
	
  
	
  
Unicentre 

CH-1015 Lausanne 

http://serval.unil.ch 

 

 
	
  

Year « 2012 » 

 

Title : The Role of AtPHO1 in the Guard Cell Movements of Arabidopsis 
thaliana 

 
Author : Céline Zimmerli 

 
 
 
 
 
 
Originally published at : Thesis, University of Lausanne 
 
Posted at the University of Lausanne Open Archive. 
http://serval.unil.ch 
 
 
Droits d’auteur 
L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les 
documents publiés dans l'Archive SERVAL sont protégés par le droit d'auteur, conformément à la 
loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir 
le consentement préalable de l'auteur et/ou de l’éditeur avant toute utilisation d'une oeuvre ou 
d'une partie d'une oeuvre ne relevant pas d'une utilisation à des fins personnelles au sens de la 
LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette 
loi. Nous déclinons toute responsabilité en la matière. 
 
Copyright 
The University of Lausanne expressly draws the attention of users to the fact that all documents 
published in the SERVAL Archive are protected by copyright in accordance with federal law on 
copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the 
author and/or publisher before any use of a work or part of a work for purposes other than 
personal use within the meaning of LDA (art. 19, para. 1 letter a). Failure to do so will expose 
offenders to the sanctions laid down by this law. We accept no liability in this respect. 



Département de Biologie Moléculaire Végétale

The Role of AtPHO1 in the Guard Cell Movements of
Arabidopsis thaliana

Thèse de doctorat ès sciences de la vie (PhD)
présentée à la Faculté de Biologie et de Médecine de l’Université

de Lausanne

par

Céline Zimmerli
Diplômée ingénieur agronome de l’Institut National

Agronomique Paris-Grignon (Paris, France)

Jury

Prof. Christian Fankhauser. Président

Prof. Yves Poirier. Directeur de thèse

Prof. Enrico Martinoia. Expert

Dr. Nathalie Leonhardt. Expert

LAUSANNE

2012





Summary

Summary

In plants, stomatal opening and closing are driven by ion fluxes that cause changes in

guard cell turgor and volume, a process that is in turn regulated by complex environ-

mental and hormonal signals such as light and the phytohormone abscisic acid (ABA).

With this study, we present genetic evidence that stomatal movements in response

to ABA are influenced by PHO1 expression in guard cells of Arabidopsis thaliana.

PHO1 is a phosphate exporter involved in phosphate loading into the root xylem ves-

sels and, as a result, the pho1 mutant is characterized by low shoot phosphate lev-

els. In leaves, PHO1 was found expressed at higher level in guard cells, and was

quickly up-regulated following treatment with ABA. The pho1 mutant was unaffected

in ROS production following ABA treatment, and in stomatal movements in response

to different light cues, high extracellular calcium, auxin, and fusicoccin. However,

stomatal movements in response to ABA treatment were severely impaired, both in

terms of induction of closure and inhibition of opening. Stomatal movements in re-

sponse to hydrogen peroxide and reduced CO2 was altered as well. Micro-grafting

a pho1 shoot scion onto wild-type root stock resulted in plants with normal shoot

growth and Pi content, but failed to restore normal stomatal response to ABA treat-

ment, showing that the impairment was not a simple pleiotropic consequence of phos-

phate deficiency. PHO1 knockdown using RNAi specifically in guard cells of wild-type

plants caused a reduced stomatal response to ABA. In agreement, specific expression

of PHO1 in guard cells of pho1 plants complemented the mutant guard cell phenotype

and re-established ABA sensitivity, although full functional complementation was co-

dependent on shoot Pi sufficiency. Down-regulation of PHO1 in guard cells did not

alter the expression of ABA marker genes, indicating that PHO1 does not affect the

ABA signal transduction cascade at the transcriptional level. Together, these data
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reveal an important role for phosphate and PHO1 action in the stomatal response to

ABA.
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Résumé

L’ouverture et la fermeture des stomates des plantes sont des mouvements contrôlés

par des flux d’ions causant des fluctuations de la turgescence des cellules de garde.

Ce procédé est en retour régulé par des signaux environnementaux et hormonaux

complexes, comme la lumière et l’hormone végétale acide abscissique (ABA). Nous

présentons ici des preuves génétiques montrant que les mouvements stomatiques en

réponse à l’ABA sont influencés par l’expression de PHO1 dans les cellules de garde

d’Arabidopsis thaliana. PHO1 est un exporteur de phosphate, impliqué dans l’efflux

de phosphate des cellules corticales racinaires vers les vaisseaux de xylème. En con-

séquence, le mutant pho1 est caractérisé par de faibles niveaux de phosphate dans les

parties aériennes. Dans les feuilles, PHO1 est exprimé préférentiellement dans les

cellules de garde, comparé au mésophylle, et est rapidement induit par le traitement

à l’ABA. Le mutant pho1 n’est pas affecté dans la perception de l’ABA, dans la pro-

duction de ROS en réponse à l’ABA, et dans la réponse des stomates aux traitements

de lumière, à l’auxine, à la fusiccocine, et la forte concentration extracellulaire de cal-

cium. En revanche, les mouvements de stomates en réponse aux traitements à l’ABA

sont fortement affectés, dans l’induction de la fermeture des stomates comme dans

l’inhibition de leur ouverture. De plus, les mouvements de stomates en réponse au

péroxyde d’hydrogène et à la diminution du CO2 sont aussi compromis. La création de

micro-greffes composées d’une partie aérienne pho1 greffés sur un système racinaire

sauvage génère des plantes avec une croissance et une teneur en phosphate normale,

mais ne permet pas de restaurer la réponse des stomates à l’ABA, ce qui démontre

que le défaut de réponse à l’ABA n’est pas une simple conséquence pléiotropique de

la carence en phosphate. La répression par RNAi de l’expression de PHO1 dans les

stomates de plantes sauvages provoque une réduction de la réponse des stomates à



l’ABA, mais n’affecte pas la réponse de gènes marqueurs à l’ABA, ce qui suggère que

PHO1 n’agit pas au niveau transcriptionnel. Parallèlement, l’expression de PHO1

dans les cellules de gardes de mutants pho1 complémente le phénotype stomatique

mutant et rétablit la réponse à l’ABA, bien que la totale complémentation nécessite

l’apport normal de phosphate aux parties aériennes. Ensemble, ces résultats révè-

lent l’influence importante de PHO1 et du phosphate dans la réponse des stomates à

l’ABA.
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“With this model and the key to it, it will be possible to go on forever inventing plants

and know that their existence is logical; that is to say, if they do not actually exist,

they could, for they are not the shadow phantoms of vain imagination,but possess

an inner necessity and truth.“

— Goethe, Rome July 31,1787





1 - Introduction

Guard cells integrate complex environmental signals into ion

fluxes

The stomatal pore, a gateway between the plant and the atmosphere

Terrestrial plants need to adapt to the local and global ever-changing environments.

In particular, they tightly control the gas exchanges between above ground organs and

the surrounding atmosphere (Hetherington and Woodward, 2003): CO2 has to pene-

trate the leaf to allow photosynthesis, all the while keeping water loss at a minimum

to avoid desiccation. Plants are able to minimize dehydration thanks to the presence

of the cuticle, an impermeable wax and cutin layer that covers 95% of the epidermal

surface of their stems and leaves. The simultaneous regulation of transpirational

water loss as well as the CO2 uptake is then optimized by functionally specialized

epidermal cells, known as guard cells, arranged in pairs surrounding a stomatal pore

that connects the interior of the leaf to the atmosphere.

The aperture of the stomata, as well as the number of stomata on the epidermis,

thus directly influence photosynthesis and water status of the plant, allowing tight

regulation of gas exchanges depending on varying environmental conditions such as

1



1 - Introduction

light, CO2 concentration, humidity or time of day. In addition, stomata also act as

a barrier against pathogens or pollutants such as ozone (Torsethaugen et al., 1999;

Melotto et al., 2006; Zeng et al., 2010). These environmental signals act either in a

synergistic or antagonistic manner on stomatal movement: light and reduced CO2

induce the opening of the stomata to allow more CO2 uptake for photosynthesis. Con-

versely, drought, the phytohormone abscisic acid (ABA), darkness, elevated CO2 and

ozone typically cause stomatal closure in an effort to reduce water loss, regulate pho-

tosynthesis, or protect the inside of leaves from ozone-induced oxidative damage (Kim

et al., 2010). It is believed that both the acquisition of stomata and of an impermeable

cuticle constitute key steps in the adaptation of advanced terrestrial plants, allow-

ing them to adapt quickly to a large range of different and fluctuating environments

(Hetherington and Woodward, 2003).

Morphologically, guard cells are small dumb-bell, in Graminaea, or kidney-shaped

cells, in Dicots, that have the particularity of being completely autonomous due to the

loss of plasmodesmatal connections early in cell development (figure 1.1a and b). In

most plants, stomata can be found on both the adaxial (upper) and abaxial (lower)

leaf surface, but the majority is usually found on the abaxial epidermis. Stomata can

also be found on stems, petiole or non-photosynthetic organs (Roelfsema and Hedrich,

2005). Stomatal proliferation and development is intimately linked to environmental

parameters such as the levels of humidity, light, and carbon dioxide (Bergmann and

Sack, 2007).

Stomatal movements depend on guard cell turgor

The regulation of the stomatal pore size by guard cells involves fluctuations in their

hydrostatic pressure and volume status, a unique process in that it is dynamically

2



Guard cells integrate complex environmental signals into ion fluxes

(a) (b)

(c)

Figure 1.1: Guard cells morphology and the opening/closing of the stomatal
pore. (a) Dumb-bell-shaped stomata of rice typical of the grasses and (b)
the kidney-shaped stomata typical of other species such as Arabidopsis
thaliana (Hetherington and Woodward, 2003). (c) Paradermal (upper) and
transverse (lower) confocal images of opened (left) and closed (right) Vi-
cia faba guard cells, visualised with a membrane-specific fluorescent dye.
Scale bar = 20 μm (Shope et al., 2003).

3



1 - Introduction

and reversibly adjustable, making it possible to rapidly fine tune the response to

complex environmental and intrinsic hormonal signals (Nilson and Assmann, 2007;

Schroeder et al., 2001). The elevation of guard cell turgidity occurs via an influx and

a re-mobilization of solutes, inorganic and organic ions and sugars, which leads to an

increase in osmotic potential and a decrease in cell water potential. This mechanism

relies on the activity of ion channels, vacuolar and membrane transporters, as well

as on the reconversion of metabolites. Because of the high hydraulic conductivity of

the plasma membrane, water is then drawn into the guard cell to equilibrate water

potential with the apoplast. This influx of water elevates turgor pressure resulting in

cell swelling (Roelfsema and Hedrich, 2005; Sirichandra et al., 2009b). The asymmet-

rical structural reinforcement of the guard cell wall, due to a radial arrangement of

cellulose fibrils, cause a differential longitudinal expansion as the cell inflates, forcing

the two guard cells to bend apart instead of pushing more closely together, and thus

widening the stomatal pore. Conversely, stomatal closure occurs when an efflux of

solutes triggers a decrease in cell turgidity, and thus promotes cell deflation. During

opening and closure, guard cells therefore undergo profound changes in volume and

plasma membrane surface area, apparently through vacuole fragmentation (Marti-

noia et al., 2012), and vesicles fusion (Shope et al., 2003; figure 1.1c).

The ion fluxes occurring across the plasma membrane and the tonoplast of guard cells

during stomatal opening and closure (figure 1.2) were elucidated early in the 1980s

and 1990s, thanks to a large set of physiological studies. It was soon discovered that

stomatal opening involves proton efflux into the apoplast through activation of pro-

ton pumps ATPases (H+-ATPases) located in the plasma membrane. This H+ efflux

hyperpolarizes the membrane potential beyond the equilibrium potential of K+, thus

activating voltage dependent inward K+ channels leading to the influx of osmotically

4



Guard cells integrate complex environmental signals into ion fluxes

Figure 1.2: Ion fluxes behind stomatal opening (left) and closing (right) in
response to environmental and hormonal signals. The vacuole is
represented in pale green. Red, H+-ATPase; yellow, K+ inward-rectifying
channel; light blue, Ca2+ permeable channel; dark blue, anion channels;
light green, K+ outward-rectifying channel (Joshi-Saha et al., 2011).

active K+ (Sirichandra et al., 2009b). It is now believed that Cl-, NO3
- (Guo et al., 2003)

and sugars are also imported during stomatal opening, and that a large part of the

anionic species accumulation comes from the breakdown of starch into malate2- (Kim

et al., 2010; Pandey et al., 2007). During stomatal closure, the activity of H+-ATPases

is repressed, and anion channels are activated to trigger a passive efflux of anion into

the apoplast, mainly in the form of Cl-, NO3
-, and malate2-. The resulting membrane

depolarization activates K+ efflux through voltage-dependent outwardly-rectifying K+

channels, leading to the decrease of osmotic potential that precedes cell deflation.

Frequently, an elevation of cytosolic Ca2+ is observed during stomatal closure, via ac-

tivation of Ca2+-permeable channels at the plasma membrane, or remobilisation from

internal compartments (Roelfsema and Hedrich, 2005; Nilson and Assmann, 2007;

Pandey et al., 2007; Sirichandra et al., 2009b; Kim et al., 2010).

5



1 - Introduction

Identification of guard cell ion channels and transporters in Arabidopsis

Because stomata integrate complex environmental signals into ion fluxes and an eas-

ily scored phenotype (i.e. stomatal aperture), guard cells have become an ideal genetic

model to study membrane transport systems. In Arabidopsis, a lot of research efforts

have thus been gathered in the search of the molecular identities that signal changes

in guard cell turgor through ion transport and remobilisation (figure 1.3). Since guard

cells lack plasmodesmata, ion fluxes in and out of the cells must occur at the plasma

membrane via transporters and channels. Ion channels mediate ions fluxes down

their electrochemical gradient, usually through pore-forming proteins (passive trans-

port). Ion transporters on the other hand include carriers, symporters, antiporters,

and also pumps that use energy (active transport), for example in the form of ATP

or of the concentration gradient of another ion, to drive ion transport against their

energy gradient (Pandey et al., 2007).

Proton pump H+-ATPases - The identification of the AHA1 locus encoding a proton

pump H+-ATPases (Merlot et al., 2007, 2002) was elucidated through forward genetic

screens of mutants with increased transpiration as visualized by lower leaf tempera-

ture: the allelic mutations openstomata2 ost2-1 and ost2-2 in the AHA1 locus render

the AHA1 H+-ATPases constitutively active, keeping therefore the stomata open even

under drought stress. AHA1 belongs to a gene family comprising 10 other members,

all expressed in guard cells (Ueno et al., 2005), suggesting some level of functional

redundancy.

K+ channels - Analysis of K+ currents revealed two different types of K+ channels

in guard cell plasma membrane: outward rectifying, which are activated by depolari-

sation and are responsible for potassium extrusion; and inward-rectifying, which are

6



Guard cells integrate complex environmental signals into ion fluxes

activated by hyperpolarisation and are responsible for potassium uptake (Schroeder

et al., 1987). Among the nine K+ channels identified in Arabidopsis, if was found

that KAT1 and KAT2 encode the majority of the guard cells voltage dependent K+

inward-rectifying channels (Pilot et al., 2001), while the GORK gene encoding for a

K+ outward-rectifying channels is apparently responsible for all potassium outward

currents (Hosy et al., 2003).

Anion and sugar transporters - Little is still known on how guard cells import an-

ions, in particular in the case of Cl-, although it is likely that guard cells possess a

H+-coupled Cl- transporter (Pandey et al., 2007). On the other hand, there are some

evidence suggesting that AtNRT1.1 (CHL1) mediates NO3
- uptake during stomatal

opening under light (Guo et al., 2003). The chl1 mutant displays smaller stomatal

aperture than wild-type under light when NO3
- is supplied instead of Cl-, indicating

the involvement of CHL1 in the uptake of nitrate during stomatal opening. A recent

study also demonstrated that AtABCB14, an ABC transporter that modulates stom-

atal closure on transition to elevated CO2, is involved in malate import into the guard

cells (Lee et al., 2008). Finally, it is likely that Arabidopsis guard cells also import

sucrose via the sucrose transporter AtSUC3, which is expressed in guard cells (Meyer

et al., 2004), and via the AtSTP1 H+/monosaccharide symporter (Stadler et al., 2003).

Anion channels - Early studies described the presence of rapid-transient (R-type)

and slow-activating (S-type) anion current (Schroeder and Keller, 1992) during stom-

atal closure, in response to ABA, elevated CO2 and calcium transients. However little

was known about the molecular identity behind the anion channels involved in guard

cell anion efflux, until two recent independent genetic screens converged to identify

a component of a S-type anion channel, SLAC1 (Negi et al., 2008; Vahisalu et al.,

2008), followed later by the characterization of its homologue SLAH3 (Geiger et al.,

7



1 - Introduction

SLAC1
SLAH3

AtALMT12
(QUAC1)

 ABCB14
Malate(2-)

SUC3
STP1

Sucrose

GLR
CNGC

CLCs
AtMLT6

Figure 1.3: Ion channels and transporters functioning in stomatal move-
ments. The left stomata shows transport proteins active during stom-
atal opening and the right stomata shows transport proteins active during
stomatal closure (adapted from Pandey et al., 2007).

2011). SLAC1 and SLAH3 are both expressed in guard cells and localize to the plasma

membrane, and heterologous expression in Xenopus oocytes demonstrated their con-

ductance to chloride and nitrate. Recently, AtALMT12 (also known as QUAC1, for

quick anion channel 1) was also identified as a convincing guard cell R-type anion

channel candidate permeable for malate (Meyer et al., 2010; Barbier-Brygoo et al.,

2011; Roelfsema et al., 2012).

Ca2+-permeable channels - In Arabidopsis, several gene families have been pre-

dicted to encode Ca2+-permeable channels (Pandey et al., 2007; Roelfsema and Hedrich,

2010). The genes with high homology to the animal cyclic nucleotide gated channels

(CNGC family) being good candidates, recent work on AtCNGC2 (cyclic nucleotide

gated channel 2) showed that this channel is permeable for Ca2+ in guard cell pro-

8



Guard cells integrate complex environmental signals into ion fluxes

toplasts (Ali et al., 2007). A second family of genes are the ionotropic glutamate

receptor-like (GLR) genes, which are believed to either conduct Ca2+ or activate a

Ca2+ channel, based on the ability of glutamate to induce a Ca2+ influx in root cells.

In this context, Cho et al. (2009) reported that the Arabidopsis glutamate receptor ho-

mologue AtGLR3.1 is preferentially expressed in guard cells compared to mesophyll

cells, and that its over-expression affects Ca2+ oscillation-regulated stomatal move-

ments. Although it is generally assumed that these channels reside in the plasma

membrane, the cellular localization has not been confirmed, and localization in the

vacuole or other organelles is possible.

Vacuolar transporters - About 90 % of the solutes released out of the guard cells

comes in fact from the vacuole (Kim et al., 2010; Schroeder et al., 2001), emphasizing

the importance of transport across the tonoplast during stomatal movements. Guard

cell vacuoles store H+, and guard cell patch clamp recordings suggest that vacuolar

proton accumulation depend on the activity of vacuolar-type H+-ATPases (V-ATPases)

as well as H+ translocating pyrophosphatases (V-PPases, Pandey et al., 2007). At

least 26 different V-ATPase subunit genes exist in Arabidopsis, and their importance

in guard cells was backed up by experiments with the de-etiolated 3 (det3) mutant,

lacking a subunit of the vacuolar H+-ATPase (Allen et al., 2000). Importantly, proton

gradient also indirectly influence the transport of other solutes via H+-coupled an-

tiporter, or modulation of tonoplast potential to regulate voltage dependent channels.

Several cation channel activities have been identified at the guard cell vacuolar mem-

brane, including fast vacuolar (FV), slow vacuolar (SV) and Ca2+-activated K+-selective

vacuolar (VK) cation channels (Pandey et al., 2007). These channels play an important

role for K+ and Ca2+ remobilization during stomatal movements (Ward and Schroeder,

1994). FV and SV channels are voltage regulated and mediate K+ and Ca2+ cur-

9
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rents, while VK channels are voltage-independent and specific to K+. Recently, the SV

channel has been identified and found to be encoded by the TPC1 (two-pore channel)

gene (Peiter et al., 2005), while KCO1/TPK1 was identified as a tonoplast voltage-

independent VK channel involved in K+ release, and activated by Ca2+ (Gobert et al.,

2007).

Regarding guard cell anion transport at the tonoplast, little was known until recent

reports: Nagy et al. (2009) investigated the role of AtMRP5/AtABCC5, an inositol

hexakisphosphate transporter located in the tonoplast and shown to be involved in

stomatal movements; members of the AtCLC family seem to be involved in NO3
-

transport (AtCLCa, a tonoplast NO3
-/H+ exchanger expressed in guard cells, as de-

scribed by De Angeli et al., 2006), and Cl- transport (AtCLCc, targeted to the tonoplast

and implicated in stomatal movements as described by Jossier et al., 2010); finally

AtALMT6 was recently reported as a guard cell vacuolar inward-rectifying malate

channel (Meyer et al., 2011; Martinoia et al., 2012; Kollist et al., 2011).

The regulation of stomatal movements by light, CO2 and ABA

The activity of the transporters and channels mentioned above must be tightly regu-

lated in order to allow stomata to quickly regulate their stomatal aperture in response

to environmental and hormonal signals, and to support their central role in regulat-

ing photosynthetic CO2 absorption and water loss. Some major signals include light,

CO2 concentration, and the drought hormone abscisic acid (ABA).

As mentioned before, light, a decrease in CO2 concentration, and high humidity favor

stomatal opening. Conversely, dark, an increase in CO2 concentration, and water

stress, all promote stomatal closure. These signaling pathways share both common

and unique signaling steps.
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Light signaling - Light is an central regulator of stomatal movement and is inti-

mately linked to metabolism: by controlling tightly the stomatal aperture in response

to light cues, plants are able to exploit the available light efficiently by modulating

CO2 fixation and photosynthesis, without losing unnecessary amounts of water (Shi-

mazaki et al., 2007).

Light triggers stomata to open, and distinct regulation mechanisms exist depending

on the part of the light spectrum: red light acts primarily as an energy source: it in-

duces stomatal opening by driving photosynthesis in mesophyll and guard cell chloro-

plasts, thus decreasing the intercellular CO2 concentration (Roelfsema et al., 2002).

Stomatal opening under red light may then result from the direct response to this

decrease in CO2 concentration, as well as to the accumulation of sugars from the com-

bination of photosynthesis, starch degradation, and sugar import from the apoplast.

Alternatively, red light can act as a signal, through phytochrome B, controlling the ex-

pression of transcription factors involved in the regulation of stomatal opening (Wang

et al., 2010).

Blue light on the other hand acts primarily as a signal to trigger stomatal open-

ing: blue light is captured by receptor kinases known as phototropins (PHOT1 and

PHOT2 in Arabidopsis), which are phosphorylated and in turn activate, by direct or

indirect phosphorylation, the plasma membrane H+-ATPases (Assmann et al., 1985;

Kinoshita et al., 2001) while repressing S-type anion channels (Marten et al., 2007).

Additionally, some data suggest that cryptochromes (CRY1 and CRY2) function addi-

tively with phototropins in mediating blue light-induced stomatal opening, and that

Constitutively Photomorphogenic 1 (COP1), acts to repress stomatal opening in dark-

ness (Mao et al., 2005). Stomata are highly sensitive to blue light, this signal being

twenty times more effective than red light in opening stomata, but interestingly, the

11
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blue light response is only weak in the absence of red light, and is exacerbated in

background of red light. Intercellular CO2 concentration and guard cell chloroplasts

could play a role in this synergistic action (Shimazaki et al., 2007).

CO2 signaling - In response to elevated CO2 concentration, guard cells present a

rapid physiological response as well as a sustained developmental mechanism (Het-

herington and Woodward, 2003; Kim et al., 2010): because less opening is required for

efficient carbon intake, a rise in CO2 concentration triggers rapidly stomatal closure,

and in long term provokes a reduction in stomatal density, further reducing overall

stomatal conductance. There is however surprisingly little knowledge on how CO2

regulates stomatal aperture. In particular, it is matters of debate whether the CO2

response resides entirely in guard cells, or is indirectly controlled by unknown signals

emerging from the mesophyll cells, such as for example extracellular malate, which is

known to activate guard cell anion channels. Yet, there is evidence for a direct func-

tional role of guard cells in mediating at least some of the CO2 response, meaning that

both cell types could contribute to the signaling mechanisms (Mott, 2009).

Elevated CO2 promotes stomatal closure by activation of anions channels (Negi et al.,

2008) and K+ outward-rectifying channels, a response that seems co-dependent on

Ca2+ signaling. Reports show that CO2 induces cytosolic calcium elevations, a pro-

cess which in turn could inhibit the activity of H+-ATPases and K+ inward-rectifying

channels (Vavasseur and Raghavendra, 2005). In that sense, the CO2 signaling path-

way shows convergence with the ABA signaling pathway (see ABA signaling, below).

However unlike ABA, elevated CO2 does not appear to act through changes in cytoso-

lic pH, but requires the action of carbonic anhydrases early in the signaling pathway

, which catalyse CO2 into bicarbonate ions and protons (Hu et al., 2010). A recent

report demonstrated that it is the elevated bicarbonate, more so than elevated CO2,

12
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that acts as intracellular signaling molecule to activate guard cell anion channels

(Xue et al., 2011).

ABA signaling - The phytohormone abscisic acid (ABA, figure 1.4a) was discovered in

the 1960s. Numerous physiological, biochemical and genetic analyses have uncovered

roles for ABA in numerous stress (e.g. water stress) and developmental processes (e.g.

germination and seedling growth).

Importantly, ABA is the key actor of the regulation of stomatal movements in re-

sponse to water stress. Under drought and high salinity, an immediate hydraulic

signal is perceived by the plant (Christmann et al., 2007) which triggers ABA levels to

rapidly increase to physiologically active levels, primarily through de novo synthesis

in the vasculature (Raghavendra et al., 2010). ABA is then taken up (Kang et al.,

2010; Kuromori et al., 2010) and perceived by guard cells, which respond by activat-

ing stomatal closing mechanisms, in an effort to minimize the loss of water through

transpiration (figure 1.4b): ABA promotes stomatal closure by activating the R-type

(rapid) and S-type (slow) anion channels that drive a release of anions (such as Cl-

and NO3
-) and organic acids (such as malate2-) to the outside of the cells, leading to

membrane depolarization. ABA triggers also an influx and internal remobilization

of Ca2+, as well as a raise in internal pH; these signals stimulate the K+ outward-

rectifying channels, and all these ion fluxes cause the reduction in turgor pressure

that precedes stomatal closure. In parallel, ABA inhibits H+-ATPase pumps and K+

inward- rectifying channels, thus preventing stomatal opening (Pandey et al., 2007;

Sirichandra et al., 2009b).

The regulation of ABA signal transduction is very complex, and involves many sec-

ondary messengers including elevations of [Ca2+]cyt, production of reactive oxygen

species, nitric oxide, phosphatidic acid (PA), phosphatidyl-inositol- 3-phosphate (PIP3),

13
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(a)

(b)

Figure 1.4: Summary of ABA guard cell signaling and ion channel regulation.
(a) Chemical structure of ABA (Cutler et al., 2010). (b) ABA-induced sig-
nal transduction across the plasma membrane and vacuolar membrane
of guard cells. signaling events during stomatal closing are shown in the
left guard cell, and major regulation steps for ABA-inhibition of stomatal
opening mechanisms are shown in the right guard cell. Abbreviations:
ABA, abscisic acid; ICa, inward Ca2+ current; S-type, slow-type; SLAC1,
slow anion channel associated 1; R-type, rapid-type; SV, slow vacuolar;
VK, vacuolar K+ selective; TPK1, two pore K+ channel 1; AHA1, Arabidop-
sis H+ ATPase 1; OST2, open stomata 2 (Kim et al., 2010).

14



Guard cells integrate complex environmental signals into ion fluxes

inositol-3-phosphate (IP3), inositol-6-phosphate (IP6), sphingolipids, as well as cytoso-

lic pH variations and regulation of gene expression (Sirichandra et al., 2009b; Kim

et al., 2010).

Much progress has been recently made in the understanding of the earliest events

involved in ABA signal transduction. Over the last decade, several ABA binding pro-

teins had been proposed intermittently (Razem et al., 2006; Shen et al., 2006; Liu

et al., 2007; Pandey et al., 2009), but their exact roles in ABA signaling remained

somewhat controversial, in particular because of a complicated model where each pu-

tative ABA receptor had random cellular locations and complex relationships to one

another (McCourt and Creelman, 2008).

In 2009, the core signaling pathway model of ABA was dramatically updated (Sheard

and Zheng, 2009; Cutler et al., 2010; Hubbard et al., 2010; Joshi-Saha et al., 2011;

Kim et al., 2010; Raghavendra et al., 2010; Umezawa et al., 2010; Weiner et al.,

2010) with the discovery of a soluble receptor family with properties matching the

required physiological and molecular profiles: the PYR/PYL/RCARs (PYRABACTIN

RESISTANCE / PYR1 LIKE / REGULATORY COMPONENT OF ABA RECEPTOR) .

PYR/PYL/RCARs dimers were found to bind ABA, then dissociate to inhibit the ac-

tivity of specific protein phosphatase enzymes, the type 2C plant PP2Cs (such as

ABI1). PP2Cs are known negative regulators of the ABA response that act by se-

questration of SnRK2s (SNF1-related protein kinase 2s, such as OST1) (Ma et al.,

2009; Park et al., 2009; Melcher et al., 2009; Miyazono et al., 2009; Fujii et al., 2009;

Santiago et al., 2009; Nishimura et al., 2009b,a; Vlad et al., 2009; Umezawa et al.,

2009). By inhibiting PP2Cs, ABA therefore allows autoactivation of SnRK2s, which

subsequently phosphorylates target proteins such as transcription factors (Furihata

et al., 2006; Kobayashi et al., 2005), proteins responsible for secondary messenger pro-
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Figure 1.5: The PYR/RCAR–PP2C–SnRK2 signal transduction model for the
core ABA signaling pathway. Red connections on left indicate an in-
hibitory interaction. (Hubbard et al., 2010).

duction (Sirichandra et al., 2009a), or directly ion channels such as KAT1 and SLAC1

(Geiger et al., 2009; Lee et al., 2009; Sato et al., 2009; Vahisalu et al., 2010) (figure

1.5).

In fact, PP2Cs can also modulate ABA signaling through interaction with a number

of other proteins. For example, reports show that several calcineurin-B-like protein

(CBL)-interacting protein kinases (CIPK) (Guo et al., 2002), and calcium-dependent

protein kinase CPKs (Geiger et al., 2010, 2011) are regulated by PP2Cs. Calcium sen-

sors such as CBL-CIPKs and CPKs are known regulators of ABA signaling, acting by

regulation of downstream components such as ion channels (Mori et al., 2006; Cheong

et al., 2007; Geiger et al., 2011) or regulation of ABA-responsive transcription factors

activity (Zhu et al., 2007). Sofar, evidence suggest that CPKs are positive regulators of
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ABA-induced stomatal closure, while CBL-CIPKs are negative regulators (Kim et al.,

2010). Importantly, these calcium sensors are part of the potential signal transduc-

tion targets of the [Ca2+]cyt elevations signals triggered during both ABA and CO2

response (Hubbard et al., 2012). A recent study demonstrated that about 70% of the

stomatal ABA response is calcium-dependent, and suggested a model where ABA acts

in fact to enhance (”prime”) the calcium sensitivity of the targeted calcium sensors

(Siegel et al., 2009). In guard cells, [Ca2+]cyt contributes to ABA-induced stomatal

closing through activation of S-type anion channels (Mori et al., 2006; Vahisalu et al.,

2008; Siegel et al., 2009), activation of R-type anion channels (Meyer et al., 2010),

down-regulation of plasma membrane proton pumps (Kinoshita et al., 1995), down-

regulation of K+ influx channels (Siegel et al., 2009) and activation of vacuolar K+

(VK) channels (Gobert et al., 2007). The importance of calcium in the guard cell sig-

nal transduction network is crucial, and further research should provide new insights

on its role in signal transduction.

As exemplified with the few signaling pathways described above, a large number of

components and regulatory mechanisms in guard cell signal transduction have al-

ready been identified. This demonstrates how guard cells are a well-suited model for

dissecting genes and proteins functions in signaling cascades. Great progress is con-

stantly made towards understanding the intricate pathways that orchestrate signal

perception, cell signaling and ion transports. In a global context where the issues of

fresh water scarcity and continuous atmospheric CO2 rise are principal environmen-

tal concerns, guard cell signaling research not only enriches our general understand-

ing of plant cell signaling, but it can also highlight new approaches in the engineering

of improved water-use efficiency and desiccation avoidance in crops (Schroeder et al.,

2001).
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AtPHO1, a phosphate exporter and regulator of phosphate

signaling

Phosphate transport and homeostasis

Phosphorus (P) is one of the six essential plant macronutrients. It participates in

many aspects of plant biology: it is a critical component of nucleic acids and mem-

brane phospholipids, but it also takes part in many cellular processes including en-

ergy transformation, cell signaling and regulation of enzymes through phosphoryla-

tion (Poirier and Bucher, 2002). Plants assimilate phosphorus from the soil in the

form of orthophosphate (Pi, inorganic phosphate), through Pi transporters at the epi-

dermal and cortical root cells. Pi is then secreted from xylem parenchyma cells, and

loaded into the xylem vessels, which distributes and releases it to the shoot tissues

(Poirier and Bucher, 2002). Because of the presence of a Casparian strip surrounding

the root stele, and since xylem cells are dead cells (and thus reflects the extracellular

space), the radial transport of phosphate from the root-soil interface to the vascular

cylinder requires a minimum of two transport events across cell plasma membranes:

the first for the uptake outside of the endodermal cells, and the second for the efflux

of phosphate out of the stelar cells and into the xylem (Hamburger et al., 2002).

Plants therefore require multiple Pi transport systems, for uptake, export and relo-

cation from subcellular compartments. In that respect, several families of Pi trans-

porters have already been identified in Arabidopsis, for example with the character-

ization of genes belonging to the PHT1, PHT2, PHT3, and PHT4 families, which en-

code proteins involved in the acquisition of Pi across the plasma membrane, chloro-

plast, mitochondria, and Golgi, respectively (Mudge et al., 2002; Versaw and Harrison,

2002; Guo et al., 2008; Chen et al., 2008).
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Although the total amount of phosphorus in the soil may be high, the availability of

Pi in the soil is often limited, because of its tendency to create insoluble complexes by

binding with organic and inorganic compounds. In the event of an inadequate Pi sup-

ply, plants need to maintain constant cellular Pi concentrations in order to sustain

growth and survival, and adaptive responses have thus been developed to enhance

acquisition of external Pi, while conserving and remobilizing internal Pi (Lin et al.,

2009). As examples, the root architecture is altered, more phosphate transporters are

produced, vacuolar Pi is mobilized, and phosphatases are secreted to extract Pi from

soil organic compounds (Plaxton and Tran, 2011). These biochemical, morphological

and developmental responses are accompanied by numerous changes at the gene ex-

pression levels. These responses are in turn orchestrated by a complex Pi-deficiency

signaling cascade (Rouached et al., 2010). Several important transcription factors

have now been identified, and great progress has been made with the elucidation

of the systemic signals that control the expression of the regulators of Pi-responsive

genes (Lin et al., 2009; Rouached et al., 2010, 2011).

AtPHO1 has a role in root-to-shoot phosphate transport

In an effort to investigate the regulatory loci of phosphate homeostasis, an EMS mu-

tant screen for altered inorganic phosphate levels in the leaves was carried out in

Arabidopsis thaliana (Poirier et al., 1991). Among the selected mutants, pho1 was

identified suffering from a severe reduction in shoot Pi content. The pho1 mutant ac-

cumulates approximately 24-44% as much total phosphate and 5% as much inorganic

phosphate as a wild-type (Poirier et al., 1991), but presents normal Pi concentration

in the roots (Delhaize and Randall, 1995). Experiments using radioactive labeled

phosphate revealed that pho1 displays normal Pi uptake into the roots over a wide
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(a)

(b)

(c)

Figure 1.6: The mutant pho1 of Arabidopsis thaliana. (A) Morphological phe-
notype of a pho1 plant compared with a wild-type plant grown in soil. (B)
Content of various phosphate-containing compounds in wild-type and phol
mutant plants. (C) Root uptake and transfer to the shoot of phosphate and
sulfate (Poirier et al., 1991).
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range of external phosphate concentration, and normal phosphate movement through

the xylem, but only 3-10% of the wild type Pi translocation from roots to shoots in

media containing no more than 200μM Pi. Together, these results suggested that

PHO1 is involved in root-to-shoot phosphate transfer. The mutant pho1 displays typ-

ical symptoms of Pi starvation: a severe reduction in rosette size, an accumulation of

anthocyanins, a higher starch content in the leaves (Ciereszko et al., 2001), a delay in

flowering, and a poor production of seeds (figure 1.6).

The PHO1 gene (At3g23430, 5.8 kb containing 14 introns) was subsequently iden-

tified by map-based cloning (Hamburger et al., 2002). Sequence analysis suggested

that PHO1 encodes a 782 amino acids protein containing at least 6 transmembrane

domains in its 40kDa C-terminal region, and a 40 kDa N-terminal hydrophilic por-

tion, with no homology to any characterized solute transporters, including H+/Pi co-

transporters (figure 1.7a and b).

By Northern blot analysis, PHO1 was found to be expressed primarily in roots, but

weak expression was also detected in rosette leaves, stems, cauline leaves, and flow-

ers with developing siliques. Promoter-GUS fusion revealed predominant expression

in the stelar cells of the roots and the hypocotyl, including the pericycle and xylem

parenchyma cells, which seemed consistent with the role of loading phosphate into

the root xylem (figure 1.7c).

AtPHO1 mediates specific Pi export from cells

In an effort to further study the role of PHO1, over-expressing lines were generated.

The transformation of wild-type Arabidopsis using a T-DNA vector containing the
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(a)

(b)

(c)

Figure 1.7: Structure of AtPHO1 and localization of expression in the root. (A)
Intron (white box) and exon (black box) structure of the AtPHO1 gene and
of the four pho1 alleles. (B) Hydropathy profile of AtPHO1 (transmem-
brane segments are indicated by closed rectangles) and representation of
the predicted topology. (C) Root expression pattern of a 2.1-kb fragment
of AtPHO1 promoter region using GUS reporter gene (Hamburger et al.,
2002).
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PHO1 gene under the control of its own promoter yielded a number of independent

over-expressing lines that were identified and characterized (L3 and SL5, Stefanovic

et al., 2011). These lines presented small, dark-green and slightly curled leaves, and

strikingly higher PHO1 expression levels than WT, especially in the shoot vascular

system. PHO1 ectopic over-expression in leaves triggered an accumulation of Pi in

the leaves, with two to threefold higher Pi content in the L3 and SL5 lines compared

to WT, a result that is in agreement with the role of PHO1 in root-to-shoot phosphate

transfer. In vivo 31P-NMR as well as measurements of Pi fluxes out of leaves (figure

1.8a) revealed that PHO1 over-expression in leaves leads to a dramatic increase of Pi

export into the apoplast, with a consequent loss of Pi vacuolar pool.

Using an inducible promoter, Arpat et al. (2012) further demonstrated that induction

of PHO1 in leaves from soil-grown plants, in leaves and roots of plants grown in liq-

uid culture, or in leaf mesophyll protoplasts, all led to a specific release of Pi into the

extracellular medium, thus revealing the crucial role for PHO1 in Pi efflux from cells

(figure 1.8b). In contrast with H+/Pi co-transporters, PHO1-mediated Pi export was

independent of H+ gradient across the membrane, and was enhanced by high extra-

cellular Pi (Arpat et al., 2012). Together, these data strengthened the model of PHO1

function in the roots, in which PHO1 acts as a Pi exporter from root cylinder cells into

the xylem vessels (figure 1.9).

At the moment, the mechanisms and molecular players that govern the regulation of

PHO1 activity are still investigated. Significant advances were made with the iden-

tification of a set of proteins interacting with PHO1, using the complete N-terminal

hydrophilic region of PHO1 as a bait in a yeast two-hybrid screen, with consequent

confirmation of the interaction using full length PHO1 and the full length version of

the interacting partners in a yeast split-ubiquitin system. Among the putative inter-

23



1 - Introduction

actors of PHO1 was a CBL-interacting protein kinase (CIPK). With their interacting

partners, the calcineurin B-like (CBL) proteins, CBL/CIPKs are known components

of the Ca2+-dependent signaling network that regulate responses to various abiotic

stresses in plants, hormone reactions and ion transport processes (Batistic and Kudla,

2009). Current research efforts aim at characterizing how a set of CBL/CIPKs, and

possibly other calcium dependent kinases, can phosphorylate PHO1 and regulate its

Pi-export activity.

AtPHO1 localizes to the Golgi and trans-Golgi network

In order to investigate PHO1 subcellular localization in Arabidopsis root cells, Arpat

et al. (2012) generated transgenic lines complementing the pho1 mutant with a PHO1-

GFP fusion construct. As predicted, GFP was seen in pericycle cells surrounding

xylem poles, but surprisingly, subcellular localization did not reveal any GFP signal

at the plasma membrane. Rather, GFP expression was observed in punctate struc-

tures, that co-localized with the Golgi, trans-Golgi network (TGN) and uncharacter-

ized vesicles when expressed in onion epidermal cells or in tobacco mesophyll cells

(figure 1.8c). Pi export activity was witnessed in these PHO1-GFP transformed cells,

which confirmed the importance of not only PHO1, but also of the Golgi and asso-

ciated endosomes for the mediation of phosphate release to the outside of the cell.

Interestingly, the fluorescence signal was partially relocated to the plasma membrane

under high extracellular phosphate, possibly to ensure greater phosphate export. This

suggested that action site of PHO1 depends largely on Pi homeostasis (Arpat et al.,

2012).
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(a)

(c)

(b)

Figure 1.8: PHO1 mediates phosphate efflux out of cells into the xylem ves-
sels, and localizes to the Goli and the TGN. (a) Export of Pi from
leaves in PHO1 over-expressing plants (L3 and SL5 transgenic lines) com-
pared to wild-type, as revealed by increasing phosphate concentration in
the bathing solution (Stefanovic et al., 2011). (b) PHO1-dependent spe-
cific phosphate efflux from mesophyll protoplasts (Arpat et al., 2012). in-
PHO1#1: transgenic line expressing PHO1 under the control of an in-
ducible promoter; EVC: control line. (c) Sub-cellular localization of PHO1-
GFP and co-expression with different markers in onion cells (adapted
from Arpat et al., 2012). Onion epidermis was co-bombarded with PHO1-
GFP (green, A-B), and Golgi markers Got1p-mCherry (A) or TGN marker
VTI12-mCherry (B) (red). Bars = 10 μm.
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Figure 1.9: Schematic representation of the putative role of PHO1 in phos-
phate export from root cylinder cells into the xylem vessels. The
transverse section of a plant root is shown, with grey arrows indicating
the apoplastic and symplastic acquisition routes of Pi.

AtPHO1 regulates phosphate deficiency signaling

During the same transformation experiment mentioned above (transformation of wild-

type Arabidopsis with PHO1 under the control of its own promoter), a number of in-

dependent under-expressing lines were also identified and characterized (B1 and B3,

Rouached et al., 2011). The under-expressing lines of PHO1, just like the mutant

pho1, were defective in the transfer of Pi from root to shoot, but despite their low

shoot Pi, presented a surprising normal shoot growth with no signs of Pi deficiency

even at the gene expression level.

Comparative microarray analysis between the mutant pho1 and the underexpressor

lines suggested that PHO1 is involved in the transmission of a root-to-shoot signal,

possibly a small signaling molecule, that suppresses phosphate starvation inducible

(PSI) genes in the shoot. In the underexpressing lines, this signal could be sufficient to

repress starvation response, resulting in plants that do not respond to their internal

Pi depletion.

This analysis revealed therefore that beside Pi transport into the xylem, PHO1 plays
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a critical role in the signal transduction of phosphate deficiency response. This dual

function of PHO1 protein, both root-to-shoot phosphate transporter and long distance

regulator of Pi deficiency signaling, echoes with other numerous examples of proteins

in bacteria and yeast that participate both as a nutrient transporter and either a

nutrient sensor or a component of the signal transduction pathway (Rouached et al.,

2011).

The AtPHO1 gene family suggest roles beyond root phosphate transport

PHO1 was the first characterized gene in a gene family composed of eleven members

in Arabidopsis. The ten homologues to PHO1 were found and designated as PHO1;H1

to PHO1;H10. Protein sequence alignment identified two conserved domains, with

significant similarities to a number of proteins found in Arabidopsis as well as in non-

plant eukaryotes: an SPX (for SYG1, PHO81 of yeast and XPR1 of human) and an

EXS domain (for yeast ERD1, human XPR1, and yeast SYG1), respectively in the hy-

drophilic and the hydrophobic regions of PHO1 (Wang et al., 2004). The SPX domain

is found in several plant proteins, including several which were recently shown to be

involved in Pi transport and signaling (Secco et al., 2012). The activity of the EXS

domain however is still unknown.

Expression analysis of the PHO1 gene family revealed a broad expression pattern,

not restricted to vascular tissues, and only PHO1;H1, the closest homologue to the

original PHO1, was able to complement the mutant pho1, although they were found to

be differentially regulated (Stefanovic et al., 2007). These results raised the important

question of the biological role of the other homologues, and the possibility for PHO1

proteins to have roles that are beyond phosphate transport.

In fact, Kang and Ni (2006) demonstrated that PHO1;H4 is involved in cryptochrome
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signaling and hypocotyl growth under blue light, although its exact function remains

unclear (Kang and Ni, 2006; Zhou and Ni, 2010). Additionally, the homologue PHO1;H10

was found to have a unique expression pattern with strong induction upon numerous

biotic and abiotic stresses, such as wounding, dehydration, cold, salt and pathogen at-

tack, and phytohormones treatments including OPDA and ABA (Ribot et al., 2008a,b).

Altogether, these studies support the involvement of PHO1 genes in signal transduc-

tion pathways that are not confined to phosphate homeostasis.

AtPHO1, phosphate and ABA signaling

Recently, Ribot (2006) identified and thoroughly described some new phenotypes for

the mutant pho1. These traits were particularly well known to be linked with abscisic

acid (ABA) signaling: pho1 exhibits a pronounced seed dormancy, a hypersensitivity to

ABA in terms of germination and root growth, and displays higher rate of water loss

during dehydration assays. The rate of water loss was comparable to known ABA-

mutant, and was independent of the phosphate deficiency occurring in the mutant

pho1, as demonstrated through the use of wild type roots micrografts (Ribot, 2006). In

agreement, some simple observations of pho1 epidermis suggested that pho1 stomata

did not close in response to ABA, suggesting a potential role for PHO1 in guard cell

ABA signaling.

However to our knowledge, little is known about the link between phosphate and ab-

scisic acid. The role of other phytohormones (e.g auxin, cytokinins) in plant response

to phosphate starvation is quite well documented (Yuan and Liu, 2008); instead, the

role of ABA in phosphate homeostasis is poorly described, although a raising number

of studies report evidence that ABA might regulates some branches of the Pi defi-

ciency response (Trull et al., 1997; Ribot et al., 2008a; Rubio et al., 2009; Yang and
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Finnegan, 2010). Conversely, the potential role of phosphate in ABA signaling has

not been addressed in the literature. Only a few studies report specific accumulation

of phosphorus in guard cells (Outlaw et al., 1984; Heath et al., 1997), suggesting that

phosphate might be of biological significance for the guard cell ABA response.

While most previous research effort on PHO1 had focused on its role in the roots,

the results described by Ribot (2006) incited to further study the potential novel role

for PHO1 and phosphate in guard cell signaling. Moreover, studying PHO1 in guard

cells represents a new approach to understand its general role, action and regula-

tion mechanisms in plant cells, while bringing valuable knowledge in both the fields

of phosphate transport and guard cell signaling; this approach is particularly rele-

vant considering the great amount knowledge gathered by the scientific community

on guard cells and ABA signaling, which makes stomatal research very attractive for

the study of ion transport regulation.
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The aim of the present thesis was to investigate the expression and the importance

of AtPHO1 in guard cell movements, using several complementary approaches, with

a focus on the stomatal response to ABA during induction of stomatal closure and

repression of stomatal opening under light.

In the first part, we analyzed the patterns of expression of PHO1 in guard cells in

comparison to mesophyll cells. The observation of pho1.4 transgenic lines expressing

the PHO1-GUS reporter gene fusion under the control of the PHO1 promoter revealed

that aside from PHO1 known expression in root vascular tissue, specific expression

was seen in leaf stomata, with increased expression upon treatment with ABA. This

observation was in accordance with published microarrays (Leonhardt et al., 2004;

Yang et al., 2008), and results from qRT-PCR on guard cell protoplasts confirmed the

preferential expression of PHO1 in guard cells protoplasts compared to mesophyll

cells protoplasts, with induction of gene expression following treatment with ABA.

In the second part, we explored the stomatal movement response of the mutant pho1.

We found that the stomata in pho1 are severely impaired in their response to ABA,

both for the induction of stomatal closure as well as for the repression of stomatal

opening under light. We showed that pho1 remains able to close stomata in transition

to dark as well as under high calcium treatment. We demonstrated that pho1 stomata
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open like a wild type under red and blue light and other stomatal opening-inducing

stimuli. We concluded that while unresponsive to ABA, pho1 stomata maintain the

ability to open and close under other treatments. We demonstrated that the mutant

pho1 is able to sense ABA, and produces reactive oxygen species (ROS) in response,

but that the induction of stomatal closure by hydrogen peroxide is not functional,

showing that the impairment in the signal transduction occurs downstream of ROS

production. In addition, we observed that pho1 exhibits a reduced response to changes

in CO2 concentration, suggesting that PHO1 might be involved in a signaling step

common to both ABA and CO2. Finally, using micrografting techniques, we report

that in Pi-sufficient pho1 the stomata remain unresponsive to ABA and hydrogen

peroxide, an evidence that this impairment is not a simple pleiotropic consequence of

phosphate deficiency.

In a third part, we investigated the effect of guard-cell-specific regulation of PHO1

gene expression on the stomatal movement response to ABA. We found that a knock-

down of PHO1 expression in guard cells altered the stomatal movements in response

to ABA, but did not alter the transcriptional response of known ABA-responsive genes.

This observation suggests that PHO1 does not act through modifications of the tran-

scriptional response to ABA. Conversely, guard-cell-specific expression of PHO1 in

the pho1 mutant background restored stomatal responsiveness to ABA, although full

complementation was co-dependent on the restoration of shoot phosphate sufficiency

through grafting. Therefore, both PHO1 and Pi deficiency have an effect on guard cell

movements response to ABA.

On the basis of these findings, we conclude that PHO1 is a novel important player

in the response of guard cells to ABA, and we discuss the potential mechanisms be-

hind the implication of PHO1 and phosphate in the guard cell ABA signaling cascade.
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PHO1 is involved in the release of phosphate into the vascular cylinder (Poirier et al.,

1991), and more generally in the export of phosphate from cells (Stefanovic et al.,

2011; Arpat et al., 2012). Therefore, in stomata, we suggest the hypothesis of PHO1

acting in the regulation of phosphate transport in guard cells, possibly through phos-

phate efflux to the apoplast, or regulation of phosphate fluxes between intracellular

compartments. Finally, we discuss different scenarios where phosphate fluxes medi-

ated by PHO1 could influence the ABA-induced osmotic pressure changes in guard

cells.
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guard cells and in response to ABA

Céline Zimmerli* and Yves Poirier

*The production of transgenic A. thaliana plants expressing the GUS reporter gene

under the control of the PHO1 promoter was done by Dirk Hamburger (Hamburger

et al., 2002); the transgenic pho1.4 plants expressing PHO1 fused to GUS under the

control of the PHO1 promoter were produced by Aleksandra Stefanovic; microarray

experiments were published by Yang et al. (2008); all other experiments were de-

signed, performed and data analyzed by Céline Zimmerli under the supervision of

Yves Poirier.
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Introduction

While the expression profile of AtPHO1 has been extensively studied using various

approaches including Northern blot, ß-glucuronidase (GUS) reporter gene, and semi-

quantitative RT-PCR (Hamburger et al., 2002; Stefanovic et al., 2007; Ribot et al.,

2008a), most studies described only its predominant expression in roots. In an early

study, RNA gel blot analysis revealed that consistent with its role in loading phos-

phate into the root xylem, PHO1 was expressed mostly in roots, with a slight up-

regulation under low Pi concentration. However, weak expression also was detected

in rosette leaves, stems, cauline leaves, and flowers with developing siliques (Ham-

burger et al., 2002), suggesting that PHO1 might have roles in other cell types. Using

transgenic plants expressing the ß-glucuronidase (GUS) gene under the control of

fragments encompassing 0.55, 1.1, 1.6, and 2.1 kb of the promoter region of PHO1,

Hamburger et al. (2002) reported expression of the PHO1 promoter in the stelar cells

of the root and the lower part of the hypocotyl, e.g. pericycle cells, xylem parenchyma

cells and passage cells. However, despite the low PHO1 expression detected in leaves

by RNA gel blot analysis, no GUS staining was detected in any above ground tissues

in these transgenic lines.

Stefanovic et al. (2007) further confirmed preferential expression of PHO1 in roots,

and demonstrated that the increase of PHO1 expression under Pi deficiency was in-

dependent of PHR1 and was not influenced by phosphite. Ribot et al. (2008a) explored

further the regulation of PHO1 expression. They reported that, in whole seedlings,

PHO1 was up-regulated by sucrose, but repressed by long-term treatment with sev-

eral phytohormones such as the cytokinin kinetin, auxin 2,4-D, and ABA. These re-

sults highlighted the fact that PHO1 expression regulation is complex and involves
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the interaction between multiple signaling pathways.

Interestingly, expression profile analysis of the PHO1 homologues (Wang et al., 2004),

through RT-PCR and promoter:GUS reporter, revealed that while the majority of

genes were expressed in the plant vasculature, some genes were more broadly ex-

pressed and included expression in flowers, pollen or root cortical cells. The homo-

logue PHO1;H10 was found to be strongly induced by numerous stresses, including

dehydration and the local response to wounding, and was upregulated by OPDA (12-

oxo-phytodienoic acid) and ABA (Ribot et al., 2008b). Together, these data indicated

that the role of the PHO1 gene family may not limited to the roots, nor to Pi movement

to or from vascular tissues.

In an effort to identify important regulators of guard cell signaling, several recent

microarray analysis presenting overviews of ABA-induced and repressed genes in

guard-cell and mesophyll-cell protoplasts were recently published (Leonhardt et al.,

2004; Yang et al., 2008). Data from these hybridization experiments suggested that

PHO1 is expressed in guard cells, at higher levels compared to mesophyll cells, and

is induced under short-term ABA treatment, which is in apparent contradiction with

results from Hamburger et al. (2002) and Ribot et al. (2008a). In this context, it was

of interest to confirm these microarray data and investigate the potential expression

of PHO1 in stomata, which could have been overlooked during previous reports.

In this chapter, using transgenic lines expressing GUS and PHO1-GUS fusions under

the control of the PHO1 promoter, we reveal PHO1 promoter activity and localization

of PHO1-GUS fusions in stomata of hypocotyl and leaf blade of Arabidopsis thaliana.

Increased GUS staining suggested that promoter activity was enhanced after a 3-hour

ABA treatment. Using qRT-PCR on purified guard cell and mesophyll protoplasts, we

detected expression of PHO1 in guard cells, with higher transcript levels than in mes-
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ophyll cells. ABA treatments on guard cell protoplasts confirmed rapid induction of

PHO1, under a range of ABA concentrations. Consistent with these results, analysis

of the PHO1 promoter region revealed the presence of ABA responsive elements as

well as motifs corresponding to DOF-binding sites, some suggested cis-elements reg-

ulating guard cell specific expression. Together, these results show that, in addition

to its known expression in the roots, PHO1 is expressed in guard cells, suggesting a

potential biological role for PHO1 in stomata.
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Results

Expression of the PHO1 genes in guard cells as revealed by microarray data

As mentioned above, microarray analyses presenting overviews of ABA-induced and

repressed genes in guard-cell and mesophyll-cell protoplasts were published in recent

years (Leonhardt et al., 2004; Yang et al., 2008). The hybridization experiment per-

formed by Yang et al. (2008) included expression data of PHO1 and several PHO1

homologues (figure 3.1). The homologues PHO1;H1, -H2, -H3, -H4, -H5, -H7 and

PHO1;H9 displayed weak expression in both cell types and chemical treatment. How-

ever, PHO1 stood out with a much higher expression level in guard cells than all

other homologues; PHO1 also appeared up-regulated in guard cells under a 4-hour

treatment with 100 µM ABA. In contrast, PHO1 expression in mesophyll cells ap-

peared below detectable levels. The homologue PHO1;H10 was expressed at low lev-

els in both guard cells and mesophyll, but was strongly up-regulated by ABA in both

cell types, which is consistent with previous published results, showing strong induc-

tion of PHO1;H10 in the leaves in response to various biotic/abiotic stresses and ABA

treatments (Ribot et al., 2008b,a).

Interestingly, this microarray suggests that PHO1 expression in the leaf blade is re-

stricted to guard cells. Under ABA treatment, PHO1 presents comparable expression

levels as some known genes encoding guard cells ion channel such as the inwardly

rectifying K+ channel KAT1 (248888_at: 1602.6 AU, Arbitrary Unit), the outwardly

rectifying K+ channel GORK (249619_at: 4518.4 AU) or the putative slow anion chan-

nel SLAC1 (259514_at: 4129.5 AU), while remaining five times less expressed than

the OST2 gene encoding the proton ATPase AHA1 (266939_at: 20083.6 AU).
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Figure 3.1: Transcriptional profiles of genes from the PHO1 gene family, in
guard cells (GC) or mesophyll cells (MC), with or without ABA
treatments. Datas are from the microarray experiment described by
Yang et al. (2008), registered under the accession number E-MEXP-1443
available on the ArrayExpress database (www.ebi.ac.uk/arrayexpress).

Gus staining reveals PHO1 promoter activity in guard cells

The results from the microarray experiment of Yang et al. (2008) incited us to in-

vestigate PHO1 promoter activity more closely in the aerial part of the plant, under

ABA treatment, using the ß-glucuronidase (GUS) reporter gene. We used two dif-

ferent type of transgenic lines, the first being transgenic Arabidopsis thaliana lines

having the GUS reporter gene under the control of a 2.1kb DNA fragment upstream

of PHO1 start codon (pPHO1::GUS; Hamburger et al., 2002), the second being trans-

genic pho1.4 lines in which the PHO1-GUS fusion gene was expressed under the same

PHO1 promoter (pho1.4 pPHO1::PHO1-GUS; Stefanovic A., unpublished).

Two- to three-week old seedlings of the Arabidopsis lines carrying pPHO1::GUS were

grown vertically in plates and immersed in 100 µM ABA for 4 h prior to GUS staining.
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Figure 3.2: The PHO1 promoter region drives GUS activity mainly in the vas-
culature, but also in hypocotyl guard cells under ABA treatment.
Localization of GUS reporter gene activity in seedling hypocotyls (bar =
100 μm) and cotyledons epidermis (bottom right picture, bar = 10 μm). Ex-
pression was under the control of 2.1 kb of the AtPHO1 promoter region.
Seedlings were submerged in 100 μM ABA for 4 h before GUS staining.
Arrows indicate guard cells. GUS staining in vascular tissue can also be
seen, indicative of known AtPHO1 expression patterns (Hamburger et al.,
2002).
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Consistent with previous reports (Hamburger et al., 2002), we observed GUS activity

in stellar cells of the root and hypocotyl. However, GUS activity in hypocotyl stom-

ata was also consistently observed following ABA treatment in several independent

transgenic lines (figure 3.2). GUS activity in stomata of leaves and cotyledons was also

observed on occasion, although not as frequently and at lower intensity compared to

the hypocotyl (figure 3.2, bottom right picture).

Promoter activity and PHO1 localization were further investigated using the pho1.4

pPHO1::PHO1-GUS lines. In an effort to use more physiologically meaningful ABA

concentrations, two week-old rosettes were cut at the hypocotyl and floated in water

with or without 10 µM ABA for 3 h prior to GUS staining. For both treatments, we

observed GUS staining in the vasculature of the hypocotyl, in the petiole as well as in

hydathodes. Staining in the entire leaf blade vasculature was seen on occasion (not

shown). Interestingly, GUS staining was also seen in the guard cells of the leaf blade

(figure 3.3a). Moreover, the intensity and frequency of the guard cell staining was

enhanced under ABA treatment (figure 3.3a).

qRT-PCR on guard cells protoplasts confirm PHO1 expression in guard cells with

induction under ABA

To assess expression levels of PHO1 in guard cells, we performed quantitative real-

time PCR using RNA extracted from guard cell and mesophyll cell protoplast prepara-

tions of wild-type (WT) Columbia plants. We attested the relative purity of each pro-

toplast preparation by measuring the expression of the known guard-cell-specific gene

KAT1 (Schachtman et al., 1992) and the mesophyll-cell-specific gene At4G26530 (Yang

et al., 2008) . In guard cells, PHO1 transcripts were approximately six times more

abundant compared to mesophyll cell protoplast preparations (figure 3.4a). PHO1
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Figure 3.3: The PHO1::GUS translational fusion protein activity in pho1.4
leaves localizes to guard cells and petiole vasculature. Expression
was under the control of 2.1 kb of the PHO1 promoter region. Rosettes
were cut at the hypocotyl and floated in water with or without 10 μM ABA
for 3 h before GUS staining. In the leaf blade, GUS staining is visible in
guard cells, and the intensity is increased under ABA treatment. Staining
in vascular tissue of the leaf petiole can also be seen.
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Figure 3.4: AtPHO1 is preferentially expressed in guard cells compared to
mesophyll cells, and expression is induced by ABA. (a) Variation
in AtPHO1 transcript level between wild-type guard cell and mesophyll
cell protoplasts preparations. The guard cell-specific gene KAT1 and the
mesophyll cell-specific gene AT4G26530 were also measured as controls.
n = 3 biological replicates; average ± SE. (b) Expression levels of PHO1
in wild-type guard cell protoplasts following treatment with 10 μM ABA
for 40 min to 6 h, and treatment with 0 to 100 μM ABA for 4 h. Expres-
sion levels of the known ABA-induced gene RAB18 are also represented.
n = 3 biological replicates; average ± SE. Relative expression levels refers
to transcript abundance of target genes, normalized against expression of
the reference gene AT1G13320 (Czechowski et al., 2005).
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expression in guard cell protoplasts was in the same value range as the known K+

channel, with a transcript number up to nearly half that of KAT1.

The expression of PHO1 in guard cell protoplasts subjected to ABA treatment was

then analyzed. The expression level of PHO1 increased between 40 min to 6 h after

addition of 10 µM ABA (figure 3.4b, left side). Also, PHO1 expression was similarly

induced by 4h treatments with varying concentrations of ABA ranging from 5 µM to

100 µM (figure 3.4b, right side).

Analysis of the PHO1 promoter sequence

In Arabidopsis, little information is available on promoter cis-elements regulating

guard cell-specific expression, but several studies suggested a role for [T/A]AAAG

DOF-binding sites (Plesch et al., 2000, 2001; Galbiati et al., 2008; Cominelli et al.,

2011). Clusters of [A/T]AAAG motifs have been found in the regulatory regions of

most of the genes that were upregulated in guard cells (Galbiati et al., 2008), and

by mutagenesis of these sites in the promoter of AtMYB60, Cominelli et al. (2011)

confirmed the importance of DOF motifs of the same cluster in driving guard cell

expression. Analysis of the PHO1 promoter sequence revealed a large number of

[A/T]AAAG motifs in the 2.1kb upstream of the start codon (figure 3.5), with the pres-

ence of a cluster of three [A/T]AAAG motifs, located on the same strand within a

region of 100 bp, between -860 and -930 bp. Analysis of the PHO1 promoter sequence

also revealed the presence of a few ACGT core motifs of the G-box-containing ABREs

(ABA responsive elements; figure 3.5). ABRE motifs are classical cis-acting elements

in ABA-responsive gene expression (Wang et al., 2011). Although statistical analy-

sis of the promoter sequences would be needed to assess whether these motifs are

particularly enriched in PHO1 promoter, the presence of guard cell specific and ABA
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-2101 TCTTTCAGTTTTAGCCTCTATTATTCCTATATCAACTTTTCCTTACGAGTGAGAAAGACCATACACTATGAGATTCAGAAAAAGAGTTATCAATTTTGTT

 

-2001 AAAAAAAACAAAAAAAAAAAGAGAAAGTTCTCAATTTTGTTTTTTCTTATTTTCTCTATATCCAAATGTGTTTTTTAATAATAAGGAAAAAAAAGATGCA

-1901 ATTTGTTTCAGATTCAGTCACTTCAACTTATATTCCACCATAACTAAAAAAATACACGTATTAAAAGAATTGTTTCATTTTCCCAATTCTAAAACAAGTA

-1801 CAGAAACTCCTAATATATTTTCCATTTTGTTTTTTTCTCCAAATCTTGATGATTCTTTGTCCAAGTATATATAGCCAATCCCGACTAAATTCCCGACAGA

-1701 TCAAATTTCTTTGGAAAGTTTTGACCGATTTCTGACATATTTTGGAAAAATAGATATCCACCAGAAAGATAGTACCGTTGAAACGTTTTTTGTTCTTGTT

-1601 ACTTGCTTGTTTTCAAAATCATTTTTAAACATTTTCTCCCCTTTTTTACATTTTGAGTTCTAACCAGCACTACGAATATGTTCTTCTAGACTTTAGTTCC

-1501 ATCAGCCTTCTTAGCTCCGACTCCAACATTTTTCTTGTCTATAAGTTCCGCTAGTTGCATCAGAGTTGTCATATTAGTCATTTCTATATATCATATTGAA

-1401 TAGATATGCTTTTGGTAACGAACTAACAACTATATGACGCTAACATGTGAAAATAGAAAAATCAATCATCAATTTGCACTAAAACAAAATGTTGCATCAA

-1301 TTAAATTGTATCAGAAACATGATATTAATTTGAATTAGTTACTGATAATTAATGATACAAAATATATAATTAAAATAATCTGTTATTTATTTATTTGACA

-1201 TCATTAGTTCATTGAAATTGATACAAATCTATATCAGTTTGCATCACTTTTTTTCTTTGCAAACTGTCCATATATAGGGTAAGCAGATGAAAACAGTTTG

-1101 CTTTCAAATCAGTTATTGAAATTAAATATATTTTCTATTTAAATTAAATTAAATTTATTTTTTATTAAACTTTAAATAGTTTATTTACAAATTATAGAAA

-1001 TATTTAACTTCACTTAGTTATAACTGTTGTTTTTATTGTCAAAAAATAGATTGACAACATATATTTGATGGAAAAGTGAAGATGTTTATCTTTTATAAAT

-901  TGAAATTTATTAAAAAAAATTTTAAAGAAATCGCAAAAAAGTGTTATTAATTATTACGAAACTTCTGTATGGTTTTGAATGTAATAGGAATACTTTCATA

-801  TTTGTTAAGAATATATTCAATCGAAACTCATATTAATCTTTAATAAAAAAAGATTTTTTGAGCAAATAAAAAATATATATGGTACAATTTTAGTGATTAA

-701  ATGTATACAATAATACCGAAACTAAAAATATGGTCTCGAACTTGACAAAAATATATATATATGGTCTCGCTTAACATAACAATTACAAAGCGTTAAACTT

-601  TTTTTTTGTAAGGACTACTAGTCACACGTAATATTACATCACGGATCATGGTATATATAAAGCCTATTTGTAAAATGGATTTAAAATATACTATTTTTGG

-501  AAAAGAATGTCTGCAAGAGAAATTTTAATATTATCCTTGTTGAATGCAATAGAAGTGTGTTTGTGTGTGGGATTCGTGACGAGTTGCACTACTCACACAC

-401  CAATACTAACGAGTGCGTTATATTCAAATCTACCAATATAAGTGAGTGTTATTAAGCTAAGCATAATGGCCAAGAAATTTAATATTAAAAAAACAAAAGT

-301  TTCCATTTTCCCATTTGAGTTACTTTACTTATAACAAATCGCATCAAAAAGTTAAATTCACCTTCCCATGTGTGTTAAAAATCATTTATTTCCATTAAAA

-201  TAGTTAGTGACCAAAAAAAAAGAAGAAACTAAATTCACCTTCTCTACACGTCTTTCTCTCTATATATACAAACTTTCTTCTTTCCCTCTTAATGCCTCTT

-101  GTAACATTAGCCTCTCTCTCTGTCTTTCTCCTTCCTCACATTATAATTTCTTCCAAGTCACTATTAGCAATTAATCAAAACGGAAGAAATTATATGCGAC
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Figure 3.5: Promoter region of PHO1 with Dof target sites and ABRE motifs.
The 2.1 kb sequence upstream of the ATG start codon is represented. Nu-
cleotides are numbered on the left with the translational start site desig-
nated as +1. The ATG is in bold. The Dof target sites, (+)5’-TAAAG-3’,
(-) 5’-CTTTA-3’, (+) 5’-AAAAG-3’ or (-) 5’-TTTTA-3’ are boxed and labelled.
The abscisic acid-response element (ABRE), (-) 5’-CACGT-3’ motifs are also
indicated.

46



Results

response motifs is consistent with the expression pattern of PHO1 in stomata, as re-

vealed by GUS staining and qRT-PCR data.
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Discussion

In agreement with its role in transferring phosphate into the root vasculature, PHO1

is primarily expressed in root stelar cells (Hamburger et al., 2002). In this chapter,

with microarray data analysis, ß-glucuronidase (GUS) reporter gene analysis, and

quantitative RT-PCR, we gathered evidence that beside its known expression in the

vasculature, PHO1 is also expressed in guard cells of the leaf blade. PHO1 expression

in guard cells was at much higher levels than in the mesophyll cells, and was in

the same range as some well known guard cell ion channels. Together, these results

unravel a possible biological significance of PHO1 stomatal expression for guard cell

functioning.

Ribot et al. (2008a) observed that a long-term (two-day) treatment with 10 μM ABA re-

pressed PHO1 in whole seedlings, the majority of the repression occurring most likely

in the root vascular cylinder, the tissue with the highest PHO1 expression. Their

result corroborated the idea that ABA might be involved in the regulation of Pi home-

ostasis (Trull et al., 1997; Ribot et al., 2008a; Rubio et al., 2009; Yang and Finnegan,

2010). In this study we examined more precisely the transcriptional response of PHO1

to short-term (up to 6 h) ABA in guard cells. We show that in stomata, PHO1 expres-

sion increases rapidly following ABA application. This rapid up-regulation of PHO1

in guard cells under ABA treatment suggest a possible involvement of PHO1 in guard

cell ABA signal transduction.

While weak expression in the shoots had been detected before through RNA blots

(Hamburger et al., 2002), evidence of PHO1 expression outside the roots were lack-

ing. Our results show that PHO1 expression in leaf guard cells as well as leaf vas-

culature might account for the weak expression in the shoots detected by Hamburger
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et al. (2002). Interestingly, prior use of Arabidopsis lines carrying pPHO1::GUS re-

vealed PHO1 promoter activity in the root and hypocotyl vascular cylinder, but failed

to detect relevant promoter activity in the leaves (Hamburger et al., 2002), suggesting

a possible low sensitivity of the method, or the requirement of other elements than

the 2.1-kb region upstream of the PHO1 gene for its expression in above ground tis-

sues. In accordance with Hamburger et al. (2002), we show that in the pPHO1::GUS

lines, PHO1 promoter activity is seldom detected in shoots, apart from staining in

hypocotyl guard cells and occasionnaly in a few leaf stomata. In contrast, the use

of pho1.4 transgenic lines carrying the pPHO1::PHO1-GUS construction (PHO1-GUS

fusion) revealed surprisingly consistent expression in stomata and leaf vasculature.

The result differences between the two transgenic lines suggest that the full expres-

sion patterns of PHO1 might involve other regulatory elements outside the promoter

region. Intronic regulatory elements, such as enhancers, may be involved in such

a regulation, as was previously demonstrated for other plant genes (Schauer et al.,

2009).

However, even though possible intronic regulatory elements must be considered, the

2.1-kb region sequence of upstream of PHO1 start codon did indicate the presence of

several motifs typical of cis-acting regulatory elements involved in guard cell-specific

expression and ABA responsiveness. The PHO1 promoter displayed several [A/T]AAAG

motifs including a cluster of three located between -860 and -930 bp. [A/T]AAAG mo-

tifs are required for binding of DOF-type transcription factors, a class of zinc finger

transcription factors. [A/T]AAAG motifs have been described as an essential cis-active

element for guard cell-specific expression of the potato potassium channel KST1 gene

(Plesch et al., 2001), and of the transcription factor AtMYB60 (Cominelli et al., 2011).

Although the presence of a DOF-binding site alone is not sufficient to explain guard
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cell-specific expression patterns (Yang et al., 2008; Cominelli et al., 2011), it appears

that it is the presence of clusters of at least three [A/T]AAAG motifs (defined as located

on the same strand within a region of 100 bp), that is important to confer guard cell-

specificity to a promoter region (Galbiati et al., 2008). Within a cluster, DOF-binding

sites exert additive roles in mediating gene expression in stomata (Cominelli et al.,

2011). The PHO1 promoter region also displayed a few ACGT core motifs of ABA-

responsive elements (ABREs). The ACGT core is a sequence known to be recognized

by plant bZIP proteins, and it has been demonstrated that multiple ABREs can estab-

lish a minimal ABA-responsive complex (ABRC), that can confer ABA responsiveness

to a minimal promoter (Gomez-Porras et al., 2007).

Finally, it is well known that ion channels/transporters are involved in a wide range of

physiological processes in plants, including plant nutrition, osmoregulation and cell

signaling (Barbier-Brygoo et al., 2011). In root cells, transporters and channels are

required, among other roles, to take up ions from the soil and to release them in the

root vascular cylinder for subsequent distribution to the shoots. In guard cells, ion

transporters and channels are involved in cell signaling and in the uptake and efflux

of osmolytes that regulate the osmotic pressure controlling stomatal aperture. It is

therefore not unusual to find members of the same channels/transporters families

expressed in these different cell types, and eventually with different functions. As

an example of expression in both root and guard cells, the plant Shaker family of

K+ channels displays members with roles in root K+ accumulation from soil (AKT1;

Hirsch et al., 1998), in root release of K+ into the xylem (SKOR, expressed in the

vascular cylinder of the root; Gaymard et al., 1998), but also in guard cell K+ efflux

(GORK; Hosy et al., 2003) as well as in guard cell K+ influx (AKT1, AKT2, KAT1 and

KAT2; Pilot et al., 2001; Kwak et al., 2001; Szyroki et al., 2001). The unraveling of
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Discussion

the expression of PHO1 in guard cells suggests that PHO1 might have similar diverse

roles in Arabidopsis, and prompts for further investigations to provide insights on

PHO1 function in stomatal biology.
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Experimental procedures

Plant material and growth conditions Arabidopsis thaliana wild type plants were

from the Columbia ecotype (wild-type Col). For in vitro plant cultures, seeds were

surface sterilized and sown on plates containing 1/2 Murashige Skoog medium pH 5.6

with Gamborg vitamins (Duchefa), 1% w/v sucrose, and 0.8 % w/v agar, then placed

under short-day growth conditions (20°C, 10 h light/ 18 h dark) for two to three weeks.

Chamber-grown plants were directly sown in 7 cm diameter pots containing potting

compost and vernalized for 2 days at 4°C, before being placed for 2 weeks at 18°C,

60% relative humidity, 10 h light/ 14 h dark, 100 µEm-2s-1.

Gus staining Transgenic A. thaliana (Columbia) plants expressing the ß-glucuronidase

(GUS) reporter gene under the control of the PHO1 promoter region (2.1 kb upstream

of the transcribed sequence, see Hamburger et al., 2002) were grown on agar plates

for two to three weeks. One hour after the beginning of the light cycle, seedlings were

immersed for 4 h in a 1/2 MS solution containing 100 µM ABA. GUS staining was

then conducted as explained below.

The transgenic pho1.4 plants expressing PHO1 fused to the ß-glucuronidase (GUS)

was done by cloning the PHO1 promoter (2.1 kb upstream of the transcription start)

along with the complete PHO1 ORF into the pMDC139 vector (Curtis and Gross-

niklaus, 2003). Three hours after the beginning of the light cycle, two-week-old rosettes

were cut at the hypocotyl and floated in water or 10 µM ABA for 3h prior to GUS stain-

ing. For both constructions, GUS staining was conducted as follows: seedlings were

incubated in 1mL of X-gluc solution (0.5 mM X-Gluc/DMF, 0.5 mM K3Fe(CN)6, 0.5

mM K4Fe(CN)6, 0.01 % v/v Triton X-100, 50 mM sodium phosphate) for 48 h at 37

°C. Stained tissue was fixed in 5% v/v formalin for 10 min, followed by a 10 min in-
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cubation in 5% v/v acetic acid. To remove chlorophyll, stained and fixed tissue was

incubated in serial dilutions of 30 %, 50 %, 70 %, and 100 % EtOH.

Guard cell and mesophyll cell protoplast preparation Guard cell and mesophyll cell

protoplasts were isolated according to Pandey et al. (2002). For guard cell protoplasts,

mature leaves from 12-24 five-week-old plants (main vein discarded) were blended in

cold distilled water for 2 min using a small Waring blender on high speed. Processed

tissue was passed through a 100 µm nylon mesh to isolate epidermal fragments and

rinsed with water until clear. Epidermal fragments were then submerged in a di-

gestion mixture containing 0.7-1.4 % Cellulysin Cellulase Trichoderma viride (Cal-

biochem), 0.1 % PVP40 (Sigma), 0.25 % BSA (Sigma), 13.75 mL basic medium (104

g/L D-sorbitol (Sigma), 0.5 mM ascorbic acid (Sigma), 0.5 mM CaCl2, 0.5 mM MgCl2,

5 mM MES, pH 5.5 with KOH) and 11.25 mL distilled water. Digestions were incu-

bated for 3-4 hours at 27 °C incubated in a shaking water bath in the dark. The ex-

tent of cellular digestion was monitored microscopically until completion, upon which

digests were passed through a 50 µm nylon mesh and rinsed with basic medium. Iso-

lated epidermal cells were transferred to a second digestion mixture containing 1.5 %

Cellulase RS onozuka (Yakult pharmaceuticals, Japan), 0.03 % Pectolyase Y23 (Inter-

chim, France), 0.25 % BSA (Sigma) and 25 mL basic medium. These secondary diges-

tions were incubated slowly shaking for 2 hours at 17 °C and the formation of guard

cell protoplasts was monitored microscopically until completion. Digests were passed

through a 10 µm nylon mesh and isolated protoplasts were collected in Falcon tubes.

Triplicate washes were performed where protoplasts were pelleted at 350 g for 15 min

in a swing rotor centrifuge and resuspended in basic medium. The purity of guard cell

protoplasts in the final pellet was then verified using a hemacytometer. For mesophyll
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cell protoplasts, mature leaves from five-week-old plants (main vein discarded) were

cut into 1mm strips and submerged directly into a digestion mixture containing 1 %

Cellulase R-10 (Serva), 0.4 % Macerozyme R-10 (Serva), 5mM MES, 0.2 % BSA, 0.1 %

PVP40 and 25 mL medium (118.9 g/L D-sorbitol, 1 mM CaCl2). Digestions were in-

cubated slowly shaking for two hours in the dark at room temperature. Digests were

passed through a 25 µm nylon mesh and the resulting medium containing protoplasts

were collected in Falcon tubes. Triplicate washes were performed where protoplasts

were pelleted at 200 g for 15 min in a swing rotor centrifuge and resuspended in

medium. The purity of mesophyll cell protoplasts in the final pellet was then verified

using a hemacytometer.

ABA treatments on guard cell protoplasts Guard cell protoplasts were re-suspended

in 50 mL of basic medium to which 50 uL of 0, 5, 10, 50 or 100 mM ABA was added.

Replicated treatments were set up allowing analysis immediately following the addi-

tion of ABA and after 4 and 6 h incubations in the dark at room temperature. Treated

protoplasts were collected by duplicate 15 min centrifugations in a swing rotor cen-

trifuge at 350 g.

RNA extraction and real-time quantitative RT-PCR Pelleted protoplasts were col-

lected in 1.5 mL tubes and concentrated by centrifugation. All but 100 µL of su-

pernatant was removed from the pellet. Total RNA was extracted using 1 mL TRI-

ZOL reagent (Invitrogen) following manufacturer’s instructions. Glycogen (Roche)

was used as an RNA carrier. Total RNA was treated with DNase (Qiagen,) to remove

residual genomic DNA, and was subsequently purified using a RNAeasy Minelute

Cleanup Kit (Qiagen). Reverse transcription was performed using M-MLV reverse

transcriptase (Promega). qRT-PCR analysis was performed using SyberGreen mix
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and the reference dye ROX (ABgene) in a Stratagene MPx3000 instrument. The fol-

lowing thermal cycle was observed: an initial incubation at 95 °C for 15 min, followed

by 40 cycles of 95 °C for 15 sec, 60 °C for 30 sec and 72 °C for 30 sec. At the end of

the 40 cycles was a dissociation step of 95 °C for 15 sec, 55 °C for 15 sec and 95 °C for

15 sec, in order to verify the absence of nonspecific products. All amplification plots

were analyzed using MxPro QPCR software (Stratagene) with an Rn threshold of 0.1

to obtain Ct values. Transcript abundance was estimated as per the standard curve

method (Rutledge and Cote, 2003) observing default settings. Transcript abundance

of target genes was normalized against expression of the reference gene AT1G13320

(described by Czechowski et al., 2005). For analysis of PHO1 expression in guard cells

versus mesophyll cells, PHO1 was amplified using the oligonucleotides 5’-acc gta ccg

tta ccg ttc ctt ga-3’ and 5’ctt cgt ttt gca ctt tgg agc gt-3’, and using 5’-tgc tga aga cag gca

ctg gag ag-3’ and 5’-tgc tgc att gcc cat tca gga cc-3’ for the reference gene AT1G13320.

For analysis of gene expression in response to ABA treatment of guard cells, PHO1

was amplified using the oligonucleotides 5’-aca cca ttc cag gca tcc tcc tc-3’ and 5’-acg

gtg agc aaa caa tct tcc gc-3’, whilst RAB18 was amplified using 5’-tgg gag gaa tgc ttc

acc gct c-3’ and 5’-cca tcg ctt gag ctt gac cag ac-3’. To assess the purity of guard and

mesophyll cell preparations, transcript abundance of guard-cell-specific genes KAT1

and the mesophyll-cell-specific gene At4G26530 was determined using primers 5’-atg

ctc atg ctg acg atg gac ga-3’ and 5’-tcc act ctt ccc atc cca tgc t-3’, and 5’-agg cct tga

acg acc acc atg tc-3’ and 5’-acc tgc agg tgg gac tgt gcg-3’, respectively. In latter reac-

tions, the oligonucleotides 5’-taa cgt ggc caa aat gat gc-3’ and 5’-gtt ctc cac aac cgc ttg

gt-3’ were chosen for the reference gene AT1G13320. The mesophyll-cell-specific gene

At4G26530 was chosen according to microarray data described by Yang et al. (2008).
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Introduction

Guard cells are able to sense and integrate a myriad of complex environmental and

hormonal signals. In response, they regulate the aperture of the stomata by driving

ion fluxes across their plasma membrane, therefore causing changes in guard cell

turgor and volume. This rapid closing and opening of the stomatal pore allows tight

regulation of gas exchanges depending on varying environmental conditions such as

light, CO2 concentration, humidity or time of day (Hetherington and Woodward, 2003;

Nilson and Assmann, 2007). Environmental signals can act either in a synergistic or

antagonistic manner on stomatal movement: red/blue light and reduced CO2 induce

the opening of the stomata to allow more CO2 uptake for photosynthesis, while the

drought hormone abscisic acid (ABA), darkness, and elevated CO2 typically cause

stomatal closure in order to reduce water loss and regulate photosynthesis. These

various signals involve common as well as distinct signaling events and molecular

players (for details, see Chapter 1 - Introduction).

In Arabidopsis, PHO1 is involved in the export of phosphate into the root xylem ves-

sels and, as a result, the pho1 mutant is characterized by low shoot phosphate levels.

In the previous chapter (see Chapter 3 - Expression analysis of AtPHO1 in guard cells

and in response to ABA), we presented evidence that beside its expression in the root

vasculature, PHO1 was expressed in guard cells and up-regulated under ABA treat-

ment. These results indicated that PHO1 might have a role in guard cell ABA sig-

naling. Incidentally, previous results from Ribot (2006) showed that the mutant pho1

displays phenotypes linked to ABA: pho1 exhibits a pronounced seed dormancy, a hy-

persensitivity to ABA in terms of germination and root growth, and has a higher rate

of water loss during dehydration assays, comparable to aba mutants (ABA-deficient
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mutants). Through micro-grafting on wild-type roots, Ribot (2006) demonstrated that

the higher rate of water loss could be seen even in Pi-repleted pho1, suggesting that

the impairment was independent of phosphate deficiency. In addition, observation of

wild-type and pho1 epidermis suggested that the stomata of pho1 did not close in re-

sponse to ABA treatment. However, the extent of the impairment was not quantified,

nor was it further explored. It was thus of interest to investigate in greater detail the

potential role of PHO1 in guard cell ABA signaling.

In this chapter, we explore the stomatal response of the mutant pho1 in response to

various stimuli, in an effort to narrow down the precise pathways that might be af-

fected by the mutation. With stomatal aperture measurements on epidermal peels,

we show that pho1 is impaired in the stomatal movement response to ABA, during

both the induction of stomatal closure and the repression of stomatal opening under

light, and this even at high concentrations of ABA. Interestingly, pho1 response to

changes in CO2 concentration appeared altered as well. We demonstrate that the im-

pairment occurs downstream of ABA-induced ROS production, but that it does not

affect the stomatal response to light transitions, chemicals such as auxin and fusicoc-

cin, and high extracellular calcium. In order to rule out a possible effect of phosphate

deficiency on the stomatal response of pho1, we used micro-grafting techniques to

generate Pi-repleted pho1. Alleviation of pho1 phosphate deficiency did not improve

pho1 stomatal response to ABA. Together, these results demonstrate that the pho1

mutation does not affect the overall ability of stomata to open and close, but rather in-

terferes specifically, and independently of the plant phosphate status, with the guard

cell response to ABA. The signaling event involving PHO1 is likely to be common to

both ABA and CO2 signaling.
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Figure 4.1: The pho1 mutant presents normal guard cell morphology. (a) Rep-
resentative images of WT, pho1.2 and pho1.4 epidermal peels (bar = 20
μm). (b) Stomatal length in WT, pho1.2 and pho1.4. n= 30 stomata over
five sampled epidermis; average ± SE. (c) Stomatal density in the epider-
mis of WT, pho1.2 and pho1.4. n= 10 sampled epidermis; average ± SE.
The differences between WT and the pho1 mutants were not significant,
as confirmed by Student t-test.

Results

The pho1 mutant is impaired in both ABA-induction of stomatal closure and

repression of stomatal opening

To assess PHO1 function in guard cells, we analyzed stomatal movements in the pho1

mutant in response to different stimuli. Epidermal peels were prepared by detaching

the epidermis from the mesophyll. Visually, no differences were observed in the mor-

phology, the size, or the density of the WT stomata and those of the allelic mutants

pho1.2 and pho1.4 (figure 4.1).
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We analyzed the stomatal movements in the allelic mutants pho1.1, pho1.2, pho1.3

and pho1.4 (Poirier et al., 1991; Delhaize and Randall, 1995; Hamburger et al., 2002)

following treatment with ABA. Epidermis preparations of WT, pho1.1, pho1.2, pho1.3

and pho1.4 were subjected to light in order to induce stomatal opening, then were

treated with 10 µM ABA for two hours to induce stomatal closing. In average over

three independent experiments, stomatal apertures in pho1.1, pho1.2, pho1.3 and

pho1.4 were slightly higher than WT before treatment with ABA (figure 4.2; t = 0).

However, later experiments revealed that this finding was not consistently observed

(figure 4.3; 0 µM ABA). More importantly, following a 1-h and 2-h of ABA treatment,

stomatal apertures in pho1.1, pho1.2, pho1.3 and pho1.4 were consistently wider than

observed in WT (figure 4.2; t = 1 h, 2 h), suggesting that ABA is unable to fully induce

stomatal closure in the mutants pho1.

In order to assess the response of pho1 under varying ABA concentrations, epidermis

preparations of WT, pho1.2 and pho1.4 were subjected to light in order to induce stom-

atal opening, then were treated with varying concentrations of ABA for two hours to

induce stomatal closing. In this set of independent experiment, stomatal apertures in

pho1.2 and pho1.4 were comparable to WT in the absence of ABA (figure 4.3a; 0 µM

ABA). Following ABA treatments, induction of stomatal closure was successfully seen

in WT stomata, with final stomatal aperture getting smaller as the ABA concentration

was increased. However, stomatal apertures in pho1.2 and pho1.4 were consistently

wider than observed in WT (figure 4.3a), meaning that ABA failed to induce proper

stomatal closure in pho1, even under high concentration of ABA (50 µM).

To further investigate stomatal movements in pho1 in response to ABA, we analyzed

ABA-inhibition of stomatal opening in pho1.2. WT and pho1.2 epidermal peels were

prepared and incubated in darkness to ensure stomata were closed. Interestingly,
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Figure 4.2: The pho1 allelic mutants present consistent impairment of stom-
atal closure in response to ABA. Induction of stomatal closure, as
represented by decreasing apertures, in WT and in the allelic mutants
pho1.1, pho1.2, pho1.3 and pho1.4 (Poirier et al., 1991; Delhaize and Ran-
dall, 1995; Hamburger et al., 2002), in response to 10 μM ABA, after 0, 1,
and 2 h. Stomatal opening of WT without ABA (WT Col -ABA) was also
monitored. n = 3 independent experiments; average ± SE. Asterisks above
the columns indicate stomatal aperture fold changes that are statistically
different from the corresponding wild-type control values per time point
(P < 0.05).

62



Results

0

0.5

1

1.5

2

2.5

3

0μM 5μM 10μM 50μM

st
o
m

a
ta

l a
p
e
rt

u
re

 (
μ

m
)

ABA concentration

WT Col pho1.2 pho1.4(a)

0

0.5

1

1.5

2

2.5

t0 t=1h t=2h

WT Col +ABA WT Col -ABApho1.2 +ABA

st
o
m

a
ta

l a
p
e
rt

u
re

 (
μ

m
)

Time

(b)

* * *
* *

*
*

*
*

Figure 4.3: The guard cells of pho1 are non-responsive to ABA both during
induction of stomatal closure and inhibition of stomatal opening.
(a) Stomatal closure in WT, pho1.2, and pho1.4, as represented by decreas-
ing stomatal apertures, following 2-h treatments with ABA concentrations
varying from 0 to 50 μM. n = 3 independent experiments; average ± SE.
(b) Stomatal opening under light in WT and pho1.2, as represented by in-
creasing stomatal apertures, following 0, 1, and 2-h treatments with 10
μM ABA. Stomatal opening of WT without ABA (WT Col -ABA) was also
monitored. n = 3 independent experiments; average ± SE. Asterisks above
the columns indicate stomatal aperture fold changes that are statistically
different from the corresponding wild-type control values (P < 0.05).
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prior to treatment, stomata in pho1.2 were fully closed and stomata aperture widths

were comparable to WT (figure 4.3b; t0), indicating that the inability of ABA treat-

ment to induce stomatal closure in pho1 is not due to a mechanical incapacity of pho1

stomata to close. Wild type and pho1.2 epidermal peels were placed under light and

treated with 10 µM ABA for two hours. ABA treatment was seen to effectively in-

hibit stomatal opening of WT. In contrast, stomata in pho1.2 were unresponsive to

ABA treatment and opened fully (figure 4.3b), displaying final aperture widths simi-

lar to untreated WT stomata. This result suggests that ABA is also unable to repress

stomatal opening in pho1.

pho1 perceives ABA and produces ROS but does not close under H2O2 treatment

Reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), are known medi-

ators of stomatal movements and are produced in response to ABA (Wang and Song,

2008). Therefore, it was of interest to examine whether guard cells in pho1 were

able to perceive ABA and produce ROS. The H2O2-sensitive fluorescent probe 2´,7´-

dichlorofluorescein diacetate (DCFDA) was used to assess relative ROS levels in WT

and pho1.2 guard cells prior to and following ABA treatment. Wild type and pho1.2

epidermal peels were incubated in 50 µM DFCDA followed by 50 µM ABA. DCFDA

fluorescence in guard cells of both pho1.2 and WT increased following ABA treatment

(figure 4.4a and b), suggesting that ROS production is increased in pho1 in response

to ABA. This provides evidence that an impaired stomatal ABA response in pho1 oc-

curs downstream of ABA perception and ROS production. In agreement with this

hypothesis, H2O2 treatment also failed to induce stomatal closure in pho1.2 (figure

4.4c).
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Figure 4.4: The mutant pho1 produces ROS in response to ABA and does not
close under H2O2 treatment. (a) ROS production in leaf epidermal
stomata of WT and pho1.2 following application of 50 μM ABA, as revealed
by fluorescence levels of the fluorescent dye DCFDA. (-ABA) pictures rep-
resent epidermis before addition of ABA; (+ABA) represent epidermis 3
min after addition of ABA. Bar = 100 μm. (b) Quantification of the aver-
age fluorescence intensity (n = 45 stomata; average ± SE). (c) Stomatal
closure in WT and pho1.2 following 0, 1, and 2-h treatments with 100 μM
H2O2. Stomatal aperture of WT without H2O2 treatment (WT Col -H2O2)
was also monitored. n = 3 independent experiments; average ± SE. Aster-
isks above the columns indicate stomatal aperture fold changes that are
statistically different from the corresponding wild-type control values (P <
0.05).
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Stomata of pho1 are able to open and close in response to other treatments

To assess whether impaired stomatal movements in pho1 were specific to the ABA

pathway, we tested whether stomata in pho1.2 were responsive to other stimuli.

We first experimented with treatments inducing stomatal opening, including light

signals such as red and blue light, and also chemical signals such as auxin and fusic-

occin. Wild-type and pho1.2 epidermal peels were maintained in darkness to promote

stomatal closure, followed first by a 1-h exposure to strong red light (50 µEm-2s-1) and

then a 2-h blue light (10 µEm-2s-1) superimposition. Interestingly, similar stomatal

aperture widths were observed in both WT and pho1.2 under red light (figure 4.5a;

RL 1 h) and red+blue light treatments (figure 4.5a; RL+BL 2 h). In contrast, the

stomata of the phototropin double mutant phot1;phot2 did not respond to blue light,

as previously described (Kinoshita et al., 2001).

Furthermore, we examined stomatal opening in darkness following treatment with

auxin or fusicoccin (figure 4.5b). Wild-type and pho1.2 epidermal peels were main-

tained in darkness to promote stomatal closure (figure 4.5b; t0), then auxin (IAA 1

mM) or fusicoccin (1 μM) were applied. Again, WT and pho1.2 presented similar

stomatal opening responses to auxin and fusicoccin (figure 4.5b).

We then tested treatments that induce stomatal closure, such as transition from light

to dark, and high extracellular calcium treatment. Wild-type and pho1.2 epidermal

peels were subjected to light in order to induce stomatal opening (figure 4.6a; t0), then

light was turned off and stomatal aperture was monitored after 30 and 60 minutes in

the dark (figure 4.6a; t = 30 min and t = 60 min). We observed similar stomatal aper-

tures in both WT and pho1.2 at the selected time points. Finally, application of high

extracellular calcium concentration (5 mM CaCl2) to pre-opened stomata triggered
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Figure 4.5: The mutant pho1 maintains normal stomatal movement under
blue light, auxin, and fusicoccin treatments. (a) Stomatal opening
under blue light in WT and pho1.2. Stomatal apertures were measured fol-
lowing 1 h exposure to red light (RL 1 h), and again after a 2-h superimpo-
sition of blue light (RL+BL 2 h). The double mutant phot1,phot2 was used
as a control. (b) Stomatal opening in darkness in WT and pho1.2 follow-
ing treatment with auxin 1mM (IAA) and fusicoccin 1μM. Pre-treatment
(t0) measurements were of stomata maintained in darkness. n = 3 inde-
pendent replicates; average ± SE. Asterisks above the columns indicate
stomatal aperture fold changes that are statistically different from the
corresponding wild-type control values (P < 0.05).
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Figure 4.6: The stomata of pho1 are able to close under transition to dark and
high calcium loads. (a) Stomatal closure in WT and pho1.2 following 30
and 60 minutes of darkness. Stomatal aperture of WT kept under light
(WT Col +light) was also monitored. n = 3 independent experiments; aver-
age ± SE. (b) Stomatal closure in WT and pho1.2 following treatment with
5 mM CaCl2. Stomatal aperture of WT without CaCl2 treatment (WT Col -
CaCl2) was also monitored. n = 3 independent experiments; average ± SE.
Asterisks above the columns indicate stomatal aperture fold changes that
are statistically different from the corresponding wild-type control values
(P < 0.05).

similar stomatal closure response in both WT and pho1.2 (figure 4.6b).

The stomatal response of pho1 to changes in CO2 concentration is also affected

We further investigated the response of pho1 to changes in CO2 concentration. WT,

pho1.2 and pho1.4 epidermal peels were prepared and kept in darkness to ensure

that stomata were fully closed (figure 4.7; t = 0). The epidermal peels were then incu-

bated in the dark for two more hours in incubation buffer satured with CO2-free air,

or were kept in the control buffer saturated with atmospheric air. When kept under

normal conditions, stomata of WT, pho1.2 and pho1.4 stayed closed (figure 4.7; t = 2
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Figure 4.7: The mutants pho1 respond less than WT to a decrease in CO2 con-
centration. Stomatal opening in the dark in WT, pho1.2 and pho1.4, in
response to a 2-h incubation with CO2-free air or atmospheric air. Epi-
dermal peels were kept in the dark (t = 0) before treatment. n = 3 inde-
pendent experiments; average ± SE. Asterisks above the columns indicate
final stomatal aperture that are statistically different from the wild-type
value (P < 0.05).

h “Air”). In contrast, the CO2-free treatment successfully induced stomata to open in

WT. Interestingly, while the stomata of pho1.2 and pho1.4 opened in response to the

CO2 decrease, the average final stomatal aperture after two hours was significantly

lower in the mutants than in the WT, showing that they did not open to the same ex-

tent as the WT. This result suggests that the pho1 mutation also affects the stomatal

response to changes in CO2 concentrations (figure 4.7; t = 2 h “CO2-free”).
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WT/WT pho1.2/WTWT Col pho1.2

Figure 4.8: Micro-grafts composed of a pho1 shoot scion onto wild type root-
stock result in plants with normal shoot growth and Pi content.
Representative growth of 4-week-old WT, pho1.2, and chimeric plants
composed of either WT or pho1.2 scion micro-grafted onto WT rootstock
(WT/WT and pho1.2/WT, respectively). Shoot growth of pho1.2 scion with
WT rootstock resembled growth of WT and the WT/WT micro-graft con-
trol, indicating restored Pi content in the pho1.2 scion.

Stomata in pho1 scion micro-grafted onto WT rootstock remain poorly responsive

to ABA, despite Pi sufficiency.

Phosphorus starvation induces a myriad of transcriptional, biochemical, and physio-

logical effects, including adaptive changes in shoot growth, carbohydrate metabolism

and ion composition (Hammond and White, 2008). Because such pleiotropic effects

could potentially impair the stomatal response to ABA, we were interested in deter-

mining whether the impaired ABA induced stomatal movements observed in pho1

were dependent on the specific PHO1 function in guard cells or on the phosphate de-

ficiency alone. The approach was to generate Pi-sufficient chimeric plants composed

of a pho1 scion micro-grafted to a WT rootstock (pho1/WT). As previously described,

WT rootstock restored root-to-shoot phosphate transfer to pho1 scions, resulting in

WT level of shoot Pi content and normal shoot growth (Stefanovic et al., 2007) (figure

4.8). We also generated control WT plants composed of a WT scion micro-grafted to

a WT rootstock (WT/WT). These chimeric plants were then tested for their stomatal

response to ABA.

Epidermis preparations of WT/WT, pho1.1/WT, pho1.2/WT, pho1.3/WT and pho1.4/WT
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micro-grafts were subjected to light in order to induce stomatal opening, then treated

with 10 µM ABA for two hours to induce stomatal closing (figure 4.9a). Stomatal aper-

ture was recorded after one hour and two hours of ABA treatment. The stomata of

plants composed of a WT scion micro-grafted to a WT rootstock (WT/WT) closed nor-

mally under ABA treatment, suggesting that micro-grafting does not interfere with

normal ABA-induction of stomatal closure. However, stomatal movements in plants

composed of a pho1 scion micro-grafted to a WT rootstock (pho1.1/WT, pho1.2/WT,

pho1.3/WT and pho1.4/WT) remained poorly responsive to ABA, as ABA failed to in-

duce full stomatal closure (figure 4.9a). Consistent with this result, treatment with

100 µM H2O2 also failed to induce stomatal closure in pho1.2/WT (figure 4.9b).

We further tested ABA-repression of stomatal opening in micro-grafted WT/WT and

pho1.2/WT plants (figure 4.10). Epidermal peels of micro-grafted WT/WT and pho1.2/WT

plants were kept in darkness to ensure that stomata were closed, then were treated

with light and 10 µM ABA. Stomatal aperture was monitored after one hour and two

hours of ABA treatment. Again, while ABA effectively inhibited the stomatal opening

of WT/WT, we consistently measured wider stomatal aperture in pho1.2/WT after one

hour and two hours under light and ABA treatment. This result shows that ABA still

failed to repress stomatal opening in Pi-repleted pho1. Together, the results of the

stomatal aperture assays on micro-grafted pho1/WT demonstrate that the impaired

stomatal response of pho1 can not be alleviated through phosphate sufficiency alone.
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Figure 4.9: Phosphate sufficiency through micro-grafting does not restore
ABA and H2O2-induction of stomatal closure in pho1. (a)
ABA-induction of stomatal closure in micro-grafted WT/WT, pho1.1/WT,
pho1.2/WT, pho1.3/WT and pho1.4/WT in response to 10 μM ABA, after
0, 1, and 2 h. n = 3 independent experiments; average ± SE. Stomatal
opening of WT/WT without ABA (-ABA) was also monitored. (b) Stom-
atal closure in micro-grafted WT/WT and pho1.2/WT following 0, 1, and
2-h treatments with 100 μM H2O2. Stomatal aperture of WT/WT without
H2O2 treatment (WT Col -H2O2) was also monitored. n = 3 independent
experiments; average ± SE. Asterisks above the columns indicate stomatal
aperture fold changes that are statistically different from the correspond-
ing wild-type control values (P < 0.05).
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Figure 4.10: Phosphate sufficiency through micro-grafting does not restore
ABA-repression of stomatal opening in pho1. ABA-repression of
stomatal opening under light in micro-grafted WT/WT and pho1.2/WT,
in response to 10 μM ABA, after 0, 1, and 2 h (n = 3 independent exper-
iments, average ± SE). Stomatal closure and opening of WT/WT without
ABA was also monitored as a control (WT/WT -ABA). Asterisks above the
columns indicate stomatal aperture fold changes that are statistically dif-
ferent from the corresponding wild-type control values (P < 0.05).
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Discussion

As was mentioned in the introduction, previous results suggested a potential role of

PHO1 in guard cell signaling: the ABA-related phenotypes of pho1 described by Ribot

(2006), and the specific expression of PHO1 in guard cells as presented in Chapter 3 -

Expression analysis of AtPHO1 in guard cells and in response to ABA. In this context,

the aim of this chapter was to explore the stomatal response of the mutant pho1 in

response to ABA and to other various stimuli, in order to characterize a potential

stomatal phenotype in pho1.

Consistent with the work of Ribot (2006), the pho1 mutant displayed a striking im-

pairment of the stomatal response to ABA during stomatal aperture assays (figure 4.2

and 4.3). Both the induction of stomatal closure and repression of stomatal opening

under light were impaired, with the pho1 mutant presenting higher stomatal aper-

ture than WT following ABA treatment, even under high concentrations of ABA.

We addressed whether the impaired ABA-induced stomatal movements observed in

pho1 were dependent on a specific function of PHO1 in guard cell ABA signaling, or on

some pleiotropic effects induced by the pho1 mutation. We first ruled out the presence

of any structural or mechanical impairment that could potentially prevent normal

stomatal movements in pho1, since observation of epidermal peels revealed normal

stomatal morphology, stomatal size and density (figure 4.1), and that pho1 stomata

maintained the ability to open and close like a wild type following other treatments

such as light cues, high extracellular calcium, auxin and fusicoccin treatments (figure

4.5 and 4.6). Secondly, we were interested in addressing more specifically the possible

effect of pho1 shoot phosphate deficiency on the stomatal response to ABA. Indeed,

long-term Pi starvation affects photosynthesis and carbon assimilation, triggering ac-
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cumulation of starch and sucrose in the leaves (Hammond and White, 2008), which

in turn could potentially impair the stomatal response to ABA. Using micro-grafting

experiments between pho1 scions and WT root stocks, we demonstrated that the im-

paired stomatal response to ABA in pho1 plants occurred even in Pi-sufficient leaves

(figure 4.9 and 4.10). Together, these results suggested that the pho1 mutation does

not interfere with the overall ability of stomata to open and close, and that pho1 phos-

phate deficiency can not explain alone pho1 stomatal phenotype. Rather, it suggested

that the pho1 mutation might affect a specific signal transduction event occurring

during ABA-induced stomatal movements.

Interestingly, the mutant pho1 presented a wild-type aperture under light, in the

dark, and under red and blue light treatments (figure 4.3, 4.5a and 4.6a). Red light

triggers stomatal opening through activation of photosynthesis (Shimazaki et al.,

2007), as well as through phytochrome B signaling (Wang et al., 2010). Blue light

signals activation of the plasma membrane H+ -ATPase and inhibition of S-type an-

ion channels. The resulting membrane hyperpolarization activates uptake of K+ via

the voltage-gated inward-rectifying K+ channels (Shimazaki et al., 2007; Roelfsema

et al., 2012), and therefore promotes stomatal opening. In darkness, stomatal opening

is repressed via COP1, a negative regulator of stomatal opening that functions down-

stream of both cryptochromes and phototropins (Mao et al., 2005). Our results reveal

that pho1’s stomata are functional in these pathways and can fully open and close

in response to light cues. Moreover, the stomata of pho1 presented a WT response

following treatments with the phytohormone auxin and the fungal toxin fusicoccin

(figure 4.5b), which are known inducers of stomatal opening that act through the ac-

tivation of the H+-ATPases (Kinoshita and Shimazaki, 2001; Acharya and Assmann,

2009). These results further suggested that PHO1 is not involved in the activation of
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H+-ATPases pumps and inward-rectifying K+ channels, and more generally, that the

pho1 mutation does not affect all stomatal movements responses.

An early component of ABA signaling in guard cells is the ABA-stimulated produc-

tion of reactive oxygen species (ROS) by the NADPH oxidases AtrbohD and AtrbohF

(Kwak et al., 2003). AtrbohF activity is believed to be regulated by OST1 (Sirichandra

et al., 2009a), upon relief of inhibition of this kinase by PP2C phosphatases, which

are themselves suppressed upon ABA perception (Ma et al., 2009; Park et al., 2009).

Using a reactive oxygen species (ROS)-sensitive fluorescent dye, we showed that pho1

stomata are able to perceive ABA and produce ROS in response (figure 4.4), suggest-

ing that the pho1 mutation does not affect the permeability of the cells to ABA, nor

does it interfere with ABA perception or with the subsequent early ABA signaling

events. In addition, we observed that the mutant stomata do not close under hydro-

gen peroxide treatment (figure 4.4c), further suggesting that the mutation is likely to

affect a signaling step downstream of ABA perception and ROS production.

We then investigated the response of pho1 to changes in CO2 concentration. CO2 can

induce stomatal opening or closing depending on its concentration: low CO2 induces

stomatal opening, while elevated CO2 induces stomata to close. The mutants pho1.2

and pho1.4 presented a lower aperture in response to reduced-CO2 in the media, sug-

gesting that pho1 stomatal response to changes in CO2 concentration is perturbed as

well (figure 4.7).

Interestingly, pho1 stomata presented a wild-type closure response under high extra-

cellular Ca2+ loads, suggesting that this treatment is able to trigger the appropriate

signal transduction mechanisms necessary for stomatal closure. It is known that ex-

ternal application of high calcium concentration (1 to 10 mM) triggers stomatal clos-

ing via the induction of [Ca2+ ]cyt oscillations (Allen et al., 2000). There are in fact
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many [Ca2+ ]cyt-dependent mechanisms, and reports suggest a current model where

[Ca2+]cyt functions as a ‘hub’ within the guard-cell signaling network (Hetherington

and Woodward, 2003). For example, ABA (Allen et al., 2000; Siegel et al., 2009), ROS

(McAinsh et al., 1996; Pei et al., 2000), elevated- and reduced-CO2 (Young et al., 2006)

are all known to induce stomatal movements through the modulation of repetitive

[Ca2+ ]cyt transient patterns, responsible for a large part of the stomatal response

(Siegel et al., 2009; Hubbard et al., 2012). Calcium signals participate for example in

stomatal closure via activation of S-type anion channels (Mori et al., 2006; Vahisalu

et al., 2008; Siegel et al., 2009), activation of R-type anion channels (Meyer et al.,

2010), down-regulation of plasma membrane proton pumps (Kinoshita et al., 1995),

and down-regulation of K+ influx channels (Siegel et al., 2009). Oscillations in [Ca2+

]cyt result from the interaction of three processes: extracellular calcium influx, in-

tracellular calcium release, and sequestration into intracellular stores or across the

plasma membrane (Allen et al., 2000). How the pho1 mutation could affect such cal-

cium relocation during ABA, ROS and CO2 signaling is unknown. The monitoring

of [Ca2+ ]cyt transient patterns in pho1 vs wild-type, in response to ABA, ROS, CO2

and high extracellular Ca2+, could provide further insight on the possible effect of

the mutation on [Ca2+ ]cyt oscillations, as well as on how high extracellular calcium

manages to trigger normal stomatal closure response in pho1. Further characteriza-

tion of pho1 stomatal response to calcium-related stimuli, such as artificially imposed

calcium transients or lower concentrations of extracellular calcium, could also help

understanding which aspects of calcium signaling are affected or not by the pho1 mu-

tation.

Together, the results of this chapter characterize stomatal phenotypes in the mutant

pho1, which displays impairment in ABA-, ROS- and CO2 -induced stomatal move-
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ments. This suggests that PHO1 is likely involved in a signaling step common to both

ABA and CO2 signaling, and downstream of ROS production. ABA and CO2 signaling

share indeed common components, with a convergence point occurring early between

the two signaling pathways (Xue et al., 2011). Beside the Ca2+ elevations mentioned

above, ABA, ROS and elevated CO2 promote stomatal closure by activating anion

channels that drive a release of anions and organic acids to the outside of the cells,

leading to membrane depolarization and stimulation of K+ outward-rectifying chan-

nels (Sirichandra et al., 2009b; Negi et al., 2008; Kim et al., 2010). In parallel, these

signals inhibit H+-ATPase pumps and K+ inward- rectifying channels (Zhang et al.,

2001, 2004), thus preventing stomatal opening. Further investigation, for example

using electrophysiology measurements during guard cell response, could help char-

acterize the signaling events compromised by the pho1 mutation. How PHO1 might

play a role in these signaling events will be discussed further in Chapter 6 - Conclu-

sion and perspectives.
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Experimental procedures

Plant material Arabidopsis thaliana wild type and mutants plants are all from the

Columbia ecotype (wild type Col). The mutants pho1.1, pho1.2, pho1.3 and pho1.4

have previously been described by Poirier et al. (1991), Delhaize and Randall (1995)

and Hamburger et al. (2002). The mutant phot1;phot2 mutant line was kindly sup-

plied by Dr. K. Shimazaki (Kyushu University, Japan).

Micro-grafting experiments Plant grafting using collars was performed as per the

protocol previously described by Turnbull et al. (2002). Seedlings were grown for 5

days at 27°C under 8h light/16h dark cycles on 1/2 Murashige Skoog medium pH

5.6 with Gamborg vitamins (Duchefa) containing 1% w/v Sucrose (Acros organics)

and 0.8% w/v Agar (Applichem). Root to shoot grafting was performed using sterile

silicone tubing 0.3 mm in diameter. Following grafting, plants were incubated at 27°C

for a further 4 to 6 days. Grafts unions were examined for the absence of adventitious

roots, and successful grafts were transferred to soil for 4-5 weeks under short-day

regiment (18°C, 10 h light/ 14 h dark). Prior to phenotype analyses, graft unions were

re-examined to ensure that no adventitious roots had grown from the shoot scion.

Stomatal aperture bioassays Seed was sown directly onto potting compost con-

tained in 7cm diameter pots and vernalized for 2 days at 4°C. Plants were grown for

4 to 6 weeks under short-day growth conditions (18°C, 60% relative humidity, 10 h

light/ 14 h dark, 100 µEm-2s-1). The youngest fully expanded leaves from 4-6 weeks

old plants were excised in darkness one hour before the beginning of the light cycle,

and epidermal peels were prepared immediately as follows: the abaxial epidermis of

the leaf was fixed to a microscope slide using liquid medical adhesive B (VM 355-1, Ul-
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rich Swiss), and the resulting epidermal peels were floated in petri dishes containing

50 mL of incubation buffer (KCl 30 mM MES-KOH 10 mM pH 6.5) for 30 min in dark-

ness before being subjected to light (100 µEm-2s-1, 25°C) and chemical treatments.

For stomatal closure experiments, the epidermal peels were exposed to light for two

hours prior to any further treatments in order to trigger stomatal opening. Either

ABA, CaCl2 or H2O2 was then added to the incubation buffer up to the indicated

concentrations. Abscisic acid stock was prepared in ethanol.

Analysis of stomatal opening under blue light was conducted as follows: epidermal

strips were prepared before the beginning of the light cycle, floated in incubation

buffer and kept in darkness for two hours to promote stomatal closure. Strong red

light (50 µEm-2s-1) was applied for one hour using a red Plexiglas filter (GS Rot 501,

Röhm schweiz GmbH). Initial stomatal apertures were recorded before blue light (10

µEm-2s-1), from a second light source with a blue Plexiglas filter (GS Blau 612, Röhm

schweiz GmbH), was superimposed onto the red light. Blue/red light treatment was

continued for two hours after which final stomatal apertures were measured.

For the measurement of stomatal apertures in the dark and under IAA or fusicoccin

treatments, epidermal peels were prepared as above. After initial stomatal apertures

were recorded, epidermal strips were floated in darkness for an additional three hours

in incubation buffer containing 1 mM Indole-3-acetic acid or 1µM fusicoccin (Sigma)

before final stomatal apertures were measured. IAA stock solution (100 mM) was

prepared in water and fusicoccin stock solution (1 mM) was prepared in ethanol.

Analysis of stomatal opening in CO2-free conditions was conducted as follow: epider-

mal peels were floated in darkness in incubation buffer for two hours to ensure that

stomata were fully closed. After initial stomatal apertures were recorded, the epi-

dermal peels were incubated for two more hours in incubation buffer satured with
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CO2-free air (Synthetic mixture of 80% N2 20% O2, Carbagas) or in the control buffer

saturated with atmospheric air before final stomatal apertures were measured.

All stomatal apertures were observed under an optical microscope before digital im-

ages were taken and subsequently used to measure aperture width in IMAGEJ (Na-

tional Institutes of Health). Approximately 40 stomatal apertures were measured for

each independent experiment, time point, treatment and genotype. The significance

of aperture fold change differences (stomatal aperture at t = 2 h/ stomatal aperture

at t = 0) between genotypes was assessed by non-coupled one-tailed Student’s t-test

analysis. Values of P<0.05 were considered statistically significant.

Detection of ROS production in guard cells ROS production in response to ABA

treatments in guard cells was observed using 2,7- ddichlorofluorescein diacetate (DCFDA,

Sigma) according to Zhang et al. (2009). Epidermal peels were prepared, floated in in-

cubation buffer (KCl 30 mM MES-KOH 10 mM pH 6.5) and exposed to light for 2 h

to induce stomatal opening. Epidermal peels were then placed in incubation buffer

containing 50 µM DCFDA for 10 min, followed by 5min of washes. Digital images

were taken (-ABA) before epidermal peels were exposed to ABA 50 µM for 3 min and

digital images taken again (+ABA). Observation of fluorescence was performed at an

excitation at 430-510 nm and emission at 475-575nm. Fluorescence intensity was

quantified as mean pixel intensity using IMAGEJ.
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Introduction

In the precedent chapters (Chapter 3- Expression analysis of AtPHO1 in guard cells

and in response to ABA, and Chapter 4 - Stomatal movement analysis of the mutant

pho1) we provided evidence that beside the known expression and role of PHO1 in the

root vascular cylinder (Poirier et al., 1991; Hamburger et al., 2002), PHO1 is also ex-

pressed in leaf guard cells, and the mutant pho1 is strongly impaired in ABA-induced

stomatal movements. However, as mentioned before, PHO1 is primarily responsible

for the appropriate transfer of phosphate from roots to shoots. As a result, the pho1

mutation drastically affects shoot Pi levels, triggering acute phosphate deficiency

symptoms that potentially have numerous pleiotropic effect in the leaves. Phosphate

starvation in plants initiates a myriad of transcriptional, biochemical, and physio-

logical responses, and is known in particular to induce a rapid change in shoot car-

bohydrate metabolism (Hammond and White, 2008), which in turn could potentially

affect stomatal movements. The use of micro-grafting techniques, i.e. the creation

of Pi-repleted pho1 by grafting a pho1 shoot scion to a WT root stock, is an elegant

approach to circumvent the potential effects of phosphate deficiency in pho1 shoots

(Stefanovic et al., 2007; and page 70 of this manuscript). However, micro-grafting is a

very fastidious technique requiring high precision, with a relatively low success rate

that doesn’t allow the production of a large number of plants. For example, the use

of micro-grafted plants is not convenient to generate the amount of plants required

for guard cell protoplasts purification for transcriptional analysis. It is also likely that

the wounds induced by micro-grafting seedlings trigger a variety of stresses that could

further along influence the overall stomatal response of the fully-grown micro-grafted

plants. Finally, PHO1 is also expressed at low levels in the mesophyll cells and the

leaf vasculature, and it is therefore difficult in a whole pho1 shoot to differentiate the
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effect of the mutation in the guard cells from the one in other tissues.

A different approach is to use available methods for targeted gene expression in guard

cells. Manipulating gene function specifically in guard cells offers advantages over

manipulation at the whole plant level, for example by allowing to study the effect of

gene knockdown in stomata without affecting gene function in the rest of the plant.

In Arabidopsis, the KAT1 promoter was widely used for driving guard cell specific

gene expression, but expression was not sufficiently strong for high-level expression

or repression, and in some cases expression was also seen in root vascular tissues and

inflorescences. Using microarray analyses presenting ABA-induced and repressed

genes in guard-cell and mesophyll-cell protoplasts, Yang et al. (2008) identified a pro-

moter, pGC1 (At1g22690), that drives strong and specific reporter gene expression in

guard cells, with a relatively constant expression under most abiotic stresses. They

demonstrated that pGC1 can effectively be used for strong guard cell anti-sense gene

repression, making it a powerful tool for manipulating gene function specifically in

guard cells.

It was therefore of interest to investigate the effect of targeted guard cell PHO1 ex-

pression using two complementary approaches, the anti-sense repression of PHO1 in

guard cells, and the targeted expression of PHO1 in pho1 guard cells. Guard cell spe-

cific knock-down of PHO1 allows to investigate the role of PHO1 in guard cell signal

transduction, independently of plant phosphate deficiency. Conversely, the guard cell-

specific complementation of pho1 permits to investigate whether the stomatal pheno-

type of pho1 can be rescued by the sole expression of PHO1 in a phosphate-deficient

background.

In this chapter, using the strong guard cell promoter pGC1, we investigate the effect

of guard cell-specific down-regulation of PHO1, and of the guard cell-specific comple-
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mentation of pho1, on the stomatal response to ABA. We show that RNAi-mediated

repression of PHO1 in guard cells reduces the stomatal movement response to ABA,

during both induction of stomatal closure and repression of stomatal opening, without

altering the transcriptional response of known ABA-responsive genes. Conversely,

driving guard cell-specific expression of PHO1 in the pho1 mutant background par-

tially restored stomatal movement responsiveness to ABA, although full complemen-

tation was co-dependent on shoot phosphate sufficiency. Finally, we show that modu-

lation of PHO1 expression in guard cells affects guard cells Pi content. Therefore, we

conclude that both PHO1 and phosphate sufficiency are required for normal stomatal

movements in response to ABA, and that PHO1 likely acts through the regulation of

guard cell phosphate homeostasis.
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Results

Down-regulation of PHO1 in guard cells reduces stomatal movement

responsiveness to ABA

In order to assess the importance of PHO1 expression specifically in guard cells,

we generated transgenic A. thaliana lines with guard-cell-specific PHO1 expression

knockdown mediated by RNAi. The strong guard-cell-specific promoter pGC1, de-

scribed by Yang et al. (2008), was used to express inverted repeats of a PHO1 gene-

specific tag (PHO1 gst) (figure 5.1a) in Columbia plants. We isolated two independent

transgenic lines, referred to as pGC1::PHO1RNAi #6-6 and #10-3, with correspond-

ing non-transgenic segregates (NTS) as controls. On the whole-plant level, there was

no obvious morphological difference between pGC1::PHO1RNAi #6-6 and #10-3 and

their respective NTS, WT #6-6 and #10-3 (figure 5.1b).

In order to assess the effect of the RNAi construct, we performed qRT-PCR mea-

surements on guard cells and mesophyll cell protoplasts of the pGC1::PHO1RNAi

#6-6 and #10-3 and their respective NTS lines. Quantification of PHO1 transcripts

revealed that guard-cell-specific PHO1 expression was reduced in lines expressing

pGC1::PHO1RNAi compared to the NTS lines, with a 70% and 78% reduction in PHO1

transcript level observed for #6-6 and #10-3, respectively (figure 5.2a). Differential

expression of the mesophyll cell marker gene AT4G26530 and the guard cell marker

gene MYB60 attested the purity of the guard cell and mesophyll cell protoplast prepa-

rations. In addition, we assessed the specificity of the RNA interference by measuring

the transcript levels of the Arabidopsis PHO1 homologues expressed in guard cells

(figure 5.2b): the presence of the pGC1::PHO1RNAi construct did not affect the ex-

pression levels of PHO1;H1, PHO1;H2, PHO1;H3, PHO1;H5 and PHO1;H10 in guard
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pGC1::PHO1RNAi

KAN

intron

PHO1 gst
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(a)
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#6-6
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pGC1::PHO1RNAi

(b)

Figure 5.1: Transgenic Arabidopsis lines expressing the guard-cell specific
PHO1 RNAi construction pGC1::PHO1RNAi. (a) T-DNA region con-
taining expression construct pGC1::PHO1RNAi consisting of a spacer re-
gion flanked by PHO1’s gene sequence tag (GST) sense and antisense
sequences. Expression is driven by the guard cell-specific promoter
pGC1. LB: left border, RB: right border, KAN: plant resistance gene
to kanamycin. (b) Representative growth of two independent 6-week-
old transgenic lines with PHO1 expression knocked down in guard cells
through RNAi (pGC1::PHO1RNAi #6-6 and #10-3) and their correspond-
ing NTS (WT Col #6-6 and #10-3).
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cells protoplasts. Together, these results show that the RNAi construction effectively

and specifically down-regulate PHO1 in guard cells.

Following confirmation of guard-cell-specific PHO1 expression knockdown, pGC1::PHO1RNAi

#6-6 and #10-3 were assessed for their stomatal responsiveness to ABA. ABA-induced

repression of stomatal opening was seen affected by pGC1::PHO1RNAi expression.

In darkness, pGC1::PHO1RNAi #6-6 and #10-3 and WT #6-6 and #10-3 possessed a

similar average stomatal aperture (figure 5.3a, t0). However, following a 2-h light

exposure in the presence of 10 µM ABA, repression of stomatal opening seen in WT

#6-6 and #10-3 was not observed to the same extent in pGC1::PHO1RNAi #6-6 and

#10-3 transgenic lines. Instead, pGC1::PHO1RNAi #6-6 and #10-3 consistently dis-

played wider stomatal apertures than their respective NTS (figure 5.3a, t = 2 h). ABA-

induced stomatal closure was also compromised in pGC1::PHO1RNAi #6-6 and #10-3.

Whilst average stomatal aperture was comparable between RNAi and WT lines in the

dark prior to treatment (figure 5.3b, t0), after 2 h light exposure in the presence of

10 µM ABA, average aperture width was higher in pGC1::PHO1RNAi #6-6 and #10-3

compared to their respective NTS lines #6-6 and #10-3 (figure 5.3b, t = 2 h). Combined

together, these results suggest that down-regulation of PHO1 expression specifically

in guard cells alters the ABA-mediated stomatal movement response.

Expression profiling of ABA-induced marker genes shows normal transcriptional

response to ABA when PHO1 is downregulated in guard cells

We investigated the effect of PHO1 expression in guard cells on the transcriptional

response of some ABA-responsive genes. Since phosphate deficiency in the mutant

pho1 induces major transcriptional changes, we chose to compare the transcript level

responses to ABA in the phosphate-sufficient transgenic lines pGC1::PHO1RNAi #6-
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Figure 5.2: Expression of PHO1 is effectively reduced in the guard cells of
the pGC1::PHO1RNAi transgenic lines, without affecting expres-
sion of other PHO1 homologues. (a) Variation in PHO1 transcript
level between guard cell and mesophyll cell preparations of transgenic
lines pGC1::PHO1RNAi #6-6 and #10-3 and their corresponding NTS (WT
#6-6 and #10-3, respectively), normalized against expression levels of the
reference gene AT1G13320. Transcripts of the mesophyll cell marker
AT4G26530, and the guard cell marker MYB60 were also quantified as
controls. n = 3 biological replicates; average ± SE. (b) Transcript levels
of PHO1;H1, PHO1;H2, PHO1;H3, PHO1;H5 and PHO1;H10 in guard cell
protoplasts of transgenic lines pGC1::PHO1RNAi #6-6 and #10-3 and their
corresponding NTS (WT #6-6 and #10-3), normalized against expression
levels of the reference gene AT1G13320. n = 3 biological replicates; aver-
age ± SE.
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Figure 5.3: Guard cell-specific expression knockdown of PHO1 through RNAi
reduces stomatal response to ABA. (a) ABA repression of stomatal
opening, as represented by and (b) induction of stomatal closure, in WT
and the guard cells RNAi lines pGC1::PHO1RNAi, following treatment
with 10 μM ABA, after 0 and 2 h. n = 3 independent experiments; av-
erage ± SE. Asterisks above the columns indicate stomatal aperture fold
changes that are statistically different from the corresponding NTS (WT)
control values (P < 0.05).
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6 and #10-3 and their corresponding NTS. One hour after the beginning of the light

cycle, 6-week-old plants were sprayed with 50 μM ABA or control buffer and incu-

bated under light for 4 h. RNA was then extracted from enriched guard cells prepa-

rations. We measured the following ABA-marker genes by qRT-PCR: ABI1, ABI2,

ABAR, HAI1, RD20, KIN2, LTP4, LEA6 (ABA-induction markers) and MYB60 (ABA-

repression marker). Overall, the expression levels changes induced by the ABA treat-

ment were similar between the pGC1::PHO1RNAi lines when compared to their re-

spective NTS (figure 5.4).

Guard-cell-specific complementation of pho1.2 restores ABA-induced repression

of stomatal opening, but long term phosphate sufficiency is required for stomatal

closure

In parallel to guard-cell-specific PHO1 expression knockdown, we assessed whether

a WT stomatal phenotype was possible in pho1.2 through guard-cell-specific com-

plementation. For this, pho1.2 was transformed with the full-length genomic se-

quence of PHO1 (PHO1g) with expression governed by the guard-cell-specific pro-

moter pGC1 (figure 5.5a). Two independent transgenic lines were isolated, referred to

as pGC1::PHO1g #10-1 and #12-1, along with their respective NTS as controls. Sim-

ilar to what was seen with guard-cell-specific PHO1 expression knockdown, at the

whole-plant level, pGC1::PHO1g #10-1 and #12-1 displayed a comparable morphology

to their NTS counterparts, pho1.2 #10-1 and #12-1 (figure 5.5b).

qRT-PCR was used to verify PHO1g expression in guard cell preparations of pGC1::PHO1g

#10-1 and #12-1 (figure 5.6). Almost no PHO1g transcript was detected in mesophyll

cell preparations of the same transgenic lines, indicating guard-cell-specific PHO1

complementation. Again, differential expression of marker genes AT4G26530 and
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Figure 5.4: PHO1 down-expression in guard cells does not affect the tran-
scriptional response of marker genes to ABA. Transcript levels of
known ABA-responsive marker genes (ABI1, ABI2, ABAR, HAI1, RD20,
KIN2, LTP4, LEA6) in enriched guard cells preparations of the transgenic
lines pGC1::PHO1RNAi #6-6 and #10-3 and their corresponding NTS (WT
#6-6 and #10-3), following a 4-h treatment with or without 50 μM ABA,
normalized against the mean expression levels of the reference genes
Actin 2 and 8. n = 4 biological replicates; average ± SE.
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pGC1::PHO1g
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Figure 5.5: Transgenic pho1.2 lines expressing the guard-cell specific com-
plementation construction pGC1::PHO1g. (a) T-DNA region con-
taining expression construct, pGC1::PHO1g, consisting of PHO1 ge-
nomic sequence (PHO1g) under the control of the guard cell promoter
pGC1. LB: left border, RB: right border, HYG: plant resistance gene
to hygromycin. (b) Representative growth of two independent 6-week-
old pho1.2 transgenic lines with PHO1 complementation in guard cells
(pho1.2 pGC1::PHO1g #10-1 and #12-1) and their corresponding NTS
(pho1.2 #10-1 and #12-1).
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MYB60 attested the purity of the guard cell and mesophyll cell protoplast prepara-

tions.

We determined the stomatal responsiveness to ABA in the pGC1::PHO1g lines com-

pared to their NTS controls with stomatal aperture assays as described above. ABA-

induced repression of stomatal opening was markedly improved in guard cell-complemented

pGC1::PHO1g #10-1 and #12-1 lines (figure 5.7a). Similar to the earlier observations

in pho1.2 (see Chapter 4 - Stomatal movement analysis of the mutant pho1), wider

stomatal apertures were apparent in pho1.2 NTS controls following a 2-h light ex-

posure in the presence 10 µM ABA (figure 5.7a, t = 2 h). However, under the same

conditions, stomatal apertures in the pGC1::PHO1g lines were narrower (figure 5.7a,

t = 2 h), indicating that the stomata were more responsive to ABA-repression of stom-

atal opening in these lines.

Surprisingly, ABA-induced stomatal closure was not restored following guard cell-

specific PHO1 complementation. Stomatal aperture width was maintained in the

complemented pGC1::PHO1g lines and their corresponding pho1.2 NTS following 2-h

light treatment in the presence of 10 µM ABA (figure 5.7b, t = 2 h), indicating that

stomata failed to close in response to ABA treatment in all lines. It is thus apparent

that guard cell-specific PHO1 complementation is sufficient to restore ABA-induced

repression of stomatal opening, but is not sufficient to restore ABA-induced stomatal

closure.

We postulated then that the inability of guard cell-specific PHO1 complementation

to restore ABA-induced stomatal closure was due to phosphate unavailability to the

guard cells or to the pleiotropic consequences of shoot phosphate deficiency. To as-

sess this, phosphate was provided first through incubation of the epidermal peels

in potassium phosphate buffer (30 mM KH2PO4, 10 mM MES, pH 6.5) instead of
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tified as controls. n = 3 biological replicates; average ± SE.
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Figure 5.7: Guard cell-specific complementation of pho1.2 partially restores
stomata responsiveness to ABA (a) ABA repression of stomatal open-
ing and (b) induction of stomatal closure, in the guard cell-complemented
lines pho1.2 pGC1::PHO1g #10-1 and #12-1, and their corresponding NTS
(pho1.2 #10-1 and #12-1), in response to 10 μM ABA, after 0 and 2 h. n > 3
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Figure 5.8: Supplying phosphate to the epidermal peels is not sufficient to re-
store stomatal closure response to ABA in the guard cell comple-
mented lines. Induction of stomatal closure under light in WT, the pho1.2
guard cell-complemented lines pho1.2 pGC1::PHO1g #10-1 and #12-1, and
their corresponding NTS (pho1.2 #10-1 and #12-1), after 0 and 2 h of treat-
ment with 10 μM ABA in potassium phosphate buffer composed of 30 mM
KH2PO4, 10 mM MES, pH 6.5. n = 3 independent experiments; average
± SE. Stomatal aperture fold changes in the pho1.2 pGC1::PHO1g lines
was not statistically different from the corresponding NTS (pho1.2) con-
trol values (P >0.05).

potassium chloride. After a 2-h incubation under light, 10 µM ABA was added to

the buffer. While stomata of WT plants responded to the ABA treatment, the use of

potassium phosphate did not improve the stomatal closure response of both the guard

cell-specific PHO1-complemented pho1.2 and their respective NTS (figure 5.8).

To alleviate effects of long-term shoot Pi deficiency, shoot phosphate sufficiency was

then restored in each transgenic line by creating chimeric plants composed of a pGC1::PHO1g

pho1.2 scion micro-grafted onto WT rootstock (pGC1::PHO1g #10-1 and #12-1/WT).

Chimeric plants composed of NTS scion micro-grafted onto WT rootstock (pho1.2 #10-

1 and #12-1/WT) were generated for comparison. Self-grafted plants composed of WT

scion and WT rootstock (WT/WT) were used again as a control. Following a 2-h incu-
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Figure 5.9: Complete responsiveness of guard cell complemented pho1.2 is co-
dependent on shoot Pi sufficiency during plant development. In-
duction of stomatal closure under light following treatment with 10 μM
ABA, after 0 and 2 h, on phosphate sufficient micro-grafts composed of
either WT, pho1.2 NTS, or pho1.2 pGC1::PHO1g scion micro-grafted onto
WT rootstock (WT/WT, pho1.2/WT and pho1.2 pGC1::PHO1g/WT, respec-
tively). n = 5 independent experiments; average ± SE. Asterisks above
the columns indicate stomatal aperture fold changes that are statistically
different from the corresponding NTS (pho1.2) control values (P < 0.05).

bation with 10 µM ABA, stomatal closure was assessed in all micro-grafted plants (fig-

ure 5.9). In the pho1.2 NTS controls, stomata in pho1.2 NTS/WT micro-grafts failed

to close in response to ABA treatment. However, in contrast to what was observed

for pGC1::PHO1g lines, stomata in pGC1::PHO1g/WT micro-grafts were responsive

to ABA treatment and a reduction in stomatal aperture width was seen. This indi-

cates that a restoration of ABA-induced stomatal closure in pho1 is dependent on both

guard cell-specific PHO1 expression and shoot phosphate sufficiency during plant de-

velopment.
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PHO1 expression in guard cells influences Pi accumulation in guard cells

Induction of PHO1 in leaf mesophyll protoplasts is known to trigger Pi efflux from

cells (Arpat et al., 2012). We were therefore interested in investigating how PHO1 ex-

pression in guard cells can alter their Pi content. Purified guard cells were prepared

using epidermis isolated through leaf tissue blending, which was subsequently par-

tially digested using a dialyzed cellulase. We isolated purified guard cell preparations

from the guard cell-complemented transgenic lines pho1.2 pGC1::PHO1g #10-1 and

#12-1, and their corresponding NTS lines, and in parallel from the pGC1::PHO1RNAi

#6-6 and #10-3 transgenic RNAi lines and their corresponding NTS lines. Plants were

kept in the dark to keep stomata closed before and during sampling.

Overall, guard cell Pi content was found to be lower in the pho1.2 lines than in the

Columbia lines (figure 5.10). Interestingly, one of the guard cell-complemented trans-

genic line (pho1.2 pGC1::PHO1g #10-1) displayed a significant lower Pi content than

its NTS counterparts. Conversely, both pGC1::PHO1RNAi lines presented significant

higher guard cell Pi contents than their respective WT NTS. Together, these results

show that PHO1 expression in guard cells has an effect on guard cell Pi homeostasis.
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Figure 5.10: PHO1 expression influence Pi accumulation in guard cells. Pi
content in µmoles per grams of dry weight (DW) of purified guard cells
preparations, in the guard cell-complemented transgenic lines pho1.2
pGC1::PHO1g #10-1 and #12-1, and their corresponding NTS (-) #10-1
and #12-1, and in the pGC1::PHO1RNAi #6-6 and #10-3 transgenic lines
and their corresponding NTS (-) #6-6 and #10-3. n=3 biological replicates;
average ± SE. Asterisks above the columns indicate a value statistically
different from the corresponding NTS control value (P < 0.10).
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Discussion

In this chapter, we used a guard-cell-targeted gene expression approach to investigate

the importance of the specific expression of PHO1 in guard cells on the mediation of

the stomatal response to ABA. We used two complementary approaches: the repres-

sion of PHO1 in guard cells using RNAi, and the targeted expression of PHO1 in pho1

guard cells.

The expression of an RNAi construct consisting of inverted repeats of a PHO1 gene-

specific tag under the control of pGC1 allowed a strong reduction of PHO1 transcripts

levels in Columbia guard cells, without affecting the levels of other PHO1 homologues

(figure 5.1 and 5.2). Down-regulation of PHO1 in stomata did not trigger any morpho-

logical or developmental changes, but correlated with a dampening of the stomatal

movements response to ABA, during both the induction of stomatal closure and the

repression of stomatal opening under light (figure 5.3). This result confirms that the

specific expression of PHO1 in stomata directly plays a role in guard cell ABA signal-

ing.

Part of ABA signaling is modulated by transcriptional and post-transcriptional con-

trol. Although it is generally assumed that gene expression modulation is a late event

in the signal transduction cascade, it is likely that over the period of plant growth,

RNA metabolism and membrane transport regulations become tightly integrated to

regulate the guard cell movement response (Sirichandra et al., 2009a). Several ex-

amples of mutations affecting transcription factors activity or mRNA processing have

been shown to directly alter the guard cell response to ABA (Nilson and Assmann,

2007). It was therefore of interest to decipher whether the compromised stomatal

response of the guard cells PHO1RNAi lines was linked to an alteration of the tran-
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scriptional response to ABA. Interestingly, transcript levels measurements of a few

ABA-markers showed that expression levels changes induced by ABA were similar

between the pGC1::PHO1RNAi lines and their respective wild type (figure 5.4). This

finding suggests that PHO1 down-regulation in guard cells does not affect the global

transcriptional response of ABA-induced and -repressed marker genes and that PHO1

presumably does not act through the regulation of the ABA-activated transcriptional

response. It also further confirms that PHO1 is not involved in ABA perception and

early signaling events, but is involved downstream in the signaling cascade.

We then investigated the effect of targeted PHO1 expression in the guard cells of the

mutant pho1, in order to test whether pho1 stomatal phenotype could be rescued by

the sole expression of PHO1 in guard cells while maintaining a phosphate-deficient

background. The pGC1 promoter was originally isolated upstream of one the most

highly expressed genes in guard cells (Yang et al., 2008). As a consequence, driving

PHO1 expression under the control of pGC1 resulted in a strong guard cell specific

over-expression, with PHO1 transcript levels more than 20 times more abundant than

wild type levels (figure 5.6 compared to PHO1 levels in figure 3.4 on page 44). The

guard cell-complemented transgenic lines pho1.2 pGC1::PHO1g presented an clear

improvement of the ABA response during repression of stomatal opening under light

(figure 5.7a). But surprisingly, the induction of stomatal closure by ABA was still in-

hibited in these lines (figure 5.7b). Incubation of the epidermal peels in phosphate

buffer was not sufficient to restore the induction of stomatal closure, suggesting that

the inhibition is not simply due to the lack of available phosphate anions (figure 5.8).

However, using micro-grafting to restore Pi sufficiency in leaves of these lines enabled

the ABA induction of stomatal closure, indicating that the phosphate starvation re-

sponse inhibited this stomatal response (figure 5.9). Therefore, while ABA inhibition
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of stomatal opening is dependent on guard cell PHO1 expression and independent

of the leaf Pi status, ABA induction of stomata closure is dependent on both leaf

phosphate sufficiency and guard cell expression of PHO1. It is understood that the

phosphate starvation response induces profound changes in plants, in particular a

rapid modification of shoot carbohydrate metabolism. Low Pi availability triggers re-

stricted carbon assimilation and accumulation of sugars in the leaves; genes involved

in starch biosynthesis and degradation as well as in carbohydrate transport, show

altered patterns of expression (Hammond and White, 2008). In the pho1 guard cell

complemented lines, it is likely that phosphate deprivation alters the carbohydrate

metabolism during light-induced stomatal opening, triggering an accumulation of os-

motically active sugars that could potentially counteract stomatal closure following

ABA application. In contrast, at the end of the night, closed stomata assumably do not

present this accumulation of sugars, a difference that could account for the normal in-

hibition of stomatal opening by ABA as observed in the pho1 guard cell complemented

lines.

As a note, while expression of pGC1::PHO1g in pho1.2 stomata resulted in a large

PHO1 over-expression in guard cells, stomatal responsiveness to ABA was restored

but did not be appear to be particularly exacerbated in comparison to the wild-type

response (figure 5.7a and 5.9). While we did not measure PHO1 protein levels in

the guard cells of pho1.2 pGC1::PHO1g lines, recent reports suggest that in some

conditions, PHO1 over-expression can trigger higher PHO1 protein level without an

increase in Pi export activity (Stefanovic et al., 2011; Liu et al., 2012). Both these

studies reported that PHO1 over-expression in wild-type roots results in higher level

of PHO1, but triggers only a moderate increase of Pi translocation to the shoots, which

suggests the presence in roots of posttranslational control of PHO1 activity. Indeed,
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Liu et al. (2012) found that PHO1 protein levels are regulated at the post-translational

level by PHO2, a ubiquitin-conjugating E2 enzyme, and they mentioned the possible

presence of additional factors, regulated by PHO2, that could modulate the activity

of PHO1. In guard cell, PHO2 appears to be expressed at high levels in guard cells

compared to mesophyll cells (267456_at, according to microarrays data from Yang

et al., 2008), which suggests that such posttranslational control of PHO1 activity by

PHO2 could theoretically take place in stomata.

Stomatal opening and closing are driven by ion fluxes, which are responsible for

changes in guard cell turgor and volume. Therefore guard cells accumulate ions, and

mutants affected in ion transport can display changes in guard cell ion composition.

As examples, it was shown that mutation in SLAC1 (SLOW ANION CHANNEL- AS-

SOCIATED 1) was accompanied by an over-accumulation of organic/inorganic anions

in guard cell protoplasts (Negi et al., 2008), and that chl1 mutants showed reduced

nitrate accumulation in guard cells during stomatal opening (Guo et al., 2003). Recent

reports point for a role of PHO1 in Pi efflux from cells (Stefanovic et al., 2011; Arpat

et al., 2012). It was therefore of interest to investigate the potential influence of PHO1

on guard cell inorganic phosphate accumulation. Initial attempts to quantify Pi con-

centration in guard cell protoplasts were unsuccessful because protoplasting enzyme

cocktails provided large amounts of phosphate contamination, and therefore required

extensive dialysis that greatly affected their effectiveness. We thus performed epider-

mis purification following the “blender method”, which yields relatively pure enriched

guard cell preparations (Geiger et al., 2011), combined with a partial digestion to re-

move the remaining epidermal and mesophyll cells, using a dialyzed cellulase. This

method allowed isolation of sufficient amounts of enriched guard cell material for

phosphate content assays. The pho1 lines presented overall lower guard cell Pi con-
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tent than the WT lines, presumably due to pho1 intrinsic shoot phosphate deficiency

that does not provide sufficient amount of phosphate for proper accumulation in leaf

cell vacuoles (Rouached et al., 2011). Interestingly, down-regulation of PHO1 in the

RNAi lines correlated with a slightly higher accumulation of Pi in guard cells, while

complementation of pho1 was associated with a slight reduction in guard cell Pi con-

tent (figure 5.10). These results suggest that PHO1 regulates guard cell homeostasis

on some level, and are consistent with a potential role for PHO1 in mediating Pi efflux

in guard cells.

Building on the results of this chapter, we conclude that the specific expression of

PHO1 in guard cells mediates of the stomatal movement response to ABA, in a signal-

ing event that does not affect the transcriptional response to ABA, but likely involves

modulation of phosphate homeostasis. Further investigations will be required to un-

derstand the mechanisms behind PHO1 regulation of guard cell phosphate homeosta-

sis, and how PHO1 and phosphate influence together the guard cell response to ABA.

This point will be further discussed in the next chapter (Chapter 6 - Conclusion and

perspectives).
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Experimental procedures

Plant material and growth conditions Arabidopsis thaliana wild type and mutants

plants were from the Columbia ecotype (wild type Col). The mutants pho1.2 has been

previously been described by Poirier et al. (1991), Delhaize and Randall (1995) and

Hamburger et al. (2002). Seed was sown directly onto potting compost contained in

7cm diameter pots and vernalized for 2 days at 4°C. Plants were grown for 4 to 6

weeks under short-day growth conditions (18 °C, 60 % relative humidity, 10 h light/

14 h dark, 100µEm-2s-1).

Guard-cell-specific PHO1 RNAi A 203 bp region localized in the 3’UTR of PHO1

(gene sequence tag GST CATMA3c57344, Sclep et al., 2007) was PCR amplified using

primers PHO1gst-F and PHO1gst-R (5’-agg gac tca gac ggt taa aca aag-3’ and 5’-gag

cgt tta aca gtt gta gaa tcca-3’). This fragment, flanked by attB sites, was inserted

between attP sites of the entry vector pDONR201 and subsequently cloned by GATE-

WAY LR recombination into pB7GWIWG2(II) RNAi binary destination vector (Karimi

et al., 2002). In parallel, the 1.2 kb guard cell promoter pGC1 of At1g22690 (Yang

et al., 2008) was PCR amplified using primers pGC1-F1 and pGC1-R1 (5’-CTCGAG

tag tga ttt tga agt agt gtg-3’ and 5’-GAGCTC GGGCCC GCGGCCGC atg gtt gca aca

gag agg atg aatt-3’, restriction sites in capitals). The CaMV 35S cassette was ex-

cised from vector pART7 (Gleave, 1992) with SacI/XhoI double digestion and replaced

with pGC1. The PHO1 GST sense/intron/antisense construct in pB7GWIWG2(II)

(PHO1RNAi) was PCR amplified with flanking XhoI sites and inserted into the XhoI

site of pART7, creating pART7-pGC1::PHO1RNAi. The final pGC1::PHO1RNAi::ocs3’

expression cassette was excised with Bsp120I and inserted into the NotI site of bi-

nary vector pGreenII-KAN (kanamycin selective marker in plants, Hellens et al.,
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2000). This binary vector was used to transform the Agrobacterium tumefaciens strain

(GV3101) already containing the helper plasmid pSOUP. The resulting A. tumefaciens

strain was used to transform A. thaliana (Columbia) by the floral dip method accord-

ing to Clough and Bent (1998). Transformants were selected on half-strength MS con-

taining 40 µg/mL kanamycin (Sigma) and 1% w/v sucrose, according to Harrison et al.

(2006). Independent T1 transformants were verified by PCR using primers specific to

pGC1::PHO1RNAi::ocs3’, and an appropriate 3:1 resistance to sensitivity segregation

ratio was confirmed in the T2 generation. A number of homozygous transgenic lines

were indentified in the T3 generation and, based on reduced PHO1 mRNA levels in

guard cell protoplasts as detected by real-time quantitative RT-PCR (qRT-PCR), two

were selected for future stomatal assays (pGC1::PHO1RNAi #6-6 and #10-3). Non-

transformed segregates (NTS), sharing the same T1 parental plant, were isolated

simultaneously for both transgenic lines (WT #6-6 and #10-3).

Guard-cell-specific complementation of pho1.2 The 1.2 kb guard cell promoter

pGC1 of At1g22690 (Yang et al., 2008) was PCR amplified using primers pGC1-F2 and

pGC1-R2 (5’-GGCGCGCC ttc ttga gta gtg att ttg aag tag tgtg-3’ and 5’-AAGCTT atg

gtt gca aca gag agg atg aatt-3’, restriction sites in capitals). The CaMV 35S cassette

within vector pMDC32 (Curtis and Grossniklaus, 2003) was excised with HindII/AscI

double digestion and replaced with pGC1. The full length PHO1 genomic sequence

(PHO1g, 5.4 kb) was PCR amplified using primers PHO1g-F and PHO1g-R (5’-atg

gtg aag ttc tcg aag gag ctag-3’ and 5’-acc gtc tga gtc cct gtc aag gaac-3’), flanked with

attB sites, inserted between attP sites of the entry vector pDONR201 and cloned by

GATEWAY LR recombination into binary vector pGC1-pMDC32. As described above,

this binary vector was introduced into the A. tumefaciens strain GV3101 which was
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then used to transform A. thaliana pho1.2 as per the floral dip method. Transfor-

mants were selected on half-strength MS medium containing 60 µg/mL hygromycin

(Sigma) and 1% w/v sucrose, according to Harrison et al. (2006). Again, independent

T1 transformants were verified by PCR and an appropriate 3:1 segregation ratio was

confirmed in the T2 generation. Homozygous transgenic lines pho1.2 pGC1::PHO1g

#10-1 and #12-1 and their NTS counterparts pho1.2 #10-1 and #12-1 were indentified

in the T3 generation. These transgenic lines were selected for future stomatal assays

based on PHO1g mRNA expression in guard cell protoplasts as verified by qRT-PCR

analysis.

Guard cell and mesophyll cell protoplast preparation Guard cell and mesophyll cell

protoplasts were isolated according to Pandey et al. (2002). For guard cell protoplasts,

mature leaves from 12-24 five-week-old plants (main vein discarded) were blended in

cold distilled water for 2 min using a small Waring blender on high speed. Processed

tissue was passed through a 100 µm nylon mesh to isolate epidermal fragments and

rinsed with water until clear. Epidermal fragments were then submerged in a di-

gestion mixture containing 0.7-1.4 % Cellulysin Cellulase Trichoderma viride (Cal-

biochem), 0.1 % PVP40 (Sigma), 0.25 % BSA (Sigma), 13.75 mL basic medium (104

g/L D-sorbitol (Sigma), 0.5 mM ascorbic acid (Sigma), 0.5 mM CaCl2, 0.5 mM MgCl2,

5 mM MES, pH 5.5 with KOH) and 11.25 mL distilled water. Digestions were incu-

bated for 3-4 hours at 27 °C incubated in a shaking water bath in the dark. The ex-

tent of cellular digestion was monitored microscopically until completion, upon which

digests were passed through a 50 µm nylon mesh and rinsed with basic medium. Iso-

lated epidermal cells were transferred to a second digestion mixture containing 1.5 %

Cellulase RS onozuka (Yakult pharmaceuticals, Japan), 0.03 % Pectolyase Y23 (Inter-
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chim, France), 0.25 % BSA (Sigma) and 25 mL basic medium. These secondary diges-

tions were incubated slowly shaking for 2 hours at 17 °C and the formation of guard

cell protoplasts was monitored microscopically until completion. Digests were passed

through a 10 µm nylon mesh and isolated protoplasts were collected in Falcon tubes.

Triplicate washes were performed where protoplasts were pelleted at 350 g for 15 min

in a swing rotor centrifuge and resuspended in basic medium. The purity of guard cell

protoplasts in the final pellet was then verified using a hemacytometer. For mesophyll

cell protoplasts, mature leaves from five-week-old plants (main vein discarded) were

cut into 1mm strips and submerged directly into a digestion mixture containing 1 %

Cellulase R-10 (Serva), 0.4 % Macerozyme R-10 (Serva), 5mM MES, 0.2 % BSA, 0.1 %

PVP40 and 25 mL medium (118.9 g/L D-sorbitol, 1 mM CaCl2). Digestions were in-

cubated slowly shaking for two hours in the dark at room temperature. Digests were

passed through a 25 µm nylon mesh and the resulting medium containing protoplasts

were collected in Falcon tubes. Triplicate washes were performed where protoplasts

were pelleted at 200 g for 15 min in a swing rotor centrifuge and resuspended in

medium. The purity of mesophyl cell protoplasts in the final pellet was then verified

using a hemacytometer.

qRT-PCR on protoplasts Protoplasts were collected by duplicate 15 min centrifu-

gations at 350 g in 1.5 ml tubes and all but 100 µL of supernatant was removed

from the pellet. Total RNA was extracted using 1 mL TRIZOL reagent (Invitro-

gen, www.invitrogen.com) following manufacturer’s instructions. Glycogen (Roche,

www.roche.com) was used as an RNA carrier. Total RNA was treated with DNase (Qia-

gen, www.qiagen.com), and purified using a RNAeasy Minelute Cleanup Kit (Qiagen).

Reverse transcription was performed using M-MLV reverse transcriptase (Promega,
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www.promega.com). qRT-PCR analysis was performed using SyberGreen mix and the

reference dye ROX (ABgene, www.abgene.com/) in a Stratagene MPx3000 instrument.

Default thermal cycle settings with dissociation step were used. All amplification

plots were analyzed using MxPro QPCR software (Stratagene, www.genomics.agilent.com/)

with an Rn threshold of 0.1 to obtain Ct values. Transcript abundance was estimated

as per the standard curve method (Rutledge and Cote, 2003) observing default set-

tings. Transcript abundance of target genes was normalized against expression of the

reference gene AT1G13320 (Czechowski et al., 2005). The mesophyll-cell-specific gene

At4G26530 was chosen according to microarray data described by Yang et al. (2008).

Primers used for qRT-PCT are the following: AT1G13320 (5’-taa cgt ggc caa aat gat

gc-3’ and 5’-gtt ctc cac aac cgc ttg gt-3’); MYB60 (5’-tca ctt gca agc ctt att ggg t-3’ and

5’-tct gct cct ctc atc act gtc a-3’); At4G26530 (5’-agg cct tga acg acc acc atg tc-3’ and

5’-acc tgc agg tgg gac tgt gcg-3’); PHO1;H1 (5’-tga aac gag cca cct agt gaa-3’ and 5’-tgt

tcc agc ggc taa cat agc-3’); PHO1;H2 (5’-gcg tgg ttg caa acg ata ctg-3’ and 5’-caa gcg

ttg tct gct tgt gc-3’); PHO1;H3 (5’-cag aca agt cct gct tgt tgg-3’ and 5’-ggc aag aac aca

aag caa tgc-3’); PHO1;H5 (5’-cct tca tgc aca gac aga cga-3’ and 5’-cca cgg cgg ata atc

tct aga-3’); PHO1;10 (5’-tcc tcc agt gca tac gca gat-3’ and 5’-aac gca ttg tat ccg tgt acg-

3’); to quantify PHO1 transcript levels in RNAi lines, primers spanning PHO1 GST

were chosen (5’-acc gta ccg tta ccg ttc ctt ga-3’ and 5’ctt cgt ttt gca ctt tgg agc gt-3’).

Primers designed to produce an amplicon of similar size were used for the reference

gene AT1G13320 (5’-tgc tga aga cag gca ctg gag ag-3’ and 5’-tgc tgc att gcc cat tca gga

cc-3’); to quantify expression of the PHO1 transgene in the guard cell complemented

pho1.2 lines, primers were selected that spanned sequence from the second last exon

of PHO1 to the 3’UTR of the pMDC32 vector backbone (PHO1-3’-pMDC32 5’-tcg agg

cca ctg gaa ctt tt-3’ and 5’-cac ttt gta caa gaa agc tgg gt-3’).
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qRT-PCR on enriched guard cells preparations Six-week-old plants were sprayed

one hour after the beginning of the light cycle with +/- 50 μM ABA and incubated

under light for 4 h. Enriched guard cell fractions were promptly prepared by the

“blender method” as described (Geiger et al., 2011). RNA was extracted using the

RNeasy Plant Mini Kit (www.quiagen.com), subjected to DNA digestion with RNase-

free DNase (www.fermentas.de); first-strand cDNA was prepared by use of M-MLV-RT

(www.promega.com). All procedures were carried out according to the manufacturers’

protocols. Quantitative real time PCR (qPCR) was performed in an Eppendorf re-

alplex2 (http://www.eppendorf.de). Transcript numbers were normalized to molecules

of actin2/8 as described elsewhere (Ivashikina et al., 2003). Primers used for qRT-

PCR are the following: Actin 2 (AT3G18780) Actin 8 (AT1G49240), AtACT2/8F 5’-

GGT GAT GGT GTG TCT-3’ AtACT2/8R 5’-ACT GAG CAC AAT GTT AC-3’; HAI1

(AT5G59220), HAI1F 5’-GTT GAA TAG TTT TGA CGA-3’, HAI1R 5’-GCC GTA TTT

AGG ATA AGC-3’; KIN2 (AT5G15960), KIN2R 5’-TCA GAG ACC AAC AAG AAT-3’

KIN2R 5’-CGA TAT ACT CTT TCC CGC-3’; LEA6 (AT2G40170), LEA6F 5’-CCA AGA

CCT AAA TCA AAC-3’ LEA6R 5’-ACA ACG AGA CAC TTT AC-3’; LTP4 (AT5G59310),

LPT4F 5’-GTG AAG TGG GGA ATA AC-3’ LPT4R 5’-GTG ATT AAT AAG GTA CCG-

3’; MYB60 (AT1G08810), MYB60F 5’-ATG CTG TGA CAA GAT AGG -3’ MYB60R

5’-AAA GTT TCC ACG TTT AAT-3’; RD20 (AT2G33380), RD20F 5’-GTT ACA CTT

CCG AGT T-3’ RD20R 5’-CAC ACA TTC TTA GTC TTG-3’.

Micro-grafting experiments Plant grafting using collars was performed as per the

protocol previously described by Turnbull et al. (2002). Seedlings were grown for 5

days at 27°C under 8 h light/16 h dark cycles on 1/2 Murashige Skoog medium pH

5.6 with Gamborg vitamins (Duchefa) containing 1% w/v Sucrose (Acros organics)
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and 0.8% w/v Agar (Applichem). Root to shoot grafting was performed using sterile

silicone tubing 0.3 mm in diameter. Following grafting, plants were incubated at 27°C

for a further 4 to 6 days. Grafts unions were examined for the absence of adventitious

roots, and successful grafts were transferred to soil for 4-5 weeks under short-day

regiment (18°C, 10 h light/ 14 h dark). Prior to phenotype analyses, graft unions were

re-examined to ensure that no adventitious roots had grown from the shoot scion.

Stomatal aperture bioassays The youngest fully expanded leaves from 4-6 weeks

old plants were excised in darkness one hour before the beginning of the light cycle,

and epidermal strips were prepared immediately as follows: the abaxial epidermis of

the leaf was fixed to a microscope slide using liquid medical adhesive B (VM 355-1,

Ulrich Swiss), and the resulting epidermal peels were floated in petri dishes contain-

ing 50 mL of incubation buffer (KCl 30 mM MES-KOH 10 mM pH 6.5) for 30 min

in darkness before being subjected to light (100 µEm-2s-1, 25°C) and ABA treatment.

For stomatal closure experiments, the epidermal peels were exposed to light for two

hours prior to any further treatments in order to trigger stomatal opening. ABA was

then added to the incubation buffer up to the indicated concentrations. Abscisic acid

stock was prepared in ethanol. All stomatal apertures were observed under an optical

microscope before digital images were taken and subsequently used to measure aper-

ture width in IMAGEJ (National Institutes of Health). Approximately 40 stomatal

apertures were measured for each independent experiment, time point, treatment

and genotype. The significance of aperture fold change differences (stomatal aperture

at t = 2/ stomatal aperture at t = 0) between genotypes was assessed by noncoupled

one-tailed Student’s t-test analysis. Values of P<0.05 were considered statistically

significant. For stomatal aperture assays on transgenic lines (WT pGC1::PHO1RNAi
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and pho1.2 pGC1::PHO1g), results were compared to replicated experiments where

each genotype was given a blind treatment. In an effort to reduce sampling error, the

same area of the epidermal peel (approximately 1 mm2, defined with a marker on the

microscope slide) was used for initial (t = 0) and post-treatment (t = 2 h) measurement

of stomatal aperture.

Inorganic phosphate measurements on purified guard cells Cellulysin cellulase

from Trichoderma viride (Calbiochem) was dissolved in a basic medium without sor-

bitol (0.1 % PVP40, 0.25 % BSA, 0.5 mM ascorbic acid, 0.5 mM CaCl2, 0.5 mM

MgCl2, 5 mM MES, and 25 mL distilled water, pH 5.5 with KOH) then was subse-

quently desalted using MicroKros® Hollow Filter Modules for dialysis (SpectrumLabs

http://eu.spectrumlabs.com/), against the same basic medium in a 4°C cold chamber,

until Pi concentration in the enzyme mixture was lowered below 10 µM. Enriched

guard cells preparation were then prepared following a “blender method”: before the

start of the light cycle, mature leaves from 12-24 five-week-old plants (main vein dis-

carded) were blended in cold distilled water for 2 min using a small Waring blender on

high speed. Processed tissue was passed through a 100 µm nylon mesh to isolate epi-

dermal fragments and rinsed with water until clear. Epidermal fragments were then

submerged in the desalted digestion mixture, with the addition of 50 g/L D-sorbitol

(Sigma). Digestions were incubated for 3-4 hours at 27 °C in a shaking water bath

in the dark. Cellular digestion was monitored microscopically until completion, upon

which digests were passed through a 50 µm nylon mesh. The purified epidermis were

freeze-dried and dry weight (DW) was measured. The cellular content of cells was re-

leased in nanopure water at 70°C for 30 minutes. Pi concentration was assayed using

an enzyme-coupling fluorescence method Vazquez et al. 2003.
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With the present study, we reported that beside its expression in the root vasculature

AtPHO1 is expressed in guard cells and rapidly up-regulated by abscisic acid, suggest-

ing a potential importance for PHO1 in stomata (figure 3.1, 3.3 and 3.4). Using several

different yet complementary approaches such as mutant analysis (figure 4.2 and 4.3),

grafting experiments (figure 4.9 and 4.10), guard-cell specific expression of PHO1 in

a mutant background (figure 5.7 and 5.9) and guard cell-specific down-regulation of

PHO1 (figure 5.3), we demonstrated that this guard cell expression directly mediates

the stomatal movement response to ABA.

Although our data suggest that pho1 phosphate deficiency can affect stomatal move-

ments on some level (figure 5.7, and 5.9), experiments using micro-grafts and RNAi

lines demonstrated that the impaired response of stomata to ABA in plants with abol-

ished or reduced expression of PHO1 occurred even in Pi-sufficient leaves, which con-

firms that PHO1 influences the stomatal response regardless of the plant Pi status. In

addition, we gathered evidence suggesting that PHO1 is involved in a signaling step

that is independent of the transcriptional response to ABA (figure 5.2), and located

downstream of ABA perception and ROS production (figure 4.4). The affected mecha-

nism is likely to be a central signaling event common to ABA-, ROS- and CO2-induced

stomatal movements (figure 4.3, 4.4 and 4.7). We showed that pho1 is not affected in
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several other stomatal movements pathways, thus proving that PHO1 knock-out does

not interfere with the guard cell response via an unspecific mechanical failure (figure

4.5 and 4.6). Finally, we observed that modulation of PHO1 expression in guard cells

affects guard cells Pi content, suggesting that PHO1 might act through the regula-

tion of guard cell phosphate homeostasis (figure 5.10). Together, our data show that

PHO1 is a novel important player in the response of guard cells to ABA. Since PHO1

is primarily involved in the efflux of phosphate out of cells (Stefanovic et al., 2011;

Arpat et al., 2012), this result gives strong indications of a potential role of phosphate

in this process. To our knowledge, this is the first report suggesting the involvement

of phosphate and of a phosphate transporter in the guard cell response to ABA.

To date the exact mechanisms behind the involvement of PHO1 and phosphate in

guard cell signaling remain to be elucidated. PHO1 is known to be involved in phos-

phate export to the apoplast (Stefanovic et al., 2011; Arpat et al., 2012), which is con-

sistent with the role of PHO1 in loading phosphate into the xylem. It is thus tempting

to speculate that PHO1 might have a similar function in guard cells, i.e. that ABA,

ROS and CO2 signaling could involve phosphate efflux through PHO1. As a matter of

fact, the release of anions to the outside of the guard cells is an important signaling

event occurring during ABA-, ROS- and elevated CO2-promotion of stomatal closure.

The anion channel activation induces membrane depolarization which in turns stim-

ulates K+ outward-rectifying channels. The subsequent release of osmotically active

anions and K+ contributes to cell deflation and stomatal closure (Sirichandra et al.,

2009b; Negi et al., 2008; Kim et al., 2010). Although the presence of anion currents

during ABA, elevated CO2 and calcium transients response has been known for a long

time (Schroeder and Keller, 1992), the identity of the guard cell anion channels has

only started to be uncovered in the past few years, with SLAC1 (Negi et al., 2008;
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Vahisalu et al., 2008) and SLAH3 (Geiger et al., 2011) as the main candidates for S-

type anion channels, and AtALMT12 (QUAC1) as a R-type anion channel candidate

permeable to malate2- (Meyer et al., 2010).

Malate2- and Cl- have long been recognized as two important anions mediating stom-

atal movements, but other anions are also involved: NO3
- uptake into guard cells via

NRT1.1 was shown to influence stomata opening (Guo et al., 2003), and the anion

channel SLAC1 and SLAH3 exhibit conductance for nitrate in addition to chloride

(Geiger et al., 2011). In an effort to characterize the main anions involved in stom-

atal closure, an early study by Schmidt and Schroeder (1994) described the relative

slow anion channels permeability of several physiologically significant anions, includ-

ing Cl-, Br-, F-, I-, NO3
- and malate2-. The highest permeability over chloride was

attributed to NO3
-, but all tested anions displayed significant permeabilities as well,

suggesting that slow anion channels do not discriminate strongly among anions. Un-

fortunately, this set of experiments did not include measurements of PO4
3- permeabil-

ity (Schmidt and Schroeder, 1994). As a matter of fact, while it is theoretically possible

that phosphate efflux might act, together with Cl-, NO3
- and malate2-, as a signal for

membrane depolarization, or might participate in the regulation of osmotic pressure

during stomatal closing, to our knowledge the potential importance of phosphate as

an osmolyte or a signaling molecule during ABA-regulated stomatal movements has

not been fully addressed in the literature, and remains to be elucidated.

Moreover, it is intriguing to note that several studies described an accumulation of

phosphorus in guard cells and epidermis of different plant species (Conn and Gilli-

ham, 2010). Outlaw et al. (1984) presented a qualitative description of phosphate

distribution within Vicia faba leaves, and reported that phosphate is more abundant

in guard cells and epidermal cells than mesophyll cells; Treeby et al. (1987) described
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similar phosphate accumulation in Lupinus luteus epidermis; Heath et al. (1997) also

observed accumulation of phosphorus in the stomata of Thlaspi montanum. Together,

these results raised the question of the biological importance of such phosphate accu-

mulation in plant epidermis and/or stomata. In fact, it was early hypothesized that

phosphate might be important for guard cell movements (Outlaw et al., 1984; Treeby

et al., 1987). With the aim of identifying the subsidiary elements that play a role in

stomatal movements beside the main osmolytes K+ and Cl-, Garrec et al. (1983) fol-

lowed the variations of K, Cl, Na, P, Ca, Mg and S elements occurring in the stomatal

complex of Vicia faba and Commelina communis, during stomatal opening and clo-

sure. However, they reported that phosphorus did not show large repartition changes

in closed versus open stomata, which suggested that phosphate is likely to play a dif-

ferent role than being a major osmolyte for stomatal movements (Garrec et al., 1983).

Nevertheless, the paper of Garrec et al. (1983) did not exclude the existence of smaller

phosphate concentrations variations, nor did it investigate the potential presence of

phosphate fluxes between sub-cellular compartments, which could also theoretically

influence stomatal movements through a different signaling mechanism than the sole

regulation of osmolarity. Phosphate transport could work as a signal regulating the

activity of other signaling components, for example by contributing to membrane de-

polarization and regulation of voltage-dependent channels. Also, Pi and nucleoside

phosphates participate in energy transformation and in numerous enzymatic reac-

tions, with phosphorylation playing a particularly important role in the control of sig-

nal transduction pathways (Poirier and Bucher, 2002). Phosphate is also a precursor

for the synthesis of ABA signaling molecules such as phosphatidic acid and inositol

phosphates (Lemtiri-Chlieh et al., 2000, 2003; Mishra et al., 2006; Nagy et al., 2009;

Zhang et al., 2009). The maintenance of appropriate phosphate pools in guard cells
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and the regulation of phosphate transport through PHO1 could therefore potentially

influence many aspects of guard cell signaling.

Moreover, while strong evidence have been gathered for the role of PHO1 in phos-

phate export, the general mechanisms behind PHO1 mediation of Pi release to the

extracellular space, and its definite site of action, are still not fully understood. Based

on localization data of PHO1 in roots cells, onion epidermal cells, tobacco and Ara-

bidopsis mesophyll cells, Arpat et al. (2012) and Liu et al. (2012) discussed a mode of

action for PHO1 in mediating Pi transport that could be very different from typical

PM-localized transporters. Arpat et al. (2012) suggested that only a minor fraction

of PHO1 is localized at the plasma membrane and is responsible for Pi export, while

the major pool of PHO1 is sequestered in the endomembrane network, with the dis-

tribution of PHO1 between the secretory system and the plasma membrane being

regulated by Pi homeostasis. Another hypothesis suggested by Arpat et al. (2012) and

Liu et al. (2012) is that Pi export could be first mediated by PHO1 loading Pi into se-

cretory vesicles, followed by the release of Pi to the extracellular space via exocytosis

and the rapid recycling of PHO1. Similar hypothesis could be drawn for the action

mechanism of PHO1 in guard cells: PHO1 could play a role in phosphate transport

directly at the plasma membrane, or could be primarily involved in intracellular re-

mobilization of phosphate. Localization of PHO1 in guard cells could provide a better

understanding of PHO1 action site in stomata. In addition, further investigation will

be required to characterize phosphate fluxes in and out of guard cells, or within sub-

cellular compartments, that could occur during the guard cell ABA response, as well

as the possible role of PHO1 in such phosphate fluxes. If technically possible, electro-

physiology measurements using phosphate in the buffer could also help gain insight

on this matter.
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The maintenance of guard cell phosphate homeostasis through PHO1 might also be

of importance for the appropriate functioning of Ca2+ signaling. It is indeed known

that elevations in phosphate and calcium can trigger rapid precipitation of calcium

phosphate (Poirier and Bucher, 2002; Roelfsema and Hedrich, 2010). Alterations in

phosphate transport and relocation could therefore theoretically interfere with the

high elevations of calcium that are observed during ABA, ROS and CO2 signaling. In

fact, this tendency to precipitate in the presence of high calcium does not favor the hy-

pothesis of phosphate being a major guard cell osmolyte. However, it is consistent with

the need for a tight regulation of phosphate homeostasis in guard cells. Among other

roles, [Ca2+ ]cyt oscillations participate in stomatal movements via the regulation of

anion channels activity (Mori et al., 2006; Vahisalu et al., 2008; Siegel et al., 2009;

Meyer et al., 2010) and down-regulation of H+ ATPases and K+
in channels (Kinoshita

et al., 1995; Siegel et al., 2009). The calcium-dependent pathways is believed to be

responsible for a large part of the stomatal response to ABA and CO2: in the absence

of [Ca2+ ]cyt elevations, ABA-induced stomatal closure shows only approximately 30%

of the normal stomatal closure response (Siegel et al., 2009), and CO2-induced stom-

atal closure is also strongly inhibited (Hubbard et al., 2012). Therefore if the pho1

mutation, by modifying guard cell phosphate pools and transport, interferes with the

modulation of the repetitive [Ca2+ ]cyt transient patterns, this could affect a large part

of the stomatal movement response to ABA and CO2. The monitoring of [Ca2+ ]cyt

transient patterns in pho1 or in the guard-cell RNAi lines (using for example GFP-

based calcium reporter), in response to ABA, ROS, CO2 and extracellular Ca2+, as

well as further characterization of the stomatal response to calcium-related stimuli,

could help understand the possible effect of pho1 mutation or PHO1 knock-down on

calcium signaling.
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A challenging task ahead will be to address the potential regulation mechanisms of

PHO1 activity in guard cells. Evidence have been gathered on the role of a set of

CBL/CIPKs that can phosphorylate PHO1 and regulate its Pi-export activity when

co-expressed in Xenopus oocytes (M. Jabnoune, personal communication). In addi-

tion, research is currently being carried out to identify other calcium dependent ki-

nases (CPKs) that could play a role in such regulation. Incidentally, CBL-CIPKs and

CPKs have been shown to be important regulators of guard cells ABA and CO2 sig-

naling (Cheong et al., 2007; Zhu et al., 2007). It is believed that ABA and CO2 might

enhance the calcium sensitivity of the downstream calcium sensors specific to their

signaling pathways (Siegel et al., 2009; Kim et al., 2010). In turn, these calcium sen-

sors can directly regulate ion channels activity (Mori et al., 2006; Cheong et al., 2007;

Geiger et al., 2010, 2011). A good example of this mechanism was seen with the char-

acterization of SLAH3 function and regulation (Geiger et al., 2011). Co-expression

of SLAH3 with CPK21 in Xenopus oocytes was found to mediate anion currents via

phosphorylation of SLAH3. In vitro, ABA stimulated the phosphorylation of SLAH3

by CPK21 in the presence of ABA receptor–phosphatase complex RCAR1-ABI1, by re-

leasing CPK21 from inhibition by ABI1 and allowing its activation by cytosolic Ca2+

(Geiger et al., 2011). It would be interesting to investigate whether PHO1 phosphory-

lation by CBL/CIPKs and whether its phosphate export activity could be regulated by

ABA in a similar mechanism.

To conclude, the involvement of PHO1 in guard cell signaling opens a new chapter

in the study of the role of PHO1 in Arabidopsis. Further understanding of PHO1

function in roots and guard cells could bring valuable knowledge in both phosphate

transport and guard cell signaling research fields. Studying the role of PHO1 in guard

cells could provide a better comprehension of its function in roots and phosphate ac-
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quisition. In parallel, a deeper understanding of PHO1 function in the roots could

help identify new regulatory mechanisms in the control of stomatal movements and

resistance to drought. The comprehension of plant phosphate acquisition and guard

cell signaling is of great importance for the development of future breeding and GM

approaches, that face the challenge of maintaining crop yields while reducing our re-

liance on non-renewable inorganic phosphate fertilizers (Vance et al., 2003; Hammond

et al., 2004; Vuuren et al., 2010), and coping with the pressing issues of fresh water

scarcity and continuous atmospheric CO2 rise (Schroeder et al., 2001).
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Stomatal movement response of pho1;h10 to ABA

In Arabidopsis, the PHO1 gene family is composed of 11 members, designated as

PHO1, and PHO1;H1 to PHO1;H10. In the phylogenetic tree of Arabidopsis PHO1

members, PHO1;H10 belongs to a clade that is distinct from the other homologues

(Wang et al., 2004). The homologue PHO1;H10 is expressed in a variety of tissues,

including in the root epidermal/ cortical cells, leaf blade and flowers. PHO1;H10 was

found to have a unique expression pattern with strong induction upon numerous bi-

otic and abiotic stresses, such as wounding, dehydration, cold, salt, pathogen attack,

phosphate deficiency, and phytohormones treatments including OPDA and ABA (Ri-

bot et al., 2008a,b). In an effort to characterize a potential phenotype and a role for

PHO1;H10, the mutant pho1;h10 (T-DNA knock-out mutant) was extensively studied

by Ribot (2006), under various conditions such as germination assays, water loss and

ion uptake measurements. However, pho1;h10 has so far displayed wild type pheno-

type during all assays.

Since the PHO1;H10 was strongly induced upon ABA treatment and dehydration, and

was found expressed in guard cells (according to microarray data of Yang et al., 2008),

we were interested in characterizing the stomatal response to ABA of the mutant

pho1;h10. In order to assess any potential functional redundancy between PHO1 and

PHO1;H10, double mutants lines pho1,pho1;h10 were also produced and analyzed in

parallel. We analyzed the stomatal movement response in WT, pho1.2, pho1;h10 and

the double mutant pho1.2,pho1;h10 following treatment with ABA or H2O2.

During ABA-induced stomatal closure (figure 7.1a), ABA repression of stomatal open-

ing under light (figure 7.1b) and H2O2 induction of stomatal closure (figure 7.1c), the

mutant pho1;h10 presented stomatal aperture similar to WT. In contrast, the double
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Figure 7.1: The T-DNA mutant pho1;h10 responds to ABA in terms of stom-
atal movements; the double mutant pho1.2,pho1;h10 recapitulates
the phenotypes of pho1.2. (a) Induction of stomatal closure and (b) re-
pression of stomatal opening under light in WT, pho1.2, pho1;h10 and the
double mutant pho1.2,pho1;h10, in response to 10 μM ABA, after 0, 1, and
2 h. (c) Stomatal closure in WT, pho1.2, pho1;h10 and the double mutant
pho1.2,pho1;h10, following 0, 1, and 2-h treatments with 100 μM H2O2.
For the above experiments, n = 3 independent experiments; average ± SE.
NC: Negative control (-ABA).
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mutant pho1.2,pho1;h10 presented a strong impairment of the stomatal response to

ABA, with aperture similar to pho1.2 during all treatments and time points, suggest-

ing that the double mutant recapitulates the phenotype of pho1.2. These results show

that while expressed in guard cells and up-regulated under ABA, PHO1;H10 does

not mediate the stomatal movement response to ABA. To date, the role of PHO1;H10

remains to be elucidated.

Experimental procedures

Plant material and growth conditions Arabidopsis thaliana wild type and mutants

plants were from the Columbia ecotype (wild type Col). The mutants pho1.2 has been

previously been described by Poirier et al. (1991), Delhaize and Randall (1995) and

Hamburger et al. (2002). Seed was sown directly onto potting compost contained in 7

cm diameter pots and vernalized for 2 days at 4°C. Plants were grown for 4 to 6 weeks

under short-day growth conditions (18 °C, 60 % relative humidity, 10 h light/ 14 h

dark, 100 µEm-2s-1). The homozygous pho1;h10 mutant line is a T- DNA-insertional

knockout line (SALK_034134) isolated by C. Ribot, and was used to generate the dou-

ble mutants pho1.2, pho1;h10 lines by cross between pho1.2 and pho1;h10. Double

homozygous mutants lines were selected by scoring for pho1 phenotype and by de-

tection of the PHO1;H10 insertion by PCR. The PHO1;H10 complete knock-out was

confirmed by Northern hybridization as described in (Ribot et al., 2008b).

Stomatal aperture bioassays The youngest fully expanded leaves from 4-6 weeks

old plants were excised in darkness one hour before the beginning of the light cycle,

and epidermal strips were immediately prepared: briefly, the abaxial epidermis of the

leaf was fixed to a microscope slide using liquid medical adhesive B (VM 355-1, Ulrich
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swiss), and the resulting epidermal peels were floated in petri dishes containing 50

mL of incubation buffer (KCl 30mM MES-KOH 10mM pH6.5) for 30 min in darkness

before being subjected to light (100 µEm-2s-1, 25°C) and chemical treatments. For

stomatal closure experiments, prior to treatments, the epidermal peels were exposed

to light for 2 h to trigger stomatal opening. ABA or H2O2 were then added to the incu-

bation buffer to indicated concentration. Abscisic acid 10 mM stock was prepared in

ethanol. All stomatal apertures were observed under an optical microscope before dig-

ital images were taken and subsequently used to measure aperture width in IMAGEJ

(National Institutes of Health). Approximately 40 stomatal apertures were measured

for each independent experiment, time point, treatment and genotype.
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