The molecular architecture of the TNF superfamily

J ean-Luc Bodmer, Pascal Schneider and Jürg Tschopp

Abstract

Ligands of the TNF (tumour necrosis factor) superfamily have pivotal roles in the organization and function of the immune system, and are implicated in the aetiology of several acquired and genetic diseases. TNF ligands share a common structural motif, the TNF homology domain (THD), which binds to cysteine-rich domains (CRDs) of TNF receptors. CRDs are composed of structural modules, whose variation in number and type confers heterogeneity upon the family. Protein folds reminiscent of the THD and CRD are also found in other protein families, raising the possibility that the mode of interaction between TNF and TNF receptors might be conserved in other contexts.

Metazoan organisms consist of an intricateand ordered society of individual cells that must communicate tomaintain and regulate their functions. This is achieved through a complex and highly regulated network of hormones, chemical mediators, chemokines and other cytokines, acting as ligands for intra- or extracellular receptors. Ligands and receptors of the tumour necrosis factor (TNF) superfamilies areexamples of signal transducers whose integrated actions impinge principally on the devel opment, homeostasis and adaptativeresponses of the immune system. Despite their varied and pleiotropic actions, members of the TNF ligand and receptor (TNFR) families have remarkably similar structures, and their mode of interaction is conserved. The aim of this review is to provide an overview of the molecular architecture and the modular organization of theTNF and TNFR genesuperfamilies.

The TNF family

TheTNF ligand family comprises 18 genes encoding 19 typell (i.e. intracellular N terminus and extracellular C terminus) transmembrane proteins characterized by a conserved C-terminal domain coined the TNF homology domain'(THD) (Fig. 1). This trimeric domain is responsible for receptor binding and its sequenceidentity between family members is $\sim 20-30 \%$. Although most ligands are synthesized as membrane-bound proteins, soluble forms can be generated by limited proteolysis (Fig. 1). Distinct proteases areinvolved in this process, depending on the ligand: metall oproteases of the ADAM (a disintegrin and metalloproteinase domain) family act on TNF and RANKL ligands [1,2], matrilysin acts on Fas ligand (FasL) [3], and members of the subtilisin-likefurin family act on BAFF, EDA, TWEAK andAPRIL-members of the TNF family $[4,5]$. Solubilization is absolutely required for thephysiol ogical function of some
ligands: mutation in the furin recognition sequence of EDA is a frequent cause of thegenetic disorder X-linked hypohidrotic ectodermal dysplasia (XLHED) [4,6]. By contrast, the shedding of some ligands inhibits their function. F or instance, the cytotoxic activity of FasL is dramatically downregulated upon cleavage [7]. The N terminus of lymphotoxin $\alpha(L T \alpha)$ resembles a signal peptide, making its conversion to a sol uble form extremely efficient. Consequently, LT α is never found at the cell surface except when it is associated with membranebound LT β as $L T \alpha_{1} \beta_{2}$ heterocomplexes [8] (Fig. 1). Processing of TNF-related apoptosis-inducing ligand (TRAIL) by a cysteine protease has been proposed [9], but the resulting sol uble form seems to betoosmall to retain a functional THD.

Ligands of theTNF family control and orchestrate the immune and inflammatory responses at several levels (recently reviewed in Ref. [10]). During devel opment, TNF ligands such as TNF, LT α, LT β and RANKL providecrucial signals for the morphogenesis of secondary lymphoid organs [10,11]. In addition, thegrooming and proper activation of immune precursor cells tofully competent effectors is dependent on several other TNF family members such as BAFF and CD40L for B lymphocytes [12-14]; 4-1BBL, OX40L and CD27L for T lymphocytes [15]; and CD40L and RANKL for dendriticcells [16,17]. Pro-apoptotic members of thefamily (e.g. TNF, FasL and TRAIL) contributetothefunction of cytotoxic effector cells and participate in thehomeostasis of the lymphoid compartment by evoking activationinduced cell death in immune effector cells that have fulfilled their function [18]. Recent evidenceindicates that other TNF family ligands regulate the development and differentiation of epithelial structures (theEDA ligand), endothelial cells (VEGI and TWEAK) and bone-resorbing osteoclasts (RANKL and TNF) [10].

TNF family ligands and receptors are associated with several di sease conditions that result from acquired processes or genetic defects. Acquired acute or chronic inflammatory conditions such as septic shock or rheumatoid arthritis result from excessiveor inappropriateTNF expression [19]. M utations in TNF ligands and/or receptors have been described in five hereditary diseases: hyper I gM syndrome (HIM, CD40L), typel autoimmunelymphoproliferative syndrome(ALPS, Fas/F asL), TNF-R1-associated periodic fever syndrome(TRAPS, TNF-R1),

Fig. 1. Interactions between ligands and receptors of the human tumour necrosis factor (TNF) family: TNF ligands (top) and TNF receptors (bottom). The TNF ligands are represented as type II homo- or hetero-trimeric transmembrane proteins (with the exception of VEGI, which lacks a predicted transmembrane domain and is therefore drawn as a soluble ligand). TNF homology domains (THDs) are shown as green boxes. Filled black arrowheads indicate processing by furin family members, and open black arrowheads by other types of proteases. The TNF receptors are typically type I or type III transmembrane proteins, but also occur as glycolipid-anchored or soluble proteins. N1, A1, A2, B1, $\mathrm{B} 2, \mathrm{C} 2$ and X 2 modules are colour-coded as shown in the insert. The positions of individual cysteines are indicated by horizontal bars, and stars show modules whose cysteine pattern does not conform entirely to that of cannonical A, B, C and N modules. The length of intracellular domains is indicated for each ligand and each receptor, and the intracellular homology domain, known as the 'death domain', is indicated as red boxes. Red arrows show documented interactions. An interaction between TWEAK and TRAMP has been reported [53] but has not yet been confirmed. Some of the ligands and receptors have several commonly used names: FasL/CD95L, TRAIL/Apo-2L, RANKL/OPGL/TRANCE, BAFF/BLyS/TALL-1, Fas/CD95, TRAIL-R1/DR4, TRAIL-R2/DR5, TRAIL-R3/DcR1, TRAIL-R4/DcR2, TRAMP/DR3 and TROY/TAJ . For the official TNF superfamily (TNFSF) nomenclature and additional synonyms, consult http://www.gene.ucl.ac.uk/nomenclature/genefamily/tnftop.html.
hypohidroticectodermal dysplasia (HED, EDA/EDAR) and familial expansileosteolysis (FEO, RANK) [10]. It is likely that other links between TNF members and diseases will be uncovered in the future.

Structural features of TNF family ligands

TheTHD is a 150 aminoacid long sequence containing a conserved framework of aromatic and hydrophobic residues (Fig. 2). Todate, atomic-level
structures are availablefor theTHD of TNF [20,21], LT α [22], CD40L [23] and TRAIL [24-27]. THDs sharea virtually identical tertiary fold and associate to form trimeric proteins (Fig. 3a). TheTHDs are β-sandwich structures containing two stacked β-pleated sheets each formed by five anti-parallel β strands that adopt a dassical ‘jelly-roll’topol ogy. Theinner sheet (strands $\mathrm{A}, \mathrm{A}^{\prime}, \mathrm{H}, \mathrm{C}$ and F) is involved in trimer contacts, and the outer sheet (strands B, B^{\prime}, D, E and G) is exposed at the surface. Trimeric THDs are $-60 \AA ి$ in height and resemblebell-shaped, truncated pyramids with variable loops protruding out of a compact core of conserved anti-parallel β strands (Figs 2,3a). TRAIL is uniquewith respect to theAA' loop, which contains a 15 residue-long insertion that spans the whol e outer surface of the monomer [24,26,27]. The trimer is assembled such that oneedge of each subunit (strands E and F) is packed against the inner sheet of its neighbour, forming large and mostly hydrophobic interfaces resulting in a very stableinteraction [20,26,27]. TNF and CD40L contain a single disulfide bridgelinking the CD and EF loops [20,23] (Fig. 3a). Similar disulfidelinks are predicted to occur in F asL, LIGHT,

Fig. 2. Sequence alignment of the human tumour necrosis factor (TNF) and C1q superfamilies. Primary sequence alignments of the TNF homology domains (THDs) of 19 TNF ligands (including the distantly related member OX40L) and of 12 published C1q-related proteins. The alignment has been reduced to regions of significant sequence homology. Intervening loops have been omitted except for the conserved $\mathrm{L} N \times W$ motif in the AA' loop of the TNF ligands, but their length is indicated. The individual β strands (A-H) are highlighted with boxes coloured with respect to their succession in the primary structure from red to violet. Blue dots above the alignment indicate residues involved in monomer-monomer interface formation and their
numbers represent the frequency at which each position is found to interact in the five structures available (e.g. TNF, LT α, CD40L, TRAIL and mACRP30). Red squares represent residues involved in receptor binding in the two complex structures available (LT $\alpha-$ TNF-R1 and TRAIL-DR5). Arrowheads underneath the sequences point to the four conserved residues in the TNF and C1q families. The multiple sequence alignment was generated with the amino acid sequence of THD and gC1q domains using ClustalW, and was edited manually to account for structural knowledge. Identical amino acids (inverse) and 50\% similar amino acids (grey) were shaded using Boxshade.

Fig. 3. The tumour necrosis factor (TNF) homology domain (THD). (a) Ribbon diagrams of the THD of human TNF seen from the side (left) and top (right) orientation. One monomer is highlighted and the other two are shaded. The ten anti-parallel β strands (designated $A, A^{\prime}, B^{\prime}, B, C, D$, E, F, G and H according to Ref. [20]) are coloured using the same code as in Fig. 2. Intervening loops are shown in white. The orientation of the THD relative to the membrane is indicated. Note the close proximity of N and C termini. Models are based on the PDB atomic coordinate file 1TNF [20]. (b) Structure of the gC1q domain of murine ACRP30 seen from the side (left) and top (right) orientation showing its similarity to the THD. Models are based on the PDB atomic coordinate file 1C28 [31]. (c) Representation of the pentameric 'jelly-roll' domain of the VP1 capsid protein (boxed in the representation of the viral particle in the centre) of the Mahoney strain of type 1 human poliovirus (PV) seen from the side (left) and top (right) orientation. Strands are coloured and numbered as in panels A and B. The topological organization of the eight strands is identical to that of the THD, with the exception of the two interruptions in strands A and B. Models are based on the PDB atomic coordinate file 2PLV [36].

VEGI, CD30L and CD27L, whereas TWEAK, EDA, APRIL and BAFF havea predicted disulfide bridge between β strands E and F. In TRAIL, a single cysteineresidue (Cys230) in the EF loop is involved in the coordination of a $\mathrm{Zn}(\mathrm{II})$ ion, with each monomer contributing to one coordination position whereas the fourth coordination position is occupied by an internal solvent moleculeor a chloridecounter-ion [24-26]. This metal-binding site is unique sofar in theTNF family and affects the stability and bioactivity of TRAIL [26,28,29]. IncompleteZn coordination, and formation of partially oxidized, disulfide-linked species of TRAIL, has recently been suggested to account for its hepatotoxicity [30].

TNF related structures - the C1q family

Crystallographicstudies revealed that TNF and the globular gC1q domain of mouseACRP30 have a closel y related tertiary structure and trimeric organization, suggestive of an evol utionary link between theTNF and C1qfamilies [31] (Fig. 3a,b). Thehuman C1q genefamily comprises, so far, 13 members (Fig. 2), which arecharacterized by the presence of a trimeric globular C-terminal domain, known as gC1q. The prototypical member of the family is $\mathrm{C} 1 q$, a bouquet-like molecule comprising 18 chains (six each of C1qA, C1qB and C1qC) that associate into six heterotrimeric gC1q domains held together by a bundle of collagen domains. C1q recognizes immune complexes and triggers the dassical complement pathway (recently reviewed in Ref. [32]). TheC1q family al so contains several collagenous members (CRF, ACRP30, CORS26, EMILIN-1 and -2, and collagens VII and X) and two non-collagenous members (Precerebellin and Multimerin) (Fig. 2). Many of these proteins are components of the extracellular matrix in diverse organs [32]. ACRP30 is an abundant serum protein that is synthesized by adi posetissues in responseto insulin and is downregulated in obesemouseand humans [33,34]. Thehomologues of ACRP30 are drastically downregulated in the serum of hibernatingSiberian chipmunks, pointing toa rolein energy metabol ism. I ndeed, ACRP30 induces weight loss in mice via activation of fatty acid catabolism
[35]. Conserved residues of $\mathrm{gC1q}$ domains are located within the core β strands, as previously discussed for THD domains. Although the sequenceidentity between the two families is reduced to only four aminoacid residues (indi cated with arrowheads in Fig. 2), the overall hydrophobic character of the internal β-pleated sheet is maintained in both families.

To date, there is noevidence that the mode of interaction described in theTNF family alsoapplies to proteins containing globular C1q domains. Several C1q receptors havebeen described, but none of them, with thenotableexception of theimmunecomplex, binds to theglobular domain. Nevertheless, the recent demonstration that thegC1q domain of ACRP30 is biol ogi cally activeimplies theexistence of ACRP30 receptor(s), which could be structurally related to TNF receptors.

TNF related structures - viral capsid proteins

As first noticed by J ones and Eck in 1989, the overall fold and topol ogy of theTHD is very similar to that of the capsid proteins of small spherical plant viruses (e.g. TomatoBushy Stunt Virus and SatelliteTobacco Necrosis Virus) and mammalian picornaviruses (including the common human Rhinoviruses, the F oot-and-M outh Disease Virus and Poliovirus) despite no detectablesimilarity at the primary sequence level [20,21]. Although these capsid proteins associatealong a fivefold instead of a threefol d axis of symmetry, the connectivity of their β strands is identical tothat of theTHD, with the exception that strands A and B are not inter rupted by loops [36] (Fig. 3c). Thesefivefold structures appear on the virus surface as 12 broad, star-like protuberances (Fig. 3c). Although the structural relationship existing between these apparently unrel ated protein families highlights the propensity of 'jelly-roll'motifs to oligomerize, there appears to be nofunctional conservation between TNF family members and icosahedral viral capsid proteins. I ndeed, the receptors allowing entry of this class of viruses into cells do not bel ong to the TNF receptor family and do not bind directly to the oligomeric 'jelly-roll'structure[37].

The TNF receptor family

In humans, 29TNF receptors havesofar been identified (Fig. 1). These areprimarily typel (extracellular N terminus, intracellular C terminus) transmembrane proteins, but there areexceptions to this rule: BCMA, TACI , BAFFR and XEDAR aretype III transmembrane proteins (lacking a signal peptide), TRAIL-R3 is anchored by a covalentlylinked C-terminal glycolipid, and OPG and DcR3lack a membrane-interacting domain and aretherefore secreted as soluble proteins. Sol uble receptors can also begenerated by proteolytic processing (CD27, CD30, CD40, TNF-R1 and TNF-R2) [38], or by alternativesplicing of the exon encoding the
transmembrane domain (F as and 4-1BB) [39]. The essential role of these soluble receptors in modulating the activity of their cognateligands has been welldocumented (for OPG and TNF-R1 examples, see Refs [40,41]). In addition, several viral open reading frames encodereceptor homol ogues that interact with TNF and that are bel ieved to interfere with the onset of inflammatory responses (SVF-T2 in Shopefibroma virus,Va53R in Vaccinia, cytokineresponse modifiers $\mathrm{CrmB}, \mathrm{CrmC}$ and CrmD in orthopoxviruses) (reviewed in Ref. [39]). TheTNF receptor family member NGFR is unique in that it binds low-affinity ligands that do not belong to the TNF family. Theseligands (NGF, BDNF and neurotrophins) al so engage a family of high-affinity tyrosinereceptor kinases (trkA, B and C), which are unrelated to TNF receptors [42]. The existence of a bona fideTNF ligand for NGFR cannot be excluded at present.

Structural features of the TNF receptor family

Theextracellular domains of TNF receptors are characterized by the presence of cysteine-rich domains (CRDs), which are pseudo-repeats typically containingsix cysteine residues engaged in the formation of three disulfidebonds. The number of CRDs in a given receptor varies from oneto four, except in the case of CD30 where the threeCRDs have been partially duplicated in the human but not in the mouse sequence. Therepeated and regular arrangement of CRDs confers an el ongated shape upon the receptors, which is stabilized by a slightly twisted ladder of disulfide bridges (Figs 1,4). Sequence alignment of TNF receptor family members in the absence of structural information is difficult because the spacing of cysteineresidues is not always conserved between receptors. Naismith and Sprang have introduced a classification based on distinct structural modules that greatly facilitates sequence comparison between TNF receptors [43] (Fig. 5). E ach moduletype is designated by a letter (A, B, C and N for crystallized modules, and X for modules of unknown structure) and by a numeral indicating the number of disulfide bridges it contains. A typical CRD is usually composed of an A1-B2 or A2-B1 module or, less frequently, a different pair of modules. Al modules are 12-27 amino acids long, consist of three short β strands linked by turns, and contain a single disulfidebridge connecting strands 1 and 3 , yielding a characteristic C-shaped structure (Fig. 4). A2 modules contain a second disulfide bridge linking the second and third strands without affecting the overall structure. B modules are 21-24 amino acids long and comprise three anti-parallel strands adopting an S-shaped fold reminiscent of a paper clip (Fig. 4). In this case, the fold is constrained by two entangled disulfide bridges linking strands 1 and 3 in $B 2$ modules. The first disulfidebridge is replaced by a hydrogen bond in B1 modules [43]. The

Fig. 4. Modular organization of the extracellular domain of the tumour necrosis factor (TNF) receptors. Ribbon representation of an A1 module (light blue, top left) and a B2 module (dark blue, bottom left) along with their consensus sequence. In the middle, the two modules are combined to generate a cysteine rich domain (CRD). The full extracellular domain contains several CRDs stacked on top of each other. The tertiary structure of the epidermal growth factor (EGF) domains of human laminin $\gamma 1$ chain is remarkably similar, except that an additional loop is inserted between CRDs (S1, shown in white). Models are based on the PDB atomic coordinate files 1TNR (TNF receptor) [22] and 1KLO ((aminin $\gamma 1$) [48].
structure of A and B modules is al so reflected at the level of the primary sequence by the conservation of a few non-cysteineresidues (see consensus sequence in Fig. 4). Other modules are less frequent. So far, the N-terminal N1 modules have been found only in the TRAIL receptors, in which they precede thefirst A1-B2 CRD. Structurally, the N1 module resembles the second half of a B module [24,25,27]. Thefourth CRD of TNF-R1 contains an A1-C2 module pair, in which the cysteine connectivity of C 2 is distinct from that of a B2 module. TACI, BCMA and Fn14 also contain putativeA1-C2 CRDs, but these remain to be demonstrated at the structural level. Finally, we have collectively designated, as $\times 2$, four unrelated modules of unknown structurethat arefound in TRAMP, GITR, BAFFR and viral CrmC. The recently described BAFF receptor (BAFFR) [44] contains a single X2 module whose sequence resembles an A moduleentangled with the beginning of a B module (Fig. 5). Morestructural work is needed to understand the mol ecular interaction of this receptor with BAFF. TNF receptors are often viewed as monomers, principally
because they appear in this form in crystal structures of ligand-receptor complexes. However, TNF-R1 has also been crystallized as both head-tohead and head-to-tail dimers [45], and there is genetic and experimental evidencethat Fas, TNFR1 and CD40 exist as preformed oligomers within the plasma membrane[46]. Self-association of the receptors depends on an N -terminal pre-ligand association domain (PLAD) that includes thefirst CRD and that is not directly involved in ligand binding.

TNFR-related structures - the EGF-like domain

A1 and B2 modules are not restricted to the TNF receptor family but al soform the structural basis of epidermal growth factor (EGF)-likedomains present in several proteins such as laminins. Laminins are composed of threerelated chains (α, β and γ, of which therearedifferent isoforms) associated by a C-terminal coiled-coil domain. Thesechains display several globular domains in their N -terminal moieties with intervening, el ongated structures composed of EGF-likerepeats [47]. As shown in Fig. 4, theoverall structure of EGF-like and CRD repeats is strikingly similar, except that A1-B2 modules in laminin are separated by an additional module, which wehave designated S1 because of its small size[48]. EGF-like repeats 3-5 of the $\gamma 1$ chain of laminin bind Nidogen-1, a protein that interconnects laminin molecules in the basement membrane, but whose sequence is unrelated toTNF or C1q family members. Sofar, thereis noevidence that EGF-like repeats bind TNFor C1q-likeligands.

Fig. 5. Sequence alignment of tumour necrosis factor (TNF) receptor modules. (a) Sequence alignment of TNF receptor modules in their order of appearance from the N to the C terminus (left to right and top to bottom). Conserved cysteine residues are boxed whereas similar residues are shaded. The connectivity of the cysteines is shown at the top. A star marks modules that do not entirely obey canonical cysteine patterns of A, B, C and N modules. Receptors containing C2 modules are shown at the bottom of the main alignment. A putative disulfide connectivity is indicated, based on the known structure of the C2 module of TNF-R1 (b) Sequence alignment of individual A1, B2 and intervening S1 modules of three epidermal growth factor (EGF) domains of human laminin $\gamma 1$ chain.

Fig. 6. Receptor-ligand interactions. Ribbon and space-filling representations of the lymphotoxin α (LT α)-TNF-R1 3:3 complex. LT α is shown in green, TNF-R1 in blue, and the two interaction surfaces in red and orange, respectively. In panel (a), the side chain of Tyr142 is shown. (b) is an open-book representation revealing the interaction regions. Loops, modules and cysteine-rich domains (CRDs) contributing to these interaction surfaces are identified. Models are based on the PDB atomic coordinate files 1TNR [22].

Acknowledgements

We thankKimberly Burns for critical reading of the manuscript. The molecular models shown in this publication were generated using
Swiss-PDB Viewer v3.7 32 [52], which can be freely downloaded from http://www.expasy.ch/spd bv/. This work was supported by grants from the Swiss National
Science Foundation to P.S. andJ.T.

Interactions between a TNF ligand and a TNF receptor In 1993, Banner and colleagues [22] published a seminal study unraveling the first structure of a TNF ligand (LT α) bound to its cognate receptor (TNF-R1). Theasymmetric unit contains three receptors and three ligands assembled as a hexameric complex in which a singleTNF trimer binds to three receptor molecules (Fig. 6). More recently, highly similar crystal structures have been reported for complexes between TRAIL and TRAI LR2, confirming that the 3:3 stoichiometry is the likely basis of the signaling unit [24,25,27]. Indeed, the geometry of the receptor-ligand complex matches that of TRAF-2, a trimeric intracellular adaptor molecule mediating TNF-R2 and CD40 signals [49]. The recently identified receptors BCMA, TACI, BAFFR and Fn14 do not contain the A1-B2-A1 succession of modules involved in the binding of both TNFR1 and TRAILR2 to their respectiveligands, implying that distinct receptor-ligand interfaces must exist. However, the threefold geometry is also likely to be conserved for theseligand-receptor complexes.

Thereceptor molecules bind with their long axis roughly parallel to the C_{3} symmetry-axis of the trimeric ligand, in thegroove formed by the interface of each pair of monomers. Conformational changes occurring upon complex formation are relatively minor, and only substantially affect receptor-contacting loops of the ligand (CD and $A A^{\prime}$) [22,25]. There are mainly two contact regions between the receptor and the ligand. Thefirst contact area invol ves receptor residues corresponding to the second CRD of the receptor (A1 plus half of B2) and loops DE andAA' of two adjacent ligand subunits (Fig. 6, region shown in red). This area is based on a central hydrophobic interaction containing a relatively conserved tyrosineresidue (present in loop DE of TNF, LT α,

FasL, TRAIL, LIGHT and VEGI) that is crucial for receptor binding in TNF, LT α, FasL and TRAIL. In the second, more polar interaction region, the remainder of the second CRD (second half of $B 2$), and theA1 module of the third CRD, of TNF-R1 make contacts with the CD and EF loops of two adjacent ligand subunits (Fig. 6, region shown in orange). In addition, Cha and colleagues have provided evidencefor the existence of a third, central interaction region in their TRAIL-TRAILR2 structure. The central region involves residues 131-135 of theAA'loop that penetrates into the central interaction region upon binding, forming several specific polar interactions. This additional interaction patch might well be specific toTRAIL because of its longAA' loop [24].

As expected, regions of contact between ligands and receptors are very di verse among family members and contribute to the specific interaction of ligand-receptor pairs (Fig. 2). However, prediction of receptor-ligand interactions is not straightforward as different ligands can bind the same receptor (e.g. both TNF and LT α bind TNF-R1) whereas almost identical ligands can bind different receptors. In this context, the particular case of ectodysplasin A (EDA) is interesting as two of its isoforms (namely EDA-A1 and -A2), which differ by only two aminoacids, display a mutually exclusive receptor specificity (for EDAR and XE DAR, respectively). In this case, removal of the residues Glu308-Val309 is predicted to suppress a negative charge in the second receptor interaction siteof EDA [50].

Thereceptor Herpes virus entry mediator (HVEM) interacts with twoligands of the TNF family (LIGHT and $\mathrm{LT} \alpha$), but is also hijacked by the viral glycoprotein D (gD) of herpes simplex virus. The latter interaction invol ves the first B2 module of HVEM and is structurally unrelated to that of a regular TNF ligand with a TNF receptor [51].

Conclusions

Thepast few years have witnessed a dramatic increase in thenumber of theTNF and TNF receptor family members. This was a direct consequence of expressed sequencetag sequencing projects combined with the development of bioinformatic tools. With the completion of thegenome sequencing project, it is now reasonable to assume that thesetwofamilies approach their definitivesizes. They are characterized by a conserved molecular architecture and mode of interaction. A few moreunexpected additions might arisefrom expression doning of receptors, becausetheir modular structureis more diversethan that of the ligands. Conversely, novel ligand specificities might arisefrom alternative splice variants or from theheteromeric association of known ligands. The molecular characterizations of TNF and TNFR have provided a basis for the understanding of their biol ogical roles, and their implication in genetic diseases.

References

1 Black, R.A. et al. (1997)A metalloproteinase disintegrin that releases tumour-necrosis factor- α from cells. Nature 385, 729-733
2 Lum, L.etal. (1999) Evidencefor a role of a tumor necrosis factor- α (TNF- α)-converting enzyme-like proteasein shedding of TRANCE, aTNF family member invol ved in osteoclastogenesis and dendritic cell survival. J . Biol. Chem. 274, 13613-13618
3 Powell, W.C. etal. (1999) Themetalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis. Curr. Biol. 9, 1441-1447
4 Chen, Y. et al. (2001) Mutations within a furin consensus sequenceblock proteolytic rel ease of ectodysplasin-A and causeX-linked hypohidrotic ectodermal dysplasia. Proc. NatI. Acad. Sci. U.S.A. 98, 7218-7223

5 Schneider, P. etal. (1999) BAFF, a novel ligand of thetumor necrosis factor family, stimulates B cell growth. J. Exp. Med. 189, 1747-1756
6 Schneider, P. et al. (2001) M utations leading to Xlinked hypohidroticectodermal dysplasia affect threemajor functional domains in thetumor necrosis factor family member ectodysplasin-A. J . Biol. Chem. 276, 18819-18827
7 Tanaka, M. et al. (1998) Downregulation of Fas ligand by shedding. Nat. Med. 4, 31-36
8 Browning, J.L.et al. (1995) Characterization of surfacelymphotoxin forms. Use of specific monoclonal antibodies and soluble receptors. J. Immunol. 154, 33-46

9 Mariani, S.M. and K rammer, P.H. (1998) Differential regulation of TRAIL and CD95 ligand in transformed cells of the T and B lymphocyte lineage. Eur.J. Immunol. 28, 973-982
10 Locksley, R.M. et al. (2001) TheTNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487-501
11 Fu, Y.X. and Chaplin, D.D. (1999) Development and maturation of secondary lymphoid tissues. Annu. Rev. Immunol. 17, 399-433
12 Vogel, L.A. and Noelle, R.J . (1998) CD40 and its crucial roleas a member of theTNFR family. Semin. Immunol. 10, 435-442
13 Mackay, F. et al. (1999) Micetransgenic for BAFF devel op lymphocytic disorders al ong with autoimmunemanifestations. J . Exp. Med. 190, 1697-1710
14 Gross, J.A. et al. (2000) TACI and BCMA are receptors for a TNF homologueimplicated in Bcell autoimmune disease. Nature404, 995-999
15 Gravestein, L.A. and Borst, J. (1998) Tumor necrosis factor receptor family members in the immunesystem. Semin. Immunol. 10, 423-434
16 Anderson, D.M. Etal. (1997)A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature390, 175-179
17 Bennett, S.R. etal. (1998) Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393, 478-480
18 Krammer, P.H. (2000) CD95's deadly mission in theimmunesystem. Nature407, 789-795
19 Dinarello, C.A. (2000) Proinflammatory cytokines. Chest 118, 503-508
20 Eck, M.J. and Sprang, S.R. (1989) Thestructure of tumor necrosis factor-alpha at $2.6 \AA \AA$ resolution. Implications for receptor binding. J . Biol. Chem. 264, 17595-17605
21 J ones, E.Y. et al. (1989) Structure of tumour necrosis factor. Nature338, 225-228
22 Banner, D.W. et al. (1993) Crystal structure of the
solublehuman 55 kd TNF receptor-human TNF β
complex: implications for TNF receptor activation. Cell 73, 431-445
23 Karpusas, M. et al. (1995) $2 \AA$ Å crystal structure of an extracellular fragment of human CD40 ligand. Structure3, 1031-1039
24 Cha, S.S. et al. (2000) Crystal structure of TRAIL-DR5 complex identifies a critical role of the uniqueframeinsertion in conferring recognition specificity. J. Biol. Chem. 275, 31171-31177
25 Hymowitz, S.G. et al. (1999) Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5 . Mol. Cell 4, 563-571
26 Hymowitz, S.G. etal. (2000)A uniquezincbinding siterevealed by a high-resolution X-ray structure of homotrimericApo2L/TRAIL. Biochemistry 39, 633-640
27 Mongkolsapaya, J.et al. (1999) Structure of the TRAIL-DR5 complex reveals mechanisms conferring specificity in apoptotic initiation. Nat . Struct. Biol. 6, 1048-1053
28 Bodmer, J.L.etal. (2000) Cysteine 230 is essential for the structureand activity of the cytotoxic ligand TRAIL.J.Biol.Chem. 275, 20632-20637
29 Trabzuni, D. et al. (2000) Functional analysis of tumour necrosis factor- α-related apoptosisinducing ligand (TRAIL): cysteine-230 plays a critical rolein thehomotrimerization and biological activity of this novel tumoricidal cytokine. Biochem. J. 350, 505-510
30 Lawrence, D. et al. (2001) Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat. Med. 7, 383-385
31 Shapiro, L. and Scherer, P.E. (1998) Thecrystal structure of a complement-1q family protein suggests an evolutionary link totumor necrosis factor. Curr. Biol. 8, 335-338
32 Kishore, U. and Reid, K.B. (2000) C1q: structure, function, and receptors. Immunopharmacol ogy 49, 159-170
33 Hu, E.etal. (1996) AdipoQ is a novel adipose specific genedysregulated in obesity.J. Biol. Chem. 271, 10697-10703
34 Scherer, P.E. et al. (1995)A novel serum protein similar to C1q, produced exclusively in adi pocytes. J. Biol. Chem. 270, 26746-26749
35 Fruebis, J.etal. (2001) Proteolytic cleavage product of 30-kDa adi pocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. NatI. Acad. Sci.U.S. A. 98, 2005-2010
36 Hogle, J.M. et al. (1985) Three-dimensional structure of poliovirus at $2.9 \AA \AA$ resolution. Science 229, 1358-1365
37 Rossmann, M.G. et al. (2000) Cell recognition and entry by rhino- and enteroviruses. Virology 269, 239-247
38 Gruss, H.J . and Dower, S.K. (1995) Tumor necrosis factor ligand superfamily: invol vement in the pathology of malignant lymphomas. Blood 85, 3378-3404
39 Smith, C.A. et al. (1994) TheTNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 76, 959-962
40 McDermott, M.F. etal. (1999) Germlinemutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97, 133-144
41 Simonet, W.S. et al. (1997) Osteoprotegerin: a
novel secreted protein involved in the regulation of bone density. Cell 89, 309-319
42 Yano, H. and Chao, M.V. (2000) Neurotrophin receptor structure and interactions. Pharm. Acta Helv. 74, 253-260
43 Naismith, J.H. and Sprang, S.R. (1998)
Modularity in theTNF-receptor family. Trends Biochem. Sci. 23, 74-79
44 Thompson, J .S. et al. (2001) BAFF-R, a novel TNF receptor that specifically interacts with BAFF. Science293, 2108-2111
45 Naismith, J.H. et al. (1996) Structures of the extracellular domain of thetypel tumor necrosis factor receptor. Structure4, 1251-1262
46 Siegel, R.M. et al. (2000) F as preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science288, 2354-2357
47 Tunggal, P. et al. (2000) Laminins: structure and geneticregulation. Microsc. Res. Tech. 51, 214-227
48 Stetefeld, J.et al. (1996) Crystal structure of three consecutivelaminin-typeepidermal growth factor-like(LE) modules of laminin $\gamma 1$ chain harboring thenidogen bindingsite.J. Mol. Biol. 257, 644-657
49 Park, Y.C. et al. (1999) Structural basis for selfassociation and receptor recognition of human TRAF 2. Nature398, 533-538
50 Yan, M. et al. (2000) Two-amino acid molecular switch in an epithelial morphogen that regulates binding to two distinct receptors. Science290, 523-527
51 Carfi, A. et al. (2001) Herpes simplex virus glycoprotein D bound to the human receptor HveA. Mol. Cell 8, 169-179
52 Guex, N. etal. (1999) Protein modelling for all. Trends Biochem. Sci. 24, 364-367
53 Marsters, S.A. et al. (1998) Identification of a ligand for the death-domain-containing receptor Apo3. Curr. Biol. 8, 525-528

