obtain a balanced array was demonstrated. However, any experimental design that leads
to the development of a high-quality model can be used. The quality of any numerical
model can be assessed by examining how closely model implementation agrees with the
underlying physics of the studied subject, the prediction error as defined by the relative
difference between the predicted value and the true measured value, and by the accuracy
of the predictions made from data that represent a wide range of operating conditions.
In the proposed approach, the underlying physics was accounted for by easily measured
parameters such as exit gas and liquid flow rate and mechanical constructive features.

This study demonstrated the use of an ANN model of experimentally acquired data
as a simulation tool to explore bioreactor performance under new conditions that were not
experimentally tested. The present study demonstrates, for the first time, the workflow
and use of a MLP to specify the mechanical constructive features of an upflow anaerobic
filter. Using the proposed approach is expected to save time. The duration of the mock
experimental phase was only 5.5 months, whereas the simulations covered more than
58 years of continuous operation.

The method and workflow demonstrated by this study are intended to be generally
applicable to the design of the environmental process equipment and constructed natural sys-
tems.
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4.3. Future Implementation

In future work, the proposed method could be implemented using three bioreactor test
units operated simultaneously under real industrial conditions. The values of mechanical
parameters would be set to cover the high and low extremes according to an experimental
plan designed so that in every pair of columns, each of the possible ordered pairs of elements
appears the same number of times as is characteristic of orthogonal arrays. The plan would
also include the vectors of continuously varying process operational parameters such as
flow rate or a water quality parameters that do not conform to the rules of orthogonal arrays.
The experimental plan would be implemented to gather as many data points as possible
during a short duration. For example, the influent flow rate and methane production
measurements could be made continuously during 2 months. The resulting dataset would
be used to build an MLP model for use in predicting the bioreactor performance under
any set of simulation conditions lying within the range of values observed during the
experiment. Thus, the model would make it possible to explore different equipment
dimensions and operating set-point values that were not experimentally tested.

It is also possible to use the proposed method to model existing datasets. The methods
of surrogate data generation described in this study and dataset reconfiguration could be
used to create mock experiments.

5. Conclusions

This study demonstrated the development of a multilayer perceptron (MLP) artificial
neural network (ANN) predictive model and its use to determine bioreactor mechanical
design parameters by simulation. The main findings of this study were:

• The predictions made using the MLP were more accurate than those made using the
polynomial model (coefficients of determination (R2), respectively, of 0.66 and 0.37);

• The MLP model used for simulation should be defined by architecture and not by a
particular set of hidden-layer unit weight initializations;

• The reloaded MLP model can be used for simulation using previously unseen in-
put vectors;

• The differences in the predictions are significant (p-value < 0.02, range = mean ± 20%
of the full range);

• The ranked order of simulation results can be used to select the set of mechanical
specifications that will result in the highest equipment performance;

• A practical on-site data collection plan can be used to reduce the resource requirements
for new process development.

The demonstration that different sets of mechanical design parameters yield signifi-
cantly different predicted performance confirms the capacity of the model to distinguish
differences in equipment design parameters. By making it possible to explore a wide
range of mechanical parameter set points without costly and time-consuming laboratory
experiments, the implementation of the method is expected to lead to improved, more
efficient, design specifications of environmental bioprocessing equipment.
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.3390/su14137959/s1. References [49,56–62] are cited in the supplementary materials.

Funding: This study was funded by the Swiss Academy of Engineering Sciences (SATW), grant num-
ber 2020-001 https://www.satw.ch/en/ (accessed on 24 May 2022). M.M. was partially supported by
Innosuisse—Swiss Innovation Agency and SCCER BIOSWEET https://www.innosuisse.ch/inno/
en/home.html (accessed on 24 May 2022).

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

070



Sustainability 2022, 14, 7959 21 of 23

Acknowledgments: Alessandro E.P. Villa contributed to the data analysis and neural network model
methodology development.

Conflicts of Interest: The author declares no conflict of interest.

References
1. IWA. International Water Association (IWA); IWA: London, UK, 2020.
2. Dochain, D.; Vanrolleghem, P.A. Dynamical Modelling & Estimation in Wastewater Treatment Processes; IWA Publishing: London,

UK, 2001; p. 9781780403045. https://doi.org/10.2166/9781780403045.
3. Barton, P.I.; Lee, C.K. Modeling, simulation, sensitivity analysis, and optimization of hybrid systems. ACM Trans. Model. Comput.

Simul. 2002, 12, 256–289. https://doi.org/10.1145/643120.643122.
4. Dochain, D. (Ed.) Bioprocess Control; ISTE: London, UK, 2008; 248p.
5. Ramaswamy, S.; Cutright, T.; Qammar, H. Control of a continuous bioreactor using model predictive control. Process Biochem.

2005, 40, 2763–2770. https://doi.org/10.1016/j.procbio.2004.12.019.
6. Lima, F.V.; Rawlings, J.B. Nonlinear stochastic modeling to improve state estimation in process monitoring and control. AIChE J.

2011, 57, 996–1007. https://doi.org/10.1002/aic.12308.
7. Liotta, F.; Chatellier, P.; Esposito, G.; Fabbricino, M.; hullebusch, E.D.V.; Lens, P.N.L.; Pirozzi, F. Current Views on

Hydrodynamic Models of Nonideal Flow Anaerobic Reactors. Crit. Rev. Environ. Sci. Technol. 2015, 45, 2175–2207.
https://doi.org/10.1080/10643389.2015.1010426.

8. Teixeira, A.P.; Alves, C.; Alves, P.M.; Carrondo, M.J.T.; Oliveira, R. Hybrid elementary flux analysis/nonparametric modeling:
Application for bioprocess control. BMC Bioinform. 2007, 8, 30. https://doi.org/10.1186/1471-2105-8-30.

9. Zhang, Q.; Hu, J.; Lee, D.J.; Chang, Y.; Lee, Y.J. Sludge treatment: Current research trends. Bioresour. Technol. 2017, 243, 1159–1172.
https://doi.org/10.1016/j.biortech.2017.07.070.

10. Haimi, H.; Mulas, M.; Corona, F.; Vahala, R. Data-derived soft-sensors for biological wastewater treatment plants: An overview.
Environ. Model. Softw. 2013, 47, 88–107. https://doi.org/10.1016/j.envsoft.2013.05.009.

11. Fisher, O.J.; Watson, N.J.; Porcu, L.; Bacon, D.; Rigley, M.; Gomes, R.L. Multiple target data-driven models to en-
able sustainable process manufacturing: An industrial bioprocess case study. J. Clean. Prod. 2021, 296, 126242.
https://doi.org/10.1016/j.jclepro.2021.126242.

12. Tetko, I.; Villa, A. An Enhancement of Generalization Ability in Cascade Correlation Algorithm by Avoidance of Overfit-
ting/Overtraining Problem. Neural Process Lett. 1997, 6, 43–50. https://doi.org/10.1023/A:1009610808553.

13. Tetko, I.V.; Aksenova, T.I.; Volkovich, V.V.; Kasheva, T.N.; Filipov, D.V.; Welsh, W.J.; Livingstone, D.J.; Villa, A.E. Polynomial
neural network for linear and non-linear model selection in quantitative-structure activity relationship studies on the internet.
SAR QSAR Environ. Res. 2000, 11, 263–280. https://doi.org/10.1080/10629360008033235.

14. Tetko, I.V.; Tanchuk, V.Y.; Kasheva, T.N.; Villa, A.E.P. Estimation of aqueous solubility of chemical compounds using E-state
indices. J. Chem. Inf. Comput. Sci. 2001, 41, 1488–1493. https://doi.org/10.1021/ci000392t.

15. Harada, L.H.P.; da Costa, A.C.; Maciel Filho, R. Hybrid neural modeling of bioprocesses using functional link networks. Appl.
Biochem. Biotechnol. 2002, 98–100, 1009–1023. https://doi.org/10.1385/abab:98-100:1-9:1009.
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1 Summary
The complementary information includes the data and the methods used to prepare the datasets. Descriptive
statistics describing the raw and the transformed reference data are shown. The process of generating mock
data is described in detail. The polynomial, multi-layer perceptron and long short-term memory models are
described in detail. Additional results that support method development and the conclusions are reported.

2 Material and Methods
Table 1 shows 21 sets of values of influent and effluent total solids (respectively TSi and TSe in g.L−1)
and calorific values (respectively CV i and CV e in kJ.g−1). The calorific values of 11 data points that were
derived from measured total solids are shown in bold text. The calorific values of the remaining 10 data
points were derived from the measured TSi and TSe. These values were used to calculate the sample calorific
value reduction (∆CV ) in kJ.L−1 as follows:

∆CV = (TSi × CV i) − (TSe × CV e) (1)

In addition to ∆CV , the fixed bed temperature T (in ◦C) and the influent flow rate Q (in L.day−1), are also
indicated in Table 1.

As described in the article text, these data were used to make the regression equation.

∆̂CV = a · kB · T
Q

+ C (2)

where kB is the Boltzmann constant (kB = 1.380649 × 10−23 J.K−1 ), a is a constant in days−1, and C is a
constant in J.L−1. This equation can also be rewritten as:

∆̂CV = b · T
Q

+ C (3)

Given the 21 points observed, we compute a linear regression of Equation 3 (package SciPy optimize
curve fit) with ∆̂CV expressed in J.L−1

The result yields a slope b = 65.48 and an intercept C = 178.39 Then, knowing temperature T and
influent flow rate Q it is possible to estimate ∆̂CV with the equation:

1
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∆̂CV = 65.48 · T
Q

+ 178.39 (4)

A noise vector was generated to add supposed effects that Equation 4 does not account for. The noise
vector was obtained by adding vectors obtained from the mean (µ) and standard deviation (σ) of the ratio
of measured temperature T and influent flow rate Q according to Equation 5 :

noise = 0.5 · µ · T
Q

+ 1.2 · σ (5)

The noise vector was then added to the vector obtained from taking the ratio of the measured temperature
T and influent flow rate Q. Figure 2 shows the noise vector. Equation 6 was then used to generate the
surrogate data points.

∆̂CV = 65.48 · (T
Q

+ noise) + 178.39 (6)

The regression equation was used to generate surrogate data from measured temperature and influent flow
rates. Thus, the resulting series of 170 data samples of calorific value reduction — referred to as the reference
dataset — included direct and supplemental surrogate data.

Table 1: Daily average measurements derived from the experimental UAF bioreactor of influent (TSi) and
effluent (TSe) total solids, influent (CV i) and effluent (CV e) calorific values, fixed bed temperature (T ) and
influent flow rate (Q). The daily calorific value reduction (∆CV ) was derived following Equation 1.

Day TSi (kg.L−1) CV i (kJ.kg−1) TSe (kg.L−1) CV e (kJ.kg−1) ∆CV (kJ.L−1) T (◦C) Q (L.day−1)

17-MAY-2017 0.07 5.88 0.06 1.78 0.3048 22.6 142.6
24-MAY-2017 0.09 5.34 0.06 1.99 0.3612 24.0 151.2
31-MAY-2017 0.08 5.25 0.06 1.79 0.3126 22.4 144.0
07-JUN-2017 0.06 5.92 0.05 1.90 0.2661 19.2 196.4
14-JUN-2017 0.08 7.41 0.06 2.74 0.4284 29.1 223.2
21-JUN-2017 0.08 5.62 0.05 1.72 0.3636 35.9 144.0
28-JUN-2017 0.05 5.10 0.03 2.67 0.1749 23.9 220.2
05-JUL-2017 0.05 5.55 0.05 1.84 0.1966 27.4 216.0
12-JUL-2017 0.06 5.68 0.05 1.85 0.2483 23.1 194.4
19-JUL-2017 0.06 5.68 0.05 2.15 0.2333 30.4 165.6
26-JUL-2017 0.03 6.06 0.05 1.65 0.0993 23.1 316.8
02-AUG-2017 0.03 5.88 0.04 1.86 0.1020 32.1 309.6
09-AUG-2017 0.06 5.86 0.05 1.57 0.2731 23.1 288.0
16-AUG-2017 0.07 5.68 0.06 0.88 0.3448 23.9 312.6
23-AUG-2017 0.06 5.64 0.05 1.86 0.2454 22.3 367.2
20-SEP-2017 0.06 5.76 0.04 1.71 0.2772 23.1 230.2
27-SEP-2017 0.08 4.20 0.06 1.24 0.2616 20.6 385.2
18-OCT-2017 0.05 5.62 0.04 1.69 0.2303 15.8 408.0
25-OCT-2017 0.07 6.10 0.05 2.36 0.3202 14.3 309.6
12-NOV-2017 0.07 6.50 0.06 3.50 0.2385 14.6 316.0
26-NOV-2017 0.08 6.50 0.07 4.30 0.2405 12.0 448.0

As shown in Figure 1, the CV reduction increased with the ratio of influent temperature to flow.
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Figure 1: Ratio of CV reduction versus temperature/influent flow

Figure 2: Noise vector included in the regression equation used to generate surrogate data.
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Mock data generation

2.0.1 Packing equivalent spherical diameter (ESD)

The selected mock packing equivalent spherical diameters ESD = [4, 12, 36] with the middle level the same
as the the ESD of the experimental bioreactor and the other values 3 times smaller than and 3 times larger
than the experimental value. Larger packaging material leads to an increase in void space between individual
pieces of packing material. An increase in the effectiveness of the treatment, expressed in terms of biogas
production, results from better mixing that is achieved when the void space volume increases [4]. To include
the effect of large void space, the coefficient increases exponentially with the influent flow rate when the
value of ESD is 36 mm. In a study of a bioreactor containing 3.5 m tubular packing, the efficiency of the
biological reactions was limited by substrate transfer that is very sensitive to substrate loading and methane
flow rate [6]. It is also known that inadequate mixing of the sludge bed occurs at very low flow rates, and
that very high flow rates lead to shear and biomass loss [8, 6]. In the dataset from the mock experiments,
these effects were created using coefficients that included the ratio of the influent flow rate to the maximum
influent flow rate and by setting a threshold value below which effectiveness is reduced due to very poor
mixing.

2.0.2 Packing material type (MAT)

Based on the relative measured activity of biofilms on samples of polyvinyl chloride (PVC) chips, torrefied
wood chips (TWD), and polyurethane foam (PUF) taken from the experimental bioreactor, the coefficients
for the factor MAT were set to respectively cMAT (P V C) = 1.0, cMAT (T W D) = 2.7, and cMAT (P UF ) = 11.0.
Since biogas production improves mixing [4], a coeficient increased effectiveness when the material type was
polyurethane foam. Polyurethane foam packing effectiveness is reduced at low flow rates due to biomass
clogging the interstial space. PVC packing effectiveness is reduced at high flow rates due to biomass shear
loss. Consequently during mock experiments the value of cMAT (P V C) was further reduced when the influent
flow rate was greater than 80% of the maximum.

2.0.3 Fixed bed height to diameter ratio (HDR)

Since the optimal HDR was not known, three levels —HDR = [0.5, 1.8, 4.0]— were selected arbitrarily with
the middle level the same as the the HDR of the experimental bioreactor. It has been reported that most
of the organic substances are consumed in the bottom part of the bioreactor [2]. This implies that the bed
is too long when the organic load is low and that a well mixed long bed has the highest capacity for CV
reduction (∆CV ). Consequently, the value of the coeficient was made to increase with the flow rate to an
upper limit that was proportional to the bioreactor height to diameter ratio.

As described in the article, the predictors were set according to an experimental plan that was based on
the Taguchi L9 design with the 4th factor (predictor) set to the experimental influent flow rate.

The 4 predictors were:

• Equivalent spherical diameter (ESD)

• Material type (MAT)

• Height to diameter ratio (HDR)

• Influent flow rate (Qin)

Figure 3 below shows the values of the predictors used in the 9 mock experiments in sequence.
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Figure 3: Value of the predictors. 9 mock experiments in sequence
Predictors: Sphere diameter (ESD), Material type (MAT), Height to diameter ratio (HDR), Influent flow
rate (Q influent).

An ad hoc function was used to generate the calorific value reduction from the sum of the ESD, MAT
and HDR components. The daily calorific value reduction was obtained from the product of the influent
flow rate and the predictor effects. The ad hoc function is shown in the article and below.

CVred =
170∑
i=1

Ci(Si ∗Qi +Mi ∗Qi +Hi ∗Qi)

where,

CVred = a vector of calorific value reductions for a single mock experiment

Qi = the influent flow rate on the ith day

Ci = the reference change in the calorific value of the influent stream on the ith day

Si = the spherical diameter effects on calorific value reduction on the ith day

Mi = the material type effects on calorific value reduction on the ith day

Hi = the height to diameter effects on calorific value reduction on the ith day

The following Python code was used to generate mock data using the ad hoc function.
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S=[] # ESD component of total CV reduction
M=[] # MAT component of total CV reduction
H=[] # HDR component of total CV reduction
Qmax = np.max(IFR ref all) #516 l/day Maximum infuent flow rate
i=0
h=0
SF = 1550 # Scale factor to adjust the value predicted by each of the 3 features.
SC = 1 # sphere diameter adjustment factor
SC4 = 0.4 # Threshold below which the CVred increases exponentially in proportion to flow rate when Q
is below SC4*Qmax and SD = 4 because small SD is well adapted to low flow rates.
# Predictors. 9 experiments with values from the range described in the MDPI article text.
exper lit = [(4.0, 1.0, 0.5), (12.0, 2.7, 1.8), (36.0, 11.0, 3.6), (4.0, 2.7, 3.6), (12.0, 11.0, 0.5), (36.0, 1.0, 1.8),
(4.0, 11.0, 1.8), (12.0, 1.0, 3.6), (36.0, 2.7, 0.5)]
for h in range(0,len(exper lit)): # Mock experiments kjl x l/day = kJ/day
for i in range(len(IFR 1)):

S.append(np.multiply((CV ref kjl[i]),( # aprox 0 - 0,5 kjl
1+
np.where(exper lit[h][0]==12.0, SF*0.33*IFR 1[i]/Qmax, 0)+
np.where(exper lit[h][0]==36.0 and IFR 1[i] > 0.8*Qmax , SF*0.1, 0)+
np.where(exper lit[h][0]==36.0 and IFR 1[i] > SC4*Qmax , 0.8*SF*0.33*(1-(-IFR 1[i]/Qmax)), 0)+
np.where(exper lit[h][0]==36.0 and IFR 1[i] < SC4*Qmax , 0.1*SF*0.33*np.exp(-IFR 1[i]/Qmax), 0) +
np.where(exper lit[h][0]==36.0 and IFR 1[i] < 0.45*Qmax , -SF*0.05, 0) +
np.where(exper lit[h][0]==4.0 and IFR 1[i] < SC4*Qmax , 0.4*SF*0.33*np.exp(-IFR 1[i]/Qmax), 0)+
np.where(exper lit[h][0]==4.0 and IFR 1[i] < 0.8*Qmax , 2*(SF*4/12)*0.33*IFR 1[i]/Qmax, 0)+
np.where(exper lit[h][0]==4.0 and IFR 1[i] > 0.8*Qmax , 0.01*SF*0.33*(1-np.exp(IFR 1[i]/Qmax)),0)+
np.where(exper lit[h][0]==4.0 and IFR 1[i] < 0.45*Qmax , -SF*0.01, 0)+
0)*SC)*1)

M.append(np.multiply((CV ref kjl[i]),(
1+
np.where(exper lit[h][1]==2.7, SF*0.33*IFR 1[i]/Qmax, 0) +
np.where(exper lit[h][1]==11.0 and IFR 1[i]> 0.8*Qmax, SF*0.2, 0)+
np.where(exper lit[h][1]==11.0 and IFR 1[i]> 0.3*Qmax, 0.3*SF*0.33*np.sin((3.14/2)*(IFR 1[i]/Qmax)), 0)
+
np.where(exper lit[h][1]==11.0 and IFR 1[i]< 0.3*Qmax, -0.1*SF*0.33*np.exp(-IFR 1[i]/Qmax), 0)+
np.where(exper lit[h][1]==11.0 and IFR 1[i]< 0.3*Qmax, -0.05*SF*0.33, 0)+
np.where(exper lit[h][1]==1.0 and IFR 1[i]< SC4*Qmax, 0.5*SF*0.33*np.exp(-IFR 1[i]/Qmax), 0)+
np.where(exper lit[h][1]==1.0 and IFR 1[i]< 0.8*Qmax, 11*(SF*1/11)*0.33*IFR 1[i]/Qmax, 0)+
np.where(exper lit[h][1]==1.0 and IFR 1[i]> 0.8*Qmax, 0.03*SF*0.33*(-np.exp(-IFR 1[i]/Qmax)),0)+
0)*SC)*1)

H.append(np.multiply((CV ref kjl[i]), (
1+
np.where(exper lit[h][2]==1.8, SF*0.33*IFR 1[i]/Qmax, 0) +
np.where(exper lit[h][2] == 0.5 and IFR 3[i]<Qmax*0.5/3.6, SF*0.33*IFR 3[i]/Qmax, 0)+
np.where(exper lit[h][2] == 0.5 and IFR 3[i]>0.5/3.6, 0.4*SF*0.33*IFR 3[i]/Qmax, 0)+
np.where(exper lit[h][2] == 3.6 and IFR 3[i]< Qmax*1.8/3.6, SF*0.33*IFR 3[i]/Qmax, 0)+
np.where(exper lit[h][2] == 3.6 and IFR 3[i]>Qmax*1.8/3.6, 0.8*SF*0.33*IFR 3[i]/Qmax, 0) +
0)*SC)*1)

IFR Mtest = np.concatenate((np.asarray(S), np.asarray(M), np.asarray(H)), axis=1).T

The contribution of each predictor and the total CV reduction on each day are shown separately in the
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figure 4 below.

Figure 4: Calorific value reduction (∆CV ). Components: Sphere diameter (S), Material type (M),
Height to diameter ratio (H), Sum of the component contributions (Sum)
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The histogram below (Figure 5) shows the range of calorific value reductions and the difference between
the 9 mock experiments.

Figure 5: Binned calorific value reduction (∆CV ). 9 experiments, 170 sample values per experiment.
Experiment numbers 1 - 9 (from top to bottom)

For the purpose of comparaison, response data was generated from the predictors used in the experiment
using the mock response data generation function. The predictors were: ESD=12, MAT=2.7, HDR=1.8
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with influent flow the same as the experiment. Figure 6 shows a plot of experimentally aquired data verses
mock data.

Figure 6: CV reduction, reference experiment versus data generated using the mock response
data generation function.

2.0.4 Transformation of the response data

Different transformations of the response data were evaluated to obtain a more normally shaped distribution
of the response data. The Yeo-Johnson transformation was found to yield the distribution that was most like
a normal distribution. The histograms of the raw and the transformed response data are shown in Figure 7.
The cumulative CVreduction for the different transformations is shown in Figure 8.
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Figure 7: Mock data transformation Distribution of calorific value reductions 9 mock experiments, 1530
data points
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Figure 8: Mock data transformation Cumulative CV reduction, 9 mock experiments, 1530 data points

2.0.5 Analysis of time dependency

Autocorrelation evaluates the similarity between current and lagged data points in a time series dataset. The
Durbin-Watson test was performed to determine if there is autocorrelation in the series of daily calorific value
reduction. The null hypothesis in no autocorrelation. The value of the calculated test statistic lies between
0 and 4. A value of 2 indicates no autocorrelation. Values below 2 indicate positive autocorrelation. Values
above 2 indicate negative autocorrelation. The calculated D-W test statistic was 0.146. The maximum
p-value of the correlation coefficient of each time lag at the 95% level of confidence was 7.91 × 10−10. Since
the D-W test statistic value is less than 2, the time series of daily calorific value reduction is positively
autocorrelated The autocorrelation function was also calculated for 100 days.

Using the statsmodels library for python [7] autocorrelation was analyzed for each day up to 100 days.
The results are shown in Figure 9. The autocorrelation of the current day is always 1. The results located
in the shaded area are significant (alpha = 0.05). The autocorrelation coefficient falls to and remains less
than 0.5 after a 1-day lag and there is a small positive or negative autocorrelation of the time series data
after day 16.

The low VIF values shown in Table 2 indicate that the predictors are not correlated and consequently
none of the coefficients are redundant and all the coefficients can be used in the polynomial regression model.
Additionally, this result shows the independence of the predictors and their suitability for use in the dataset
used to train and validate the ANN models.

The observation that the response data are autocorrelated implies that the data might have time depen-
dent features. Consequently, we decided to further study time series features by using an LSTM model and
by assessing the effect of data shuffling prior to training. Additionally to further evaluate time dependency,
separate datasets were built using both shuffled and unshuffled data for training and testing. If time series
features are important, then then the LSTM model is expected to lead to more accurate predictions than
the polynomial and the MLP models.
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Figure 9: Autocorrelation of lagged calorific value reduction The lags are plotted on the horizontal
and the correlations are plotted on the vertical axis.

Table 2: Variance Inflation Factors (VIF) for each predictor. ESD: equivalent spherical diameter; MAT :
packing material; HDR: bed height/diameter ratio; Q: Influent flow rate.

V IF

ESD 2.31
MAT 2.05
HDR 2.80

Q 3.85

Polynomial model

The polynomial model was made using the sklearn linear model package. The leave-one-out methout was
used to randomly remove a set of predictors and responses during each replication The equation is shown
below where Wr is the vector of model coefficients and Ir is the y-intercept.

yhat poly = X test mm[k,0]*Wr[0] + X test mm[k,1]*Wr[1] + X test mm[k,2]*Wr[2] + X test mm[k,3]*Wr[3]+Ir
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MLP model

Each hidden layer unit input was propagated to every unit of the subsequent hidden layer dense units
using the following propagation rule:.

sp
k =

L∑
i=1

wiky
p
i + bk

where sp
k is the vector propagated to unit k of the subsequent layer, L is the number of hidden layer

units, wik is the value of the weight of the connection between unit i of the current layer and unit k of the
subsequent layer, yp

i is the output of the unit, and bk is the value of the bias of this connection [1].
The error during training was calculated with the Mean Squared Error (MSE) loss function.

MSE = 1
N

N∑
i=1

(yi − ŷi)2

Where N, is the training batch size, yi is the true value and ŷi is the predicted value. The architecture
of the MLP ANN that was used for subsequent simulations is shown in Figure 10 below. Note: The final
model had 4 hidden layers with 256 units per hidden layer.
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Figure 10: Architecture of the x-layer MLP used for simulation

Choosing the number of MLP hidden layers and units

To determine the number of hidden layers and hidden layer units, all possible MLP architectures having
from 1 to 13 hidden layers and from 8 to 4096 units per hidden layer were built, trained and evaluated. The
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prediction accuracy of the validation tests was evaluated in terms of the coefficient of determination (R2)
and the slope of the regression line. A value of 1 of both the coefficient of determination (R2) and the slope
indicates the best fit of the predicted to the true values. Consequently, a high value of the sum of R2 and
the slope indicates high accuracy. The results are shown in Figure 11 and in Figure 12. Model building,
training and evaluation was repeated at least 10 times each with random initialisation of the model weights.
We observed that the models having between 64 and 2048 units per layer had the highest accuracy and that
using between 2 and 6 hidden layers yields similar results.

Figure 11: Validation test R-squared for different numbers of hidden layers and numbers of
units per hidden layer
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Figure 12: Validation test sum of R-squared and slope of the regression line for different numbers
of hidden layers and numbers of units per hidden layer

LSTM model

In addition to the forward and backward propagation of errors that is a characteristic of all neural
networks, recurrent neural networks (RNN) have feedback connections between neurons. Having feedback
connections makes it possible to model persitant relations between data objects in a time series thereby giving
RNNs the capacity for memory. The LSTM neural network is an improved class of RNN that has memory
cells that feature input and output gates that protect the memory cell from perturbations due to, respectively,
currently irrelevant inputs and memory cell contents [3]. Neural network architectures containing LSTM cells
have demonstrated excellent ability for use in predictive models of time series data sets. The LSTM model
was built using Python 3.7.6 and the Keras 2.3.0 API running on top of the TensorFlow 2.0 library for
machine learning. The sequential model architecture was used. The model input was defined as a 3D tensor
with shape [batch size, timestep, features] where batch size refers to the number of days input to the model
before updating the LSTM memory cell weights, timestep is the number of equal length sequences of data
making up a single batch, and features refers to the 4 predictors (ESD, MAT, HDR, Q). One epoch was
defined as a passage of all 1530 samples (days). The input tensor was fed directly to an LSTM layer comprised
of 128 units. Following the Keras recommendations, the LSTM layer unit used the tanh activation function
and the sigmoid recurrent activation function. The memory cell layer was updated between mini-batches of
length batch size as defined by the input shape definition. The stateful argument was set to True so that the
layer weights were used as initial weights in the subsequent mini-batch. The return sequences argument was
set to False because the model contained a single hidden layer.The remaining hyperparameter arguments
were set to default values. The output layer had a single Dense unit without activation.

Since LSTM layers are capable of using features that vary over long time periods, we tested input
batch size arguments between 1 and 170 days during training. The compiled regression models were trained
using a mini-batch gradient descent back propagation learning algorithm. The error during training was
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calculated with the Mean Squared Error (MSE) loss function. For the purpose of comparison, separate
models were built using both shuffled and unshuffled data for training and testing.

I found that using unshuffled time-series data and a memory cell training time step of 10 days yielded
the best results.

The input and output gate activation functions adjust independently of the real rate and values of error
information flow through the memory cell. Memory cell learning is the result of automatic scaling of the
values by the input and output gates during model training. Having gates makes it possible to superimpose,
onto the real-time error flow, selected errors from previous time steps that might be important to accurately
modelling the time series data. An update layer combines the input and output gate vector values with the
cell state. These functions make it possible to account for time series features of the data such as long time
lags.

The LSTM cell is described in the figure 13 and the text below adapted from Olah ([5]).

σ σ σtanh

+x

x x

Xt

ht

tanh

Ct-1 Ct

htht-1

Figure 13: LSTM memory cell

The current data input and hidden state vectors are represented by Xt and ht respectively. The current
LSTM cell input vector length is a fraction of the sample length as specified in the model input shape
definition. The cell state, also known as the constant error carousel (CEC), is represented by the yellow box.
The automatic modifications to the cell state control the information contained in the output vectors. The
cell state and hidden state vectors of the previous step are represented by Ct−1 and ht−1 respectively.

The forget gate layer, represented by the blue shaded area, decides what information to keep from the
previous cell state. This is done by multiplying each value of the cell state by the value returned by the
sigmoid function of the updated weights and biases as follows:

ft = σ(Wf ∗ [ht−1, xt] + bf )

The update layer, represented by the orange shaded area, combines a list of values to update (it) with
the vector of new cell state values (C̃t) determined using the tanh function of the updated weights and biases
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as follows:

it = σ(Wi ∗ [ht−1, xt] + bi)

C̃t = tanh(Wc ∗ [ht−1, xt] + bc)

The output layer, represented by the green shaded area, combines a list of values to update (ot) with the
tanh function of the vector of the new cell state values (C̃t ) as follows:

ot = σ(Wo ∗ [ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

The vector of new cell state values (Ct) is determined as follows:

Ct = ft ∗ Ct−1 + it ∗ C̃t

Thus, the memory cell updates after a defined number of timesteps and outputs a vector of scaled
predictions.
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3 Results
The reference calorific value reductions were compared to the predicted calorific value reductions. The
predictors used in mock experiment number 3 are the same as those used in the reference experiment.
Consequently, the calorific value reduction should be the same. As shown in figure 14 the linear relationship
between the calorific value reductions in the reference data set and the mock data set demonstrates the
capacity of the equation used to generate mock data to reproduce the response data acquired during the the
reference experiment.

Figure 14: Calorific value reduction: reference data set versus mock experiment E3

As shown in figure 15 the rank of the experiments in terms of CV reduction varies with the flow rate.
The predictors used in experiment E3 (ESD=36, MAT=PUF, HDR=3.6) yield the highest CV reduction
when the flow rate is high. The predictors used in experiment E1 (ESD=4, MAT=PVC, HDR=0.5) yield the
highest CV reduction when the flow rate is low. This implies that set of predictors can be selected according
to the flow rate range.
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Figure 15: Calorific value reduction versus influent flow

Polynomial

As shown in figure 16 (unshuffled, true time series) the ploynomial model does not accurately predict
extreme values during the entire experiment.
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Figure 16

As shown in figure 17 (shuffled time series) the polynomial model does not accurately predict extreme
values during the entire experiment.

Figure 17

Comparaison of the polynomial, MPL and LSTM models

Figure ?? shows plots of predicted versus true values obtained from the polynomial, MLP, and the LSTM
models using not-shuffled, true time series data.
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Figure ?? shows plots of predicted versus true values obtained from the polynomial, MLP, and the LSTM
models using pre-shuffled data.

Figure 20 compares the results of analysis of the prediction accuracy of multiple runs of the polynomial
model and of multiple runs of the MLP and LSTM models with random weight initialisation. The high
slope and the narrow distribution of the slope and the RMSE demonstrate the accuracy of MLP model. The
highway LSTM has a higher slope and RMSE and wider distribution of both slope and RMSE than the 2
other models. The polynomial model has a much lower slope and a higher RMSE than the MLP model.

Figure 18: True versus predicted values (unshuffled, true times series data) Polynomial model:
blue; MLP model: red; LSTM model: green
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Figure 19: True versus predicted values (pre-shuffled data) Polynomial model:blue; MLP model:
red; LSTM model: green

Figure 20: RMSE and Regression line slope of the polynomial model and multiple runs of the
MLP and LSTM models . A slope equal to 1 corresponds to a perfect match between predicted and true
values. The histograms show the corresponding frequency distributions.
Polynomial model: blue; MLP model: red; LSTM model: green
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Simulations

Figure 21 shows examples of the low (127 - 321 l/day) and high (322 - 516 l/day) range influent flow
regimes used during simulation.

Figure 21: Randomly generated influent flow rates. Left: High range (322 - 516 l/day); Right: Low
range (127 - 321 l/day).
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Abstract 

This report describes the results of exploratory tests conducted using a 95-liter upflow anaerobic filter 
(UAF) bioreactor test unit fed raw primary sedimentation basin effluent at a municipal wastewater 
treatment plant. The main objectives of the exploratory study were to obtain substrate conversion and 
hydraulic data for use in making full-scale projections, evaluate potential biofilm support materials, 
and to assess the suitability of the upflow anaerobic filter unit process as part of a new concept for a 
complete municipal wastewater treatment plant. The tests were conducted using available equipment 
with no effort made to optimize the system. The main findings of the tests are: COD loading rate: 2,1 
kg COD/m3/day, hydraulic retention time: 3 hours, average influent energy conversion: 71% (Influent 
HHV -effluent HHV), biogas CH4 content up to 65%, stable operation at 16°C,  evaluation of different 
biofilm support materials (see text), non-biodegradable ash and phenolic compounds account for at 
least 63% of the total solids contained in primary sedimentation basin effluent and they are the most 
important contributors to turbidity. 

Introduction  

This work was conducted as part of an effort to conceive a new wastewater treatment and resource 
recovery system to replace the conventional wastewater treatment plant designs. The aim is to achieve 
optimal conception of the system and integration of all unit processes to achieve minimal construction 
and operating cost, and maximal efficiency, profit, and environmental quality. 

Some of the major problems inherent to conventional municipal wastewater treatment are: 

 Production of excess activated sludge 
 Recalcitrance to anaerobic digestion of activated sludge compared to primary sludge  
 More than half of the available chemical potential energy is lost as CO2 released from the 

activated sludge and the anaerobic digestion processes 
 Concentration of recalcitrant substances due to internal recycle 
 All the produced electricity is consumed internally (none is profitably exported) 
 Not all heat is used productively 
 Requirement to add consumable chemicals to remove phosphorous and improve sludge 

sedimentation 

In industrialized countries, the cost of wastewater treatment is affordable in terms of economic cost 
and energy consumption. Nevertheless, if conventional activated sludge processes were replaced by 
the proposed anaerobic UAF process, then wastewater treatment would be an energy producing 
activity and electricity could be exported from wastewater treatment plants and carbon emissions 
from fossil fuel consumption could be avoided. In the case of lower income countries, high operating 
costs, especially electricity purchases, might explain the current situation where more than 2,5 billion 
people are not served by wastewater treatment plants and billions more are poorly served by 
inadequate wastewater treatment.    
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Conventional wastewater treatment relies on aeration and on aerobic microorganisms to oxidize the 
organic fraction of municipal wastewater to CO2 and to produce sludge that can be removed from 
water by decantation. This strategy and the first activated sludge processes were first implemented 
over 100 years ago. Nitrogen and phosphorous are removed by additional aerobic processes or by 
chemical precipitation. Although effective, conventional wastewater treatment requires 
approximately 7.5 W/capita of electrical power input, mostly for aeration. The total electricity 
requirement for wastewater treatment in Switzerland is approximately 500 GWh per year. Up to 80% 
of this requirement can be met by on-site Combined Heat and Power (CHP) production using biogas 
fuel. Nevertheless, conventional wastewater treatment is very energy inefficient. In a typical 
wastewater treatment plant over 50% of the calorific value of the incoming wastewater solids is lost 
as CO2 produced by bacterial respiration.  Moreover, the excess thermal energy produced by CHP is 
often not used and no electricity is exported to the grid. Energy flows from a typical activated sludge 
based wastewater treatment plant are described in the diagram below. 

Figure 1 Energy balance of a conventional Activated Sludge WWTP 

The upflow anaerobic filter (UAF) is an anaerobic digester that contains a packed bed of solid supports 
on which a biofilm develops. Influent enters below the filter and exits above the filter.  

This study was conceived to explore the use of an UAF for the treatment of municipal wastewater 
primary effluent in real industrial conditions. The test equipment was recovered from previous projects 
and adapted to build the anaerobic filter with a very small budget for materials. This approach made 
it possible to acquire preliminary results that can be used to assess the feasibility and to orient the 
work on the preparation of new project proposals to make detailed designs of anaerobic filters and to 
develop new complete wastewater treatment plant system concepts. 

The main research topics and questions addressed by this study were: 

 What are the chemical conversion rates (biogas and VFA production, COD changes, etc)?
 What is the maximum loading rate?
 What is the minimum hydraulic retention time?
 Biofilm characteristics
 What materials should be used for biofilm supports?
 Material and energy balance
 Temperature effects
 Residence time distribution
 Effects on downstream denitrification
 Scale-up potential
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The quality of the results obtained during this exploratory study is not adequate for submission to a 
scientific journal. Nevertheless, they are reported here because they might contribute to efforts to 
improve urban wastewater treatment systems and technology. 

Material and methods 

A simple test unit was constructed to collect data continuously for a long duration under a wide variety 
of industrial operating conditions. Unfiltered, unheated UAF influent was taken directly from the wwtp 
primary sedimentation basin effluent and fed continuously to the test unit. The flow rate was regulated 
by a peristaltic pump. Temperature, biogas flow rate, CH4, pH and ORP were measured at appropriate 
intervals to permit continuous recording of operational data. A post digester decanter served as a 
gas/liquid/solid separator.  

WWTP Primary 
sedimentation basin

Alimentation

Peristaltic pump

F

Thermal mass
 flow meter

CH4 CO2

EffluentChips

Decanter
AFBR

Figure 2 UAF test unit 

Anaerobic filter litres 
Total volume 79
Gas head space 23
Liquid volume (water) 37 
Support volume (torrefied 19
Total working volume 56 
Decanter  (post bioreactor) 16

Figure 3 UAF test unit (from left to right: inlet, test unit, compartment volumes) 

From May 4 to December 15th 2017 (215 days) this test unit was operated almost continuously to treat 
primary sedimentation basin effluent from the municipal wastewater treatment plant in Yverdon-les-
Bains, Switzerland. 

After conducting tests  for more than 7 months at the wastewater treatment plant, the test unit was 
moved to the laboratory for residence time distribution studies using tap water with salt added to 
increase conductivity (described below in the results section). 

Anaerobic Filter Bed description 
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The filter bed material was produced by heating wood chips at 250°C in an anoxic atmosphere 
(torrefaction). The average dimensions of the torrefied chips were 28 x 8 x 4 mm. 30 liters of biofilm 
coated torrefied chips from a previous experiment were mixed with 12 liters of clean torrefied chips 
and loaded into the bioreactor. In order to investigate the use of other biofilm supports, different 
plastic test materials were placed in perforated containers that were buried in the torrefied chip 
anaerobic filter bed.  The torrefied wood chips and the plastic samples were removed periodically, and 
the activity of the associated biofilm was evaluated.  

Results 

The measured parameters are shown in the table below and in figures in the text. Additionally, selected 
results are presented and commented below.  

Summary of major process parameters 

Samples were collected, and off-line measurements of the usual anaerobic digestion process 
parameters were made at 1 to 3-day intervals. Some parameters were measured weekly or even less 
frequently. Additional results are presented graphically at the end of this report and more are available 
on request. 

Table 1 Summary of influent off-line measurements 

Parameter Unit Number Mean standard deviation RSD 
Inlet flow rate l/jour 212 268 114 0.42 
Inlet water temperature °C 118 19.10 7.51 0.39 
pH 109 7.45 0.22 0.03 
Total solids % 24 0.06 0.02 0.24 
Total volatile solids % of TS 23 37.31 8.36 0.22 
Ash % of TS 23 62.80 8.51 0.14 
HHV MJ/kg dry 10 5.96 0.87 0.15 
LHV MJ/kg dry 9 5.48 0.88 0.16 
C % TS 10 19.08 1.30 0.07 
H % TS 10 2.37 0.24 0.10 
N % TS 10 1.58 0.19 0.12 
S %TS 1 0.49 
O % TS 10 14.2 1.41 0.02 
tATP (total Adenosine triphosphate) ng/l 5 68.54 45.97 0.67 
VFA, expressed as acetate mg/l 26 94.71 29.28 0.31 
COD, dissolved mg/l 13 255.74 90.92 0.36 
COD, suspended mg/l 13 429.46 144.95 0.34 
COD, suspended (filtered 0,45 µm) mg/l 4 264.50 38.53 0.15 
COD, dissolved (filtered 0,45 µm) mg/l 4 276.50 36.59 0.13 
TOC, dissolved mg/l 10 80.70 29.69 0.37 
TOC, suspended mg/l 8 123.88 16.30 0.13 
TOC, suspended (filtered 0,45 µm) mg/l 2 59.90 19.66 0.33 
TKN (LatoN) dissolved mg/l 12 67.84 25.82 0.38 
TKN (LatoN) suspended mg/l 4 62.63 23.09 0.37 
NH4-N mg/l 26 53.12 21.38 0.40 
NO3-N mg/l 9 0.63 0.21 0.34 
PO4 mg/l 16 5.79 3.43 0.59 
SO4 dissolved mg/l 3 68.60 7.10 0.10 
SO4 suspended mg/l 1 93.40 
Absorbence,  230 nm A.U. 12 0.01 0.02 2.10 
Absorbence, centrifuged, 230 nm A.U. 9 0.01 0.02 2.24 
Absorbence,  260 nm A.U. 28 0.88 0.60 0.68 
Absorbence, centrifuged,  260 nm A.U. 9 0.26 0.06 0.24 
Absorbence,  280 nm A.U. 12 0.63 0.31 0.49 
Absorbence, centrifuged,  280 nm A.U. 9 0.34 0.08 0.23 
Absorbence,  830 nm A.U. 28 0.25 0.16 0.64 
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Absorbence, centrifuged,  830 nm A.U. 9 0.10 0.04 0.44 
Absorbence,  860 nm A.U. 28 0.24 0.16 0.65 
Absorbence, centrifuged,  860 nm A.U. 9 0.08 0.03 0.42 
Absorbence,  890 nm A.U. 27 0.23 0.15 0.67 
Absorbence, centrifuged,  890 nm A.U. 9 0.07 0.03 0.43 
HRT hours 209 4.66 5.69 1.22 

 

Table 2 Summary of effluent off-line measurements 

Parameter Unit Number Mean standard deviation RSD 
pH (digester effluent) 

 
29 7.14 0.16 0.02 

pH  (post digester decanter effluentl) 
 

104 7.16 0.18 0.02 
Temperature (decanter effluentl) °C 110 22.75 6.83 0.30 
Total solids g/l 24 0.05 0.01 0.20 
Total volatile solids  % TS 23 29.05 6.71 0.23 
Ash % TS 23 70.95 6.71 0.09 
HHV MJ/kg dry 10 2.31 1.06 0.46 
LHV MJ/kg dry 9 2.10 1.04 0.50 
C % TS 10 13.49 1.73 0.13 
H % TS 10 1.13 0.45 0.40 
N % TS 10 0.97 0.27 0.28 
O % TS 10 14.0 2.40 0.03 
tATP (total Adenosine triphosphate ng/l 4 70.97 42.19 0.59 
VFA, expressed as acetate mg/l 25 55.37 24.68 0.45 
COD, dissolved mg/l 16 124.23 50.66 0.41 
COD, suspended mg/l 10 221.82 58.69 0.26 
COD, suspended (filtered  0,45 µm) 

 
4 143.00 25.26 0.18 

COD, dissolved (filtered 0,45 µm) mg/l 4 137.25 12.26 0.09 
TOC, dissolved mg/l 11 42.95 11.90 0.28 
TOC, suspended mg/l 9 66.60 16.74 0.25 
TOC, suspended (filtered 0,45 µm) 

 
2 28.45 9.26 0.33 

TKN (Laton) dissolved mg N/l 10 45.81 13.58 0.30 
TKN (Laton) suspended mg N/l 4 56.88 29.11 0.51 
NH4-N dissolved mg N/l 26 39.54 11.56 0.29 
NO3-N mg N/l 8 0.42 0.09 0.23 
PO4 mg/l 17 5.42 1.81 0.33 
SO4 disolved mg/l 4 32.35 12.16 0.38 
SO4 suspended mg/l 1 52.40 

  

Absorbence,  230 nm A.U. 12 0.01 0.02 2.12 
Absorbence, centrifuged, 230 nm A.U. 9 0.01 0.02 2.24 
Absorbence,  260 nm A.U. 28 0.57 0.31 0.54 
Absorbence, centrifuged,  260 nm A.U. 9 0.21 0.06 0.28 
Absorbence,  280 nm A.U. 12 0.40 0.15 0.38 
Absorbence, centrifuged,  280 nm A.U. 9 0.22 0.07 0.30 
Absorbence,  830 nm A.U. 28 0.14 0.06 0.43 
Absorbence, centrifuged,  830 nm A.U. 9 0.07 0.03 0.41 
Absorbence,  860 nm A.U. 28 0.13 0.06 0.43 
Absorbence, centrifuged,  860 nm A.U. 9 0.06 0.03 0.41 
Absorbence,  890 nm A.U. 27 0.13 0.06 0.44 
Absorbence, centrifuged,  890 nm A.U. 9 0.06 0.02 0.43 
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Figure 4 Hydraulic retention time 

Solids removal 

The anaerobic filter removed both dissolved and suspended COD. Note that primary sedimentation 
basin effluent contained more than 60% ash (non-volatile fraction of total solids). 

Table 1 Solids removal 

Anaerobic filter Total solids Volatile solids COD, dissolved COD, suspended COD, total 
Influent mg/l 600 222 256 429 685 
Effluent mg/l 500 145 124 223 347 
Reduction % 17 35 52 48 49 

Considering that primary sedimentation contains a large fraction of inorganic materials, biological 
solids removal should be assessed by comparing UAF influent and effluent suspended TOC and 
suspended TKN. These organic fractions comprise large molecules such as proteins, fats and cellulose. 
The anaerobic filter removed 46% of the TOC in suspension and 9% of the TKN in suspension. 

Tableau 1 Suspended COT and TKN removal 
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Balance (UAF effluent – UAF influent) mmoles/l -3,1 -4,8 -7,9 -1,0 0,0 -1,0 -1,6 -0,4 -2,0 

Balance (UAF effluent – UAF influent) % -46,8 -46,2 -46,5 -25,6 -33,3 -25,7 -32,5 -9,2 -21,3

In addition to comparing influent and effluent total solids determined gravimetrically, it is useful to 
simply observe the dried solids. Influent solids were a dark brown coloured viscous paste. Effluent 
solids were a light brown coloured sand like powder. As shown in the photo below, solids are removed 
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by the anaerobic filter. The solids remaining in the effluent are 71 % non-volatile. The ash fraction 
cannot be removed biologically. The non-volatile fraction is apparently recalcitrant to biological 
degradation. 

Figure 5 Dried influent (left), dried effluent (right)

FT-IR analysis of total solids 

Influent and effluent liquid samples were dried at 105°C. The dried solids were ground to obtain a fine 
powder. FT-IR spectra of the dried solids were obtained and compared to spectral libraries to identify 
substances present in the dried solids. The method is qualitative and not quantitative. The identified 
substances can be classified into 3 broad categories: 

 Mineral clays
 Benzene and benzene derivatives
 Phosphonium derivatives

All three categories contain chlorinated derivatives. This exploratory study did not reveal a significant 
difference between the influent and the effluent. An example FT-IR spectrum is given in the figure 
below. 
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Figure 6 Substances identified in dried solids by FT-IR 

Biofilm assessment 

The presence of a biofilm and biofilm activity were assessed using three methods 

 Aldehyde dehydrogenase activity
 ATP concentration
 Scanning electron microscopy

Aldehyde dehydrogenase activity 

The oxidation of organic compounds is a dehydrogenation process mediated by specific 
dehydrogenase enzymes. Therefore, The Dehydrogenase Enzyme Activity (DHA) reflects microbial 
activity. The DHA assay is based on the reaction of redox-sensitive tetrazolium indicators. Triphenyl 
tetrazolium chloride (TTC) compounds are colourless and, after reduction, they are transformed into 
water insoluble, red coloured mono-formazans (TPF), which can be quantified by spectrophotometry. 
The DHA activity assay was adapted to the conditions of the AFBR project by a student intern and used 
to assess biofilm support materials including the torrefied chips, plastic foam and hard plastic supports. 
The samples were placed in the AFBR for between 15 and 98 days and then removed for assessment 
of biofilm activity. Biofilm specific activity can be expressed in terms of TPF/m2 support surface. The 
highest biofilm specific activity was measured on the polyurethane foam supports. The activity 
measured using the ADH assay was 5 times greater on the polyurethane foam supports than the 
activity measured on the next best performing supports (some types of hard plastics and torrefied 
wood chips). The activity of biofilms that developed on torrefied wood was the same or higher than 
almost all the hard plastic supports.  

ATP concentration and UV measurements 

The concentration of ATP is positively correlated with the number of bacteria. The number of bacteria 
per volume of biofilm support can be evaluated by determination of ATP. Biofilm coated chips were 
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removed from the AFBR and ground to dislodge the bacteria. The total ATP concentration [tATP] of the 
suspension was measured and then divided by the measured volume of chips. The anaerobic filter 
biofilm concentration factor is defined as follows: 

Biofilm concentration factor = tATP on supports/tATP in the bulk water 

Sample number tATP [ng/ml] 
1 81.95 
2 111.1 
3 105.2 
Mean 99.4 
   
AFBR Influent 30.2 
AFBR Effluent 31.4 
   
Biofilm concentration factor 3.2 

Table 2 total ATP determinations 

Biofilm concentration factor = 99.4 [ng/ml]/ 30.8[ng/ml] = 3.2 

The concentration of ATP measured on the biofilm support was 3.2 times greater than the 
concentration measured in both the influent and the effluent. The increase in the bacterial 
concentration between the influent and effluent streams was 4% (one measurement). This result 
demonstrates that a biofilm did develop on the torrefied wood chips and that it does not release 
bacteria to the effluent at a rate that is greater than the rate of bacteria introduction to the AFBR via 
the influent. 

UV measurement 

UV measurements at 280 nm give an indication of the protein content of the water and measurements 
at 260 nm indicate the DNA content. DNA content is correlated with the presence of microorganisms. 
Measurements of the influent and the effluent showed that both protein and DNA content decrease 
in the AFBR supporting the conclusion that the biofilm is attached to the filter bed and that the AFBR 
removes protein and DNA.  

Scanning electron microscopy 

The scanning electron micrographs made during a previous study conducted in the same AFBR also 
using torrefied wood chip biofilm supports but fed dairy wastewater and not municipal primary 
effluent are shown below. The biofilm is present after 4 months of continuous operation. However, 
the surface is not entirely covered. The surface coverage and consequently the total biological activity 
is expected to increase with longer incubation times and increased total biofilm surface coverage. 
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Figure 7 Scanning electron micrographs of biofilms on torrefied wood chips 

Impact on carbon supply for denitrification 

The loss of TOC in the UAF might result in insufficient dissolved TOC for the downstream denitrification 
process. This risk was evaluated by comparing the measured concentrations to the theoretical TOC 
requirement for denitrification. 

The theoretical stoichiometric carbon requirement for denitrification is obtained from the equation 
below1 and the measured TKN + NO3. Prior conversion of NH4-N to NO3-N is assumed. 

NO3+1,08CH3OH + H+ > 0,065C5H7O2N + 0,47N2 + 0,76CO2 + 2,44 H2O   

If the difference between the dissolved TOC and the theoretical carbon requirement and is less than 
zero, then carbon will have to be added to the dentrification process. The difference and the ratio of 
C/N in the primary sedimentation basin effluent (UAF influent) were evaluated and are presented in 
the table below. 

Table 3 UAF influent TOC and N ratio 

Anaerobic filter (UAF) 
Stream characteristics 
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Influent mg/l 80, 123, 204, 53, 0, 53, 67, 62, 130,
Influent mmoles/l 6,7 10,3 17,0 3,8 0, 3,8 4,8 4,5 9,3 
TOC requirement for conversion mmoles/l       4,1 0, 4,1 5,2 4,8 10,1 
Balance (Influent dissolved TOC – Required TOC) mmoles/l 2,6          
Ratio C/N dissolved moleC/moles 1,4                 
Ratio C/N total moleC/moles 1,8                 

 

Based on the averages of the entire study duration, the difference between the concentration of 
dissolved TOC in the influent and the TOC requirement for conversion of nitrate obtained from influent 

 

1 Metcalf & Eddy, Wastewater Engineering, Third edition, 1991 
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ammonium is 2,6 mmols/l. In the studied primary effluent stream, the balance in positive and the ratio 
is favorable for downstream denitrification.  

However, as shown below, the UAF increases the risk of a lack of carbon for downstream 
denitrification. The difference between the concentration of dissolved TOC in the influent and the TOC 
requirement for conversion of nitrate obtained from influent ammonium is only 0.5 mmols/l. The 
reduced C/N ratios of the UAF effluent streams confirm this risk. This result is an important argument 
against implementation of UAF treatment of primary effluent in a conventional wastewater treatment 
plant with denitrification. As a pre-treatment implemented at some sites in a regional network, the 
impact of the carbon loss is reduced because some streams will not be treated by UAF.  

Table 4 Impact on denitrification 

Downstream  
denitrification process 
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Influent mg/l 43,0 66,6 109,6 39,5 0,4 40,0 45,8 56,9 102,7 
Influent mmoles/l 3,6 5,6 9,1 2,8 0,0 2,9 3,3 4,1 7,3 
Carbon requirement mmoles/l       3,1 0,0 3,1 3,5 4,4 7,9 
Balance (TOCdis – C required) mmoles/l 0,5         
Ratio C/N dissolved moleC/moles N 1,1                 
Ratio C/N total moleC/moles N 1,2                 

 

Digester temperature  

Type K thermal couples were used to measure the temperatures of the: 

 Inlet stream 
 Centre of the anaerobic filter 
 Outlet stream 
 Ambient air 

The AFBR digester is equipped with a concentric water jacket that was used to attempt to maintain a 
constant temperature inside the AFBR. However, it was not possible to cool the digester during hot 
summer days and it was not possible to adequately heat the digester when the flow rate was high and 
the water temperature was low.  

The difference in temperature between the thermocouple placed at the center of the digester and a 
hand-held temperature probe used to control the temperature on 3 different days was between -0.8 
and + 2.4 °C. Consequently, the reported temperature of the anaerobic filter bed (digester) is believed 
to be within 3° of the true value. The temperature set points during the experiment are shown in Table 
5 Digester temperature set points: 

Dates Number of days Temperature set point [°C] Average digester temperature [°C] 
June 28th to August 19th 52 Not heated 27 
August 20th to September 19th 31 25°C 23 
September 20th to November 8th 50 20°C 20 
November 9th to December 15th 38 Not heated 13 

Table 5 Digester temperature set points 
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One of the main results of this study was the demonstration of stable operation in different 
temperature intervals. Nevertheless, biogas production decreased towards the end of the study after 
the influent temperature decreased to less than 16°C. Between November 2017 and March 2018, the 
measured wwtp primary effluent temperature was most often between 14 and 20 °C. The temperature 
was below 15°C for only short durations and almost never was below 10°C. These results and 
observations suggest that the AFBR concept can be usefully applied to treat un-heated wastewater in 
temperate climates. 

Biogas production  

Both biogas and liquid effluent exited the bioreactor via the same tube that was connected to a closed 
decanter that served as a gas/liquid/solids separator. Biogas exited the decanter head space through 
a 4 mm tube. A very small headspace pressure of ~2 mbars was maintained by immersion of the biogas 
exit tube to 20 mm below the water surface of a bottle that served as a biogas check-valve. Biogas 
exited the check-valve bottle via a 4 mm tube that carried the biogas to an on-line analyser comprising 
flow through CH4 measurement (IR) and a mass flow meter (thermal mass principle) calibrated with a 
mixture of 60% CH4 and 40% CO2 and sampled every second. The biogas entered the gas analyser in 
pulses corresponding to the biogas bubbles observed in the water trap. Existing lab instruments were 
used during the pilot study for biogas quantification and composition. It was not possible to make 
accurate flow rate and methane concentration measurements during the pilot study. The mass flow 
meter requires a flow rate of at least 500 ml/min to measure accurately. This flow rate was not attained 
regularly. When there was no biogas flow, the biogas in the methane measuring cell was diluted with 
ambient air. Since biogas flowed in irregular pulses, only the peak methane concentrations should be 
considered as valid measurements. Although there are major deficiencies in the technique used during 
this exploratory study, the approaches used made it possible to quantitatively and to qualitatively 
assess biogas production.  

Quantity of biogas produced 

Three methods were used to estimate the methane production. 

1. Calculation of total biogas volume flow by integration of the area under the mass flow rate 
curve. The error of this method is due to variations in the gas composition and to the actual 
flow rate being less than the minimum flow rate required by the manufacturer of the mass 
flow meter. The advantage of this method is that variations during the day can be monitored 
because the gas flow rate is recorded every second. 

2. Calculation of methane production from the difference in the higher heating value of the solids 
contained in the influent and the effluent. The error of this method is due the fact that not all 
the chemical energy lost is transformed into methane. 

3. Calculation of methane production from the difference in the volatile solids content of the 
solids contained in the influent and the effluent. The error of this method is due to inaccuracy 
of volatile solids determinations and lack of knowledge the biogas yield from volatile solids. 

4. Calculation of methane production from the difference in the COD content of the influent 
and the effluent. The error of this method is due the fact that not all the COD lost is 
transformed into methane. 

The average daily methane production rate determined using these 4 methods is presented in table. 

Method Mean CH4 production [N RSD [%] Remark 
Mass flow 6 

 
Assume 65% CH4 content of biogas 

HHV removal 20 42.5 36 MJ/m3 CH4 
COD removal 29 28 Assume 0,35 m3 CH4/kg COD removed 
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VS removal 17 69 Assume 0,6 m3 CH4/kg VS removed 
Table 6 Rate of methane production 

Quality of biogas produced 

Biogas components were also measured on 3 different days using a multigas detector that sucked 
biogas from the head space. The gas detector was designed for security and not for analytical use. The 
measured values are reported in the table.  

Biogas component Unit Measured values 
CH4 % volume 67, 79, 76 
H2 ppm 4, 12, 3 

H2S ppm 56, 373, >500 
NH3 ppm 3, 77, 31 

 

The methane concentration values measured on-line using the IR flow through cell were regularly 10% 
volume less than the values measured using the multigas detector. Consequently, the actual methane 
value is assumed to be at least 5% greater than the reported on-line measurement value. 

The methane content of the produced biogas was consistently superior to 60% volume and frequently 
superior to 70% volume. 

Robustness 

The biological activity of the anaerobic filter is the result of a biofilm that developed on the torrefied 
wood chip support. Due to the presence of extracellular polymer support matrices and to microbial 
consortiums, biofilms are known to be more resistant to chemical and hydraulic variations than 
suspended growth cultures. The tests of biological robustness of the anaerobic filter bioreactor and 
the range of values tested are.  

Variable influent parameter Range of variation 
Flow rate [l/day] 0 to 516 
Influent temperature [°C] 8 to 40 
COD load [kg COD/m3/day] 1 to 6 

Table 7 Range of important variable influent parameters 

The variations in all the measured parameters are presented graphically on request. The general 
conclusions are that the AFBR is resistant to the tested: 

 Influent flow rate variations 
 Temperature variations. However, biogas productivity declined as the average temperature 

declined.  
 COD load variations 
 Influent nutrient variations 
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Some figures 
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* 

 

+ 

 

 

* Elimination capacity (EC) = (HHVin – HHVout)/UAF working volume/day.  

This result demonstrates that the process was effective at influent temperatures between 12 and 28°C. 
This is the range of normal sedimentation basin effluent in temperate climates. 90% of the ΔHHV values 
were obtained using a fitted equation derived from measured temperature and solids calorific value. 

+ Loading rate in terms of influent solids calorific value. The observation that the EC increases with 
loading rate demonstrates that the UAF was not overloaded. 

AFBR Residence Time Distribution 

Efficient use of the AFBR volume requires dispersion of the influent substances (substrate) throughout 
the filter bed volume. Interpretation of time series plots of the effluent concentration following pulse 
injection of a tracer substance gives useful information about dispersion and the effectiveness of a 
packed bed column like the AFBR. Ideally, the substrate will be dispersed across the entire width of 
the filter bed and advance as a plug to the effluent side thereby allowing the greatest exposition to the 
biofilm and the longest reaction time. Comparison of the ideal effluent conductivity curve of an ideal 
plug flow reactor to the actual conductivity curve gives an indication of the effectiveness of substrate 
dispersion in the anaerobic filter.  

The distribution of substrate in the anaerobic filter was assessed by conducting a residence time 
distribution study of a concentrated salt solution injected as a pulse immediately upstream of the 

  
DOI: https://doi.org/10.31224/osf.io/sm5qg 

112



Page 16 de 22 

anaerobic filter bioreactor2. Effluent salt concentration was quantified by conductivity measurements 
of the AFBR effluent stream. The effluent conductivity profile was compared to an ideal profile. 
Residence time distribution curves were obtained for six separate injections of salt solutions into the 
AFBR.  

According to chromatography theory, a theoretical plate is described by the time that it takes for solute 
to equilibrate between a mobile and a stationary phase3 and the number of theoretical plates is a 
function of the retention time and the width of the effluent peak4. 

𝑁 ≈ 5,54 ൬
𝑉

𝑊
൰

ଶ

 

N = Number of theoretical plates 

Vr = Peak retention time 

Wh = Peak width at half peak height 

Since efficient use of the anaerobic filter also involves distribution of substrate and contact with a 
biofilm that is attached to solid packing media, these concepts also apply to an anaerobic filter 
bioreactor. The data obtained from the experiments was also used to determine the theoretical plate 
height and optimum mobile phase flow rate.  

The range of hydraulic retention times tested was chosen to correspond with the hydraulic retention 
times tested in the AFBR at the wastewater treatment plant between May and December 2017. After 
observing that the conductivity profiles corresponded with a well-mixed plug-flow reactor, shorter 
hydraulic retention times were tested to find the optimum. 

The conditions are summarized in the table below and the results are presented in the following tables 
and graphs. 

Anaerobic filter bed volume liters 42 
Total bioreactor liquid volume liters 37 
Flow rate l/h 7,6 to 90,4 
Hydraulic retention time (based on total liquid volume) hours 0,41 to 4,8 
Salt introduction (dissolved in 1.1 liters water) grams 360 

Table 8 RTD study conditions 

 

2 Smith, Elliot and James. Characterisation of mixing patterns in an anaerobic digester by means of 
tracer curve analysis. Ecological Modelling, 69 (1993) 267-285. 

3 https://teaching.shu.ac.uk/hwb/chemistry/tutorials/chrom/chrom1.htm. Accessed April 2018. 

4 GE column efficiency testing brochure, Application note 28-9372-07 AA. 
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Figure 8 RTD 4.9 h HRT 

 

Figure 9 RTD 2.1 h HRT 
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Figure 10 RTD 1,7 h HRT 

 

Figure 11 RTD 1,1 h HRT 
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Figure 12 RTD 0,8 h HRT 

 

Figure 13 RTD 0,4 h HRT 
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In the case of a long hydraulic retention time of 4.9 hours, the concentration rises slowly after only 2.5 
hours, then abruptly, and then tails off slowly. The slow initial rise indicates short-circuiting. The abrupt 
rise indicates plug flow behaviour. The appearance of the first peek after only ~0.5 HRTs indicates that 
the effective volume of the experimental AFBR is less than the actual volume. The absence of a narrow 
peek and the very slow tailing off indicates the presence of dead zones from which salt continues to 
diffuse during a prolonged period after reaching a peak concentration in the effluent. The conclusion 
is that the long HRT leads to the creation of short circuits, dead zones, and the inefficient use the 
anaerobic filter bed volume. 

In the case of short hydraulic retention time of 2.1 hours, the concentration rises abruptly after 1.3 
hours and then tails off slowly. The abrupt rise indicates plug flow behaviour as expected. The 
appearance of the first peak after only ~0.8 HRTs indicates that the effective volume of the 
experimental AFBR is less than the actual volume. The slow tailing off indicates the presence of dead 
zones from which salt continues to diffuse during a prolonged period after reaching a peek 
concentration in the effluent. The tests at 0,8 ant 0,4 hours HRT show similar narrow peeks that arrive 
before the theoretical HRT. Only the test of a 1.1-hour HRT gave a result where the conductivity peak 
corresponded with the theoretical HRT. The conclusion is that the short HRT leads to more effective 
mixing of the substrate and efficient use the bioreactor volume with a 1.1 hour HRT being the best for 
this particular anaerobic filter. In a future project the hydrodynamics should be optimized, and the HRT 
reduced to less than 3 hours.  

In column chromatography, the height equivalent of a theoretical plate (HETP) is a function of the 
hydraulic retention time, the RTD curve width and the bed length. The Van Deempter plot is used to 
compare the HETP to the mobile phase velocity at different hydraulic retention times. The most 
efficient use of the bed volume is attained at the minimum of the curve.  

 

Figure 14 Van Deemter plot 

Tested HRT  hours 0,41 0,82 1,11 1,68 2,07 4,82 
Measured flow rate l/h 90,4 44,9 32,9 21,8 17,7 7,6 
Peak retention time, tr minutes 49 32 68 38 38 40 
Peak width at half-height, Wh minutes 32 16 47 36 30 41 
Number of theoretical plates, Ntp 

 
13 22 12 6 9 5 

Height equivalent of a theoretical plate, HETP mm 35 21 40 77 54 87 
Mobile phase velocity mm/min 17 8 6 4 3 1 

Figure 15 Data used to make the Van Deemter plot 
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The recommendations that follow from the residence time study are: 

 HRT for the AFBR configuration tested (packing volume, packing dimensions, column 
geometry, etc.): between 0,4 and 1,1 hours 

 Mobile phase velocity: between 6 and 16 mm per minute 

Discussion and conclusions 

Observed bioreactor performance and projected scale-up 

The important average influent and effluent characteristics and the values achieved during the pilot 
tests are presented in the tables below. Achieved values are those that were maintained stable for 
several days. Expected values are predicted based on the results of the pilot tests and subjective 
judgement.  

Table 9 Expected influent and effluent characteristics 

Influent Unit Overall average RSD [%] Achieved Expected 
Total COD mg/l 685 

  
685 

Total solids mg/l 646 6 
 

650 
Volatile solids % TS 37 22 

 
37 

Higher heating value kWh/m3 1.04 36 
 

1 
Effluent 

     

Total COD mg/l 347 31 56 150 
Total solids mg/l 504 20 400 500 
Volatile solids % TS 29 23 25 25 
Higher heating value kWh/m3 0.29 49 0.25 0.25 

 

Table 10 Summary of AFBR performance 

AFBR performance Units Overall average RSD [%] Achieved Expected 
Hydraulic retention time hours 4.7 122 2.8 3 
Temperature °C 23 30 16 >16 
Methane production vv/day 0.44 42.5 0.6 0.7 
Biogas CH4 content % volume 65 15 70 65 
Total solids loading rate Kg TS/m3/day 4.6 49 7 7 
Organic loading rate kg VS/m3/day 1.7 61 4 10 
COD reduction % 58 28 

 
75 

HHV reduction % 71 14 85 80 
 

The average inlet COD (429 mg/l) x average flow rate (268 l/day)/ filter bed working volume (56 
litres) = 2,1 kg COD/m3/day. 

Table 11 AFBR description of industrial scale AFBR 

Anaerobic filter bioreactor description Achieved Expected 
Biofilm specific area m2/m3 bulk volume 360 360 
Biofilm thickness+ µm 100* 300 
Biofilm specific mass mg VSS/l reactor 36'507 164'280 
Effective volume* % of actual volume 67* 99 
Bed volume requirement m3/MLD influent 196 29 
Biofilm support material 

 
Torrefied chips Torrefied chips or plastic 

+ assumed mean thickness based on visual observation that the chip surface was not yet completely covered. 

* Based on tracer studies that show that for the average HRT of 4,7 hours observed during the study, the peak effluent salt 
tracer concentration occurs at 67% of the theoretical HRT. 

The main needs for further development are:  
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 Hydrodynamic models and detailed design of the AFBR bioreactor 
 Design, construction and testing of features that will be required at the industrial scale (e.g. 

high-rate primary sedimentation basin, back-washing, bed materials, heating mode, effluent 
solid-liquid separation) 

 Development of biochemical and kinetic model 
 Large-scale (> 4 m3 bioreactor) long duration (18 months) testing 
 Design, construction and testing of a thermal energy collection, storage and distribution 

system 

The AFBR project can be conducted as a standalone project or, preferably, as part of a project to 
develop a completely new wastewater treatment plant incorporating a new primary treatment 
process, nutrient removal, algae photo bioreactors, CO2 recycling, advanced biogas cleaning 
techniques and combined heat and power concepts, novel final effluent polishing processes, and water 
reuse. 

Biofilms and packing material 

The results of the three different methods used to assess the biofilms lead to the following main 
conclusions: 

 A robust biofilm developed on the torrefied wood chip supports 
 Torrefied wood is an acceptable biofilm support material 
 A biofilm developed on the plastic supports  
 Biofilm development is slow. It appears that at least 1 month is required for establishment of 

the biofilm and that one can expect the biofilm to continue to increase in surface coverage and 
biomass over time 

 The biofilm tolerated cold conditions (8°C). Maintenance of at least 16°C inside the biofilter 
bed appears to be a reasonable objective for future development 

Further evidence of the existence and activity of a biofilm is given by the measured biochemical 
conversions. In particular, the short hydraulic retention time, the higher heating value reductions and 
the COD removals would not have been possible without active immobilized biomass.  

The observation that the UAF elimination capacity increased during the study as the hydraulic 
retention time decreased and as the temperature decreased suggests that the mass of the biofilm was 
increasing during the study and had not reached a limit. Further increasing the mass of the biofilm 
might result in even better performance. 

Due to the strict limits on effluent turbidity and the unknown effect of torrefied wood particles on 
conventional wastewater treatment processes, further work will be focussed on the use of synthetic 
biofilm support materials. Differences between the type of plastic material were observed in terms of 
biofilm coverage and in specific biofilm activity as determined by the ADH assay. The micropollutant 
adsorption capacity of torrefied chips should be investigated. Due to their low cost compared to 
plastic, torrefied chips might be appropriate biofilm support materials in lower income countries.  
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1. Introduction

Abstract
Please note, the abstract will be published in Aramis

Design, construction, and operation of a mobile bioreactor test system for the acquisition of data 
required to build predictive models using artificial neural networks. The project results will be used to 
design a complete system to convert wastewater to valuable products.

Management Summary
Please note, the executive summary will not be published in Aramis

According to UN Water, industrial water consumption is responsible for 19% of global water 
use and around 380 billion m3/year of water can be recovered (2021, UNESCO, WWAP). 
Many wastewater streams are dilute aqueous suspensions or solutions such as municipal 
wastewater and industrial streams from the dairy, beverage, prepared foods, meat processing, 
mining, and solid waste management industries. We will develop novel bioreactors for lactic 
acid production and for COD reduction using the wastewater streams from cheese dairies. To 
do this, we will build and operate a mobile data acquisition system that has been designed to 
acquire a large and dense dataset as required to build Artificial Neural Network predictive 
models. In contrast to the conventional factorial designed experiments and regression analysis 
approaches, the proposed workflow features efficient data acquisition and simulation using 
Artificial Neural Network models to identify the important parameters and to set mechanical 
features and operational parameters of the novel treatment system to their optimal values. By 
working with real industrial streams and using large bioreactors, the results from tests using 
the mobile data acquisition unit are expected to be more useful to design engineers than 
results obtained from laboratory experiments. Additionally, this workflow makes it possible to 
tailor the bioreactors to match site conditions thereby achieving high performance in terms of 
Capex, Opex, pollution removal and stability and constitutes a unique selling proposition. The 
project deliverables include construction and operation of a mobile data acquisition unit, 
exprimental results, modelling, and simulation as required to design a complete industrial 
system. Commercial implementation requires completion of field data acquisition and design 
of the first commercial unit. The start-up to be created during the project aims to have 
revenues from sales  within 12 months of project completion.

Context

Thematic Area: Energy & environment
Cluster:    Environmental technologies/cleantech
Special Funding Measure: No special funding measure

Is the application a follow-up of an idea financed in the frame of an Innosuisse NTN Booster?

No idea out of an NTN Innovation Booster

Have any of the topics in this application been previously developed with Innosuisse or other 
funding instruments?

Innovation cheque:  47096.1 INNO-EE  Data acquisition unit for deep neural network model 
development
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Problem
According to UN Water, 2.5 billion people do not
have access to improved sanitation. Billions more
are served by underperforming wastewater
treatment systems. The conventional activated
sludge process generates significant CO2 emissions
due to bacterial respiration and electricity
consumption.

Machine learning to improve 
environmental bioprocess design

Bioprocesses can be defined as controlled conditions that result in the biological agent mediated transformation of 
a substrate chemical into a specific product chemical.

In practice, bioprocesses are embedded in complex systems comprising physical, chemical, and biological 
parameters with non-linear relations. Consequently, they are difficult to model, design and control.

What is needed are methods for system identification, simulation and process optimization. 
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The use of machine learning and neural network
environmental process data analysis methods helps to
gain insights and understanding. For example:

Non-linear system identification

Latent variable models

Predictive models

Time series analysis

Process monitoring

Trouble shooting and root cause analysis

Optimisation

Simulation

Selection of mechanical features

Analysis of very large datasets

Decision trees

Solution
A new wastewater treatment plant concept inspired by
natural processes and systems is possible. The use of
machine learning methods in the design process and in
optimization would contribute to effectiveness.
Compared to a conventional activated sludge plant,
some advantages of the new plant include:
• 90% reduction in electricity consumption
• 70% reduction in CO2 emissions
• 80% reduction in operating costs

Mark McCormick

Mark McCormick
Environmental engineer, M.Sc.
PhD candidate in information systems
Unil, HEC, DESI
mark.mccormick@unil.ch
Tél: +41 78 604 52 42

Source: pexels-tom-fisk

Integrating ecosystems, wastewater treatment and energy production to improve environmental quality

Use of Hotelling’s T2 statistic to identify periods of process
instability

Evaluation of the contribution of process parameters to 
process instability

Cross correlation of process parameter values

Numerical predictive models of a fixed bed 
bioreactor 
Predicted versus True values
• Red: Multilayer Perceptron neural network 
• Blue: 4th degree polynomial 

Simulation of different constructive feature 
values in a fixed bed bioreactor using a 
Multilayer Perceptron neural network model 

Current requirements include:
• Economic affordability
• High energy efficiency
• Carbon, nitrogen and phosphorous 

recycling
• Reduction in GHG emissions
• Resource recovery

Flow of potential energy (NCV) through a 
conventional activated sludge wastewater 
treatment plant

Source: pexels-skitterphotoSource: pexels-tom-fisk
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Conclusions and perspectives 

This work has demonstrated the use of machine learning methods to understand and to model 3 

large datasets obtained from very different experiments in the field of environmental engineering. 
In all 3 experiments, the use of machine learning methods made it possible to achieve more 

informative numerical results and visualizations and more powerful models than could have been 
achieved using conventional statistical methods and mechanistic models.  

The work also contributed to the development of a new workflow that eliminates some 
conventional practices used in environmental bioprocess development and consequently is 

expected to lead to significant savings in development time and costs and to the development of 

bio processes that are more effective and less expensive to build and operate. Among the 
conventional practices that were changed or eliminated are: 

 The use of the conventional factorial design of experiments and regression analysis approach

 The use of laboratory studies under highly controlled conditions that often are very different
from industrial and environmental conditions

 Labor intensive off-line analysis of samples

 The use of inconvenient stoichiometric and kinetic based models such as ADM-1

 The use of mechanistic models that do not accurately account for the non-linearity and
complexity of biological processes

These conventional practices will be replaced by a new development framework and workflow that 
includes: 

 Acquisition of data during short-duration studies using medium sized bioreactors (200 liters)
and real waste streams under real industrial conditions

 A black-box Artificial Neural Network (ANN) model that ignores the biochemical mechanisms
and kinetics

 Determination of the design specification of the industrial-scale bioreactor by simulation using
the ANN model

The goal of this thesis was practical. The goal was neither to contribute to the theoretical 
understanding of neural networks nor to develop new methods in the field of machine learning. 

My personal objective was to learn to apply machine learning to the kind of datasets that I acquire 

during my work as an environmental engineer. This goal was achieved as demonstrated by the 
progressive acquisition of machine learning skills required to produce 3 articles. Among the specific 

skills acquired were, programming in Python, use of the Bash shell to access the High-Performance 

Computing (HPC) clusters at the University of Lausanne, use of the Scikit-Learn, Matplotlib and 
Pandas libraries for data pre-processing and visualization, the use of open source libraries for 
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statistical data analysis, and use of the Keras API to build Artificial Neural Networks based on the 
MLP, LSTM and CNN architectures. 

The use of PCA, PLS regression, lag-time analysis, control charts based on Hoteling’s t-squared 

statistic were already well known to the field of process control. The contribution of this work was 
to demonstrate a new application of these techniques to the biomass torrefaction process. 

The use of a state image approach to monitoring and controlling a fed batch anaerobic digestion 

process was demonstrated. The 1-D CNN proved to be an effective architecture for this task 
involving recognizing the chemical state conducive to feeding the digester.  

A MLP DNN was built to model a continuous, high-rate bioprocess conducted in a fixed bed 

anaerobic digester. The model was saved and reloaded to conduct simulations using new data. The 

workflow will be used to determine the mechanical design parameters of industrial bioreactors for 
wastewater treatment. 

While working on my thesis, I designed a mobile data acquisition system (Innocheque project n° 
47096-1-INNO-EE). The system can be used to acquire a very large dataset as required to build 

artificial neural network models. The application method involves temporarily installing the mobile 
unit at the study site and operating 3 bioreactors according to an experimental plan that covers the 

range of plausible industrial operating conditions. The results are intended for use in designing 

wastewater treatment and conversion equipment that can be used to add value to wastewater. With 
this goal in mind, contacts were established with potential partners to develop projects in the areas 

of lactic acid production from whey, hydrogen production, and municipal wastewater treatment. 

An application for Innosuisse funding to build and operate the mobile data acquisition (Innovation 
project n° 101.992 IP-EE) was rejected in April 2022. 

The design of equipment and control strategies for municipal wastewater treatment plants is a 
major potential application of machine learning and artificial neural networks. According to UN 

water, more than 2.5 billion people have no wastewater treatment service. Billions more are served 
by inadequate or poorly functioning wastewater treatment systems. Among the root causes of the 

problem are high construction and operating costs and electricity consumption. An inexpensive, 

robust, and energy positive wastewater treatment system might help to solve this problem. Contacts 
have been established with the goal of delivering a preliminary design report including a process 

flow diagram, material balance and site layout adapted to the local partner’s conditions. The long-

term goal of this work is to design and build wastewater treatment plants each serving between 
50’000 and 500’000 population equivalents. Since bioprocesses, including upflow anaerobic filters, 

are major components of the proposed system, the knowledge about machine learning and artificial 
neural networks that I gained while preparing this thesis will be applied to this project. 

Although I have not yet applied machine learning and artificial neural networks to ecosystems, I 
aim to collaborate on projects focused on ecosystem services such as constructed wetlands. 

Wetland ecosystems involve complex interactions between system features such as land use, biotic 

and hydrologic conditions, soil type and water physical-chemical quality. These interactions have a 
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time and space dimension. Artificial Neural Networks (ANN) have demonstrated their capacity to 

map complex and non-linear relations between data. Consequently, in the study of ecosystems the 

ANN approach to modeling is expected to make it possible to develop accurate predictive models 
where prediction accuracy is evaluated in terms of the error between predicted and true values. 

Machine learning and Neural Network approaches have proven to be very useful tools for 

identifying latent variables and for mapping relations between parameters that measure apparently 
very different features such as those that might be discovered in ecosystems. 

In this context, the objective is to provide data-based answers to questions asked about the studied 

ecosystems. One research question is: what is the most appropriate workflow as defined by data 

collection, data preprocessing, model architecture, training, and deployment? Work towards the 
conservation and restoration of wetlands would benefit from numerical models of the biological 

and physical processes occurring within the studied ecosystems. These models would have many 

uses including assessing the role of different biodiversity, hydrologic and physical-chemical 
dimensions, and their relative importance to the studied ecosystems. The models could also be 

used to identify indicators and targets for use in evaluating conservation and restoration actions. 
Numerical models can also be developed with the goal of simulation and prediction of future states 

of the studied areas. In general, having the capacity to make simulations and predictions would 

benefit planning and upscaling of conservation and restoration work. A poster on this topic was 
presented in June 2022 at the forum “Les Rencontres de l’Eau” hosted by the University of 
Lausanne. 

This thesis demonstrated applications of machine learning and artificial neural networks to the 

analysis and modeling of environmental processes. It would not have been possible for me to 

obtain the results using the numerical and statistical methods that I knew before my doctoral 
studies. The work revealed latent structures in the raw data and generated useful information about 

the underlying processes. The information has practical use in the development of process control 
strategies and in the specification of mechanical constructive features of the equipment.  

Choosing to study machine learning and artificial neural networks was a good decision because I 
gained a better perspective on data science and information systems and the acquired skills have 

many practical applications. After the thesis, I will continue to improve my skills in machine 
learning and use these skills to solve problems in the field of environmental engineering.  
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